# Cohomogeneity one actions on hyperbolic spaces

## Alberto Rodríguez Vázquez

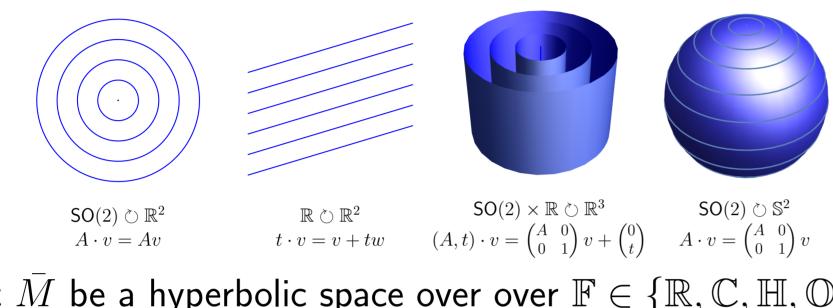
Department of Mathematics, University of Santiago de Compostela, Spain E-mail: a.rodriguez@usc.es

### Introduction

A cohomogeneity one action on a Riemannian manifold  $\bar{M}$  is an isometric action on  $\bar{M}$  with codimension one orbits.

### **Properties:**

- All the orbits, except at most two, are hypersurfaces.
- The orbit space is diffeomorphic to  $\mathbb{S}^1$ , [0,1],  $\mathbb{R}$  or [0,1).



Let  $\overline{M}$  be a hyperbolic space over over  $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\}$ . We can construct a **solvable** Lie group AN equipped with a Joint work with: J. C. Díaz Ramos and M. Domínguez Vázquez

Workshop on Curvature and Global Shape Münster, July 28-August 3, 2019

# The problem in $\mathbb{H}H^n$

 $V \subset \mathbb{H}^n$  is a **protohomogeneous** subspace if there is some  $H \leq \mathsf{Sp}(1)\mathsf{Sp}(n)$  acting transitively on its unit sphere.

Any type (C) action is induced by a protohomogeneous V.

Let  $\mathfrak{J} \subset \operatorname{End}_{\mathbb{R}}(\mathbb{H}^n)$  be a quaternionic structure of  $\mathbb{H}^n$ . Let  $\{J_1, J_2, J_3\}$  span  $\mathfrak{J}$  satisfying  $J_i^2 = -\operatorname{Id}$  and  $J_i J_{i+1} = J_{i+2}$ .

 $L_v: \mathfrak{J} \times \mathfrak{J} \to \mathbb{R}, \quad L_v(J, J') := \langle \pi_V J v, \pi_V J' v \rangle$ 

The quaternionic Kähler angle of  $v \in V \setminus \{0\}$  with respect to V is  $\Phi_V(v) = (\varphi_1, \varphi_2, \varphi_3)$ , with  $\varphi_1 \leq \varphi_2 \leq \varphi_3$ , such that  $\sigma(L_v) = \{\cos^2 \varphi_i \langle v, v \rangle\}_{i=1,2,3}$ .

We say that V has constant quaternionic Kähler angle (c.q.k.a.) if  $\Phi_V(v) = \Phi_V(w) \ \forall v, w \in V \setminus \{0\}$ .

**left invariant** metric such that  $AN \stackrel{\text{isom.}}{\cong} \overline{M} \cong G/K$ . In particular,  $\mathfrak{a} \simeq \mathbb{R}$ ,  $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$  and  $K_0 := N_K(\mathfrak{a})$ .

| $ar{M}$             | $\mathbb{R}H^n$           | $\mathbb{C}H^n$                     | $ \mathbb{H}H^n$             | $\mathbb{O}H^2$             |
|---------------------|---------------------------|-------------------------------------|------------------------------|-----------------------------|
|                     | $\frac{SO^0(1,n)}{SO(n)}$ | $\frac{SU(1,n)}{S(U(1)\timesU(n))}$ | $\frac{Sp(1,n)}{Sp(1)Sp(n)}$ | $\frac{F_4^{-20}}{Spin(9)}$ |
| v                   | $\mathbb{R}^{n-1}$        | $\mathbb{C}^{n-1}$                  | $\mathbb{H}^{n-1}$           | $\bigcirc$                  |
| $\dim \mathfrak{z}$ | 0                         | 1                                   | 3                            | 7                           |
| $\overline{K_0}$    | SO(n-1)                   | U(n-1)                              | Sp(1)Sp(n-1)                 | Spin(7)                     |

#### Main problem:

Classify such actions on  $\overline{M}$  up to orbit equivalence.

### Known results

By [3] such an action is of one of these types:

- (A) It has no singular orbits  $\rightsquigarrow$  (Classified in [2]).
- (B) It has 1 totally geodesic singular orbit  $\rightsquigarrow$  (Classified in [1]).
- (C) It has a non-totally geodesic singular orbit  $S_{\mathfrak{w}} := \operatorname{Exp} \mathfrak{s}_{\mathfrak{w}}$ , where  $\mathfrak{s}_{\mathfrak{w}} := \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{z}$  for  $\mathfrak{w} \subset \mathfrak{v}$ , with  $N_{K_0}(\mathfrak{w})$  acting transitively on the unit sphere of  $\mathfrak{w}^{\perp}$ .

### Theorem [1], [3], [4]

The moduli space of cohomogeneity one actions on  $\mathbb{F}H^n$  is: • For  $\mathbb{R}H^n$ :  $\{1, \ldots, n-1\} \cup \{N, K\}$ . V is protohomogeneous  $\implies V$  has c.q.k.a.

#### Main Theorem

The moduli space of cohomogeneity one actions on  $\mathbb{H}H^n$  is:  $\{N, K, \mathsf{SU}(1, n+1)\} \sqcup \bigsqcup_{k=1}^{4n} \mathcal{M}_{k,n}.$ 

| $\mathcal{M}_{k,n}$            | $k \le n$                                                                                     | $n < k \leq \tfrac{4n}{3}$                | $\frac{4n}{3} < k \le 2n$                                             | k > 2n                     |
|--------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|----------------------------|
| $k \equiv_4 0$                 | $(\mathfrak{R}_4^+ \setminus \mathfrak{R}_4^-) \sqcup (\mathfrak{R}_4^- \times \mathbb{Z}_2)$ | S                                         | $\{(0,\varphi,\varphi)\}_{\varphi\in[0,\frac{\pi}{2}]}$               | $\{(0,0,0)\}$              |
| $k \equiv_4 2$                 | $\{(\varphi, \frac{\pi}{2}, \frac{\pi}{2})\}_{\varphi \in [0, \frac{\pi}{2}]}$                | $\{(0, \tfrac{\pi}{2}, \tfrac{\pi}{2})\}$ | $\{(0, \frac{\pi}{2}, \frac{\pi}{2})\}$                               | Ø                          |
| $k \neq 3  \operatorname{odd}$ | $\left\{\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)\right\}$         | Ø                                         | Ø                                                                     | Ø                          |
| k = 3                          | $(\mathfrak{R}_3^+ \setminus \mathfrak{R}_3^-) \sqcup (\mathfrak{R}_3^- \times \mathbb{Z}_2)$ | Ø                                         | $\{(\varphi,\varphi,\frac{\pi}{2})\}_{\varphi\in\{0,\frac{\pi}{3}\}}$ | $\{(0,0,\tfrac{\pi}{2})\}$ |

- $\mathfrak{R}_3^+ := \{(\varphi, \varphi, \pi/2) \in \Lambda : \varphi \in [0, \pi/2]\},\$
- $\mathfrak{R}_3^- := \{(\varphi, \varphi, \pi/2) \in \Lambda : \varphi \in [\pi/3, \pi/2)\},\$
- $\mathfrak{R}_4^+ := \{(\varphi_1, \varphi_2, \varphi_3) \in \Lambda : \cos(\varphi_1) + \cos(\varphi_2) \cos(\varphi_3) \le 1\},\$
- $\mathfrak{R}_4^- := \{(\varphi_1, \varphi_2, \varphi_3) \in \Lambda : \cos(\varphi_1) + \cos(\varphi_2) + \cos(\varphi_3) \le 1, \ \varphi_3 \ne \pi/2\},\$ 
  - $\mathfrak{S} := \{ (\varphi_1, \varphi_2, \varphi_3) \in \Lambda : \cos(\varphi_1) + \cos(\varphi_2) \pm \cos(\varphi_3) = 1 \}.$

### Sketch of the proof

This is a brief sketch of our proof. Let  $k := \dim_{\mathbb{R}}(V)$ .

Using generalized Hairy ball theorem we classify c.q.k.a. subspaces with k ≠ 3, 4l, l ∈ N.
For k ≠ 3 we prove that if V is protohomogeneous then {L<sub>v</sub>}<sub>v∈V</sub> diagonalize simultaneously.
For k ≡<sub>4</sub> 0, we build a Cl(2) or Cl(3) structure in V,

• For  $\mathbb{C}H^n$ :

- $\{0, \pi/2\} \times \mathbb{Z}_{n-1} \cup (0, \pi/2) \times \mathbb{Z}_{\lceil (n-2)/2 \rceil} \cup \{N, K, \mathsf{SO}^0(1, n)\}.$
- For  $\mathbb{H}H^2$ :  $\{N, K, \mathsf{SU}(1, 2)\} \cup \{1, 2, 3, 4\}$ .

• For  $\mathbb{O}H^2$ :

 $\{K, N, \mathsf{Sp}(1,2) \times \mathsf{SU}(2)\} \cup \{1,2,3,6,7,8\} \cup (4 \times [0,1]).$ 

reducing the problem to k = 3, 4.

4. We classify c.q.k.a subspaces with k = 3, 4.



[1] J. BERNDT, M. BRÜCK, Cohomogeneity one actions on hyperbolic spaces, J. Reine Angew. Math. 541 (2001), 209-235.
[2] J. BERNDT, H. TAMARU, Homogeneous codimension one foliations on noncompact symmetric spaces, J. Differential Geom. 63 (2003), no. 1, 1-40.

[3] J. BERNDT, H. TAMARU, Cohomogeneity one actions on noncompact symmetric spaces of rank one, *Trans. Amer. Math. Soc.* **359** (2007), no. 7, 3425-3438.

[4] É. CARTAN, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl. 395 (1938), no. 1, 177-191.

Acknowledgements: The author has been supported by the project MTM2016-75897-P (AEI/FEDER, UE) and a FPU fellowship.