Non-Hopf hypersurfaces with constant principal curvatures in $\mathbb{C}P^n$ and $\mathbb{C}H^n$

Alberto Rodríguez Vázquez

Joint work with: J. C. Díaz Ramos, M. Domínguez Vázquez

Department of Mathematics, University of Santiago de Compostela, Spain E-mail: a.rodriguez@usc.es

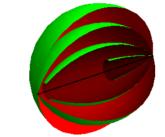
Congreso bienal de la RSME February 4-8, 2019, Santander, Spain.

Known results

Introduction

Intuitively a hypersurface has constant principal curvatures if it looks the same at each point.

In 1938, É. Cartan classified the hypersurfaces with constant principal curvatures in the real hyperbolic space $\mathbb{R}H^n$ [2].



Geodesic spheres

Tubes or equidistant hypersurfaces to a totally geodesic $\mathbb{R}H^k$

Horospheres

Theorem [1], [3], [5]

Let $M \subset \overline{M}$, $n \geq 2$, with constant principal curvatures and whose Hopf vector field has at most $h \leq 2$ distinct non-trivial projections onto the principal curvature spaces. Then if $M \subset \mathbb{C}H^n$, it is an open part of:

- 1. a horosphere in $\mathbb{C}H^n$,
- 2. a tube around a totally geodesic $\mathbb{C}H^k$ in $\mathbb{C}H^n$, for some $k \in \{1, \ldots, n-1\},\$
- 3. a tube around a totally geodesic $\mathbb{R}H^n$ in $\mathbb{C}H^n$,

The problem in S^n is more involved. In fact the classification has not been completed yet, despite some recent advances [6].

Main problem:

Classification of real hypersurfaces in $\mathbb{C}H^n$ or $\mathbb{C}P^n$ with constant principal curvatures.

Preliminaries

 $M \subset \overline{M}$ a real hypersurface, $\overline{M} = \mathbb{C}P^n$ or $\mathbb{C}H^n$. ξ normal vector field and $S_{\xi}X = -\overline{\nabla}_X\xi$ shape operator. J complex structure and $J\xi \in \mathfrak{X}(M)$ Hopf vector field **Principal curvatures**: eigenvalues of S. For any $M \subset \overline{M}$, we can write $J\xi = \sum_{i=1}^{h} b_i u_i$ with u_i a principal direction and $b_i > 0$.

Hopf hypersurface: $J\xi$ is a principal direction.

Construction of W^{2n-k}_{φ}

As a symmetric space, $\mathbb{C}H^n = G/K$, with G := SU(1, n), K := S(U(n)U(1)), where K fixes some $o \in \mathbb{C}H^n$. Iwasawa decomposition of $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$: $\mathfrak{k} = \mathfrak{s}(\mathfrak{u}(n) \oplus \mathfrak{u}(1)), \mathfrak{a} \simeq \mathbb{R}, \mathfrak{n} = \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2\alpha}$, where \mathfrak{n} is the Heisenberg algebra, $\mathfrak{g}_{2\alpha} \simeq \mathbb{R}$, $\mathfrak{g}_{\alpha} \simeq \mathbb{C}^{n-1}$. Let $\mathfrak{w} \subset \mathfrak{g}_{\alpha}$ be a subspace such that $\mathfrak{w}^{\perp} = \mathfrak{g}_{\alpha} \ominus \mathfrak{w}$ has dimension k and constant Kähler angle $\varphi \in [0, \frac{\pi}{2}]$, that is,

4. $W_{\pi/2}^{2n-1}$ or an equidistant hypersurface to it, 5. a tube around a submanifold $W_{\pi/2}^{2n-k}$, for some $k \in \{2, \dots, n-1\}.$ If $M \subset \mathbb{C}P^n$, then h = 1 and M is homogeneous.

Non-Hopf hypersurfaces with h = 3

Main Theorem

Let $M \subset M$, $n \geq 2$, with 4 constant principal curvatures and such that $J\xi$ has non-trivial projection onto 3 distinct curvature spaces of simple multiplicity.

- If $M = \mathbb{C}H^n$, then M is locally congruent to a tube around W_{φ}^{2n-k} , with $\varphi \in (0, \pi/2)$.
- If $\overline{M} = \mathbb{C}P^n$, such M doesn't exist.

Conjecture:

Every hypersurface with constant principal curvatures in $\mathbb{C}P^n$ or $\mathbb{C}H^n$ is homogeneous.

Sketch of the proof

We prove the Main Theorem after accomplishing the following steps:

1. Get polynomial relations between b_1, b_2 and b_3 using Gauss and Codazzi equations.

$$\mathcal{L}(Jv, \mathfrak{w}^{\perp}) = \varphi, \forall v \in \mathfrak{w} \setminus \{0\}.$$

We define $W_{\varphi}^{2n-k} := S \cdot o$, where $S = \operatorname{Exp}(\mathfrak{s}) \subset AN$,
 $\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2\alpha} \subset \mathfrak{a} \oplus \mathfrak{n}.$

2. Prove that the b_i are constant using Gröbner basis theory.

3. Conclude using the isoparametric classification theorem in [4].

References

[1] J. BERNDT, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141. [2] É. CARTAN, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl. 395 (1938), no. 1, 177-191. [3] J. C. DÍAZ-RAMOS, M. DOMÍNGUEZ-VÁZQUEZ, Non-Hopf real hypersurfaces with constant principal curvatures in complex space forms, Indiana Univ. Math. J. 60 (2011) no. 3, 859-882.

[4] J. C. DÍAZ-RAMOS, M. DOMÍNGUEZ-VÁZQUEZ, V. SANMARTÍN-LÓPEZ, Isoparametric hypersurfaces in complex hyperbolic spaces, Adv. Math. **314** (2017), 756-805.

[5] M. KIMURA, Real hypersurfaces and complex submanifolds in complex projective space. Trans. Amer. Math. Soc. 296 (1986), 137-149. [6] R. MIYAOKA, Isoparametric hypersurfaces with (g,m) = (6,2), Ann. of Math. (2) 177 (2012), no. 1, 53-110.

Acknowledgements: The author has been supported by the project: MTM2016-75897-P (AEI/FEDER, UE) and a FPU fellowship.