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de Investigación.

En Santiago de Compostela, 1 de xullo de 2022.

Asdo. Miguel Domı́nguez Vázquez



.



Os resultados presentados nesta memoria foron obtidos durante o desfrute dunha
axuda para a formación do profesorado universitario do Ministerio de Ciencia, Inno-
vación y Universidades: FPU17/01030.

Os resultados presentados nesta memoria foron obtidos grazas en parte ao finan-
ciamento do Ministerio de Ciencia e Innovación del Gobierno de España e a Agencia
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Abstract

This Ph.D. thesis deals with the study of certain classes of submanifolds in the pres-
ence of symmetry. Namely, results have been derived regarding the theory of sub-
manifolds in Riemannian homogeneous spaces with a special emphasis on symmetric
spaces. In this dissertation, we will focus on two of the most natural classes of sub-
manifolds that one can study in Riemannian manifolds. These are homogeneous
hypersurfaces and totally geodesic submanifolds.

Regarding the first ones, we will conclude the classification of homogeneous hyper-
surfaces in symmetric spaces of rank one, by finishing the classification in quaternionic
hyperbolic spaces. As for totally geodesic submanifolds, we will derive different classi-
fications. In particular, we will classify totally geodesic submanifolds in the following
spaces: in products of symmetric spaces of rank one, in exceptional symmetric spaces,
and in Hopf-Berger spheres.

xv





Objectives and hypotheses

This thesis has the following hypotheses and objectives:

H1: In the context of spaces with constant sectional curvature the concepts of
isoparametric hypersurface and hypersurface with constant principal curvatures are
equivalent. However, in more general ambient spaces, there are examples of isopara-
metric hypersurfaces which do not have constant principal curvatures.

O1: Construct examples of non-isoparametric hypersurfaces with constant prin-
cipal curvatures.

H2: The problem of classifying cohomogeneity one actions on quaternionic hy-
perbolic spaces has been open for almost twenty years. A solution for it would yield
the classification of these actions on symmetric spaces of rank one. In 2001, Berndt
and Brück found a method to construct cohomogeneity one actions on non-compact
symmetric spaces of rank one. Later, Berndt and Tamaru classified these actions on
the complex hyperbolic space and on the Cayley hyperbolic plane.

O2: Classify cohomogeneity one actions on quaternionic hyperbolic spaces to
conclude the classification of cohomogeneity one actions on symmetric spaces of rank
one.

H3: The classification of totally geodesic submanifolds in symmetric spaces of
rank one is a classical and well-known result. It is clear that in a product of sym-
metric spaces of rank one, the extrinsic product of totally geodesic submanifolds is
again totally geodesic. However, apart from these obvious examples there could be
many more totally geodesic submanifolds and we lack an effective way to understand
the moduli space of totally geodesic submanifolds in arbitrary products of rank one
symmetric spaces.

O3: Classify totally geodesic submanifolds in arbitrary products of rank one sym-
metric spaces and develop an effective way to understand the moduli space of such
totally geodesic submanifolds.

H4: In Hermitian symmetric spaces of rank one, that is, complex hyperbolic and
projective spaces, every totally geodesic submanifold has constant Kähler angle equal
to 0 or π/2. Klein found examples of totally geodesic submanifolds in Hermitian
symmetric spaces of rank two with non-trivial constant Kähler angle (i.e. different
from 0 and π/2).
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xviii Objectives and hypotheses

O4: Construct new examples of totally geodesic submanifolds with non-trivial
constant Kähler angle.

H5: The outstanding problem of classifying totally geodesic submanifolds in irre-
ducible symmetric spaces has only been solved for rank one and rank two.

O5: Develop new tools to tackle the aforementioned problem and to obtain new
classification results when the rank is greater than two.

H6: The study of totally geodesic submanifolds in homogeneous spaces is harder
than in the case of symmetric spaces for various reasons. We lack classification results.

O6: Develop new tools to study totally geodesic submanifolds in homogeneous
spaces and start a program to classify totally geodesic submanifolds in special families
of homogeneous spaces such as homogeneous spaces homeomorphic to spheres.

H7: The index of symmetry is an invariant that measures the extent to which a
homogeneous space fails to be symmetric. This is known for some homogeneous spaces
but it has not been computed in homogeneous spaces homeomorphic to spheres.

O7: Compute the index of symmetry of Hopf-Berger spheres.



Methodology

This thesis has followed the common approach to research in Mathematics. This is:
by analyzing patterns, conducting logic analysis, and performing calculations, we can
derive general properties of structures.

However, in order to carry out these tasks, it is absolutely necessary to assimilate
a series of known ideas and concepts. For the training of the author of this thesis the
reading and study of some books and articles like [14, 32, 74, 90, 110, 150, 193] has
been fundamental.

Finally, the discussion with experts in the field of differential geometry has had a
huge relevance in this thesis as well. Apart from the discussion with my advisors, it is
important to point out the knowledge acquired in the following research stays: three
months at King’s College London visiting Jürgen Berndt, two months in Stuttgart
with Andreas Kollross, and two months in Córdoba with Carlos Olmos. From all of
these research stays many new and relevant ideas for this thesis have emerged.
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Introduction

Symmetry, as wide or narrow as you may define its meaning, is one idea by which man
through the ages has tried to comprehend and create order, beauty, and perfection.

This comment is due to Hermann Weyl and reveals that symmetry lies in the
very core of human knowledge. Perhaps, the most natural field to study symmetry is
geometry. Felix Klein described geometry as the study of those properties of a space
that are invariant under a transformation group. From the viewpoint of Riemannian
geometry, the natural group to study is the isometry group. Moreover, most geometric
objects that we can perceive by means of our senses can be described in terms of
curves and surfaces. Submanifolds provide the natural generalization of these objects
to higher dimensions.

This Ph.D. thesis deals with the study of certain classes of submanifolds in the
presence of symmetry. In particular, we have derived results concerning submanifolds
in Riemannian homogeneous spaces with a focus on symmetric spaces.

Roughly speaking, a homogeneous space is one that looks the same at every point.
For this reason, homogeneous spaces serve as model spaces for many different types
of geometric structures. Specifically, we are interested in homogeneous spaces that
result from isometric actions, that is, from Lie group actions that preserve the metric.

Symmetric spaces constitute a special class of homogeneous spaces. They occur
in a wide variety of situations in both Mathematics and Physics. A symmetric space
is a Riemannian manifold whose group of isometries contains an inversion symmetry
at each point. This implies that these spaces admit a nice description in terms of
Lie groups, and that we can use algebraic tools to get a deeper understanding of
their geometry. Symmetric spaces were classified by Élie Cartan in the 1920s and
some examples are: the Euclidean spaces, the round spheres, the hyperbolic spaces,
Grassmannians, the set of orthogonal complex structures of a vector space, the set
of inner products of a vector space, the set of Lagrangian subspaces of a symplectic
vector space, or compact Lie groups.

Probably, the most important invariant in a symmetric space is the rank. The
rank is the greatest dimension of a proper, flat, totally geodesic submanifold. Sym-
metric spaces of rank one together with Euclidean spaces form, up to quotients, a
privileged family within Riemannian geometry, the so-called 2-point homogeneous
spaces, see [168]. These are defined as those Riemannian manifolds M such that for
every two pairs of points (p1, p2) and (q1, q2) satisfying d(p1, p2) = d(q1, q2), there is
an isometry φ of M such that φ(pi) = qi for each i ∈ {1, 2}. In this thesis, symmetric
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2 Introduction

spaces of rank one will play a fundamental role.
In what follows, we summarize the original contributions of this thesis, along with

the state-of-the-art of the mathematical problems that motivated our investigations.

A non-isoparametric hypersurface with constant principal curvatures

Two interesting classes of hypersurfaces of Riemannian manifolds are isoparametric
hypersurfaces and hypersurfaces with constant principal curvatures. It is known [44]
that a hypersurface in a real space form is isoparametric if and only if it has con-
stant principal curvatures. This is no longer true for other symmetric spaces. For
example, there are hypersurfaces in complex hyperbolic spaces that are isoparametric
but do not have constant principal curvatures [60]. However, it is not known if there
exists a hypersurface of a symmetric space with constant principal curvatures that is
not isoparametric. This was not even known for the general setting of Riemannian
manifolds. Moreover, the construction of a minimal, non-isoparametric closed hy-
persurface with constant principal curvatures in the complex projective space would
yield a counterexample (see [83]) for the longstanding Chern conjecture on isopara-
metric hypersurfaces in spheres, which asserts that a minimal closed hypersurface
with constant scalar curvature in a round sphere must be isoparametric.

In this thesis we construct an explicit example of a conformally flat metric in Rn
that admits a totally geodesic hypersurface (in particular minimal and with constant
principal curvatures) that is not isoparametric. This provides the first example of a
non-isoparametric hypersurface with constant principal curvatures in a Riemannian
manifold, and it shows that the equivalence between isoparametricity and constancy
of the principal curvatures in spaces of constant curvature does not hold in the more
general setting of conformally flat spaces. The main idea for this construction was
to define a conformally flat metric in Rn admitting a totally geodesic hyperplane,
but with a very small isometry group that spoils the good behavior of the parallel
hypersurfaces to such hyperplane.

Cohomogeneity one actions on rank one symmetric spaces

A cohomogeneity one action on a Riemannian manifold M is an isometric action
with codimension one principal orbits. The principal orbits of such an action are ho-
mogeneous hypersurfaces. The problem of classifying cohomogeneity one actions on
a given space is a classical problem in submanifold geometry that traces back to the
times of Beniamino Segre [161] and Élie Cartan [44], who classified cohomogeneity one
actions on Euclidean and real hyperbolic spaces, respectively. Much later, Kollross
classified cohomogeneity one actions on irreducible symmetric spaces of compact type
[113]. After this work, Berndt and Tamaru started a program to study cohomogeneity
one actions on symmetric spaces of non-compact type [26, 28, 29]. Using the ideas de-
veloped in these articles, Berndt and Tamaru [28] were able to classify cohomogeneity
one actions on every symmetric space of rank one except on quaternionic hyperbolic
spaces.

Twenty years after Berndt and Brück announced the first non-trivial examples
of cohomogeneity one actions on quaternionic hyperbolic spaces in [13], we have ob-
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tained the full classification of cohomogeneity one actions on quaternionic hyperbolic
spaces up to orbit equivalence. Moreover, as a by-product of our proof, we found an
uncountable number of examples of inhomogeneous isoparametric families of hyper-
surfaces with constant principal curvatures. These isoparametric families constitute
the only such examples known in Riemannian manifolds, apart from the celebrated
Ferus, Karcher, and Münzner hypersurfaces in spheres [78] and one example in the
Cayley hyperbolic plane [60].

The classification of cohomogeneity one actions on quaternionic hyperbolic spaces
was reduced to a very involved quaternionic linear algebra problem. This one boils
down to classifying real subspaces of a quaternionic Euclidean vector space Hn such
that there exists a subgroup of Sp1Spn acting transitively on their unit spheres. We
call these spaces protohomogeneous subspaces. In particular, protohomogeneous sub-
spaces are intimately related to the notion of quaternionic Kähler angle, which is a
generalization of the concept of Kähler angle studied in some recent works (see for
instance [60]).

The main idea to solve the problem mentioned above is to classify subspaces with
constant quaternionic Kähler angle of dimension less than or equal to four and then
build every protohomogeneous subspace out of these. The key ingredients to prove
this are certain topological and Lie group theoretic tools. Moreover, for each protoho-
mogeneous subspace of dimension greater than four, one can can construct a Clifford
structure on it. There are two inequivalent classes of irreducible Cl3-modules, and by
mixing them we can produce non-protohomogeneous subspaces with constant quater-
nionic Kähler angle whose dimension is a multiple of four. These induce inhomoge-
neous isoparametric hypersurfaces with constant principal curvatures in quaternionic
hyperbolic spaces.

Totally geodesic submanifolds in products of rank one symmetric spaces

The problem of classifying totally geodesic submanifolds in symmetric spaces has
been an outstanding topic of research in submanifold geometry over the last decades.
This was started by Wolf [187] in the sixties, when he classified these objects in
symmetric spaces of rank one. For rank two, this problem has been addressed by
Chen, Nagano [48, 49] and Klein [107, 108, 109]. Indeed, up to date, we only have
complete classifications in symmetric spaces of rank less or equal than two.

Any totally geodesic submanifold of a symmetric space is itself a symmetric space.
Even on an irreducible symmetric space, there can exist reducible totally geodesic
submanifolds. Thus, in order to have a complete classification of totally geodesic
submanifolds in a given irreducible symmetric space it is necessary to have a good
understanding of totally geodesic submanifolds of reducible symmetric spaces.

We extend Wolf’s result to products of rank one symmetric spaces. We will see
that the totally geodesic submanifolds of products of rank one symmetric spaces
admit a nice combinatorial description. Firstly, we introduce some slight modification
of Young tableaux that we call adapted Young tableaux (see Section §6.2 for the
definition), which will be useful to classify totally geodesic submanifolds in arbitrary
products of symmetric spaces of rank one and to determine their isometry type. We



4 Introduction

prove a result that gives a correspondence between these adapted Young tableaux and
semisimple totally geodesic submanifolds in products of rank one symmetric spaces.

In addition to this, we construct infinitely many examples of irreducible totally
geodesic submanifolds in Hermitian symmetric spaces that are neither totally real nor
complex. This phenomenon, which differs from what happens in rank one, had already
been observed by Klein, who found two irreducible totally geodesic submanifolds that
were neither totally real nor complex. Both examples found by Klein have constant
Kähler angle arccos( 15 ). However, we can prove that every rational number in [0, 1]
can be realized as the cosine of the constant Kähler angle of some totally geodesic
submanifold of some Hermitian symmetric space.

Totally geodesic submanifolds in exceptional symmetric spaces

The next objective of this thesis is to establish a new strategy to classify maximal
totally geodesic submanifolds in irreducible symmetric spaces of rank higher than
two. For exceptional symmetric spaces, we present an idea that reduces the problem
to some known classifications of reductive subalgebras of real simple Lie algebras and
to consider a small number of cases where this method does not give a complete an-
swer about maximality. This is precisely the content of the Correspondence Theorem,
see Theorem 7.3.3. Thanks to this new approach we are able to classify maximal to-
tally geodesic submanifolds in exceptional symmetric spaces. Furthermore, inspired
by the works of Dynkin [74], we introduce a new invariant for totally geodesic sub-
manifolds in symmetric spaces that we call Dynkin index. We will show that the
Dynkin index determines if two totally geodesic embeddings are isometric.

Moreover, we prove a result related to the index conjecture established and proved
by Berndt and Olmos (see [20, 21, 22, 23, 24]). The index i(M) of an irreducible
symmetric space M is the minimal codimension of a proper totally geodesic subman-
ifold. The index conjecture can be stated as follows: every irreducible symmetric
space M ̸= G2

2/SO4,G2/SO4 has a reflective totally geodesic submanifold Σ such that
i(M) = codim(Σ). We prove an analogous statement that allows us to include the
cases M = G2

2/SO4 and M = G2/SO4. Our result states that every irreducible sym-
metric spaceM has a totally geodesic submanifold Σ with i(M) = codim(Σ) and such
that every irreducible factor of Σ has Dynkin index one.

Totally geodesic submanifolds in Hopf-Berger spheres

Motivated by our results in symmetric spaces, we started the study of totally geodesic
submanifolds in the class of homogeneous spaces with positive curvature.

It is a recurring fact that, when one tries to classify a certain class of submanifolds,
the problem is usually more feasible when one is ensured the extrinsic homogeneity of
such class of submanifolds. Moreover, results that prove the homogeneity of a class
of submanifolds have been of great relevance, see [88, 176]. It is well known that
totally geodesic submanifolds in a homogeneous space are intrinsically homogeneous.
However, they are not necessarily orbits of subgroups of the isometry group of the
ambient homogeneous space.
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The family of homogeneous spaces of positive curvature consists of several ho-
mogeneous spaces diffeomorphic to spheres and complex projective spaces, the rank
one symmetric spaces of compact type with their standard symmetric metrics, and
some other sporadic examples, see [186]. Although totally geodesic submanifolds in
homogeneous spaces with positive curvature have been extensively used to derive cur-
vature properties of these spaces, see [157], we lack a complete classification of them.
The interest of this problem relies on the fact that a totally geodesic submanifold
(of dimension d ≥ 2) of a positively curved homogeneous space is again a positively
curved homogeneous space.

In this thesis we give a classification of totally geodesic submanifolds in an impor-
tant class of homogeneous spaces diffeomorphic to spheres, i.e. Hopf-Berger spheres,
which constitute the family of homogeneous spheres obtained by rescaling the round
metric of the total space of a Hopf fibration in the direction of the fibers. As men-
tioned before, we cannot make use of the extrinsic homogeneity of the totally geodesic
submanifolds in homogeneous spaces as it happens in the symmetric setting. Thus,
our study relies on a very geometric approach which combines ideas coming from
the general theory of Riemannian homogeneous spaces, Killing vector fields or closed
geodesics.

Structure of the thesis

This thesis is organized in two parts with a first chapter of preliminaries.

In this first chapter we introduce the basic facts and terminology that will be
used throughout this thesis. More precisely, we recall some well-known facts about
Riemannian geometry and submanifold theory in Section §1.1 and about isometric
actions in Section §1.2. Furthermore, Section §1.3 is devoted to introducing the
ambient spaces of the problems that we will tackle in this thesis, namely, symmetric
and homogeneous spaces. Finally, Section §1.4 deals with two basic concepts that
have great relevance for this thesis: Clifford and Heisenberg algebras.

The first part of this thesis deals with the study of homogeneous hypersurfaces,
isoparametric hypersurfaces, and hypersurfaces with constant principal curvatures.

In Chapter 2, we recall the notions of homogeneous hypersurface, isoparametric
hypersurface, and hypersurface with constant principal curvatures. In Section §2.2
we explain the relationship among them in symmetric spaces of rank one. Later,
in Section §2.3 we construct an example of a non-isoparametric hypersurface with
constant principal curvatures in a conformally flat space.

In Chapter 3 we summarize the known results concerning the classification of
homogeneous hypersurfaces in symmetric spaces of rank one. In Section §3.2 we revisit
the classification of homogeneous hypersurfaces in symmetric spaces of compact type,
specifically focusing on the rank one case. In Section §3.3 we introduce the notion
of Kähler angle and other generalizations of it. Section §3.4 is devoted to explaining
the theory of cohomogeneity one actions on symmetric spaces of non-compact type
and rank one, while in Section §3.5 we briefly explain the program developed by
Berndt and Tamaru to classify cohomogeneity one actions on symmetric spaces of
non-compact type and higher rank.
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In Chapter 4 we classify homogeneous hypersurfaces in quaternionic hyperbolic
spaces HHn+1, n ≥ 1. There are two fundamental notions along this chapter: pro-
tohomogeneous subspaces and subspaces with constant quaternionic Kähler angle.
These are defined in Section §4.1. The main goal of this chapter is the classification
of protohomogeneous subspaces and the study of subspaces with constant quater-
nionic Kähler angle (Sections §4.2, 4.3, 4.4 and 4.5). As a by-product of our study we
construct in Section §4.6 uncountably many families of inhomogeneous hypersurfaces
that are isoparametric and have constant principal curvatures in HHn+1, n ≥ 7.

The second part of this thesis deals with the study of totally geodesic submanifolds
in symmetric and homogeneous spaces.

In Chapter 5 we provide some well-known facts about totally geodesic subman-
ifolds. In particular, we briefly present interesting information concerning totally
geodesic submanifolds in Riemannian manifolds (Section §5.1) and symmetric spaces
(Section §5.3). Moreover, we include a proof of the fact that, under mild assumptions,
one can always extend a totally geodesic submanifold to a complete one (Section §5.2).

In Chapter 6 we classify totally geodesic submanifolds in products of rank one
symmetric spaces by establishing a correspondence between totally geodesic subman-
ifolds in products of symmetric spaces of rank one and adapted Young tableaux.
These adapted Young tableaux are defined in Section §6.2. Moreover, in Section §6.3,
we construct infinitely many totally geodesic submanifolds with non-trivial constant
Kähler angle in complex Grassmannians. As a consequence, it is proved that the set
of all possible Kähler angles of totally geodesic submanifolds of irreducible Hermitian
symmetric spaces is a dense subset of the interval [0, π/2].

In Chapter 7 we classify maximal totally geodesic submanifolds in exceptional
symmetric spaces. This result is strongly based on the definition of a new invariant
called Dynkin index (Section §7.4) and the Karpelevich Theorem (Section §7.1). In
particular, in Section §7.4 we also prove a correspondence theorem that establishes a
one-to-one correspondence between maximal semisimple totally geodesic submanifolds
in symmetric spaces and a certain class of subalgebras (Theorem 7.3.3). In Section §7.7
we include the proofs of the main theorems.

In Chapter 8 we classify totally geodesic submanifolds in most Hopf-Berger spheres.
The idea is to characterize a nice class of totally geodesic submanifolds of these spaces
that we call well-positioned (Subsection §8.4.1). Then, we prove that every totally
geodesic submanifold of dimension greater than one is well-positioned. Moreover, as
a by-product of our study, we compute the index of symmetry of these homogeneous
spheres (Section §8.5).



Chapter 1

Preliminaries

This chapter is entirely devoted to the introduction of the basic concepts and notation
that are used in this thesis.

In Section §1.1 we recall some well-known facts about Riemannian geometry and its
submanifold theory. In Section §1.2 we define some terminology regarding isometric
actions and some notions related to them. Section §1.3 is devoted to introducing
the concepts of Riemannian homogeneous spaces and Riemannian symmetric spaces,
which will constitute the ambient spaces of the problems that we tackle in this thesis.
Finally, Section §1.4 deals with the basic ideas related to Clifford and Heisenberg
algebras, which have a strong link with symmetric spaces of rank one, and regularly
appear over the course of this work.

1.1 Geometry of Riemannian submanifolds

Some good references to learn about Riemannian geometry are [122], or [156], and to
learn about submanifold geometry, one can consult [14], or [55].

Let M be a connected smooth manifold. Throughout this thesis, we will consider
smooth manifolds to be second-countable. We denote the tangent space at p ∈M by
TpM , the tangent bundle of M by TM , and the set of smooth vector fields of M by
Γ(TM). If D is a smooth distribution of M , we denote its set of sections by Γ(D).

A Riemannian manifold (M, g) is a connected smooth manifold M equipped with
a non-degenerate symmetric bilinear tensor field g of type (0, 2). We will also use
⟨·, ·⟩ to denote g. The tensor g induces a distance d in M , by considering d(p, q) as
the infimum of the lengths of the piecewise smooth curves joining p ∈M and q ∈M ,
thus turning M into a metric space.

Two Riemannian manifolds (M, g) and (M ′, g′) are (locally) isometric if there
exists a (local) diffeomorphism φ : M → M ′ such that g = φ∗g′, where φ∗g denotes
the pullback of g by φ. We denote by Isom(M) the isometry group of M . A vector
field X ∈ Γ(TM) is Killing if v 7→ ∇vX is skew-symmetric with respect to ⟨·, ·⟩, for
every v ∈ TpM and every p ∈M , where ∇ denotes the Levi-Civita connection of M .
This condition implies that the flow of X is by isometries.

A central notion in Riemannian geometry is curvature. The curvature tensor R
measures to which extent M fails to be locally isometric to a Euclidean space. In this
thesis we adopt the following convention:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, where X,Y, Z ∈ Γ(TM).

7
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We say that a manifold M is flat if its curvature vanishes identically. We will denote
by exp the Riemannian exponential map of M , and recall that M is complete if and
only if expp is surjective and it is well defined in TpM for some (and hence for all)
p ∈M .

Given a vector Xp ∈ TpM and a piecewise smooth path γ : [0, 1] → M joining p
and q ∈ M , there exists a unique parallel vector field X : [0, 1] → TM along γ such
that X(0) = Xp. The vector X(1) ∈ TqM is called the parallel transport of Xp to q
through γ. If γ is a piecewise smooth loop, we can define a map Pγ : TpM → TpM ,
which maps every Xp ∈ TpM to its parallel transport through γ. The map Pγ is a
linear isometry and the set generated by all the maps Pγ , where γ is a piecewise smooth
loop based at p, is called the holonomy group ofM at p and we denote it by Holp(M).
The natural action of Holp(M) on TpM is called the holonomy representation. It is
easy to prove, using that M is connected, that Holp(M) is isomorphic to Holq(M)
for every p, q ∈ M . Hence, for the sake of brevity we will just write Hol(M). De-
Rham Theorem implies that a complete simply connected Riemannian manifold M
whose holonomy representation is reducible is isometric to a product of Riemannian
manifolds. In this case,M is said to be reducible, and if not it is said to be irreducible.

Now we will introduce several different kinds of submanifolds of a Riemannian
manifold M̄ attending to the relationship of its topology with that of the ambient
space M̄ . We say thatM is an immersed submanifold of M̄ if there exists an isometric
immersion f : M → M̄ . Two immersed submanifolds f1 : M1 → M and f2 : M2 →
M of M̄ are said to be congruent in M̄ if there exists φ ∈ Isom(M̄) such that
f2 = φ ◦ f1. It is said that M ⊂ M̄ is an injectively immersed submanifold of M̄
if M is endowed with a topology (not necessarily the one induced by the ambient
space M̄) in such a way that the inclusion map i : M → M̄ is an isometric smooth
immersion. Additionally, an injectively immersed submanifoldM of M̄ is an embedded
submanifold of M̄ if M has the subspace topology inherited from M̄ . Finally, an
injectively immersed submanifold M is closed if the map i : M → M̄ is closed. If the
ambient space is complete, one has the following chain of strict inclusions

{
Closed

submanifolds

}
⊊

{
Complete
embedded

submanifolds

}
⊊
{

Embedded
submanifolds

}
⊊

{
Injectively
immersed

submanifolds

}
.

The local theories for these kinds of submanifolds are identical. Hence, when we deal
with local properties of submanifolds, we will make no distinction between these kinds
of submanifolds, and we will just refer to them as submanifolds.

Let M be a connected Riemannian manifold and f : M → M̄ be an isometric
immersion. Then, for each point p ∈ M , there is an open neighborhood U of p ∈ M
such that f|U : U → f(U) is an isometry. This allows us to identify U with f(U), and
by identifying TpM with a subspace of TpM̄ , we have the orthogonal splitting

TpM̄ = TpM ⊕ νpM for every p ∈M,

where νM denotes the normal bundle of M . Moreover, let us denote by ∇̄ and R̄ the
Levi-Civita connection and the curvature tensor of M̄ , respectively. In the next lines,
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we will state the fundamental equations of submanifolds of first order. The Gauss
formula relates the Levi-Civita connections of M and M̄ in the following way

∇̄XY = ∇XY + II(X,Y ), where X,Y ∈ Γ(TM),

and II denotes the second fundamental form of M . If II vanishes identically, M is
said to be totally geodesic. For each ξ ∈ Γ(TM), we define the shape operator Sξ of
M by ⟨SξX,Y ⟩ = ⟨II(X,Y ), ξ⟩, for every X,Y ∈ Γ(TM). The mean curvature vector

field of M is the normal vector field given by
∑k
i=1 II(Ei, Ei), for any orthonormal

frame {Ei}ki=1 of M , where k is the dimension of M . A submanifold M is called
minimal if its mean curvature vanishes. A hypersurface M of M̄ has constant mean
curvature if its mean curvature vector field has constant length, or equivalently, if the
trace of Sξ is constant on M , for some unit normal ξ on M .

The Weingarten formula, relates the normal connection ∇⊥ of M to the Levi-
Civita connection of M̄ as follows

∇̄Xξ = −SξX +∇⊥
Xξ, where X ∈ Γ(TM), and ξ ∈ Γ(νM).

The fundamental equations of submanifolds of second order are named after Gauss,
Codazzi and Ricci, respectively, and are the following ones:

⟨R̄(X,Y )Z,W ⟩ = ⟨R(X,Y )Z,W ⟩ − ⟨II(Y, Z), II(X,W )⟩+ ⟨II(X,Z), II(Y,W )⟩,
⟨R̄(X,Y )Z, ξ⟩ = ⟨(∇⊥

XII)(Y, Z)− (∇⊥
Y II)(X,Z), ξ⟩,

⟨R⊥(X,Y )ξ, η⟩ = ⟨R(X,Y )ξ, η⟩+ ⟨[Sξ,Sη]X,Y ⟩,

where X,Y ∈ Γ(TM) and ξ, η ∈ Γ(νM). Moreover, R⊥ stands for the curvature
tensor of νM , defined by R⊥(X,Y )ξ = [∇⊥

X ,∇⊥
Y ]ξ −∇⊥

[X,Y ]ξ, where X,Y ∈ Γ(TM)

and ξ ∈ Γ(νM).
In the codimension one case, i.e., M is a hypersurface, the Ricci equation holds

trivially and the Gauss and Codazzi equations reduce to

⟨R̄(X,Y )Z,W ⟩ = ⟨R(X,Y )Z,W ⟩ − ⟨SξY, Z⟩⟨SξX,W ⟩+ ⟨SξX,Z⟩⟨SξY,W ⟩,
⟨R̄(X,Y )Z, ξ⟩ = ⟨(∇XSξ)Y − (∇Y Sξ)X,Z⟩,

where X,Y, Z,W ∈ Γ(TM) and ξ ∈ Γ(νM).

1.2 Isometric actions

We refer to [5] for a detailed exposition about isometric actions.
Let (M, g) be a Riemannian manifold, Isom(M) its isometry group, which is known

to be a Lie group, and consider an action by isometries of a Lie group G on M . For
every p ∈M we have a Gp-principal bundle

Gp → G → G/Gp ≃ G · p,
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where G · p = {g · p : g ∈ G} denotes the orbit of G through p ∈ M and the group
Gp = {g ∈ G : g · p = p} its isotropy at p ∈ M . We will write G ↷ M to denote the
action of G on M .

Two isometric actions G1 ↷M1 and G2 ↷M2 are isomorphic if there exists a Lie
group isomorphism ψ : G1 → G2 and an isometry f : M1 →M2 in such a way that

f(gp) = ψ(g)f(p), for all p ∈M and g ∈ G1.

Let M/G be the set of orbits of the isometric action of the Lie group G on M .
In order to ensure that the orbits are closed and thus embedded submanifolds of M ,
we will require that G acts properly on M . The action of G on M is proper if the
map G ×M → M ×M , (g, p) 7→ (p, g · p), is proper. Since G acts by isometries,
this is equivalent to the fact that G is (up to effectivization) a closed subgroup of
Isom(M). See [58] for more information about proper actions. A (closed) embedded
submanifold of M is extrinsically homogeneous if it is an orbit of a closed subgroup
of Isom(M). From now on, we will always assume that isometric actions are proper.

Two orbits G ·p and G · q, where p, q ∈M , are equivalent if the isotropy subgroups
Gp and Gq are conjugate in G. Let us denote by [G ·p] the equivalence class of G ·p. A
partial ordering ≤ on the set of equivalence classes of orbits of G onM can be defined
by

[G · p] ≤ [G · q] : ⇐⇒ Gq is conjugate to a subgroup of Gp in G.

An orbit G · p is called principal if [G · p] is maximal for ≤. All principal orbits
are equivalent, and then, they have the same codimension in M , which is called the
cohomogeneity of the action of G on M . Moreover, the union of the principal orbits
is an open and dense subset of M and we can recover all the nearby orbits of the
action of G by knowing a principal orbit, see [14, §2.1.8]. Indeed, if G · p is a principal
orbit of a G-action on M and F ⊂ M is any other orbit of G, there exists a vector
ξp ∈ νp(G · p) such that expp(ξp) = q ∈ F , which can be extended to a G-equivariant
normal vector field in G·p, since G·p is principal, and G·q = {expx(ξx) : x ∈ G·p}. An
orbit G ·p is called singular if its codimension is larger than the cohomogeneity of the
action, and is called exceptional if its codimension coincides with the cohomogeneity
of G but is not principal.

Let p ∈ M and consider the action of Gp on TpM . The restriction of this action
to Tp(G · p) is called the isotropy representation of the G-action at p ∈ M , and the
restriction to νp(G · p) is called the slice representation at p ∈ M . Let p ∈ M and G
be a connected Lie group acting isometrically and properly on M . A slice at p ∈ M
is an embedded submanifold Sp of M passing through p that satisfies:

i) TpM = Tp(G · p)⊕ Tp(Sp), and TqM = Tq(G · p) + Tq(Sp), for every q ∈ Sp.

ii) For every q ∈ Sp and g ∈ G, we have g · q ∈ Sp if and only if g ∈ Gp.

Moreover, this implies that there exists a G-equivariant diffeomorphism between G ·Sp
and the total space of the bundle with fiber Sp

Sp → G×Gp Sp → G/Gp,
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associated with the Gp-principal bundle described above. The action of Gp on Sp is
isomorphic to the slice representation restricted to an open ball of νp(G · p). Further-
more, the cohomogeneity of the slice representation at every point coincides with the
cohomogeneity of the action of G on M , and the orbit G · p is principal if and only
if the slice representation at p is trivial. It was proved in [155] that proper actions
always have slices at every point of M .

An important class of isometric actions is constituted by polar actions. A proper
isometric action of G on M is polar if there exists a complete, closed and embedded
submanifold Σ (called section) which intersects all the orbits of the G-action on M
orthogonally. It follows that the cohomogeneity of G coincides with the dimension of
Σ and it can be proved that Σ is a totally geodesic submanifold of M . See [129] for a
detailed proof of these facts. Moreover, if Σ is flat, the action is said to be hyperpolar.

1.3 Homogeneous and symmetric spaces

Homogeneity is a central notion in Mathematics. The origin of homogeneous spaces
dates back to the emergence of non-Euclidean geometry in the mid-19th century. The
geometry of these spaces is quite different from that of the Euclidean spaces that we
are accustomed to studying in high school. At this point, the need arises to clarify how
to define geometry. Erlangen’s program answers this question. This was proposed by
Felix Klein in 1872. Basically, geometry was defined as the study of those properties
in a space that are invariant under a given transformation group.

Intuitively, a homogeneous space is a space that looks the same at each point. For
this reason, homogeneous spaces serve as a model space for various types of geometric
structures. In particular, our interest lies in those homogeneous spaces that arise from
isometric actions, that is, actions preserving the metric.

A symmetric space is a homogeneous space whose isometry group contains an
inversion symmetry at each point. Symmetric spaces arise in a broad diversity of
situations in both Mathematics and Physics. Their origin goes back to the following
question posed by Cartan in 1926:

Which are the Riemannian manifolds whose curvature tensor R
is preserved by parallel transport along any curve?

This property is equivalent to the equation ∇R = 0, and the spaces satisfying this
property are intimately related to symmetric spaces. Indeed, every Riemannian man-
ifold satisfying ∇R = 0 is locally isometric to a symmetric space. Cartan achieved a
complete classification of symmetric spaces in [43].

1.3.1 Homogeneous spaces

For a nice introduction to the theory of homogeneous spaces, one can consult [6] or
[111, Chapter X]. A Riemannian manifold M is homogeneous if there exists some
subgroup G of Isom(M) such that G acts transitively on M . We fix a point o ∈M , so
M is diffeomorphic to G/K, where K = Go is the isotropy at o, by the map Φ: G/K →
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M defined by gK → g(o). We pull back the metric of M by Φ to G/K, turning
Φ into an isometry. Furthermore, the metric ⟨·, ·⟩ induced in G/K is G-invariant.
Homogeneous spaces are analytic Riemannian manifolds, see [35, Lemma 1.1].

For any X ∈ g, where g is the Lie algebra of G, we can associate a Killing vector
field X∗ given by X∗

p = d
dt |t=0

(Exp(tX) · p), for every p ∈ M , where Exp denotes

the Lie exponential map of G. Homogeneous spaces can be characterized in terms of
Killing vector fields as follows. A Riemannian manifoldM is homogeneous if for every
p ∈ M and every v ∈ TpM , there is a Killing field X ∈ Γ(TM) such that Xp = v.
Riemannian homogeneous spaces G/K always have a reductive decomposition. A
reductive decomposition is a splitting g = k ⊕ p, where k is the Lie algebra of K and
p is an Ad(K)-invariant subspace of g. Thus, we have the bracket relations [k, p] ⊂ p
and [k, k] ⊂ k. If we consider the linearization at o ∈ M of the isotropy action of
K on M , we get the isotropy representation of the homogeneous space M , which
is defined as k ∈ K 7→ k∗o ∈ GL(ToM), where k∗o denotes the differential of k at
o ∈ M . This is equivalent to the adjoint representation of G restricted to K on p,
since p and ToM can be identified by the map which sends X ∈ p to X∗

o ∈ ToM .
A homogeneous space M = G/K is isotropy irreducible if the isotropy representation
is an irreducible representation. If M = G/K is isotropy irreducible, Schur’s lemma
implies that there is a unique G-invariant metric on M up to homothety, and that M
is an Einstein manifold. Moreover, M is strongly isotropy irreducible if the restriction
of the isotropy representation to the connected component of K is irreducible.

Let us denote by Xk and Xp the projection of X ∈ g onto k and p, respectively.
We define a symmetric bilinear map U : p× p → p by

2⟨U(X,Y ), Z⟩ = ⟨[Z,X]p, Y ⟩+ ⟨X, [Z, Y ]p⟩,

where X,Y, Z ∈ p and ⟨·, ·⟩ denotes the inner product on p induced by the Riemannian
metric on M . The reductive decomposition g = k ⊕ p is naturally reductive if U is
identically zero. In particular, if U ≡ 0, every geodesic γ ofM passing through o ∈M
is given by to t 7→ Exp(tX) withX ∈ p, where Exp denotes the Lie exponential map of
G. A homogeneous space where every geodesic is an orbit of a 1-parameter subgroup of
the isometry group is said to be a geodesic orbit space, or, for short, g. o. space. Thus,
naturally reductive spaces are g. o. Moreover, we say that the reductive decomposition
g = k⊕p is normal homogeneous if there exists some Ad(G)-invariant inner product q
on g such that ⟨·, ·⟩ = q|p×p and p = k⊥, where k⊥ denotes the orthogonal complement
of k in g with respect to q. It turns out that every normal homogeneous reductive
decomposition is naturally reductive. Indeed, we have the chain of strict inclusions{

Normal
homogeneous spaces

}
⊊
{
Naturally reductive
homogeneous spaces

}
⊊
{
Geodesic orbit

spaces

}
.

Let us consider the canonical connection ∇c associated with a reductive decom-
position g = k ⊕ p, which is the unique G-invariant affine connection on M such
that

(∇c
X∗Y ∗)o = (−[X,Y ]p)

∗
o, (1.1)
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where X,Y ∈ p. We can express the Levi-Civita connection of M at o as

(∇X∗Y ∗)o =

(
−1

2
[X,Y ]p + U(X,Y )

)∗

o

, (1.2)

where X,Y ∈ p. The difference tensor D at o ∈M is defined as D = (∇−∇c)o, and
using the identification of ToM and p, we have

DXY =
1

2
[X,Y ]p + U(X,Y ), for every X,Y ∈ p. (1.3)

Using the formula for the Levi-Civita connection and the identification of p with
ToM , we can compute the curvature tensor of M , which is given by

Ro(X,Y )Z =
1

2
[Z, [X,Y ]p]p − [[X,Y ]k, Z]]p − U(Z, [X,Y ]p) +

1

4
[[Z, Y ]p, X]p

− 1

2
U([Z, Y ]p, X)− 1

2
[U(Z, Y ), X]p + U(U(Z, Y ), X)− 1

4
[[Z,X]p, Y ]p

+
1

2
U([Z,X]p, Y ) +

1

2
[U(Z,X), Y ]p − U(U(Z,X), Y ),

(1.4)
whereX,Y, Z ∈ p. We end up this section with a remark that will be useful to compute
the covariant derivatives of the curvature tensor at the base point o ∈M = G/K.

Remark 1.3.1. By [42, Proposition 1.4.15] the curvature tensor R of a Riemannian
homogeneous space M = G/K satisfies ∇cR = 0, since it is G-invariant. Let g =
k ⊕ p be a reductive decomposition for M = G/K. Then, using the definition of the
difference tensor and the identification of p with ToM we have

(∇VR)(X,Y, Z) = ((∇V −∇c
V )R)(X,Y, Z)

= DVR(X,Y )Z −R(DVX,Y )Z −R(X,DV Y )Z −R(X,Y )DV Z,

where X,Y, Z, V ∈ p.

1.3.2 Symmetric spaces

For a detailed exposition of the theory of symmetric spaces one can follow [90], [91],
[127], and [128]. For a quicker introduction, we recommend [77] or [193].

Let M be a Riemannian manifold. We say that M is a symmetric space if for
every point p ∈ M there exists an isometry sp ∈ Isom(M) such that sp fixes p ∈ M
and s∗p = −IdTpM . The isometry sp is called geodesic reflection at p ∈M .

From the definition, we can deduce that symmetric spaces are complete, since
geodesics can be extended by using geodesic reflections. This implies that for any
p, q ∈ M , there is a geodesic segment γ joining p and q. Thus, so, where o is the
mid-point of γ, maps p to q, proving that every symmetric space is homogeneous. Let
G = Isom0(M) be the connected component of Isom(M) containing the identity and
K be the isotropy of G at o ∈M .
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Symmetric spaces can be characterized in terms of Killing vector fields as follows.
A Killing vector field X on a Riemannian manifold M such that (∇X)p = 0 is called
a transvection at p ∈ M . A Riemannian manifold M is symmetric if and only if for
every point p ∈ M and every v ∈ TpM , there is a transvection X ∈ Γ(TM) with
Xp = v.

Now consider σ : G → G, given by g ∈ G 7→ sogs
−1
o ∈ G. Then, G0

σ ⊂ K ⊂ Gσ,
where G0

σ is the connected component of Gσ := {g ∈ G : σ(g) = g}. The map σ is
an involutive automorphism of Lie groups, and its differential θ = σ∗e : g → g is an
involutive automorphism of Lie algebras. The map θ is called the Cartan involution
of the symmetric space M = G/K and it splits g into the sum of the eigenspaces of
θ, k and p, associated with the eigenvalues 1 and −1, respectively. This provides a
reductive decomposition of M = G/K given by g = k ⊕ p, where p is identified with
ToM , and k is the Lie algebra of K. The rank of a symmetric spaceM is the dimension
of a maximal flat totally geodesic submanifold of M , or equivalently, the dimension
of a maximal abelian subspace of p. Furthermore, in the case of symmetric spaces
we have [p, p] = k. This implies that U vanishes identically, proving that symmetric
spaces are naturally reductive homogeneous spaces. Moreover, by Equation (1.4), the
curvature tensor of M at o can be expressed as

Ro(X,Y )Z = −[[X,Y ], Z] (1.5)

for X,Y, Z ∈ p ≃ ToM .
Let adX : g → g the map given by adX(Y ) = [X,Y ]. Now consider Bg be the

Killing form of g, that is,

Bg(X,Y ) = tr(adX ◦ adY ) for X,Y ∈ g.

It follows that Bg(X,Y ) = 0, for every X ∈ k and Y ∈ p. If the Lie algebra for which
we consider the Killing form is clear from the context, we will simply write B.

A symmetric space M = G/K is said to be of compact type, of non-compact type
or of Euclidean type if B|p×p, the restriction of B to p, is negative definite, positive
definite or identically zero, respectively. If M = G/K is isotropy irreducible, Schur’s
lemma yields that B|p×p is a multiple of the induced metric on p ≃ ToM . Hence, if

M is isotropy irreducible, the type is a mutually exclusive property of M . Let M̃ be
the universal covering of M . Then, M̃ is again a symmetric space and by De-Rham
Theorem, M̃ = M̃0 × M̃1 × · · · × M̃k, where M̃0 is isometric to a Euclidean space and
M̃i is a simply connected irreducible symmetric space, with i ∈ {1, . . . , k}. We say

thatM is semisimple if M̃0 is just a point. In this case the Lie algebra g is semisimple.
Moreover, if M is semisimple, M is irreducible if and only if it is isotropy irreducible.

An important notion, which establishes a relation between symmetric spaces of
compact type and non-compact type, is duality. If we restrict our attention to simply
connected symmetric spaces, there is a one-to-one correspondence between symmetric
spaces of non-compact type and symmetric spaces of compact type. At the Lie algebra
level this works as follows. Let M = G/K be a symmetric space of non-compact type
and let g = k⊕ p be the reductive decomposition induced by the Cartan involution θ.
Consider gC = g⊗RC, the complexification of g. We can define the subspace g∗ = k⊕ip
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of gC, where i =
√
−1. Then g∗ is a compact Lie algebra and M∗ = G∗/K∗ is a

symmetric space of compact type equipped with the Riemannian metric induced by
the negative of the Killing form of g∗, where G∗ is the simply connected Lie group
with Lie algebra g∗ and K∗ is the connected subgroup of G∗ with Lie algebra k.

1.3.3 Symmetric spaces of non-compact type

The symmetric spaces of non-compact type are of particular relevance for this thesis
since many results that we obtain are proved in this setting. See [65] for more details.

LetM = G/K be a symmetric space of non-compact type and consider the Cartan
involution θ of g induced by the geodesic symmetry at the base point o ∈ M . The
reductive decomposition g = k ⊕ p, induced by θ, is called the Cartan decomposition
of g. Let us consider the positive definite inner product on g given by

Bθ(X,Y ) = −B(θX, Y ) for every X,Y ∈ g.

A useful fact about this inner product is that the adjoint map of adX : g → g with
respect to Bθ is − adθX for every X ∈ g.

The isotropy representation ofM at o is polar and every maximal abelian subspace
of p is a section for this action. Thus, two maximal abelian subspaces of p are
conjugate by an element of K. Let a be a maximal abelian subspace of p. Moreover,
it can be proved thatM is simply connected and thus it is diffeomorphic to a Euclidean
space, since it has non-positive sectional curvature.

Since a ⊂ p, every operator adH : g → g is self-adjoint with respect to Bθ. More-
over, since [adH1

, adH2
] = ad[H1, H2] = 0, the set {adH : H ∈ a} constitutes a

commuting family of self-adjoint endomorphisms of g. Thus, they diagonalize simul-
taneously. Their common eigenspaces are the (restricted) root spaces of g and the
non-zero eigenvalues (which depend linearly on H ∈ a) are the (restricted) roots of g.
For each λ ∈ a∗, we define

gλ = {X ∈ g : adH X = λ(H)X for all H ∈ a}.

Then, any λ ̸= 0 such that gλ ̸= 0 is a root and every gλ ̸= 0 is a root space. It can
be checked that

[gλ, gµ] ⊂ gλ+µ for every λ, µ ∈ a∗.

Let ∆ denote the set of roots. Then we have the following orthogonal decomposi-
tion with respect to Bθ:

g = g0 ⊕

(⊕
λ∈∆

gλ

)
,

which is called the (restricted) root space decomposition of g. We have θgλ = g−λ,
implying that λ ∈ ∆ if and only if −λ ∈ ∆. Additionally, g0 = k0⊕a, where k0 = g0∩k
is the normalizer of a in k.

For each λ ∈ ∆, we defineHλ ∈ a as the unique element of a satisfying B(Hλ, H) =
λ(H), for allH ∈ a. This induces an inner product on a∗ given by ⟨λ, µ⟩ = B(Hλ, Hµ),
for every λ, µ ∈ a∗. Moreover, it can be proved that ∆ defines a root system in a∗,
thus satisfying:
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i) a∗ is spanned by ∆,

ii) nα,β = 2⟨α, β⟩/⟨α, α⟩ ∈ Z,

iii) β − nα,βα ∈ ∆, for every α, β ∈ ∆.

Now choose a hyperplane in a∗ such that it does not contain any root. We can
define a positivity criterion on ∆ by declaring those roots that lie at one of the two
half-spaces determined by the hyperplane to be positive. If ∆+ denotes the set of
positive roots, then ∆ = ∆+ ∪ (−∆+). Furthermore, we can define the set of simple
roots Π as the subset of those positive roots which cannot be expressed as the sum of
two positive roots. The subspace

n =
⊕
λ∈∆+

gλ

of g is a nilpotent subalgebra of g and a ⊕ n is then a solvable subalgebra such that
[a ⊕ n, a ⊕ n] = n. Any two choices of positive criteria on ∆ give rise to nilpotent
subalgebras n which are conjugate by an element of the group NK(a) = {k ∈ K :
Ad(k)a ⊂ a}.

The Iwasawa decomposition theorem (see [98]) states that

g = k⊕ a⊕ n

is a vector space direct sum. Observe that this sum is neither an orthogonal sum nor
a semidirect sum. Let A and N be the connected Lie subgroups of G with Lie algebras
a and n, respectively. The connected Lie subgroup of G with Lie algebra a ⊕ n is a
semidirect product AN, since [a, n] ⊂ n. Then, the Iwasawa theorem at the Lie group
level states that the multiplication map

K× A× N → G, (k, a, n) 7→ kan,

is an analytic diffeomorphism. Moreover, the Lie groups A and N are simply con-
nected, and thus they and AN are diffeomorphic to Euclidean spaces. The smooth
map Φ|AN → M is a diffeomorphism. This allows us to pull back the Riemannian
metric on M to AN. Moreover, this metric on AN is left-invariant. Consequently,
every symmetric space M = G/K of non-compact type is isometric to a solvable Lie
group AN equipped with a left-invariant metric. In particular, this shows that M is
diffeomorphic to a Euclidean space. By Equation (1.5), M is non-positively curved,
and thus M is a Hadamard manifold.

A useful concept related to a symmetric space of non-compact type M is that of
ideal boundary. The ideal boundary M(∞) of M is defined as the set of equivalence
classes of complete, unit-speed geodesics of M under the relation

γ1 ∼ γ2 :⇔ {d(γ1(t), γ2(t)) : t ≥ 0} is bounded.

Now, we can introduce with the so-called cone topology on M ⊔M(∞), see [75] for
more details, in such a way that M ⊔M(∞) becomes homeomorphic to a Euclidean
closed ball, where M corresponds to its interior and M(∞) to its boundary. Finally,
it is important to notice that the action of G on M can be naturally extended to
M(∞) by taking g · [γ] := [g · γ].
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1.4 Heisenberg algebras and hyperbolic spaces

Generalized Heisenberg algebras are highly significant for this thesis since they are
closely related to symmetric spaces of rank one. In particular, symmetric spaces of
rank one and of non-compact type constitute a special case of Damek-Ricci spaces,
which are solvable Lie groups equipped with a left-invariant metric whose Lie al-
gebras are obtained as certain one-dimensional extensions of generalized Heisenberg
algebras. It turns out that this structure is particularly well-suited and relevant to
study submanifold geometry in these spaces as was shown in [13, 60] or [70].

1.4.1 Clifford algebras

In this subsection, we fix some notation and recall certain well-known facts related to
Clifford algebras. We will mainly follow [120]. Let us start by introducing the notion
of Clifford algebra. Let V be a real vector space over and q be a quadratic form on

V . Let T (V ) :=
⊕∞

r=0 T
r(V ) be the tensor algebra of V , where T r(V ) := V⊗ r). . . ⊗V

and T 0(V ) = R. This is an associative, unitary and graded algebra where T k(V ) is
constituted by the homogeneous elements of degree k ∈ N. Let Tq(V ) be the two-sided
ideal in T (V ) generated by all elements of the form v ⊗ v + q(v)1, where v ∈ V . We
define Cl(V, q), the Clifford algebra associated with V and q, as the quotient algebra

Cl(V, q) := T (V )/Tq(V ).

Let V and V ′ be two vector spaces equipped with quadratic forms q and q′. Then,
every linear map f : (V, q) → (V ′, q′) such that f(q(v)) = q′(f(v)) for every v ∈ V ,
induces a morphism between Clq(V ) and Clq′(V

′) in the natural way.
Two Clifford algebras Cl(V, q) and Cl(V ′, q′) with dimV = dimV ′ and such that

q and q′ have the same signature are isomorphic. Since we will consider only Clifford
algebras where q is a positive definite quadratic form, in order to simplify our notation
we will write Cln or Cl(V ) instead of Cl(V, q), where V has dimension n.

Let F be the normed division algebra of the real numbers R, the complex numbers
C or the quaternions H. Denote by F(k) the algebra of matrices of order k whose
entries are in F. In Table 1.1, we list Clifford algebras Cln, where n ≤ 8. Notice that
one has the periodicity isomorphism Cln+8 ≃ Cln ⊗ Cl8. Hence, it is enough to list
Cln, with n ≤ 8, to determine Cln for every n ∈ N.

n 1 2 3 4 5 6 7 8
Cln C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)

Table 1.1: Clifford algebras Cln for n ≤ 8.

It can be proved that every irreducible representation of F(k) is equivalent to the
standard action on Fk, and that F(k) ⊕ F(k) has exactly two equivalence classes of
irreducible representations, given by the standard action of each one of the two factors
on Fk, see [120, Theorem 5.6].
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Moreover, Cln is isomorphic either to F(k), when n ̸≡ 3 mod 4, or to F(k) ⊕
F(k), when n ≡ 3 mod 4. As mentioned above, there exists a unique irreducible
representation ρ in the first case and exactly two irreducible representations ρ+ and
ρ− in the second case, up to equivalence. In order to distinguish between ρ+ and ρ−,
we introduce the volume element of Cln. Let us fix an orientation (e1, . . . , en) in V .
Then we define ω = e1 · · · en ∈ Cl(V ) as the volume element of Cln. It turns out that
ρ+(ω) = Id and ρ−(ω) = −Id, when n ≡ 3 mod 4.

1.4.2 Generalized Heisenberg algebras

In what follows, we will introduce the basic concepts needed to define generalized
Heisenberg algebras. See [30] for a nice and complete survey on this topic.

Let us consider two non-zero real vector spaces v and z, and β : v × v → z a
skew-symmetric bilinear map. We define n := v ⊕ z and we endow it with an inner
product ⟨·, ·⟩ such that v and z are orthogonal. Moreover, we introduce a linear map
J : Z ∈ z 7→ JZ ∈ End(v) given by

⟨JZU, V ⟩ = ⟨β(U, V ), Z⟩, for all U, V ∈ v, Z ∈ z,

and we define a Lie bracket in n by

[U +X,V + Y ] = β(U, V ), for all U, V ∈ v, X, Y ∈ z.

Then, n is a two-step nilpotent Lie algebra whose center is Z(n) = z. If, in addition
to that, we have J2

Z = −⟨Z,Z⟩ idv for every Z ∈ z, then n is said to be a general-
ized Heisenberg algebra, and the associated simply connected nilpotent Lie group N,
endowed with the induced left-invariant Riemannian metric, is called a generalized
Heisenberg group. The more classical notions of Heisenberg algebras and groups are
recovered precisely when z is one-dimensional.

Let U , V ∈ v and X, Y ∈ z. One has the following well-known properties of
generalized Heisenberg algebras (see [30, Chapter 3]):

JXJY + JY JX = −2⟨X,Y ⟩ idv, [JXU, V ]− [U, JXV ] = −2⟨U, V ⟩X,
⟨JXU, JXV ⟩ = ⟨X,X⟩⟨U, V ⟩, ⟨JXU, JY U⟩ = ⟨X,Y ⟩⟨U,U⟩.

In particular, for any unit Z ∈ z, JZ is a complex structure on v. Moreover, the
map J : z → End(v) can be extended to the Clifford algebra Cl(z, q), where q is the
quadratic form induced by ⟨·, ·⟩, in such a way that v becomes a Clifford module over
Cl(z, q).

1.4.3 Symmetric spaces of rank one and non-compact type

Hurwitz’s theorem asserts that any normed real division algebra F is isomorphic to
R, C, H or O. The hyperbolic spaces over these algebras constitute the symmetric
spaces of non-compact type and rank one. In other words, if M is a symmetric space
of non-compact type and rank one, then M is either a real hyperbolic space RHn+1,
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n ≥ 1, a complex hyperbolic space CHn+1, n ≥ 1, a quaternionic hyperbolic space
HHn+1, n ≥ 1, or the Cayley hyperbolic plane OH2. As a symmetric space, any of
these manifolds M can be identified with a quotient G/K of Lie groups, where G is
the connected component of the identity of the isometry group of M , up to a finite
covering, and K is the isotropy subgroup of G corresponding to a certain point o ∈M
that we fix from now on. Then one can take G = SO0

1,n+1, SU1,n+1, Sp1,n+1, F
−20
4

and K = SOn+1, S(U1 ×Un+1), Sp1 × Spn+1, Spin9, depending on whether F = R, C,
H, O, respectively.

We denote by g and k the Lie algebras of G and K, respectively, by B the Killing
form of g, and by θ the Cartan involution of g with respect to k. Let g = k⊕ p be the
Cartan decomposition of g induced by θ. We have that ⟨X,Y ⟩ = −B(X, θY ) is an
inner product that restricted to p induces a Riemannian metric on G/K that makes
G/K isometric to M , up to homothety.

RHn+1 CHn+1 HHn+1 OH2

G SO0
1,n+1 SU1,n+1 Sp1,n+1 F−20

4

K SOn+1 S(U1Un+1) Sp1Spn+1 Spin9
K0 SOn S(U1Un) Sp1Spn Spin7
gα Rn Cn Hn O
g2α 0 R R3 R7

Table 1.2: Data for each hyperbolic space.

Let a be a maximal abelian subspace of p, which is one-dimensional asM has rank
one. Then, the corresponding root space decomposition of g adopts the form

g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α.

Here, the root space g0 splits as g0 = k0 ⊕ a, where k0 is the Lie algebra of
K0 = NK(a), the normalizer of a in K, which also normalizes gα and centralizes g2α.
Moreover, g = k ⊕ a ⊕ n, where n = gα ⊕ g2α, is an Iwasawa decomposition of g.
When F = R, we have g−2α = g2α = 0 and n is abelian. Otherwise, n is only two-step
nilpotent. In fact, n is isomorphic to the (2n + 1)-dimensional Heisenberg algebra
when F = C and to a certain generalized Heisenberg algebra if F ∈ {H,O}. Moreover,
g2α, the center of n, is equal to the derived algebra of n, and has dimension 1, 3 or 7
for F = C, H or O, respectively.

In addition to this, we can identify gα with Rn, Cn, Hn, O for F = R, C, H, O,
respectively. Indeed, gα is a Clifford module over Clm, where m = dim g2α, which
is the sum of equivalent Clifford modules if m = 3, and is irreducible if m = 7.
The possibilities for G, K, K0 and the root spaces corresponding to positive roots are
summarized in Table 1.2.
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Chapter 2

A non-isoparametric hypersurface
with constant principal curvatures

This chapter is devoted, on the one hand, to an exposition of the notions of isopara-
metric hypersurfaces and hypersurfaces with constant principal curvatures, and their
relationship. On the other hand, we exhibit an example of a non-isoparametric hyper-
surface with constant principal curvatures in a conformally flat ambient space, which
is, up to our knowledge, the first such example ever described.

This chapter is organized in the following way. In Section §2.1, we recall some
well-known facts about isoparametric hypersurfaces and hypersurfaces with constant
principal curvatures. In Section §2.2, we describe the relationship between these
two classes of hypersurfaces in symmetric spaces of rank one together with the class
of extrinsically homogeneous hypersurfaces. Moreover, we review the classification
results concerning isoparametric hypersurfaces and hypersurfaces with constant prin-
cipal curvatures in these spaces. Finally, in Section §2.3, we construct an example
of a non-isoparametric hypersurface with constant principal curvatures. The original
result contained in Section §2.3 has given rise to the publication [159].

2.1 Isoparametricity and constancy of the principal
curvatures

Let (M̄, g) be a Riemannian manifold. A smooth map f : M̄ → R is an isoparametric
function if its gradient does not vanish on any open subset of M̄ and there are real
valued functions Φ ∈ C2(M̄) and Ψ ∈ C0(M̄) such that

||∇f ||2 = Φ ◦ f, and ∆f = Ψ ◦ f, (2.1)

where ∇f is the gradient of f and ∆f is the Laplacian of f . An isoparametric
family is the collection {f−1(c) : c ∈ R} of the level sets of f . The first identity in
Equation (2.1) implies that the level sets of an isoparametric function f are equidistant
whereas the second one means that the level sets of f have constant mean curvature.

Let M be an immersed hypersurface of M̄ and p ∈ M . Then, there exists some
neighborhood U of p in M such that U is an embedded hypersurface with a unit
normal vector field ξ, and for every sufficiently small r > 0, the equidistant hyper-
surfaces Ur = {expq(rξq) : q ∈ U} are embedded in M̄ . We say that a hypersurface

M immersed on a Riemannian manifold M̄ is isoparametric if for every p ∈M there

23
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Figure 2.1: Level sets of the isoparametric function fk : R3 → R, defined by
fk(x1, x2, x3) :=

∑k
i=1 x

2
i , for each k ∈ {1, 2, 3}, respectively.

is an open neighborhood U of p in M such that U and its nearby equidistant hyper-
surfaces have constant mean curvature. On the one hand, every regular level set of
an isoparametric function is an isoparametric hypersurface, and conversely, if M is
an isoparametric hypersurface of M̄ , then for each p ∈M there exists an open neigh-
borhood U of p in M such that U is the level set of a certain isoparametric function
defined on some open neighborhood of p in M̄ . On the other hand, the singular level
sets of an isoparametric function are called focal sets or focal submanifolds. Every
regular level set of an isoparametric function is a tube around a focal set, and the
focal submanifolds are minimal submanifolds of M̄ , see [82], [182].

The study of isoparametric hypersurfaces has been an influential topic of research
for the last century and to the present day. It has revealed multiple connections of
the area of submanifold geometry with other areas of Mathematics such as algebraic
topology, algebraic geometry, Lie group theory, differential equations or functional
analysis. Moreover, there are other related notions that can be understood as gener-
alizations or extensions of the notion of isoparametric hypersurface and whose study
has been of special importance in the last decades. For instance: isoparametric sub-
manifolds of arbitrary codimension [176, 88], equifocal submanifolds [53, 39], Dupin
hypersurfaces [46, 167], polar actions and polar foliations [131, 114, 18].

Now we will recall the notion of constant principal curvatures. Let ξ be a unit
normal vector field defined on some open subset U of an immersed hypersurface M of
M̄ . We say that the function λ : U ⊂M → R is a principal curvature of M associated
with ξ if there exists some vector field X ∈ Γ(TU) such that SξX = λX, where S
is the shape operator of M . If λ is a principal curvature, we denote by Tλ(p) the
eigenspace associated with λ(p) and we call it principal curvature space associated
with λ(p). If X ∈ Tλ(p), with X ̸= 0, we say that X is a principal direction of λ at
p ∈M . We define the multiplicity of λ in p ∈M as dim(Ker(Sξp − λ(p)Id)). We say
that a hypersurface M has constant principal curvatures if for every open subset U of
M with a unit normal vector field ξ defined on U , the eigenvalues (and corresponding
multiplicities) of the shape operator of U with respect to ξ are constant in U .

Isoparametric hypersurfaces and hypersurfaces with constant principal curvatures
are related to the notion of extrinsically homogeneous hypersurfaces. We say that a



2.2 Isoparametricity and constant principal curvatures in rank one 25

hypersurface M in M̄ is extrinsically homogeneous if it is a codimension one orbit of
the action of some closed subgroup H ⊂ Isom(M̄). From now on, we will simply say
homogeneous hypersurface instead of extrinsically homogeneous hypersurface. It can
be easily proved that a homogeneous hypersurface is isoparametric and has constant
principal curvatures. However, as we will see throughout the thesis, there are multiple
examples where the converse does not hold.

The study of the interplay between the three properties defined above is a funda-
mental question in the field of the geometry of hypersurfaces. For instance, if M̄ has
constant sectional curvature, then Cartan [44] proved that a hypersurface M of M̄ is
isoparametric if and only if it has constant principal curvatures.

2.2 Isoparametric hypersurfaces and hypersurfaces
with constant principal curvatures in rank one
symmetric spaces

The Killing-Hopf theorem establishes that the universal cover of a complete Rie-
mannian manifold of constant sectional curvature is isometric to a round sphere, a
hyperbolic space or the Euclidean space, where its sectional curvature is positive, neg-
ative or zero, respectively. These spaces constitute the most basic and fundamental
examples of Riemannian manifolds.

Let M̄ be a simply connected Riemannian manifold of constant sectional curvature.
If the sectional curvature of M̄ is less or equal than zero, we have complete classifi-
cations of isoparametric hypersurfaces or, equivalently, hypersurfaces with constant
principal curvatures.

Thus, in Rn we have the following result proved by Segre [161] in 1938:

Theorem 2.2.1. A hypersurface of Rn is isoparametric if and only if it is an open
part of one of the following hypersurfaces:

i) an affine hyperplane Rn−1,

ii) a sphere Sn−1,

iii) a generalized cylinder Sk × Rn−k−1, where k ∈ {1, . . . , n− 2}.

In the very same year Cartan [44] classified isoparametric hypersurfaces in real
hyperbolic spaces RHn.

Theorem 2.2.2. A hypersurface in a real hyperbolic space RHn is isoparametric if
and only if it is an open part of one of the following hypersurfaces:

i) a totally geodesic RHn−1,

ii) a tube around a totally geodesic RHk, where k ∈ {1, . . . , n− 1},

iii) a geodesic sphere of RHn,
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iv) a horosphere of RHn.

An important consequence of these classifications is that every isoparametric hy-
persurface in Rn or RHn is an open subset of a homogeneous one. Thus, these
theorems provide the classifications of homogeneous hypersurfaces in these spaces.
Hence, the relationship between the three properties defined above in these two am-
bient spaces is locally the one outlined in Figure 2.2.

Figure 2.2: Hypersurfaces in Rn and RHn.

The problem in round spheres turned out to be much more complicated. Cartan
[44] classified hypersurfaces with g ∈ {1, 2, 3} constant principal curvatures, and with
g = 4 if all the multiplicities are simple. However, he was not able to solve the
general case. Later on, Münzner developed the theory of Cartan further and proved
in [139, 140] that the number of distinct principal curvatures of an isoparametric
hypersurface must be g ∈ {1, 2, 3, 4, 6}. However, there is a main difficulty in the
problem of classifiying isoparametric hypersurfaces in Sn: not every isoparametric
hypersurface is homogeneous. Surprisingly, in [153], some inhomogeneous examples
with g = 4 were found.

Figure 2.3: Hypersurfaces in Sn.

In 2007-2008, Cecil, Chi, Jensen [45] and Immervoll [97] made substantial progress
in the classification of isoparametric hypersurfaces with g = 4 distinct principal cur-
vatures. Later, Chi concluded the case g = 4 in a series of articles [50, 51, 52]. The
last case, g = 6, occurs only in S7 and S13, see [1]. In S7 such hypersurfaces are
homogeneous and they are classified [72, 162]. Miyaoka [134] dealt with the prob-
lem in S13, but, as it was explained by Siffert in [162, 163], there seems to be an
issue in this article and in the posterior erratum that Miyaoka [135] wrote yielding
certain controversy. However, it is believed that every isoparametric hypersurface
with g ∈ {1, 2, 3, 6} is homogeneous. We will describe homogeneous hypersurfaces in
spheres in Chapter 3.
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Let us describe the inhomogeneous isoparametric hypersurfaces with g = 4 distinct
principal curvatures in round spheres. Let V = R2n+2 be a Euclidean space. We say
that an (m+1)-tuple (P0, . . . , Pm) of real self-adjoint endomorphisms of V is a Clifford
system in End(V ) if it satisfies:

PiPj + PjPi = 2δijId,

for all i, j ∈ {0, . . . ,m}, where δij is the Kronecker delta. Let P be the linear span
of a given Clifford system and endow it with the inner product given by ⟨P, P ′⟩ =

1
dim(V ) tr(PP

′) for P, P ′ ∈ P. Assume that n−m > 0. Then, the FKM foliation FP

associated with the Clifford system (P0, . . . , Pm) is defined by the level sets of F|S(V ),
where S(V ) denotes the unit sphere of V , and F : V → R is the polynomial:

F (x) = ⟨x, x⟩2 − 2

m∑
i=0

⟨Pix, x⟩2.

By combining multiple results in [45, 50, 51, 52, 97, 153, 154, 167, 173], we have the
following:

Theorem 2.2.3. Let M be an isoparametric hypersurface of Sn−1 ⊂ Rn with g = 4
distinct principal curvatures. Then, M is an open part of a homogeneous hypersurface
of Sn−1 or of a regular leaf of an FKM foliation.

For spaces with non-constant sectional curvature, the equivalence between isopara-
metricity and constancy of the principal curvatures is no longer true. In particular, it
makes sense to consider some of the Riemannian manifolds with non-constant sectional
curvature and simplest curvature tensor such as hyperbolic and projective spaces over
a normed division algebra F ∈ {C,H,O}. In some of these spaces, we know the exis-
tence of isoparametric hypersurfaces that do not have constant principal curvatures.
For example, in complex projective spaces, Wang [181] proved the following charac-
terization of isoparametric hypersurfaces with constant principal curvatures:

Theorem 2.2.4. Let M be an isoparametric hypersurface in CPn with unit normal
vector field ξ ∈ Γ(νM). Then, the following are equivalent:

i) M has constant principal curvatures.

ii) Jξ is a principal direction, that is, M is a Hopf real hypersurface.

iii) One focal set of M is a complex submanifold.

In order to provide his example of an isoparametric hypersurface with non-constant
principal curvatures, Wang [181] took an inhomogeneous hypersurface in the sphere
with g = 4 distinct constant principal curvatures in S8n+7 ⊂ C4(n+1), with n ≥ 1, and
proved that its image under the Hopf fibration π : S8n+7 → CP4n+3 does not have
complex focal sets.

Furthermore, we know classifications for isoparametric hypersurfaces in CPn, with
n ̸= 15 [68], in HPn, with n ̸= 7 [69], and CHn, see [64]. It is also known that
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Figure 2.4: Hypersurfaces in CPn and CHn.

an isoparametric hypersurface with constant principal curvatures in CPn or CHn
is homogeneous. In the first case this follows by combining Theorem 2.2.4 with
the classification of Hopf real hypersurfaces with constant principal curvatures in
CPn [106], and in the second case it follows by the classification in [64].

In HHn or OH2 there are examples of inhomogeneous hypersurfaces that are
isoparametric and have constant principal curvatures, see Section §4.5 and [60], re-
spectively.

Figure 2.5: Hypersurfaces in HPn.

To sum up, the known relations between the three concepts (homogeneity, isopara-
metricity and constancy of the principal curvatures) for hypersurfaces in symmetric
spaces of rank one are explained in Figures 2.2 to 2.6. In OP2, no relation is yet
known apart from the fact that every homogeneous hypersurface is isoparametric and
has constant principal curvatures, which holds for every ambient space.

Figure 2.6: Hypersurfaces in HHn and OH2.
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Furthermore, in Tables 2.1 and 2.2, we summarize the current progress in the
classification of isoparametric hypersurfaces in symmetric spaces of rank one. The
classification problem for homogeneous hypersurfaces will be discussed in detail in
Chapter 3. Finally, it is worth mentioning that the problem of classifying hypersur-
faces with constant principal curvatures in symmetric spaces of rank one seems to be
really hard, and we only have classifications if we assume that the number of distinct
principal curvatures is g ≤ 3, in CPn (see [170, 171]) or in CHn (see [15, 16]), or if we
impose some other hypotheses (see [11, 59, 106, 158]). For the sake of brevity, we will
write c.p.c. instead of constant principal curvatures in the tables below, where the
tick (respectively, a condition on n or g) means that a complete (respectively, partial)
classification has been obtained.

Sn CPn HPn OP2

Homogeneous ✓ ✓ ✓ ✓
c.p.c. n ̸= 13 g ≤ 3 ? ?
Isoparametric n ̸= 13 n ̸= 15 n ̸= 7 ?
Isoparametric + c.p.c. n ̸= 13 ✓ ? ?

Table 2.1: Current progress in the classification of hypersurfaces in symmetric spaces
of compact type and rank one.

RHn CHn HHn OH2

Homogeneous ✓ ✓ ✓ ✓
c.p.c. ✓ g ≤ 3 ? ?
Isoparametric ✓ ✓ ? ?
Isoparametric + c.p.c. ✓ ✓ ? ?

Table 2.2: Current progress in the classification of hypersurfaces in symmetric spaces
of non-compact type and rank one.

2.3 A non-isoparametric hypersurface with constant
principal curvatures

In this section we construct a conformally flat metric in Rn that admits a (non-
Riemannian) foliation by totally geodesic, non-isoparametric hyperplanes. Moreover,
the metric and the foliation descend to the n-dimensional torus Tn. This provides an
example of a non-isoparametric hypersurface with constant principal curvatures in a
Riemannian manifold. Also, it shows that the equivalence between isoparametricity
and constancy of the principal curvatures in spaces of constant curvature does not
hold in the more general setting of conformally flat spaces.
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In order to find such a metric, we need the isometry group to be sufficiently small
to spoil the good behavior of parallel hypersurfaces. Indeed, if a conformally flat
space admits a transitive group of isometries, then it is locally symmetric [172], which
would lead us to the apparently outstanding problem of finding such an example in
the context of symmetric spaces [65, §6]. On the other hand, we construct the metric
so that its isometry group is not too small so as to compute some geodesics explicitly.

2.3.1 The ambient manifold

Let (x1, . . . , xn) denote the usual coordinates in Rn and (∂1, . . . , ∂n) the associated
coordinate vector fields. For each n ≥ 2 we define a metric

gij(x1, . . . , xn) := h2(x1, . . . , xn)δij ,

where δij is the Kronecker’s delta and

h(x1, . . . , xn) :=

n−1∏
i=1

(2 + cos(πxi)) ∈ R, for each (x1, . . . , xn) ∈ Rn.

Clearly, g is conformally flat. We will denote Rn equipped with the metric g by M̄n.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.7: Level sets of h on R2.

Remark 2.3.1. In particular g is invariant under translations of the lattice 2Zn. Hence,
our metric g descends to the torus Tn = Rn/(2Zn).

2.3.2 Christoffel symbols of M̄n

It is known that Christoffel symbols are given by

Γkij =
1

2
gkl
(
gjl,i + gli,j − gij,l

)
,
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for i, j, k ∈ {1, . . . , n}, where we are using Einstein summation convention and we
have denoted the partial derivative with respect to xi by ,i. Thus,

Γkij =
δjk
2h2

h2,i +
δki
2h2

h2,j −
δij
2h2

h2,k.

Now for n ≥ 2 we have

Γiii = (δin − 1)
π sin(πxi)

2 + cos(πxi)
, Γkij = 0, (2.2a)

Γiij = (δjn − 1)
π sin(πxj)

2 + cos(πxj)
, Γkii = (1− δkn)

π sin(πxk)

2 + cos(πxk)
, (2.2b)

for mutually distinct i, j, k ∈ {1, . . . , n}.

2.3.3 Some vertical geodesics of M̄n

Let us define

Ω := {(a1, . . . , an−1, xn) ∈ Rn : ai ∈ Z, 0 ≤ i ≤ n− 1}.

Let a = (a1, . . . , an−1, xn) ∈ Ω and γa be the unit-speed geodesic starting at a with
initial direction ∂n. By the definition of g, the following maps are isometries of M̄n

for each i = 1, . . . , n:

� Λi : (x1, . . . , xi, . . . , xn) ∈ Rn 7→ (x1, . . . ,−xi, . . . , xn) ∈ Rn,

� Ψi : (x1, . . . , xi, . . . , xn) ∈ Rn 7→ (x1, . . . , xi + 2, . . . , xn) ∈ Rn.

Now, for each i ∈ {1, . . . , n − 1}, we consider the isometry Ψaii ◦ Λi. Then, we have
that γ̃a(t) := Ψaii ◦ Λi(γa(t)) is another geodesic given by

γ̃a(t) = (γ1a(t), . . . ,−γia(t) + 2ai, . . . γ
n
a (t)).

But γ̃a(t) and γa(t) have the same initial conditions. Hence, by uniqueness we have
that γia(t) = ai for each 1 ≤ i ≤ n− 1. Observe that h(a1, . . . , an−1, x) = 3ρ for any
x ∈ R, where ρ is the number of even entries of (a1, . . . , an−1). Thus, since γa(t) is
parametrized by arc length we get that

γa(t) = (a1, . . . , an−1, xn + 3−ρt). (2.3)

2.3.4 The Jacobi operator

It is clear that {∂i}ni=1 is an orthogonal global frame for M̄n. We will compute R̄∂n ,
the Jacobi operator associated with ∂n.

All we have to do is to compute the entries R̄innj of the curvature tensor R̄ for
each i, j ∈ {1, . . . , n}. If i = n or j = n, then R̄innj = 0. If i, j ̸= n, then

R̄innj = ⟨∇̄∂i∇̄∂n∂n, ∂j⟩ − ⟨∇̄∂n∇̄∂i∂n, ∂j⟩ − ⟨∇̄[∂i,∂n]∂n, ∂j⟩.
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On the one hand

⟨∇̄∂i∇̄∂n∂n, ∂j⟩ = ⟨∇̄∂i(Γ
k
nn∂k), ∂j⟩ = ⟨Γknn,i∂k + ΓknnΓ

l
ik∂l, ∂j⟩ = h2(Γjnn,i + ΓknnΓ

j
ik),

and on the other hand

⟨∇̄∂n∇̄∂i∂n, ∂j⟩ = ⟨∇̄∂n(Γ
k
in∂k), ∂j⟩ = ⟨Γkin,n∂k + ΓkinΓ

l
nk∂l, ∂j⟩ = h2(Γjin,n + ΓkinΓ

j
nk).

Since [∂i, ∂j ] = 0, we conclude

(R̄∂n)ij =

{
h2(Γjnn,i − Γjin,n + ΓknnΓ

j
ik − ΓkinΓ

j
nk), if i, j ̸= n

0, in any other case.
(2.4)

2.3.5 The example

Let F = {Fs}s∈R, where Fs = {(x1, . . . , xn) ∈ Rn : xn = s}, for each s ∈ R. It is
clear that F is a foliation of codimension one on M̄n. Let S, H and νFs denote the
shape operator, the mean curvature and the normal bundle of Fs, respectively. Then,
each leaf is totally geodesic since ∂n ∈ Γ(νFs), and using (2.2a) and (2.2b), we have
that ⟨S∂n∂i, ∂j⟩ = −⟨∇̄∂i∂n, ∂j⟩ = −h2Γjin = 0, for each i, j = 1, . . . , n− 1.

Remark 2.3.2. Again, since F is invariant by the action of 2Zn, this foliation descends
to the torus Tn.

Given any s ∈ R, let us consider p ∈ Fs, a unit-speed geodesic γ : [0, ε) → M̄n

with γ(0) = p and γ̇(0) ∈ νpFs for some ε > 0, and Mr the parallel hypersurface of
M at distance r > 0 satisfying γ(r) ∈Mr. By the Riccati equation (cf. [86, Equation
3.8]), we have

d

dr
Srγ̇(r) = R̄γ̇(r) + (Srγ̇(r))

2, S0
γ̇(0) = S∂n ,

where Srγ̇(r) is the shape operator of Mr at γ(r) with respect to the normal vector

γ̇(r). Now we take the trace, so

d

dr
Hr
γ̇(r) = Ric(γ̇(r), γ̇(r)) + ||Srγ̇(r)||

2, H0
γ̇(0) = H, (2.5)

where Hr
γ̇(r) denotes the mean curvature of Mr at γ(r), Ric is the Ricci tensor of M̄n

and || · || the Hilbert–Schmidt norm of an operator.
Now we prove that no leaf of F is isoparametric. Let us consider a ∈ Fs ∩ Ω for

some s ∈ R. First note that γ̇a = 3−ρ∂n by (2.3). By (2.2a) and (2.2b), Γkij(γa(r)) = 0
and Γnin = 0 . Hence, by (2.4), we have

Ric(γ̇a(r), γ̇a(r)) =

n−1∑
i=1

Γinn,i(γa(r)) = π2(1− n+
4

3
ρ),

where we recall that ρ is the number of even entries of (a1, . . . , an−1).
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As a consequence, if a = (0, . . . , 0, s) ∈ Fs ∩ Ω and b = (1, . . . , 1, s) ∈ Fs ∩ Ω,

Ric(γ̇a(r), γ̇a(r)) =
n− 1

3
π2 > 0 and Ric(γ̇b(r), γ̇b(r)) = (1− n)π2 < 0,

for any r ∈ R.
But in our case, for r = 0, we have ||Sγ̇a(0)||2 = ||Sγ̇b(0)||2 = 0. Therefore, by (2.5),

we deduce that d
dr |r=0

Hr
γ̇a(r)

> 0 and d
dr |r=0

Hr
γ̇b(r)

< 0. This way we can conclude

that, for small r > 0, the mean curvature of the parallel hypersurface of Fs at distance
r > 0 is not constant. Then, Fs is not isoparametric.





Chapter 3

Homogeneous hypersurfaces in
symmetric spaces

In Chapter 2 we recalled the definition of (extrinsically) homogeneous hypersurface
and how these hypersurfaces are related to isoparametric hypersurfaces and hyper-
surfaces with constant principal curvatures.

The aim of this chapter is to describe the known classification results of homo-
geneous hypersurfaces in symmetric spaces with a special emphasis on those of rank
one.

This chapter is organized in the following way. In Section §3.1, we motivate
the study and recall some well-known facts about cohomogeneity one actions. After
establishing the relationship between cohomogeneity one actions and homogeneous
hypersurfaces, we dedicate Section §3.2 to revise the classification of homogeneous
hypersurfaces in symmetric spaces of compact type, specifically focusing on the rank
one case. Then, in Section §3.3, we recall the notion of generalized Kähler angle,
which will be of enormous relevance for the theory of cohomogeneity one actions
on symmetric spaces of non-compact type and rank one. This will be the topic of
discussion of Section §3.4. Finally, Section §3.5 is devoted to explaining the program
developed by Berndt and Tamaru to classify cohomogeneity one actions on symmetric
spaces of non-compact type and higher rank.

3.1 Cohomogeneity one actions

The discipline of geometric analysis uses the tools from the theory of partial differen-
tial equations (PDEs) to establish new results in differential geometry. This is due to
the fact that many special kinds of geometric structures on a given smooth manifold
M are controlled by PDEs.

A possible way to construct these structures is to find a Lie group G acting on M
in such a way that the defining PDE is invariant under the action of G. In general the
dimension of our problem will be reduced, and it will suffice to construct a solution
on a submanifold transversal to the orbits of G on M , since this solution will be
transported by the action of G to the rest of M . The simplest scenario happens
when G acts transitively on M , and then the PDE turns into an algebraic equation.
However, if G acts with cohomogeneity one onM , our initial PDE will be reduced to an
ordinary differential equation. These symmetry reduction methods, and particularly
cohomogeneity one methods, have been extremely useful and successful on the search
for geometric structures on Riemannian manifolds.

35



36 3 Homogeneous hypersurfaces in symmetric spaces

An example of application of these cohomogeneity one methods happens when
we are looking for nearly Kähler structures. These occur as a distinguished class in
the classification of almost Hermitian structures into 16 natural classes, by Gray and
Hervella [85]. Recall that a nearly Kähler manifold is an almost Hermitian manifold
M with an almost complex structure J such that ∇J is a skew-symmetric (2, 1)-
tensor. For instance, until very recently, the only known complete, simply connected,
6-dimensional nearly Kähler manifolds were:

S6 = G2/SU3, S3 × S3 = Sp31/∆Sp1, CP3 = Sp2/(U1 × Sp1), F3 = SU3/T
2,

which were constructed in 1968 by Gray and Wolf [190]. All these nearly Kähler
structures are homogeneous. A breakthrough in this topic was the construction of
the first examples of inhomogeneous nearly Kähler structures on S6 and S3 × S3 by
Foscolo and Haskins [79] using cohomogeneity one methods.

Another example of the usefulness of these techniques is the construction of the
first complete Riemannian manifolds with exceptional holonomies. A complete, sim-
ply connected and irreducible Riemannian manifold M that is not locally symmetric
satisfies that its holonomy group Hol(M) is equal to a group in Berger’s list:

SOn, Un, SUn, Sp1Spn, Spn, Spin7, G2.

Initially, Berger [10] included Spin9 in the list, but it was proved by Alekseevsky [3]
that a Riemannian manifold M under the above hypotheses cannot have Hol(M) =
Spin9. The reason for this particular list was understood thanks to Simons [164]
and Olmos [145]. They both proved using different methods that for a Riemannian
manifold M under the previous hypotheses, Hol(M) acts transitively on the unit
sphere of TpM , for every p ∈M . Hence, by the classification of connected Lie groups
acting effectively and transitively on sphere, see [136], Hol(M) is one of the groups
appearing in the above list plus possibly U1Spn and Spin9, but the first one cannot
be the holonomy of a Riemannian manifold. At that point it was not still clear if one
could still remove Spin7 and G2 from the list. However, Bryant [41] gave examples of
Riemannian manifolds with holonomy equal to G2 or Spin7. The examples were cones
over the following homogeneous spaces: the flag manifold F3 = SU3/T

2 and the Berger
space B7 = SO5/SO3, respectively. These metrics turn out to be of cohomogeneity
one.

Finally, other contexts where cohomogeneity one actions have appeared are in the
study of Einstein metrics and also when looking for Riemannian metrics of positive
curvature. On the one hand, in relation to Einstein metrics, Böhm [34] constructed
the first examples of inhomogeneous Einstein metrics on spheres. In particular, he
endowed Sk, where k ∈ {5, 6, 7, 8, 9}, with cohomogeneity one Einstein metrics of
positive scalar curvature. On the other hand, Eschenburg [76] constructed inhomo-
geneous spaces of positive sectional curvature. The group SU3 × SU3 acts on SU3 by
multiplication on the left and right. Let p ∈ Z. Eschenburg considers the quotient
E7
p of SU3 induced by the action of a certain subgroup of SU3 × SU3 isomorphic to

U1 which is embedded via fp : U1 → SU3 × SU3, where

z ∈ U1 7→ (diag(z, z, zp),diag(1, 1, zp+2)) ∈ SU3 × SU3.
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SO2 ↷ R2

A · v = Av
R ↷ R2

t · v = v + tw

SO2 × R ↷ R3

(A, t) · v =
(
A 0
0 1

)
v +

(
0
t

) SO2 ↷ S2

A · v =
(
A 0
0 1

)
v

Figure 3.1: Examples of cohomogeneity one actions.

Now, he considers a metric on E7
p induced by the positively curved bi-invariant metric

on SU3. This metric is invariant by SU2×SU2, which acts on E7
p with cohomogeneity

one, endowing E7
p with a metric of positive sectional curvature when p ≥ 1.

Keeping the previous discussion in mind, it makes sense to carry out a systematic
study of cohomogeneity one actions on Riemannian manifolds. Let (M, g) be a con-
nected Riemannian manifold, and let G be a Lie subgroup of Isom(M) acting with
cohomogeneity one on M . Recall that by a cohomogeneity one action we understand
a proper isometric action with codimension one principal orbits. Then, the space of
orbits M/G is one of the following ones:

i) M/G = R, ii) M/G = [0,+∞),

iii) M/G = S1, iv) M/G = [0, 1].

Moreover, it is important to notice that points at the boundary of M/G correspond
to non-principal orbits. Thus, they have at most two non-principal orbits. In the
cases i) and iii), the action of G induces a foliation on M where all the leaves have
codimension one. In the case ii), M is G-equivariantly diffeomorphic to a tubular
neighborhood of the non-principal orbit G · p, or equivalently, to the total space of
the disk bundle Dp → (G · p) ×Gp

Dp → G/Gp, which is the associated bundle to the
principal bundle Gp → G → G/Gp with fiber Dp. Finally, in case iv), there are two
non-principal orbits G · p and G · q, and M admits a decomposition as a union of two
disk bundles

M ∼= (G×Gp
Dp) ∪G/K (G×Gq

Dq),

where Dp and Dq are slices at p and q, respectively, K is the isotropy at a point of a
principal orbit, and the union of the disks is made along a principal orbit G/K. Some
examples of simple cohomogeneity one actions are represented in Figure 3.1.

Our interest in cohomogeneity one actions arises from submanifold geometry.
Thus, the study of the geometry of their principal orbits, i.e. homogeneous hyper-
surfaces, will be our main goal. Hence, it makes sense to consider the following
equivalence relation. The actions on M of two subgroups H,H′ ⊂ Isom(M) are orbit
equivalent if there exists a φ ∈ Isom(M) such that φ(H · p) = H′ · φ(p), for every
p ∈ M . Hence, φ ∈ Isom(M) maps H-orbits to H′-orbits. Then one can pose the
following problem:
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Classify cohomogeneity one actions on a given
Riemannian manifold M up to orbit equivalence.

This problem turns out to be equivalent to classifying homogeneous hypersurfaces in
M up to congruence. As one may expect, the theory of these hypersurfaces will be
specially rich on spaces with a large isometry group such as homogeneous spaces, and
particularly, symmetric spaces.

3.2 Homogeneous hypersurfaces in symmetric
spaces of compact type

In this section, we review the theory of homogeneous hypersurfaces in symmetric
spaces of compact type.

Let M = G/K be a symmetric space of rank(M) = r ≥ 1, where G = Isom0(M).
Since every isometry is uniquely determined by its differential and its image at
one point, we have that K ⊂ O(ToM), where O(ToM) denotes the group of lin-
ear isometries of ToM , is a closed subgroup, and it follows that K is compact. Let
us consider g = k ⊕ p the reductive decomposition of M induced by the geodesic
symmetry so ∈ Isom(M) and fix a maximal abelian subspace a of p. Recall that
rank(M) = dim(a). Moreover, it can be proved that a meets orthogonally every orbit
Ad(K)X, where X ∈ p. Hence, K acts polarly on ToM with a section of dimension r.
We say that a real representation ρ : G → V is an s-representation if it is the isotropy
representation of a semisimple symmetric space. Then, s-representations provide ex-
amples of polar representations, i.e. polar linear actions on Rn. A converse for this
was proved by Dadok [54], and it constitutes a fundamental result in the area.

Theorem 3.2.1. Every polar representation is orbit equivalent to an s-representation.

Observe that there are polar representations that are not s-representations. For
instance, the standard action of SUn on Cn ≡ R2n has as orbits concentric spheres and
their common center at 0 ∈ R2n as a fixed point. This action is orbit equivalent to the
isotropy representation of CPn. However, it can be checked by using the classification
of symmetric spaces that it is not an s-representation.

Since K acts polarly on ToM with cohomogeneity r, it follows that it acts with
cohomogeneity r − 1 on S(ToM), where S(ToM) denotes the unit sphere of ToM . In
particular, if M is of rank two, K acts with cohomogeneity one on S(ToM). Notice
that the isotropy representation is preserved under duality, so we do not get new
examples by changing to the compact or non-compact setting. To sum up, the pre-
vious discussion provides a method to construct cohomogeneity one actions on round
spheres by considering the isotropy representations of symmetric spaces of rank two.
Indeed, the next theorem shows that these representations exhaust all the possible
cohomogeneity one actions on spheres, see [94].

Theorem 3.2.2. A hypersurface in Sn is homogeneous if and only if it is a principal
orbit of the isotropy representation of a Riemannian symmetric space of rank two.
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Now let us describe the number of distinct principal curvatures g and their mul-
tiplicities for homogeneous hypersurfaces in spheres. First of all, as a consequence of
Takagi and Takahashi’s work [174], g ∈ {1, 2, 3, 4, 6}. As we pointed out in Chapter 2,
this result was improved by Münzner [139, 140], who proved that the same restriction
holds in the more general setting of isoparametric hypersurfaces in spheres. In addi-
tion to this, he proved that the principal curvatures of an isoparametric hypersurface
in Sn can be written as

λi = cot θi, where θi = θ1 +
i− 1

g
π, and i ∈ {1, . . . , g}.

Furthermore, if the corresponding multiplicities are m1, . . . ,mg, we have mi = mi+2,
where the subindices are taken modulo g. Hence, if g is odd, all the multiplicities
coincide, and if g is even, it suffices to know m1 and m2 to determine all the multi-
plicities.

The next natural step is to classify homogeneous hypersurfaces in symmetric
spaces of compact type and rank one. There have been two different approaches for
this problem: one of them is more geometrical and the other one is more topological.

On the one hand, Takagi [172] classified homogeneous hypersurfaces in CPn, and
D’Atri [56] classified homogeneous hypersurfaces in HPn. In both cases they proved
that these hypersurfaces are what D’Atri called amenable, and they classified these
kind of hypersurfaces. In this setting, this turns out to be equivalent to the notion of
curvature-adaptedness. We say that a hypersurface N of M is curvature adapted if
its shape operator Sξ, where ξ is a unit normal vector field to N , commutes with the
Jacobi operator Rξ, defined by Rξ = R(X, ξ)ξ, for every tangent vector field X of N ,
see [11].

On the other hand, Uchida [179] classified cohomogeneity one actions on CPn
and Iwata did the same on HPn [99] and OP2 [100]. They classified cohomogeneity
one actions up to essential isomorphism. Two actions G ↷ M and G′ ↷ M ′ are
essentially isomorphic if there exist an isomorphism h : G → G′ and a diffeomorphism
f : M → M ′ such that f(g · x) = h(g) · f(x) for every g ∈ G and x ∈ M . Moreover,
they do not only classify cohomogeneity one actions on these spaces but in any other
space with the same rational cohomology. Their strategy is based on determining
the possible rational cohomology of the singular orbits by using the decomposition of
M into a union of two disk bundles. Then, they determine the pairs (G,M) using
known results about the cohomology of homogeneous spaces and the classification of
cohomogeneity one actions on spheres [94].

In what follows, we give an overview of the classification of homogeneous hyper-
surfaces in CPn, HPn and OP2.

Let us consider the Hopf projection π : Cn+1 \ {0} → CPn and let J be the
complex structure of CPn induced by multiplication of i in Cn+1. Now, we consider
a (possibly reducible) Hermitian symmetric space G/K of rank two, with dimension
dimG/K = 2(n + 1). Then, one can prove that the isotropy representation of G/K
maps C-lines of To(G/K) to C-lines of To(G/K), thus inducing a cohomogeneity one
action on CPn. Once again, these isotropy representations induce all the possible
cohomogeneity one actions on CPn. The classification of homogeneous hypersurfaces
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in CPn was given by Takagi [169].

Theorem 3.2.3. A hypersurface in CPn is homogeneous if and only if it is the image
under the Hopf projection π : Cn+1 \ {0} → CPn of a principal orbit of the isotropy
representation of a 2(n+ 1)-dimensional Hermitian symmetric space of rank two.

The symmetric spaces whose isotropy representations give rise to these homoge-
neous hypersurfaces via the Hopf projection are:

CPk+1 × CPn−k, G+
2 (R

n+3), G2(Cn+3), SO10/U5, and E6/U1 · Spin10,

where k ∈ {0, . . . , n − 1}. Here, we denote by Gk(Fn) the Grassmannian of k-planes
in Fn, where F ∈ {R,C,H}, and by G+

k (Rn) the Grassmannian of oriented k-planes
in Rn.

Let M = H · p ⊂ CPn be an orbit of codimension one, where H is some Lie group
acting properly and by isometries on CPn. Let ξ be a unit normal vector field of M
defined around p ∈M . Notice that, in this case, M is curvature adapted if and only
if Jξ is an eigenvector for the shape operator of M , see [11]. We now briefly describe
the cohomogeneity one actions on CPn induced (in the way explained above) by the
corresponding Hermitian symmetric space of rank two.

The isotropy representation of the Hermitian symmetric space CP1×CPn induces
the isotropy action on CPn. The principal orbits of this action are geodesic spheres
S2n−1 = Un/Un−1, and the singular orbits are a point and a totally geodesic CPn−1.
Moreover, a principal orbit has g = 2 distinct principal curvatures. The eigenspaces
of the shape operator associated with ξp are: RJξp and TpM ⊖ RJξp, which have
dimensions 1 and 2n − 2, respectively. By Rv we mean the linear subspace spanned
by the vector v, and ⊖ denotes orthogonal complement.

The isotropy representation of the Hermitian symmetric space CPk+1 × CPn−k
induces the action of H = Uk+1 × Un−k on CPn which has a totally geodesic CPk+1

and a totally geodesic CPn−k as singular orbits, and tubes around any of these totally
geodesic submanifolds as principal orbits. These principal orbits are equal to Uk+1 ×
Un−k/(Uk × Un−k−1 × U1), up to a quotient by a finite subgroup. In this case, the
principal orbit H·p has g = 3 distinct principal curvatures. Let q = (q1, q2) = π−1(p) ∈
S2n+1 ⊂ Cn+1 and assume that qi ∈ Vi ⊂ Cn+1 is not zero, where V1 and V2 are the
complex subspaces invariant under the actions of Uk+1 and Un−k, respectively. Then,
the eigenspaces of the shape operator associated with ξp are π∗q(Vi), for i ∈ {1, 2},
and the 1-dimensional subspace spanned by Jξp. The dimensions of π∗q(V1) and
π∗q(V2) are 2k and 2(n− k − 1), respectively.

The isotropy representation of the Hermitian symmetric space G+
2 (Rn+3) induces

the action of H = SOn+1 on CPn which has a totally geodesic submanifold isometric
to RPn and a minimal smooth complex quadric G+

2 (Rn+1) = SOn+1/(SOn−1 × SO2)
as singular orbits. The principal orbits are tubes around any of these totally geodesic
submanifolds and they are equal to SOn+1/SOn−1, up to a quotient by a finite sub-
group. In this case, any principal orbit H · p has g = 3 distinct principal curvatures.
Let q = (q1, q2) = π−1(p) ∈ S2n+1 ⊂ Cn+1 and assume that qi ∈ Wi ⊂ Cn+1 is
not zero, where W1 and W2 are two orthogonal totally real subspaces of maximal
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dimension n + 1 in Cn+1 left invariant by the action of H. The eigenspaces of the
shape operator associated with ξp are RJξp, and π∗qWi for i ∈ {1, 2}. The dimension
of π∗qWi is n− 1 for each i ∈ {1, 2}.

We have seen that the principal orbits of all the actions above can be understood
as tubes around reflective submanifolds (see Section §5.3 for the definition), hence
totally geodesic submanifolds of CPn. The principal orbits of the following actions
can be understood as tubes around Kähler submanifolds of CPn, hence minimal, but
not totally geodesic. They all have g = 5 distinct principal curvatures and their
multiplicities and associated eigenspaces can be found in [47].

The embedding of the singular orbit CP1×CPk of the action induced by G2(Cn+3)
on CP2n+1 (see Table 3.2) is an example of the so-called Segre embedding of CPn1 ×
CPn2 into CP(n1+1)(n2+1)−1, which is the map given by

([z0, . . . , zn1 ], [w0, . . . , wn2 ]) 7→ [z0w0, . . . , z0wn2 , z1w0, . . . , z1wn2 , . . . , zn1wn2 ],

where [z0, . . . , zn1
] ∈ CPn1 and [w0, . . . , wn2

] ∈ CPn2 .
The embedding of the singular orbit G2(C5) (see Table 3.2) of the action induced by

SO10/U5 on CP9 is given by a particular instance of the standard Plücker embedding
of Gr(Cn) into the projectivization of ΛrCn. In particular for r = 2 and n = 5, this
is given by span{v1, v2} 7→ [v1 ∧ v2], where {v1, v2} is a basis for a 2-plane in C5.

Finally, the embedding of the (complex) singular orbit SO10/U5 (see Table 3.2) of
the action induced by E6/U1 ·Spin10 on CP15 is rather complicated and is a particular
case of the so-called half-spin embedding of SOd/Ud in CPn, where n = 2d−1 − 1,
d ≥ 2, which is a complex embedding. For more details on this embedding, we refer
to [47, §7.5].

The classification problem in HPn was solved by Iwata [99] and D’Atri [56], inde-
pendently. Let us consider the quaternionic Hopf projection π : Hn+1 \ {0} → HPn

and also let {J1, J2, J3} be a local basis around some p ∈ HPn of the quaternionic
structure J of HPn induced by multiplication of i, j and k in Hn+1, respectively.

Theorem 3.2.4. A hypersurface in HPn, n ≥ 2, is homogeneous if and only if it is
the image under the Hopf projection π : Hn+1 \ {0} → HPn of a principal orbit of the
isotropy representation of one of the following symmetric spaces of rank two:

(1) HP1 ×HPn,

(2) HPk+1 ×HPn−k, where k ∈ {1, . . . , n− 2},

(3) SUn+3/S(U2 × Un+1).

Remark 3.2.5. One might expect an analogous statement as in Theorem 3.2.3, substi-
tuting Hermitian symmetric spaces by quaternionic-Kähler symmetric spaces. How-
ever, this is not true since the product of quaternionic projective spaces is clearly not
quaternionic-Kähler in general.

Let M = H · p ⊂ HPn be an orbit of codimension one of a closed subgroup of
isometries of HPn acting with cohomogeneity one. Let ξ be a unit normal vector field
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of M defined around p. Notice that, in this case, M is curvature adapted if and only
if D is invariant by the shape operator of M , where D is the maximal subbundle of
the tangent bundle of M that is invariant under J, see [12].

Case (1) in Theorem 3.2.4 induces the action of H = SpnSp1 on HPn given by
the isotropy action of HPn = Spn+1/Spn × Sp1. This action has geodesic spheres
S4n−3 = SpnSp1/Spn−1Sp1 as principal orbits, and a point and a totally geodesic
HPn−1 as singular orbits. Moreover, any principal orbit H · p has g = 2 distinct
principal curvatures. The eigenspaces of the shape operator associated with ξp are
Jξp and TpM ⊖ Jξp, which have dimensions 3 and 4n− 4, respectively.

The case (2) induces the action of H = Spk+1×Spn−k on HPn, which has a totally
geodesic HPk+1 and a totally geodesic HPn−k as singular orbits, and tubes around
any of these totally geodesic submanifolds as principal orbits. The principal orbits are
equal to Spk+1×Spn−k/(Spk×Spn−k−1×Sp1), up to a quotient by a finite subgroup.
In this case any principal orbit H · p has g = 3 distinct principal curvatures. Let
q = (q1, q2) = π−1(p) ∈ S4n+3 ⊂ Hn+1 and assume that qi ∈ Vi ⊂ Hn+1 is not zero,
where V1 and V2 are the quaternionic subspaces invariant under the actions of Spk+1

and Spn−k, respectively. Then, the eigenspaces of the shape operator associated with
ξp are π∗q(Vi), for i ∈ {1, 2}, and J ξp. The dimensions of π∗q(V1) and π∗q(V2) are 4k
and 4(n− k − 1), respectively.

Finally, case (3) induces the action of H = Un+1 on HPn, which has as singular
orbits a totally geodesic submanifold isometric to CPn and a minimal homogeneous
space that is equal to Un+1/(Un−1 × SU2), up to a quotient by a finite subgroup.
Every principal orbit is a tube around any of these singular orbits and it is equal
to the homogeneous space Un+1/(Un−1 × S(U1 × U1)), up to a quotient by a finite
subgroup. In this case any principal orbit H ·p has g = 4 distinct principal curvatures.
Let q = (q1, q2) = π−1(p) ∈ S4n+3 ⊂ Hn+1 and assume that qi ∈ Wi ⊂ Hn+1 is not
zero, where W1 the subspace invariant under multiplication by the imaginary unit i
induced by H and W2 is its orthogonal complement in Hn+1. Observe that H leaves
Wi invariant for every i ∈ {1, 2}. The eigenspaces of Sξp are RJ1ξp, span{J2ξp, J3ξp}
and π∗qWi for i ∈ {1, 2}. The dimension of π∗qWi is 2(n− 1).

The classification problem in OP2 was solved by Iwata [100].

Theorem 3.2.6. A hypersurface in OP2 is homogeneous if and only if it is:

(1) a geodesic sphere, or

(2) a tube around a totally geodesic HP2 in OP2.

Firstly, geodesic spheres of OP2 can be regarded as principal orbits of the isotropy
action of Spin9 on OP2 and, as homogeneous spaces, they are isomorphic to S15 =
Spin9/Spin7 and have g = 2 distinct principal curvatures. The singular orbits of this
action are a fixed point and its cut locus, namely, a totally geodesic OP1 = S8 =
Spin9/Spin8.

The second hypersurface can be regarded as a principal orbit of the action of
Sp3Sp1 on OP2. Any such principal orbit is isomorphic to the homogeneous space
Sp3Sp1/(Sp1 × Sp1 × Sp1) and has g = 4 distinct principal curvatures (see [141]).
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The singular orbits of this action are a totally geodesic HP2 and a minimal S11 =
Sp3Sp1/Sp2Sp1.

In Table 3.1, we list the homogeneous hypersurfaces of symmetric spaces of com-
pact type and rank one, and their focal sets, up to a quotient by a finite subgroup.
These were computed in [118]. We denote by ρn, µn and νn the standard represen-
tations of SOn on Rn, SUn (or Un) on Cn and Spn on C2n, respectively. Moreover,
we denote by Ad the adjoint representation, by λ3 the 14-dimensional irreducible
representation of Sp3 of quaternionic type, by λ4 the 26-dimensional irreducible rep-
resentation of F4, by ∆+

10 the half-spin representation of Spin10 (see [193, Chapter 5]),
and we write −θ to omit the 1-dimensional trival representation.

In 1998, in a monumental work for the theory of homogeneous hypersurfaces,
Kollross [113] classified homogeneous hypersurfaces in irreducible symmetric spaces
of compact type. Before stating his result, we will recall some well-known facts about
Hermann actions.

Let G be a compact semisimple Lie group equipped with a bi-invariant metric and
H and K be closed symmetric subgroups of G. This means that H and K are fixed
point sets of involutive automorphisms of G. Therefore, (G,H) and (G,K) are compact
symmetric pairs. Under these conditions, we say that a Hermann action is the action
of H× K on G given by

(h, k) · g = hgk−1, h ∈ H, k ∈ K, g ∈ G.

Clearly, this action induces a natural action of H on the compact symmetric space
G/K. In addition to that, it turns out that the slice representation of H×K on G is the
same as the slice representation of the action of H on G/K. Hence, the action H× K
on G has cohomogeneity one if and only if the action of H on G/K has cohomogeneity
one. Moreover, all Hermann actions are hyperpolar and their totally geodesic orbits
are reflective, see [143].

The main idea of the work by Kollross is the following. Let M = G/K be an
irreducible symmetric space of compact type. We start from the top of the lattice of
subalgebras of g, the Lie algebra of G, downwards until we get a subalgebra corre-
sponding to a connected subgroup of G acting with cohomogeneity one. Once we have
achieved such a subgroup we stop going down through that branch and we choose a
different branch of the lattice. This works because if h is properly contained in a sub-
algebra h′ whose corresponding connected subgroup H′ of G acts with cohomogeneity
k, then H acts with cohomogeneity greater or equal than k. Furthermore, if H ⊂ H′

and H′ acts with cohomogeneity one, we have that either H acts with the same orbits
as H′ or H acts with larger cohomogeneity.

Remark 3.2.7. As an example of the methods used by Kollross, we provide a proof of
the classification of homogeneous hypersurfaces in OP2, which was originally obtained
by Iwata via topological arguments.

Let OP2 = G/K, where G = F4 and K = Spin9. Let H be a subgroup of G acting
with cohomogeneity one. By [150, Proposition 3, p. 45], the complexification of a
maximal subalgebra h of a simple compact Lie algebra g is maximal in g⊗C. Then h,
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Symmetric space Representation Principal Orbit Singular Orbits n g (m1,m2)

S1 × Sℓ−1, ℓ ≥ 3 ρℓ−1 Sℓ−2 {∗} ℓ − 1 1 ℓ − 2

Sk+1 × Sℓ−k−1 ρk+1 + ρℓ−k−1 Sk × Sℓ−k−2 Sk, Sℓ−k−2 ℓ − 1 2 (k, ℓ − k − 2)

SU3/SO3 Sym2ρ3 − θ SO3 RP2 4 3 1

SU3 Ad SU3/T2 CP2 7 3 2

SU6/Sp3 Λ2ν3 − θ Sp3/(Sp1)3 HP2 13 3 4

E6/F4 λ4 F4/Spin8 OP2 25 3 8

Sp2 Ad SO5/(SO2 × SO2) SO5/(SO2 × SO3) 9 4 (2, 2)

SO10/U5 (Λ2µ5)R SU5/(SU2 × SU2) SU5/(SU2 × SU3), SU5/SO5 19 4 (4, 5)

E6/Spin10U1 (µ ⊗C ∆
+
10)R Spin10/Spin6 Spin10/SU5, Spin10/Spin7 31 4 (9, 6)

SOk+2/(SO2 × SOk), k ≥ 3 ρ2 ⊗R ρk S1 × SOk/SOk−2 S1 × Sk−1, SOk/SOk−2 2k − 1 4 (1, k − 2)

SUk+2/S(U2 × Uk), k ≥ 2 (µ2 ⊗C µk)R S2 × Uk/Uk−2 S2 × S2k−1, Uk/Uk−2 4k − 1 4 (2, 2k − 3)

Spk+2/(Sp2 × Spk), k ≥ 3 ν2 ⊗H νk S4 × Spk/Spk−2 S4 × S4k−1, Spk/Spk−2 8k − 1 4 (4, 4k − 5)

Sp4/(Sp2 × Sp2) ν2 ⊗H ν2 S7 × S7 S4 × S7, Sp2 15 4 (1, 3)

G2/SO4 (Sym3µ2 ⊗C µ2)R SO4 SO4/SO2 7 6 (1, 1)

G2 Ad G2/T2 G2/U2 13 6 (2, 2)

Table 3.1: Homogeneous hypersurfaces in Sn.

Symmetric space Representation Principal Orbit Singular Orbits n g Multiplicities

CP1 × CPℓ, ℓ ≥ 2 µ1 + µℓ S2ℓ−1 {∗}, CPℓ−1 ℓ 2 (1, 2(ℓ − 1))

CPk+1 × CPℓ−k, 1 ≤ k ≤ ℓ − 2 µk+1 + µℓ−k Uk+1 × Uℓ−k−1/(Uk × Uℓ−k−2 × U1) CPk, CPℓ−k−1 ℓ 3 (1, 2(ℓ − 1 − k), 2k)

SOℓ+3/(SO2 × SOℓ+1), ℓ ≥ 2 ρ2 ⊗R ρℓ SOℓ+1/SOℓ−1 RPℓ, SOℓ+1/(SOℓ−1SO2) ℓ 3 (1, ℓ − 1, ℓ − 1)

SUℓ+3/S(U2 × Uℓ+1), ℓ ≥ 2 (µ2 ⊗C µℓ+1)R CP1 × Uℓ+1/(Uℓ−1U1) CP1 × CPℓ, Uℓ+1/(Uℓ−1U1) 2ℓ + 1 5 (1, 2, 2, 2(ℓ − 1), 2(ℓ − 1))

SO10/U5 (Λ2µ5)R SU5/S(U2 × U2) SU5/S(U2 × U3), SU5/SO5U1 9 5 (1, 4, 4, 4, 4)

E6/Spin10U1 (µ ⊗C ∆
+
10)R Spin10/Spin6U1 Spin10/U5, Spin10/Spin7U1 15 5 (1, 6, 6, 8, 8)

Table 3.2: Homogeneous hypersurfaces in CPn.

Symmetric space Representation Principal Orbit Singular Orbits g Multiplicities

HP1 × HPn ν1 + νn S4n−3 {∗}, HPn−1 2 (3, 4n − 6)

HPk+1 × HPn−k, 1 ≤ k ≤ n − 2 νk+1 + νn−k Spk+1 × Spn−k/(Spk × Spn−k−1 × Sp1) HPk, HPn−k−1 3 (3, 4k, 4(n − k − 1))

SUn+3/S(U2 × Un+1) (µ2 ⊗C µn+1)R Un+1/(Un−1 × S(U1 × U1)) CPn, Un+1/(Un−1 × SU2) 4 (1, 2, 2(n − 1))

Table 3.3: Homogeneous hypersurfaces in HPn.

Group acting Representation Principal Orbit Singular Orbits g Multiplicities

Spin9 ∆4 S15 {∗}, OP1 2 (7, 8)

Sp3Sp1 λ3 ⊗ µ2 Sp3Sp1/(Sp1 × Sp1 × Sp1) HP2, S11 4 (4, 4, 3, 4)

Table 3.4: Homogeneous hypersurfaces in OP2.
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the Lie algebra of H, is contained in one of the following maximal subalgebras (see [74,
Table 12 and Table 39]) of f4:

so9, sp3 ⊕ sp1, g12 ⊕ su82, su1562 ,

where we indicate with a superscript the Dynkin index of the complexified subalgebra,
see Section §7.4. Notice that the subgroups of G corresponding to so9 and sp3 ⊕
sp1 act with cohomogeneity one, since they correspond to the isotropy action of
OP2, and to the action whose principal orbits are tubes around a totally geodesic
submanifold of OP2 isometric to HP2, respectively. Thus, if we proved that the
subgroups corresponding to g2 ⊕ su82 and su1562 act with cohomogeneity larger than
one, we would be done.

The case of su1562 follows easily. Observe that, in general, if H is a subgroup acting
on M , we have

dim(H) ≥ dimH · p = (dimH · p− dimM) + dimM = dimM − cohom(H · p).

Hence, for the case corresponding to a subalgebra su1562 we cannot have cohomogeneity
one actions by dimensional reasons.

Observe that the previous argument does not apply to the case of g2 ⊕ su82. A
possible way to tackle this case is to study the slice representation of the action of the
H-action on OP2 at the base point o ∈ OP2, which coincides with the cohomogeneity
of the action of H on OP2. Notice that the isotropy of this action at the base point
is equal to H ∩ K. Let us assume that h = g2 ⊕ su82. We know that the factor of
h isomorphic to g2 is maximally contained in a subalgebra isomorphic to spin7 in
k ∼= spin9. However, g2 ⊕ su82 cannot be contained in spin9, since otherwise it would
not be a maximal semisimple subalgebra of f4. Hence, h ∩ k is either equal to g2
or to g2 ⊕ u1. However, these subalgebras have dimension 14 and 15, respectively,
and we know that the corresponding connected Lie subgroups cannot act transitively
on spheres of dimension dim νo(H · o) − 1 = dimOP2 − dimH/G2 − 1 = 12 and
dim νo(H/(G2U1))−1 = 13, respectively. This proves that the subgroup corresponding
to g2 ⊕ su82 acts with cohomogeneity larger than one.

The classification theorem obtained by Kollross can be stated as follows.

Theorem 3.2.8. Let M = G/K be an irreducible symmetric space of compact type.
A cohomogeneity one action on M is locally orbit equivalent to one of the following
actions:

(1) a Hermann action of cohomogeneity one (see Table 3.5), or

(2) the action of {(g, ḡ) : g ∈ SU3} on SU3, or

(3) an action induced by the isotropy representation of a symmetric space of rank
two, or

(4) one of the seven exceptions corresponding to the action of H × K on G, or the
action of H on G/K, where (H,K,G) is a triple appearing in Table 3.6.
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H G K
SOn+1 SUn+1 S(Un × U1)
S(U2 × U2n−2) SU2n Spn
S(U3 × U2n−3) SU2n Spn
S(Up+q × U1) SUp+q+1 S(Up × Uq+1)
SOp+q SOp+q+1 SOp × SOq+1

Spn × Sp1 Spn+1 Un+1

Spp+q × Sp1 Spp+q+1 Spp × Spq+1

SO2 × SO2n−2 SO2n Un
SO3 × SO2n−3 SO2n Un
SU6 · SU2 E6 F4

SO10 · SO2 E6 F4

Sp3 · Sp1 F4 Spin9

Table 3.5: Actions in item (1) of Theorem 3.2.8.

H G2 G2 U3 Spin9 Sp1Spn SU3 SU3

K SO3 × SO4 G2 G2 SO2 × SO14 SO2 × SO4n−2 SO4 SU3

G SO7 SO7 SO7 SO16 SO4n G2 G2

Table 3.6: Actions in item (4) of Theorem 3.2.8.

3.3 A digression: the generalized Kähler angle

In this section we recall the notion of generalized Kähler angle of a vector with respect
to a subspace of a Clifford module introduced in [60]. This notion constituted a
generalization of the notion of Kähler angle of a vector of a real subspace in Cn,
see [36] or [13]. This concept will be of great relevance for the study of cohomogeneity
one actions on hyperbolic spaces, see Section §3.4. We will start by recalling this older
notion before introducing the generalized Kähler angle.

Let us endow Cn with the inner product given by the real part of its standard
Hermitian inner product. Let V ⊂ Cn be a real subspace. Furthermore, let us denote
by πV : Cn → V the orthogonal projection onto V , and by J : Cn → Cn the linear
map given by the multiplication by the imaginary unit i ∈ C.

The Kähler angle of a non-zero vector v ∈ V with respect to V is given by
∡(Jv, V ), the angle between Jv and V . Equivalently, this is the value φ ∈ [0, π/2]
such that

||πV Jv||2 = cos2(φ)||v||2.

The real subspace V ⊂ Cn has constant Kähler angle φ ∈ [0, π/2] if

∡(Jv, V ) = φ for every v ∈ V \ {0}.

Notice that there are two extreme cases. On the one hand, V ⊂ Cn has constant
Kähler angle 0 if and only if it is complex, i.e. it is invariant under J . On the other
hand, V ⊂ Cn has constant Kähler angle π/2 if and only if it is totally real, i.e.
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JV ⊂ V ⊥ = Cn ⊖ V . Thus, the Kähler angle provides a way to measure how a real
subspace of Cn fails to be complex.

Example 3.3.1. Let {e1, e2} be the canonical basis of C2 and consider the real subspace
V = span{e1, cos(φ)Je1 + sin(φ)e2} for some φ ∈ [0, π/2]. We claim that V has
constant Kähler angle φ. Let v = ae1 + b(cos(φ)Je1 + sin(φ)e2), where a

2 + b2 = 1.
Now,

Jv = aJe1 + b(− cos(φ)e1 + sin(φ)Je2),

and then πV Jv = −b cos(φ)e1 + a cos(φ)(cos(φ)Je1 + sin(φ)e2). Consequently,

||πV Jv||2 = cos2(φ)(b2 + a2) = cos2(φ),

proving our claim.

Indeed, every real subspace of constant Kähler angle φ ∈ [0, π/2] is equal to the
direct sum of copies of the subspace V in Example 3.3.1, up to some transformation
T ∈ Un. Even more, every real subspace of Cn can be factorized as a direct sum of
real subspaces with constant Kähler angle as it was shown in [61]. Here we include
an alternative proof of this fact.

Theorem 3.3.2. Let V ⊂ Cn be a real subspace. Then, V admits an unique orthog-
onal decomposition given by

V =
⊕
φ∈Φ

Vφ,

where

i) Vφ has constant Kähler angle φ ∈ [0, π/2], and

ii) CVφ ⊥ CVψ, for every distinct φ,ψ ∈ Φ.

Proof. Let k = dimV and denote by Stf2(V ) = SOk/SOk−2 the Stiefel manifold of or-
thonormal 2-frames in V , and consider f : Stf2(V ) → R, which maps a 2-orthonormal
frame (u, v) ∈ Stf2(V ) to ⟨Ju, v⟩. By compactness, there exists some (u1, v1) ∈
Stf2(V ) such that ⟨Ju1, v1⟩ = cos(φ1) is a maximum for f . Observe that cos(φ1) = 0
if and only if V is totally real. Assume V is not totally real. Then, since u1 and v1
are perpendicular, there exists some unique unit vector w1 ∈ V ⊖spanR{u1, Ju1, Jv1}
that satisfies v1 = cos(φ1)Ju1 + sin(φ1)w1. An analogous computation as in Exam-
ple 3.3.1 shows that the subspace V 1

φ1
:= spanR{u1, v1} has constant Kähler angle

φ1 ∈ [0, π/2].
In what follows, we will prove that V = V 1

φ1
⊕ (V ⊖ V 1

φ1
) is a C-orthogonal direct

sum. Let w ∈ V ⊖ Vφ1
, and consider the map gw : [0, 2π] → R, given by gw(θ) :=

⟨Ju1, cos(θ)v1 + sin(θ)w⟩ for each θ ∈ [0, 2π]. Now, since f attains a maximum at
(u1, v1), gw attains a maximum at θ = 0. Hence, ⟨Ju1, w⟩ = 0 and using an analogous
argument one proves that ⟨Jv1, w⟩ = 0. Thus, V = V 1

φ1
⊕ (V ⊖V 1

φ1
) is a C-orthogonal

direct sum.
Now we proceed inductively, and since V is finite dimensional, we end up factor-

izing V as an orthogonal sum V =
⊕r

i=1

⊕s
j=1 V

j
φi
, where V jφi

has constant Kähler
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angle φi. Moreover, CV jφi
⊥ CV j′φi′

if i ̸= i′ or j ̸= j′. Consequently, if one sets

Vφi
:=
⊕s

j=1 V
j
φi
, for every i ∈ {1, . . . , r}, we have the desired orthogonal decompo-

sition for V . Finally, notice that this decomposition is unique by construction.

Proposition 3.3.3. Let V ⊂ Cn be a real subspace. Then, the following statements
are equivalent:

i) V has constant Kähler angle.

ii) There is some Lie subgroup H ⊂ Un acting transitively on the unit sphere of V .

Proof. Let us assume that V has constant Kähler angle equal to π/2. Then it has
dimension k ≤ n. Now, if we consider CV , the complex span of V , there is some
subgroup isomorphic to Uk in Un which acts transitively on the unit sphere of CV .
However, now there is a subgroup Ok in Uk acting transitively on the unit sphere
of V .

Now assume that V has constant Kähler angle φ < π/2. By the proof of The-
orem 3.3.2, V has even dimension k ≤ 2n. Hence, the map P : V → V given by
P (v) = 1

cos(φ)πV Jv defines a complex structure on V , which preserves ⟨·, ·⟩. Thus,

U(V ) = {g ∈ GL(V ) : gP = Pg, gtg = IdV } is a group isomorphic to Uk. Any element
g ∈ U(V ) can be extended to A ∈ Un by defining A(v1 + Jv2) = gv1 + Jgv2 and
Aw = w, for every v1, v2 ∈ V and w ∈ Cn ⊖ CV . This shows that U(V ) can be re-
garded as a subgroup of the normalizer of V in Un. The group U(V ) acts transitively
on the unit sphere of V . This proves that i) implies ii).

Now let us prove that ii) implies i). Let v, w ∈ V ⊂ Cn be two unit vectors.
Then, there is T ∈ H ⊂ Un such that Tv = w and TV ⊂ V . Let us assume that v
has Kähler angle φ with respect to V . Then,

cos2(φ) = ⟨πV Jv, πV Jv⟩ = ⟨TπV Jv, TπV Jv⟩ = ⟨πV TJv, πV TJv⟩
= ⟨πV JTv, πV JTv⟩ = ⟨πV Jw, πV Jw⟩,

where we have used that T ∈ Un and that it preserves V . Then, the Kähler angle
of w with respect to V is also φ ∈ [0, π/2], and V ⊂ Cn has constant Kähler angle
φ ∈ [0, π/2].

Let Mk,n be the moduli space of non-zero real subspaces of real dimension k in
Cn with constant Kähler angle. Then, Mk,n is described in the following table.

Mk,n 1 ≤ k ≤ n n < k ≤ 2n

k odd {π/2} ∅

k even [0, π/2] {0}

Table 3.7: Sets of possible Kähler angles for k-dimensional real subspaces of Cn.

In the following lines we will recall the notion of generalized Kähler angle intro-
duced in [60]. Let v be a Clifford module over Cl(z, q) and J : z → End(v) the re-
striction to z of the underlying Clifford algebra representation, see Subsection §1.4.1
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for some basic facts about Clifford modules or representations. We equip z with the
inner product induced by polarization of −q, and extend it to an inner product ⟨·, ·⟩
on n = v⊕ z, so that v and z are perpendicular, and JZ is an orthogonal map for each
unit Z ∈ z. Then, n can be naturally endowed with a generalized Heisenberg algebra
structure as defined in Subsection §1.4.2.

Let w be a subspace of v. We denote by w⊥ = v⊖w the orthogonal complement
of w in v. For each Z ∈ z and ξ ∈ w, we write JZξ = PZξ+FZξ, where PZξ and FZξ
denote the orthogonal projections of JZξ onto w and w⊥, respectively.

Then, ξ ∈ w, ξ ̸= 0, is said to have Kähler angle φ ∈ [0, π/2] with respect to
the element Z ∈ z (or with respect to JZ) and the subspace w ⊂ v if ⟨PZξ, PZξ⟩ =
cos2(φ)⟨Z,Z⟩⟨ξ, ξ⟩.

The following theorem, cf. [60, Theorem 3.1], is fundamental to understand the
definition of generalized Kähler angle which will be introduced inmediately after.

Theorem 3.3.4. Let w be some vector subspace of v and let ξ ∈ w be a non-zero
vector. Then there exists an orthonormal basis {Z1, . . . , Zm} of z and a uniquely
defined m-tuple (φ1, . . . , φm) such that:

(i) φi is the Kähler angle of ξ with respect to JZi
, for each i = 1, . . . ,m.

(ii) ⟨PZi
ξ, PZj

ξ⟩ = ⟨FZi
ξ, FZj

ξ⟩ = 0 whenever i ̸= j.

(iii) 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ φm ≤ π/2.

(iv) φ1 is minimal and φm is maximal among the Kähler angles of ξ with respect to
all the elements of z.

Thus, the generalized Kähler angle of ξ with respect tow is them-tuple (φ1, . . . , φm)
satisfying properties (i)-(iv) of Theorem 3.3.4.

Remark 3.3.5. Observe that the Kähler angles φ1, . . . , φm depend, not only on the
subspace w of v, but also on the vector ξ ∈ w and the basis {Z1, . . . , Zm}.

A subspace w of v has constant generalized Kähler angle (φ1, . . . , φm) if the m-
tuple (φ1, . . . , φm) is independent of the unit vector ξ ∈ w.

3.4 Cohomogeneity one actions on hyperbolic
spaces

In this section we explain the general theory of cohomogeneity one actions on hyper-
bolic spaces developed by Berndt and Tamaru. Recall that a quick introduction on
hyperbolic spaces (rank one symmetric spaces of non-compact type) was developed
in Subsection §1.4.3.

We can distinguish three different classes of cohomogeneity one actions on sym-
metric spaces of non-compact type and rank one, up to orbit equivalence. It was
shown in [13] that any such action has at most one singular orbit. The extrinsic ge-
ometry of these singular orbits and their tubes, which are homogeneous hypersurfaces,
was studied in [60].
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Actions with no singular orbit

Berndt and Tamaru [26] classified actions without singular orbits on hyperbolic
spaces FHn. They proved that there are exactly two such actions up to orbit equiva-
lence. The Iwasawa decomposition G = KAN associated with FHn plays an important
role in the description of these actions (we refer to Section §1.4 for notation).

(i) The action of N on FHn has cohomogeneity one. The orbits of this action are
mutually congruent horospheres that form a regular Riemannian foliation on
FHn, called the horosphere foliation.

(ii) Let S be the connected Lie subgroup of AN with Lie algebra s = a⊕w⊕z, where
w is a vector subspace of gα of codimension one. The action of S on FHn has
cohomogeneity one and its orbits form a regular Riemannian foliation on FHn,
called the solvable foliation. Different choices of w lead to conjugate actions.

Actions with a totally geodesic singular orbit

Berndt and Brück [13] classified cohomogeneity one actions on FHn with a to-
tally geodesic singular orbit F . In order to do so it suffices to classify those totally
geodesic submanifolds F whose tubes are homogeneous hypersurfaces. Since totally
geodesic submanifolds in symmetric spaces of rank one are classified (see Figure 8.1),
it suffices to compute the associated slice representation in order to check when the
cohomogeneity of the corresponding action is one.

The tubes around a totally geodesic submanifold F of FHn are homogeneous if
and only if F is one of the totally geodesic submanifolds listed below:

(i) F = R: F ∈ {point,RH1, . . . ,RHn−1};

(ii) F = C: F ∈ {point,CH1, . . . ,CHn,RHn+1};

(iii) F = H: F ∈ {point,HH1, . . . ,HHn,CHn+1};

(iv) F = O: F ∈ {point,OH1,HH2}.

Actions with a non-totally geodesic singular orbit

Berndt and Tamaru [28] gave a construction method of all cohomogeneity one
actions with a non-totally geodesic singular orbit in hyperbolic spaces. Such actions
only appear if F ̸= R. We recall that K0 acts on the root space gα by the adjoint
representation, and hence, if V is a real subspace of gα, N

0
K0
(V ) will denote the

connected component of the identity of the normalizer of V in K0.

Theorem 3.4.1. Let g = k ⊕ a ⊕ n be an Iwasawa decomposition of the Lie algebra
of the isometry group of the hyperbolic space M = FHn, F ∈ {C,H,O}.
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(i) Let V be a non-zero vector subspace of gα such that N0
K0
(V ) acts transitively on

the unit sphere of V . Denote by gα ⊖ V the orthogonal complement of V in gα.
Then the connected subgroup of G with Lie algebra

Nk0(V )⊕ a⊕ (gα ⊖ V )⊕ g2α

acts on M with cohomogeneity one, and the orbit through o is singular, provided
that dimV ≥ 2. Furthermore, every cohomogeneity one action onM with a non-
totally geodesic singular orbit can be obtained in this way up to orbit equivalence.

(ii) Let V and V ′ be vector subspaces of gα as in item (i), and assume that the cor-
responding cohomogeneity one actions have non-totally geodesic singular orbits.
Then, these actions are orbit equivalent if and only if there exists k ∈ K0 such
that Ad(k)V = V ′.

In the case of real hyperbolic spaces, we have already seen that homogeneous
hypersurfaces have constant principal curvatures and these are classified, see Sec-
tion §2.2. Thus, we only have to deal with hyperbolic spaces over C,H or O.

Berndt and Tamaru in [28] classified homogeneous hypersurfaces in CHn. Their
result can be stated as follows:

Theorem 3.4.2 (Homogeneous hypersurfaces in complex hyperbolic spaces). A ho-
mogeneous hypersurface in CHn is congruent to:

(i) a geodesic sphere, or

(ii) a tube around a totally geodesic CHk in CHn, k ∈ {1, . . . , n− 1}, or

(iii) a tube around a totally geodesic RHn in CHn, or

(iv) a horosphere, or

(v) a ruled homogeneous minimal Lohnherr hypersurfaceW 2n−1
π/2 , or one of its equidis-

tant hypersurfaces, or

(vi) a tube around a ruled homogeneous minimal Berndt–Brück submanifold W 2n−k
φ ,

for k ∈ {2, . . . , n− 1}, with φ ∈ (0, π/2], where k is even if φ = π/2.

The first three examples arise by considering the dual action of the corresponding
cohomogeneity one action in the complex projective space CPn, see Section §3.2 for
the classification and [115] for a detailed exposition on dual actions. These are orbits
of the actions of the following subgroups of SU1,n:

S(U1 × Un), S(U1,k × Un−k), SO0
1,n,

where k ∈ {1, . . . , n− 1}, respectively.
The homogeneous hypersurfaces in (iv) correspond to the orbits of the action of

the group N, which are isometric to generalized Heisenberg groups, and foliate CHn.
Moreover, the orbits of this action are principal and congruent to each other.
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Now we explain the construction of the submanifolds appearing in items (v)
and (vi).

Let w be a real subspace of gα ∼= Cn−1, denote by J the complex structure of
gα ∼= Cn−1 and recall that K0

∼= Un−1. By Proposition 3.3.3, it turns out that w⊥

has constant Kähler angle if and only if NK0
(w) acts transitively on the unit sphere of

w⊥. It was shown by Berndt and Tamaru [28] that the connected subgroup S of SU1,n

whose Lie algebra is s := Nk0(w)⊕ a⊕w⊕ g2α acts on CHn with cohomogeneity one,
where w⊥ ⊂ gα has constant Kähler angle φ ∈ [0, π/2]. The idea of the proof is the
following. Let N0

K(S) be the connected component of the identity of the normalizer
of S in K,

NK(S) = {k ∈ K : kSk−1 ⊂ S},

which is formed by elements of K that leave S invariant. Therefore, S is an orbit of
the action of N0

K(S)S on CHn. Moreover, N0
K(S) acts transitively on the unit sphere

of the normal space νo(S ·o). LetW 2n−k
φ be the orbit of this group through the origin

o ∼= eK, where k is its codimension.

� If φ = 0, that is, w⊥ is a complex subspace of gα, then W 2n−k
0 is a totally

geodesic complex hyperbolic subspace CHn−k′ , where k = 2k′.

� If φ = π/2, then w⊥ is a totally real k-dimensional subspace of gα. If k = 1, the
corresponding hypersurface W 2n−1

π/2 will be denoted by W 2n−1 and it is known

as the Lohnherr hypersurface, see [126]. If k > 1, then W 2n−k
π/2 is a submanifold

of dimension 2n− k with totally real normal bundle and rank k. We will write
W 2n−k in this case.

� If 0 < φ < π/2, then k is even (see Table 3.3), and W 2n−k
φ is a (2n − k)-

dimensional submanifold of CHn, known as a Berndt-Brück submanifold, such
that its normal bundle has rank k and constant Kähler angle φ. It can be verified
that the construction of these submanifolds does not depend on the choice of
the Iwasawa decomposition of G, i.e., all possible choices produce submanifolds
that are holomorphically congruent among them.

Finally, it turns out that W 2n−k
φ is a ruled and minimal submanifold of CHn. A

proof of this fact can be found in [17]. It is important to mention that W 2n−1 can
be characterized as the unique hypersurface of CHn that is ruled and has constant
principal curvatures, see [71] and [126].

The classification of homogeneous hypersurfaces in HHn constitutes the main orig-
inal contribution of Chapter 4, and will be developed there.

Now let us deal with the classification of homogeneous hypersurfaces in OH2,
which was achieved in [28].

Theorem 3.4.3 (Homogeneous hypersurfaces in the Cayley hyperbolic plane). A
homogeneous hypersurface in OH2 is congruent to:

(i) a geodesic sphere, or
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(ii) a tube around a totally geodesic OH1, or

(iii) a tube around a totally geodesic HH2, or

(iv) a horosphere, or

(v) a minimal homogeneous hypersurface F1, or one of its equidistant hypersurfaces,
or

(vi) a tube around the minimal submanifold Fk of codimension k ∈ {2, 3, 6, 7}, or

(vii) a tube around the minimal submanifold F4,φ of codimension 4, for some φ ∈
[0, 1].

The first three items correspond to the actions of the following subgroups of F−20
4 :

Spin9, Spin01,8, Sp1,2Sp1.

The action of the group N, the nilpotent part of the Iwasawa decompostion of F−20
4 ,

gives rise to the horosphere foliation in OH2.
The group K0

∼= Spin7 acts on gα = O ∼= R8 by its irreducible 8-dimensional
spin representation. Let us denote by Fk the singular orbit of the action on OH2

of the connected subgroup of F−20
4 with Lie algebra s := Nk0(w) ⊕ a ⊕ w ⊕ g2α,

where k = dimw⊥ = 8 − dimw and w is a subspace that plays the same role as V
in Theorem 3.4.1. When k ∈ {1, 2, 3, 4, 6, 7}, there is a subspace w ⊂ gα such that
NK0(w) acts on w, and transitively on the unit sphere of w⊥. If k = 5, there is not such
a subspace. Also, the spin representation of dimension 8 induces an action of Spin7
on the k-plane Grassmannian Gk(R8). For k ∈ {1, 2, 3, 6, 7} the restriction of such
action on Gk(R8) to N0

K0
(w) is transitive, and for k = 4, it is of cohomogeneity one,

and therefore there is a one-parameter family of non-orbit equivalent cohomogeneity
one actions on OH2 with a non-totally geodesic singular orbit of dimension four.

The minimal submanifolds Fk or F4,φ appearing in items (v), (vi) and (vi) cor-
respond to the orbit that is obtained via the action of the connected subgroup S of
F−20
4 , whose Lie algebra is s = a ⊕ w ⊕ g2α, where w⊥ := gα ⊖ w has dimension
k ∈ {1, 2, 3, 6, 7}. Moreover, the item (v) corresponds to the solvable foliation.

3.5 Homogeneous hypersurfaces in symmetric
spaces of non-compact type and
arbitrary rank

For completeness, in this section we summarize some of the known results and tech-
niques for the study of homogeneous hypersurfaces in symmetric spaces of non-
compact type of higher rank.

As we have seen in Section §3.4, there is a trichotomy when one studies cohomo-
geneity one actions on a symmetric space of non-compact type M = G/K. Namely:
the action does not have singular orbits (this case was solved in [26]), the action has
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a totally geodesic singular orbit (this case was solved in [27]), or the action has a
singular orbit that is not totally geodesic. This last case is the hardest. In [29], it was
proved that a cohomogeneity one action with such a property should be constructed
from one of the following two methods: canonical extension or nilpotent construction.
The first one allows us to construct cohomogeneity one actions on symmetric spaces
of non-compact type by extending cohomogeneity one actions from some special class
of totally geodesic submanifolds called boundary components. The second one is
much more involved and is related to a representation theory problem that involves
addressing the classification of the so-called protohomogeneous subspaces, see [165]
for a more general overview.

Cohomogeneity one actions without singular orbits.

Let H be a subgroup acting on a symmetric space of non-compact type M = G/K
without singular orbits. Then, the action of H is orbit equivalent to the action of
a codimension one subgroup of AN which can be of two different types. Let Π =
{α1, . . . , αr} be the set of simple roots associated with some root space decomposition
of g, the Lie algebra of G.

On the one hand, consider a one-dimensional subspace ℓ in a, and let hℓ := (a ⊖
ℓ) ⊕ n, where ⊖ denotes orthogonal complement. Let Hℓ be the connected subgroup
of G with Lie algebra hℓ. It turns out that the orbits of this action are congruent to
each other and they produce a foliation of M . The resulting foliation of M is known
as a foliation of horospherical type. Furthermore, the actions of Hℓ and H′

ℓ are orbit
equivalent if and only if there exists an isometry of M that induces a symmetry of
the Dynkin diagram of g taking ℓ to ℓ′.

On the other hand, consider a one-dimensional subspace ℓ of a root space associ-
ated with a simple root αi ∈ Π, and let hi := a ⊕ (n ⊖ ℓ). Let Hi be the connected
subgroup of G with Lie algebra hi. The action of Hi induces a foliation of M with
exactly one minimal orbit and is called foliation of solvable type. Furthermore, the
actions of Hi and Hj are orbit equivalent if and only if there exists an isometry of M
that induces a symmetry of the Dynkin diagram of g taking αi to αj .

Cohomogeneity one actions with totally geodesic singular orbits.

Now we will consider the case when the singular orbit is totally geodesic. This case
was treated in [27], where the following theorem was proved.

Theorem 3.5.1. Let F be a totally geodesic submanifold of an irreducible symmetric
space of non-compact type M = G/K. Then, F arises as the singular orbit of a
cohomogeneity one action on M if and only if one of the following possibilities holds:

(i) F is a reflective submanifold such that the totally geodesic submanifold given
by F⊥ := expp(νpF ), where p ∈ F , is a symmetric space of rank one (see [27,
Theorem 3.3] for the explicit list), or

(ii) F is one of five possible non-reflective totally geodesic submanifolds:
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M SO3,7/SO3 × SO7 SO7(C)/SO7 G2
2/SO4 GC

2 /G2

F G2
2/SO4 GC

2 /G2 CH2, SL3(R)/SO3 SL3(C)/SU3

Finally, we focus our attention on those cohomogeneity one actions with a singular
orbit that is not totally geodesic. For this purpose it will be necessary to introduce
some notions related to parabolic subroups and their Lie algebras. We refer to [14,
§13.2], [75, §2.17], or [110, §VII.7] for more information.

Parabolic subgroups

Recall that the transitive action G ↷M can be extended to the ideal boundaryM(∞)
of M = G/K, see Subsection §1.3.3. A Lie subgroup Q of G is a parabolic subgroup if
either Q = G or Q is the stabilizer Gx of a point at infinity x ∈ M(∞). Moreover, a
Lie subalgebra q of g is the Lie algebra of a parabolic subgroup Q of G if it contains
a subalgebra of g conjugate to k0 ⊕ a⊕ n, where k0 = Nk(a).

We will associate a parabolic subalgebra qΦ to a subset Φ ⊂ Π of simple roots of
g. Let us consider ∆Φ = ∆ ∩ spanΦ, the root subsystem generated by Φ, where ∆ is
the set of roots of g, and let ∆+

Φ = ∆+ ∩∆Φ, where we have considered the positivity
notion on ∆Φ induced by the one in ∆, see Subsection §1.3.3. Now, we define the
following subalgebras of g:

lΦ = g0 ⊕
(⊕
α∈ΣΦ

gα

)
, aΦ =

⋂
α∈Φ

kerα, nΦ =
⊕

α∈Σ+\Σ+
Φ

gα.

The subalgebra lΦ is invariant by the Cartan involution θ of g, and is thus reductive,
while aΦ and nΦ are abelian and nilpotent, respectively. Moreover, consider sΦ to be
the smallest subalgebra of g containing

⊕
α∈∆Φ

gα. Let us denote by LΦ, AΦ, NΦ, and
SΦ the connected subgroups of G with Lie algebras lΦ, aΦ, nΦ, and sΦ, respectively.

In what follows, we use the subalgebras defined above to construct the parabolic
subalgebra qΦ and we define certain decompositions of it. The subalgebra qΦ = lΦ⊕nΦ
is a subalgebra of g containing k0⊕a⊕n. We say that qΦ is the parabolic subalgebra of
g associated with the subset Φ ⊂ Π. The decomposition qΦ = lΦ⊕nΦ is known as the
Chevalley decomposition of qΦ. The subalgebra mΦ = lΦ⊖aΦ is a reductive subalgebra
of g that normalizes aΦ ⊕ nΦ. Hence, we have a decomposition qΦ = mΦ ⊕ aΦ ⊕ nΦ,
which is known as the Langlands decomposition of qΦ. It turns out that every parabolic
subalgebra of a real semisimple Lie algebra g is conjugate to one of the subalgebras
qΦ, for some Φ ⊂ Π, see [14, Theorem 13.2.1]. Moreover, maximal proper parabolic
subalgebras are the ones corresponding to subsets of Φ with r − 1 elements, where r
is the rank of M .

Let kα = projk gα = k ∩ (gα ⊕ g−α) and pα = projp gα = p ∩ (gα ⊕ g−α) for
every α ∈ ∆, where projk and projp denote the orthogonal projection on k and p,
respectively. Now we construct a Lie subgroup of G with Lie algebra mΦ. Define
the possibly disconnected subgroup KΦ = ZK(aΦ) of G that has as Lie algebra kΦ =
projk mΦ. Then, the subgroup MΦ = KΦSΦ is a subgroup of G with Lie algebra mΦ.

Now, we remark some geometric properties concerning the subgroups related to
the subalgebras that we have defined. It follows from the properties of root spaces
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that the following subspaces of p are Lie triple systems (see Section §5.3)

pΦ = lΦ ∩ p = a⊕
⊕
α∈∆Φ

pα, bΦ = mΦ ∩ p = aΦ ⊕
⊕
α∈∆Φ

pα,

where aΦ := a⊖aΦ. Since bΦ is a Lie triple system, BΦ = SΦ ·o = MΦ/KΦ is a totally
geodesic submanifold of M that is known as boundary component associated with the
subset of simple roots Φ. It turns out that BΦ is intrinsically a symmetric space of
non-compact type and rank |Φ|. Furthermore, AΦNΦ acts freely and polarly on M ,
with BΦ as a section, producing minimal orbits that are all congruent. Moreover, the
Langlands decomposition of QΦ induces a diffeomorphism at the manifold level, given
by

AΦ × NΦ ×BΦ →M, (a, n,m · o) 7→ (anm) · o,
known as the horospherical decomposition of the symmetric space M associated with
the subset Φ ⊂ Π of simple roots.

Canonical extension and nilpotent construction.

It was proved by Berndt and Tamaru in [29] that a cohomogeneity one action with
a singular orbit on a symmetric space of non-compact type is obtained by one of the
following methods: canonical extension or nilpotent construction.

On the one hand, the idea behind the canonical extension method is to consider
a cohomogeneity one action on a boundary component BΦ associated with Φ ⊂ Π
and then extend it to the whole symmetric space M = G/K. On the other hand,
the nilpotent construction, which is a much more involved method, is equivalent to
solving a particular representation theory problem.

Let Φ be a subset of Π and consider its associated boundary component BΦ.
Since SΦ is equal to the identity component of Isom(BΦ), up to some covering, any
isometric action on BΦ has the same orbits as some connected Lie subgroup HΦ of
SΦ. Consider the subgroup HΠ

Φ := HΦAΦNΦ of G. Thus, HΠ
Φ acts on M with the same

cohomogeneity as the action of HΦ on BΦ. We say that HΠ
Φ is the subgroup of G

obtained by canonical extension of HΦ. Additionally, if the actions of two connected
subgroups of SΦ are orbit equivalent on BΦ by an isometry in SΦ, then their canonical
extensions are orbit equivalent on M by an element of G, see [29, Proposition 4.2].
Moreover, the composition of canonical extensions is a canonical extension, see [62,
Lemma 4.2].

Let us consider Φ = Π\{αj}, for some αj ∈ Π, and consider the dual vectorHj ∈ a
of αj , defined by αi(H

j) = δij . The subalgebra nΦ admits a natural gradation

nΦ =
⊕
ν≥1

nνΦ, where nνΦ =
⊕

α(Hj)=ν

gα.

The equality α(Hj) = ν holds if and only if α has coefficient ν ∈ N in αj when
expressed as a sum of simple roots. Let v be a linear subspace of dimension at least 2.
Then, nΦ,v := nΦ⊖v is a Lie subalgebra of nΦ. We denote by NΦ,v the corresponding
connected Lie subgroup of NΦ. Let us assume that the following conditions hold:
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(NC1) NMΦ(nΦ,v) acts transitively on BΦ =MΦ · o,

(NC2) NKΦ
(nΦ,v) = NKΦ

(v) acts transitively on the unit sphere of v.

Then, the group

HΦ,v = N0
LΦ
(nΦ,v)NΦ,v = N0

MΦ
(nΦ,v)AΦNΦ,v

acts on M with cohomogeneity one and a singular orbit HΦ,v · o. In this case, we
say that the action of HΦ,v on M has been obtained by nilpotent construction from
the choices Φ and v. On the one hand, condition (NC1) implies that the orbit HΦ,v ·
o contains the boundary component BΦ, and hence its normal space νo(HΦ,v · o)
can be identified with v. On the other hand, condition (NC2) means that the slice
representation of HΦ,v on νo(HΦ,v · o) ∼= v is of cohomogeneity one on the Euclidean
space νo(HΦ,v · o) and the orbits are concentric spheres. Observe that in the rank one
case the condition (NC1) is trivially satisfied, thus one only has to classify subspaces
of n1Φ satisfying condition (NC2). These subspaces will give rise to the notion of
protohomogeneous subspaces that we will study in the particular case of quaternionic
hyperbolic spaces in Chapter 4. It must be pointed out that only two examples of
cohomogeneity one actions on symmetric spaces of rank higher than one not arising
through any other technique have been constructed by the nilpotent construction
method. They are both related to G2.

This approach has been used to obtain the complete classification of the coho-
mogeneity one actions on several symmetric spaces of rank higher than one, see [29],
[19], [165]. Namely, up to date, we have complete classifications on the following
symmetric spaces of rank 2:

SL3(R)/SO3, SL3(C)/SU3, SL3(H)/Sp3, SO5(C)/SO5,

G2
2/SO4, GC

2 /G2, SO0
2,n/SO2SOn, SU2,n/S(U2Un).

(3.1)

Thus, the remanining symmetric spaces of non-compact type and rank two are:

E−26
6 /F4, (Sp2,n/Sp2Spn, n ≥ 2), E−14

6 /Spin10U1, SO∗
5/U5.

Recently, a classification in products of rank one symmetric spaces of non-compact
type and in SLn(R)/SOn, for every n ≥ 2, has been obtained in [62].





Chapter 4

Homogeneous hypersurfaces in HHn

The aim of this chapter is to present the classification of homogeneous hypersurfaces
in quaternionic hyperbolic spaces, and thus, to conclude the classification of homoge-
neous hypersurfaces in rank one symmetric spaces. This had been an open problem
for more than twenty years. As a by-product of our study, we construct for the
first time uncountably many inhomogeneous isoparametric families of hypersurfaces
with constant principal curvatures in Riemannian manifolds. These results have been
published in [63].

The first main result of this chapter can be stated in terms of quaternionic alge-
bra. We denote by H the real division algebra of the quaternions, endowed with its
standard complex structures i, j and k. Let Hn be a right quaternionic vector space
of dimension n. The compact symplectic group Spn is the group of quaternionic ma-
trices (acting on the left on Hn) that preserve the standard quaternionic bilinear form∑n
i=1 v̄iwi, where v, w ∈ Hn, and bar denotes conjugation. This bilinear form natu-

rally induces an inner product in Hn that makes it isometric with the Euclidean space
R4n. By J we will denote the quaternionic structure of Hn, that is, the subspace of
real endomorphisms of Hn generated by the right multiplications by i, j and k, which
can therefore be seen as the Lie algebra of Sp1.

We also consider the Lie group Sp1Spn = Sp1×Spn/Z2, which acts on Hn as (q, A)·
v = Avq−1. This is an important group in differential geometry, as it arises in Berger’s
holonomy list, that is, the list of Lie groups which can be realized as the holonomy
of irreducible, simply connected and non-locally symmetric Riemannian manifolds.
Thus, a Riemannian manifold is called quaternionic Kähler if it has dimension 4n,
is not Ricci-flat, and its holonomy is isomorphic to a subgroup of Sp1Spn, n ≥ 2.
The simplest examples of symmetric, quaternionic Kähler spaces are the quaternionic
projective spaces, and their non-compact duals, the quaternionic hyperbolic spaces.
In any case, understanding algebraic properties linked to holonomy groups is a first
fundamental step towards the study of more geometric questions, such as those related
to curvature (e.g. the celebrated LeBrun-Salamon conjecture [121]) or submanifolds
(e.g. the theory of calibrations [40]). Similarly, the problem of submanifold geometry
that we address in this chapter relies on a linear algebraic problem that we describe
below.

We say that a real subspace V of Hn is protohomogeneous if there exists a con-
nected Lie subgroup of Sp1Spn that acts transitively on the unit sphere of V . A
protohomogeneous subspace of Hn has constant quaternionic Kähler angle, which is a
particular instance of the notion of subspace with constant generalized Kahler angle
of a Clifford module, introduced in Section §3.3. As this concept is central in our

59
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study, we shall recall it now in the current quaternionic setting. Let πV denote the
orthogonal projection onto a vector subspace V , and define

PJ = πV ◦ J, where J ∈ J.

We say that V has constant quaternionic Kähler angle (φ1, φ2, φ3), with φ1 ≤ φ2 ≤
φ3, if for any v ∈ V the symmetric bilinear form

Lv : J× J → R, Lv(J, J
′) = ⟨PJv, PJ′v⟩,

has eigenvalues cos2(φi)⟨v, v⟩, i ∈ {1, 2, 3}. We point out here the fact that the bilin-
ear forms Lv, v ∈ V , described above do not necessarily diagonalize simultaneously
(although we can prove a priori that they do so for protohomogeneous subspaces of
dimension greater than or equal to 5, see Corollary 4.3.2, and by classification results
for dimension different from 3).

The first main result of this chapter is to classify protohomogeneous subspaces of
Hn, up to congruence by elements in Sp1Spn. We present here the moduli space of
such subspaces of dimension k in Hn by exhibiting their possible quaternionic Kähler
angles. In Theorem A, and in what follows, ⊔ denotes disjoint union.

Theorem A. The moduli space Mk,n of non-zero protohomogeneous subspaces of
dimension k in Hn, up to congruence in Sp1Spn, is described in the following table:

Mk,n k ≤ n n < k ≤ 4n
3

4n
3

< k ≤ 2n k > 2n

k ≡ 0 (mod 4) (R+
4 \R−

4 ) ⊔ (R−
4 × Z2) S {(0, φ, φ)}φ∈[0,π

2
] {(0, 0, 0)}

k ≡ 2 (mod 4) {(φ, π
2
, π
2
)}φ∈[0,π

2
] {(0, π

2
, π
2
)} {(0, π

2
, π
2
)} ∅

k ̸= 3 odd {(π
2
, π
2
, π
2
)} ∅ ∅ ∅

k = 3 (R+
3 \R−

3 ) ⊔ (R−
3 × Z2) ∅ {(φ,φ, π

2
)}φ∈{0,π

3
} {(0, 0, π

2
)}

where Λ = {(φ1, φ2, φ3) ∈ [0, π/2]3 : φ1 ≤ φ2 ≤ φ3}, and

R+
3 = {(φ,φ, π/2) ∈ Λ : φ ∈ [0, π/2]},

R−
3 = {(φ,φ, π/2) ∈ Λ : φ ∈ [π/3, π/2)},

R+
4 = {(φ1, φ2, φ3) ∈ Λ : cos(φ1) + cos(φ2)− cos(φ3) ≤ 1},

R−
4 = {(φ1, φ2, φ3) ∈ Λ : cos(φ1) + cos(φ2) + cos(φ3) ≤ 1, φ3 ̸= π/2},
S = {(φ1, φ2, φ3) ∈ Λ : cos(φ1) + cos(φ2) + ε cos(φ3) = 1, for ε = ±1}.

This classification includes typical examples such as totally real subspaces (pre-
cisely those with quaternionic Kähler angle (π/2, π/2, π/2)), totally complex sub-
spaces (with quaternionic Kähler angle (0, π/2, π/2)), quaternionic subspaces (with
quaternionic Kähler angle (0, 0, 0)), subspaces of constant Kähler angle φ ∈ (0, π/2)
inside a totally complex vector subspace (with quaternionic Kähler angle equal to
(φ, π/2, π/2)), complexifications of subspaces of constant Kähler angle φ ∈ (0, π/2)
in a totally complex subspace (with quaternionic Kähler angle (0, φ, φ)), and Jv,
v ∈ Hn, v ̸= 0 (with quaternionic Kähler angle (0, 0, π/2)). However, there are some
other non-classical examples. Some of them were introduced in [60], but there are
some others, which are basically presented and classified in Section §4.4. A basis
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of these subspaces can be calculated explicitly, but for R±
3 and R±

4 its expression is
rather long. See Proposition 4.4.3 for R±

3 and Propositions 4.4.10 and 4.5.1 for R±
4 to

get further details. Furthermore, there are non-congruent subspaces of Hn with the
same Kähler angles. These correspond precisely to the intersections R+

3 ∩R−
3 = R−

3

and R+
4 ∩R−

4 = R−
4 .

We point out here three main tools that have been essential to obtain this classi-
fication. First we use the classical generalization of the hairy ball theorem regarding
the possible rank of continuous distributions on spheres [166] in order to reduce the
classification problem of real subspaces of Hn with constant quaternionic Kähler angle
to subspaces of dimensions 3 and multiples of 4 (Section §4.2). Secondly, we provide
a Lie theoretic argument relying on results by Borel [38] and Montgomery and Samel-
son [136] on groups acting effectively and transitively on spheres, to prove that, for
subspaces of dimension greater or equal than 5, the maps Lv that are used to de-
fine quaternionic Kähler angle diagonalize simultaneously (Corollary 4.3.2). In third
place, using the previous results, we can show that a protohomogeneous subspace of
dimension 4l is the sum of protohomogeneous subspaces of dimension 4 with the same
quaternionic Kähler angle (Subsection §4.3.2). All this reduces the classification of
protohomogeneous subspaces to dimensions 3 and 4. At this stage, we actually obtain
the more general classification of real subspaces of dimensions 3 and 4 with constant
quaternionic Kähler angle. This is a (hard) problem of linear algebra that is solved
in Section §4.4.

The first consequence of Theorem A is the classification of cohomogeneity one
actions on quaternionic hyperbolic spaces HHn+1 up to orbit equivalence. In fact,
Berndt and Tamaru explained in [28] a method to obtain this classification. This
method was explained in Section §3.4 for the general setting of hyperbolic spaces,
but we shall particularize it now in the current quaternionic setting. Consider the
symmetric pair (G,K) = (Sp1,n+1,Sp1 × Spn+1) representing the symmetric space
HHn+1. We denote by g = k⊕p the corresponding Cartan decomposition, and let a be
a maximal abelian subspace of p, which is one-dimensional because HHn+1 is of rank
one. Let g = g−2α⊕g−α⊕g0⊕gα⊕g2α be the restricted root space decomposition of
g with respect to a. Then, gα is isomorphic to a quaternionic vector space Hn endowed
with the standard quaternionic bilinear form, and K0

∼= Sp1 × Spn, the connected Lie
subgroup of G whose Lie algebra is k0 = g0∩k = Nk(a), normalizes gα and acts on gα in
the canonical way. The classification of cohomogeneity one actions on HHn+1 can be
obtained if we determine the protohomogeneous subspaces V of gα ∼= Hn. If V is such
a protohomogeneous subspace, we define the Lie subalgebra sV = a⊕ (gα ⊖ V )⊕ g2α
of g, and denote by SV the connected Lie subgroup of G with Lie algebra sV . We
recall that ⊖ denotes orthogonal complement. Then N0

K0
(SV )SV = N0

K0
(V )SV acts on

HHn+1 with cohomogeneity one, where N0
K0
(·) denotes the connected component of

the identity of the normalizer in K0. Knowing all such subspaces V up to congruence
by an element of Sp1Spn determines all cohomogeneity one actions on HHn+1 up to
orbit equivalence.

Roughly twenty years after Berndt and Brück [13] announced the first examples
of cohomogeneity one actions using this procedure, we obtain the full classification of
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cohomogeneity one actions on quaternionic hyperbolic spaces up to orbit equivalence
as a consequence of Theorem A. Together with the results by Berndt and Tamaru [28],
this finishes the classification of cohomogeneity one actions on non-compact symmetric
spaces of rank one:

Theorem B. The moduli space of cohomogeneity one actions on HHn+1 up to orbit
equivalence is given by the disjoint union

{N,K,SU1,n+1} ⊔
4n⊔
k=1

Mk,n.

The actions referenced here are:

(1) N : the action that produces a horosphere foliation.

(2) K: the action that produces a family of geodesic spheres centered at a point.

(3) SU1,n+1: the action that produces a family of tubes around a totally geodesic
CHn+1.

(4) Mk,n: the cohomogeneity one actions of the connected Lie subgroups of Sp1,n+1

with Lie algebras Nk0(V )⊕ a⊕ (gα ⊖ V )⊕ g2α, where V is a protohomogeneous
subspace of dimension k of gα ∼= Hn.

We note that, in this classification, the action of Sp1,ℓ×Spn+1−ℓ ⊂ Sp1,n+1, which
gives tubes around a totally geodesic lower dimensional quaternionic hyperbolic space
HHℓ, ℓ ∈ {1, . . . , n}, in HHn+1, is included in item (4), where in this case V is a
quaternionic subspace of gα ∼= Hn (hence, of quaternionic Kähler angle (0, 0, 0)) of
real dimension k = 4(n− ℓ+1). Moreover, if we take V a line in gα (i.e. k = 1), then
N0

K0
(V ) is trivial and we recover the action that gives rise to the so-called solvable

foliation [26].

In our study of protohomogeneous subspaces of Hn we have also encountered
non-congruent pairs of subspaces with the same constant quaternionic Kähler angles.
Moreover, we prove in Section §4.5 that an H-orthogonal direct sum of subspaces of
dimension 4 with the same constant quaternionic Kähler angle is protohomogeneous
if and only if any two factors are congruent under an element of Spn. However, even
if that direct sum is not protohomogeneous, it has constant quaternionic Kähler angle
in some cases. Thus, if we take V a non-protohomogeneous subspace with constant
quaternionic Kähler angle as above, and denote by SV the connected subgroup of
G whose Lie algebra is sV = a ⊕ (gα ⊖ V ) ⊕ g2α, then: (1) since V has constant
quaternionic Kähler angle, tubes around SV · o are isoparametric and have constant
principal curvatures by [60, Theorem 4.5], and (2) these tubes are not homogeneous
by [28, Theorem 4.1]. Hence, we have the following remarkable consequence:

Theorem C. There exist uncountably many inhomogeneous isoparametric families
of hypersurfaces with constant principal curvatures in HHn+1 with n ≥ 7, up to con-
gruence.
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We recall that the only examples of inhomogeneous isoparametric families of hy-
persurfaces with constant principal curvatures known so far in any irreducible Rie-
mannian symmetric space are the celebrated examples in spheres by Ferus, Karcher
and Münzner [78] and a single example found in the Cayley hyperbolic plane [60].
Thus, this is the first time an uncountable collection of such examples is produced in
some symmetric space.

This chapter is organized as follows. The fundamental concept of quaternionic
Kähler angle is recalled in Section §4.1 together with some important notation that
will be used throughout this chapter. In Section §4.2 we use a generalization of the
hairy ball theorem to rule out several possibilities for quaternionic Kähler angles.
Then, in Subsection §4.3.1 we prove a simultaneous diagonalization result for sub-
spaces of constant quaternionic Kähler angle. This is used in Subsection §4.3.2 to
prove a factorization theorem for protohomogeneous subspaces of dimension multiple
of 4. Altogether, this reduces our study to dimensions 3 (Subsection §4.4.1) and 4
(Subsection §4.4.2). The existence of inhomogeneous isoparametric hypersurfaces
with constant principal curvatures in quaternionic hyperbolic spaces (Theorem C) is
established in Section §4.5. We finally prove Theorems A and B in Section §4.6.

4.1 Quaternionic Kähler angle

We start this section by introducing the main known results concerning the con-
cept of quaternionic Kähler angle, which we recall in this section. Also, we will present
some properties and summarize all the examples of subspaces with constant quater-
nionic Kähler angle known up to the present. The main references for these notions
and results are [13], [28], and [60].

The metric and the quaternionic Kähler structure on HHn+1 induce a positive
definite inner product ⟨·, ·⟩ on gα and a quaternionic structure J on gα, respectively,
such that gα is isomorphic to Hn as a (right) quaternionic Euclidean space. Here, by a
quaternionic structure J we understand a 3-dimensional vector subspace of EndR(Hn),
the space of real endomorphisms of Hn ∼= R4n, admitting a basis {J1, J2, J3} of
orthogonal transformations of Hn ∼= R4n such that J2

i = −Id and JiJi+1 = Ji+2 =
−Ji+1Ji, for each i ∈ {1, 2, 3} (indices modulo 3). Such a basis is called a canonical
basis of the quaternionic structure J. Sometimes it is helpful to regard J as endowed
with a positive definite inner product that makes it isometric to the Euclidean 3-space
R3, and such that the elements of J that are orthogonal complex structures of Hn
constitute the unit sphere S2 ⊂ J with respect to such inner product. Throughout this
chapter, if v is a vector in Hn and V is a real subspace of Hn (i.e. a vector subspace
of the real vector space R4n with the underlying real vector space structure of Hn),
we denote by Hv = Rv ⊕ Jv and by HV = V + JV the quaternionic spans of v ∈ Hn
and of V ⊂ Hn, respectively; sometimes we also write (ImH)v to refer to Jv.

Theorem 3.4.1, due to Berndt and Tamaru, shows the crucial role played by real
subspaces V of gα ∼= Hn and their behavior with respect to K0 in the classification
problem of cohomogeneity one actions on HHn+1. Note that the effectivization of K0

on gα ∼= Hn is the Lie group Sp1Spn = (Sp1 × Spn))/{±(1, Id)}, which acts in the
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standard way: (q, A)·v = Avq−1, where q ∈ Sp1 and A ∈ Spn. Thus, in this subsection
we gather some important terminology and useful facts to study real subspaces of a
quaternionic Euclidean space, up to congruence by elements of Sp1Spn.

Firstly, motivated by Theorem 3.4.1, we will say that a real subspace V ⊂ Hn is
protohomogeneous if there is a connected subgroup of Sp1Spn that acts transitively on
the unit sphere of V . Equivalently, V is protohomogeneous if the connected Lie group
N0

Sp1Spn
(V ) acts transitively on the unit sphere of V . Note that protohomogeneous

subspaces V of gα ∼= Hn are precisely those inducing cohomogeneity one actions on
HHn+1 via the construction in Theorem 3.4.1(i). We also say that two real subspaces
V and W of Hn are equivalent if there exists an element T ∈ Sp1Spn such that TV =
W . Observe that, by Theorem 3.4.1(ii), V and W are equivalent protohomogeneous
subspaces of gα ∼= Hn if and only if they induce orbit equivalent cohomogeneity one
actions on HHn+1.

Let us now recall a useful description of the action of Sp1Spn onHn. Let us consider
{X1, . . . , Xn} and {Y1, . . . , Yn} two H-orthonormal bases of Hn, and let {J1, J2, J3}
and {J ′

1, J
′
2, J

′
3} be two canonical bases of the quaternionic structure of Hn. Then,

there exists a unique T ∈ Sp1Spn such that T (Xi) = Yi and TJj = J ′
jT for all

i ∈ {1, . . . , n} and all j ∈ {1, 2, 3}. Conversely, any R-linear endomorphism of Hn
that maps H-orthonormal bases of Hn to H-orthonormal bases of Hn and intertwines
canonical bases of the quaternionic structure of Hn in the above described fashion lies
in Sp1Spn.

Let V be a real vector subspace of the quaternionic Euclidean space Hn. The
Kähler angle of a non-zero vector v ∈ V with respect to a non-zero J ∈ J and V is
defined to be the angle between Jv and V . Equivalently, it is the value φ ∈ [0, π/2]
such that ⟨PJv, PJv⟩ = cos2(φ)⟨v, v⟩, where PJ := πV J and we denote by πV the
orthogonal projection onto V .

The following lemma was essentially proved by Berndt and Brück [13, Lemma 3].
We state it in a somewhat different form following Theorem 3.3.4, where it was stated
in the more general context of subspaces of Clifford modules.

Lemma 4.1.1. Let V be a real subspace of Hn and let v ∈ V be a non-zero vector.
Then there exists a canonical basis {J1, J2, J3} of J and a uniquely defined triple
(φ1, φ2, φ3), such that:

(i) φi is the Kähler angle of v with respect to Ji for each i ∈ {1, 2, 3},

(ii) ⟨Piv, Pjv⟩ = 0 for every i ̸= j, where Pi = πV Ji.

(iii) φ1 ≤ φ2 ≤ φ3.

(iv) φ1 is minimal and φ3 is maximal among the Kähler angles of v with respect to
all non-zero elements of J.

Indeed, {J1, J2, J3} is a basis of J with respect to which the symmetric bilinear form

Lv : J× J → R, Lv(J, J
′) := ⟨PJv, PJ′v⟩,

has a diagonal matrix expression with eigenvalues cos2(φi)⟨v, v⟩, i ∈ {1, 2, 3}.
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The previous lemma allows us to introduce the following definition [13]. If V is a
real subspace of Hn, the quaternionic Kähler angle of a non-zero vector v ∈ V with
respect to V is the triple (φ1, φ2, φ3) given in Lemma 4.1.1. Sometimes we will also
say that v ∈ V has quaternionic Kähler angle (φ1, φ2, φ3) with respect to V and to
the canonical basis {J1, J2, J3} of J, in order to specify that the basis {J1, J2, J3}
is under the conditions of Lemma 4.1.1. A linear subspace V of Hn is said to have
constant quaternionic Kähler angle Φ(V ) = (φ1, φ2, φ3) if the triple (φ1, φ2, φ3) is
independent of the non-zero (or by linearity, unit) vector v ∈ V . In this chapter,
whenever we use the notation Φ(V ) we will implicitly assume that V has constant
quaternionic Kähler angle.

Remark 4.1.2. Note that the Ji ∈ J defined in Lemma 4.1.1 may depend on v ∈ V .
This is true, even in the case that V has constant quaternionic Kähler angle. For
example V = ImH ⊂ H has constant quaternionic Kähler angle Φ(V ) = (0, 0, π/2),
but the basis {J1, J2, J3} of Lemma 4.1.1 cannot be chosen independently of v ∈ V .
However, we will prove that, under certain hypotheses (see Corollary 4.3.2 or Propo-
sition 4.4.10), the Ji can be chosen independently of v ∈ V . This is one of the crucial
results in this chapter.

The following result is known (see [13, p. 229]), but we find it instructive to
include a proof.

Lemma 4.1.3. Let V ⊂ Hn be a protohomogeneous subspace. Then, V has constant
quaternionic Kähler angle.

Proof. Let v ∈ V be a unit vector of quaternionic Kähler angle (φ1, φ2, φ3) with
respect to V and a canonical basis {J1, J2, J3} of J. Thus, ⟨Piv, Pjv⟩ = cos2(φi)δij , for
i, j ∈ {1, 2, 3}, where δij stands for Kronecker delta. Let w ∈ V be a unit vector. Since
V is protohomogeneous, there exists T ∈ Sp1Spn that leaves V invariant and satisfies
Tv = w. By the description of the action of Sp1Spn on Hn, there exists a canonical
basis {J ′

1, J
′
2, J

′
3} of J such that TJi = J ′

iT , for i ∈ {1, 2, 3}. Furthermore, since T
leaves V invariant, we have that TπV = πV T . Hence, TPi = P ′

iT for i ∈ {1, 2, 3},
where P ′

i = PJ′
i
= πV J

′
i . Finally,

⟨P ′
iw,P

′
jw⟩ = ⟨P ′

iTv, P
′
jTv⟩ = ⟨TPiv, TPjv⟩ = ⟨Piv, Pjv⟩ = cos2(φi)δij .

Since w is arbitrary, by the last claim of Lemma 4.1.1 we get Φ(V ) = (φ1, φ2, φ3).

We now introduce a matrix map that will be very useful in what follows. Let V
be a real subspace of Hn of dimension k, and let {J1, J2, J3} be a canonical basis of
J. Then, we define the Kähler angle map of V with respect to {J1, J2, J3} as the map
Ω that sends each unit vector v ∈ Sk−1 ⊂ V to the symmetric matrix Ω(v) of order 3
whose (i, j)-entry is given by

Ω(v)ij := ⟨Piv, Pjv⟩ = Lv(Ji, Jj), (4.1)

where Pi = PJi , i ∈ {1, 2, 3}. A straightforward but important observation is that
V has constant quaternionic Kähler angle if and only if the matrices Ω(v) have the
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same eigenvalues counted with multiplicities, for any v ∈ Sk−1. In other words,
Φ(V ) = (φ1, φ2, φ3) if and only if the eigenvalues of Ω(v) are cos2(φi), i ∈ {1, 2, 3},
for all unit v ∈ V . This isospectrality property of the Kähler angle map will play a
crucial role in this chapter.

Known examples of subspaces with constant quaternionic Kähler angle

We conclude this section by stating some known partial classifications and ex-
amples of subspaces V with constant quaternionic Kähler angle in a quaternionic
Euclidean space Hn.

In [28], Berndt and Tamaru listed some triples that can arise as constant quater-
nionic Kähler angles Φ(V ) of non-zero real subspaces V of Hn, and stated the clas-
sification of such particular types of subspaces. All the subspaces in this list are
protohomogeneous [13, 28]. Such triples are the following:

(1) Φ(V ) = (π/2, π/2, π/2). These are precisely the totally real subspaces of Hn.
Recall that a linear subspace V ⊂ Hn is totally real if JV ⊂ Hn ⊖ V for every
J ∈ J. In this case dimR V ∈ {1, 2, . . . , n}.

(2) Φ(V ) = (0, π/2, π/2). These are the totally complex subspaces, that is, the
subspaces V of Hn such that J1V ⊂ V and JV ⊂ Hn ⊖ V for some complex
structure J1 ∈ J and all J ∈ J perpendicular to J1. In this case dimR V ∈
{2, 4, . . . , 2n}.

(3) Φ(V ) = (0, 0, π/2). These subspaces are the 3-dimensional subspaces of the
form Jv = (ImH)v for some non-zero v ∈ Hn.

(4) Φ(V ) = (0, 0, 0). These are the quaternionic subspaces, that is, the subspaces
V ⊂ Hn such that JV ⊂ V for every J ∈ J. Hence, dimR V ∈ {4, 8, . . . , 4n}.

(5) Φ(V ) = (φ, π/2, π/2), φ ∈ (0, π/2). Let W be a totally complex subspace of
Hn, with J1W ⊂ W for some complex structure J1 ∈ J. Then, a subspace V
of Hn satisfies Φ(V ) = (φ, π/2, π/2) if and only if V is a subspace of some W
as before with constant Kähler angle φ ∈ (0, π/2) as a subspace of the complex
vector space (W,J1). Thus dimR V ∈ {2, 4, . . . , 2[n/2]}.

(5) Φ(V ) = (0, φ, φ). Let W be a totally complex subspace of Hn such that J2W ⊂
W for some complex structure J2 ∈ J, and let Ṽ be a real subspace of (W,J2)
with constant Kähler angle φ ∈ (0, π/2). Then, V is a subspace of Hn with
Φ(V ) = (0, φ, φ) if and only if it is the complexification V = J1Ṽ ⊕ Ṽ of some
Ṽ ⊂ W as before with respect to some complex structure J1 ∈ J orthogonal to
J2. In this case dimR V ∈ {4, 8, . . . , 4[n/2]}.

We also recall, as observed in [28, pp. 3434-3435], that:

(i) for each ℓ ∈ {1, . . . , n} there exists, up to equivalence, exactly one real subspace
V of Hn with dimR V equal to ℓ, 2ℓ or 4ℓ, for each of the types (1), (2) or (4)
above, respectively;
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(ii) there exists only one subspace V of Hn of type (3), up to equivalence; and

(iii) for each ℓ ∈ {1, . . . , [n/2]} and each φ ∈ (0, π/2) there exists exactly one sub-
space V of Hn with dimR V = 2ℓ of type (5), and exactly one subspace V of Hn
with dimR V = 4ℓ of type (6), up to equivalence.

Berndt and Tamaru conjectured in [28] that these were all the possible subspaces
with constant quaternionic Kähler angle, but in [60] new examples of subspaces V of
dimension 4 such that Φ(V ) = (φ1, φ2, φ3) where cos(φ1) + cos(φ2) < 1 + cos(φ3)
were given. These are constructed as follows. Let 0 < φ1 ≤ φ2 ≤ φ3 ≤ π/2 with
cos(φ1) + cos(φ2) < 1 + cos(φ3), and consider a 4-dimensional totally real subspace
ofHn and a basis of unit vectors {e0, e1, e2, e3} of it, where ⟨e0, ei⟩ = 0, for i ∈ {1, 2, 3},
and

⟨ei, ei+1⟩ =
cos(φi+2)− cos(φi) cos(φi+1)

sin(φi) sin(φi+1)
, i ∈ {1, 2, 3}.

For the sake of simplicity let us define φ0 = 0 and J0 = Id. Notice that ⟨Jjek, el⟩ = 0
for j ∈ {1, 2, 3} and k, l ∈ {0, 1, 2, 3}, because spanR{e0, e1, e2, e3} is a totally real
subspace of Hn. Then we can define

ξk = cos(φk)Jke0 + sin(φk)Jkek, k ∈ {0, 1, 2, 3}.

(Note that ξ0 = e0.) We consider the subspace V spanned by these four vectors, for
which {ξ0, ξ1, ξ2, ξ3} is an orthonormal basis. Then, Φ(V ) = (φ1, φ2, φ3). It was also
observed in [60] that one can take several copies of these 4-dimensional subspaces to
construct subspaces V of Hn of dimension multiple of 4 with Φ(V ) = (φ1, φ2, φ3),
where cos(φ1)+cos(φ2) < 1+cos(φ3). This fact will be proved carefully in Section §4.5
for a broader family of examples that we will provide.

At this point, we find interesting to remark that, unlike the six types of examples
known to Berndt and Tamaru in [28], and as we will see in Proposition 4.4.14, we
can prove that, for any positive integer k multiple of 4, there are triples (φ1, φ2, φ3)
for which there are non-equivalent subspaces V of Hn with Φ(V ) = (φ1, φ2, φ3) and
dimR V = k.

4.2 Hairy ball method

In this section we use a topological argument to reduce the classification problem of
subspaces V with constant quaternionic Kähler angle in Hn to the study of subspaces
with dimensions 3 and multiples of 4. The idea is to construct a distribution on the
unit sphere of the subspace V of Hn, and then use a generalization of the hairy ball
theorem to exclude several cases.

Let V be a real subspace of Hn of real dimension k with constant quaternionic
Kähler angle Φ(V ) = (φ1, φ2, φ3). Let Sk−1 denote the unit sphere of V . For each
v ∈ Sk−1 and J ∈ J we have ⟨PJv, v⟩ = 0 and PJv ∈ V , and thus PJv ∈ TvS

k−1. For
each v ∈ Sk−1 consider the subspace of TvS

k−1 given by

∆v = {PJv : J ∈ J}.
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Since V has constant quaternionic Kähler angle, the dimension of ∆v is independent
of v ∈ Sk−1. Hence, ∆ defines a smooth distribution on the sphere Sk−1, and its rank
coincides with the number of elements i ∈ {1, 2, 3} such that φi ̸= π/2.

Steenrod [166] computed the possible ranks of continuous distributions on spheres.
We summarize these results in the following statement [166, p. 144, Theorem 27.18].

Theorem 4.2.1. The sphere Sℓ does not admit a continuous distribution of rank r
if ℓ is even and 1 ≤ r ≤ ℓ− 1, or if ℓ ≡ 1 (mod 4) and 2 ≤ r ≤ ℓ− 2.

Now we can state and prove the main result of this section.

Proposition 4.2.2. Let V be a real subspace of Hn with constant quaternionic Kähler
angle and dimR V = k. Then:

(i) If k ≥ 5 is odd, then V is a totally real subspace of Hn, that is, it has constant
quaternionic Kähler angle (π/2, π/2, π/2).

(ii) If k ≡ 2 (mod 4), then V has constant quaternionic Kähler angle (φ, π/2, π/2),
for some φ ∈ [0, π/2].

(iii) If k = 3, then V has constant quaternionic Kähler angle (φ,φ, π/2) for some
φ ∈ [0, π/2].

Proof. Let us consider the distribution ∆ defined above in this section. Recall that,
by construction, its rank is at most 3.

Let k ≥ 5 be odd. Then, Theorem 4.2.1 implies that Sk−1 does not admit a non-
trivial continuous distribution. Thus, the rank of ∆ is 0. Hence, by definition of ∆
we have PJv = 0 for all J ∈ J and v ∈ Sk−1, which means that JV is perpendicular
to V . Therefore, V is totally real. This proves (i).

Let now k ≡ 2 (mod 4). Theorem 4.2.1 guarantees that the rank of ∆ is 0 or
1. If ∆ has rank 1, then for each v ∈ Sk−1 there is, by definition of ∆, a canonical
basis {Jv1 , Jv2 , Jv3 } of J such that P v1 v ̸= 0 and P v2 v = P v3 v = 0, where P vi = PJv

i
,

for i ∈ {1, 2, 3}. Hence, v has quaternionic Kähler angle (φ, π/2, π/2) with respect
to V and {Jv1 , Jv2 , Jv3 }, for some φ ∈ [0, π/2). Therefore, Φ(V ) = (φ, π/2, π/2),
φ ∈ [0, π/2). If ∆ has rank 0, then V is totally real, as in the proof of (i). Altogether,
we have proved (ii).

Let k = 3. Then Theorem 4.2.1 implies that the rank of ∆ is 0 or 2. If it is 0,
then V is totally real. If the rank of ∆ is 2, then Φ(V ) = (φ1, φ2, π/2), for some
φ1, φ2 ̸= π/2. In this case, let us assume that φ1 ̸= φ2. Then, for each v ∈ S2 ⊂ V
there exist complex structures Jv1 and Jv2 in J, depending continuously on v, such
that v has Kähler angle φi ∈ [0, π/2) with respect to Jvi and V , for i ∈ {1, 2}. But
then v 7→ P v1 v would define a non-vanishing continuous vector field on S2, which
contradicts Theorem 4.2.1. Hence, φ1 = φ2, which proves (iii).

In view of Proposition 4.2.2 and the previous partial classification results (Sec-
tion §4.1), the classification of real subspaces with constant quaternionic Kähler angle
is reduced to two main cases: subspaces with dimension k = 3, and subspaces with
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dimension k multiple of 4. The case k = 3 (and hence Φ(V ) = (φ,φ, π/2)) will be ad-
dressed in Subsection §4.4.1 by a direct study. The other case is much more involved
and, indeed, we will content ourselves with addressing the subcase k = 4 and, for
higher dimensions, restricting our attention to protohomogeneous subspaces. Thus,
in Section §4.3 we will reduce the study of protohomogeneous subspaces of dimension
multiple of 4 to the case of dimension k = 4, and in Subsection §4.4.2 we will obtain
the classification of subspaces of dimension k = 4 with constant quaternionic Kähler
angle.

4.3 Factorization of subspaces of dimension multi-
ple of four

In this section we prove that any protohomogeneous subspace of real dimension k
multiple of 4 in Hn can be factorized as an H-orthogonal direct sum of subspaces
of dimension 4 with the same constant quaternionic Kähler angle. The first step
(Subsection §4.3.1) will be to show, using a Lie group theoretical argument, that the
canonical basis of J provided by Lemma 4.1.1 is independent of the vector in the
subspace V of Hn. Then, using this, one can induce a Clifford module structure on
V , which allows us to conclude the factorization result by using the classification of
Clifford modules by Atiyah, Bott and Shapiro [7] (Subsection §4.3.2).

4.3.1 Canonical quaternionic structure

Let V be a real subspace of a quaternionic Euclidean space Hn. Assume that V is
protohomogeneous. Equivalently, H′ := N0

Sp1Spn
(V ), the connected component of the

identity of the normalizer of V in Sp1Spn, acts transitively on the unit sphere Sk−1

of V . In particular, V has constant quaternionic Kähler angle by Lemma 4.1.3.
Consider the subgroup H′′ of all elements of H′ which act trivially on V ,

H′′ = ZSp1Spn(V ) = {h ∈ H′ : hv = v, for all v ∈ V } .

This is a closed normal subgroup of H′. Hence, H := H′/H′′ is a compact connected
Lie group. Moreover, the action of H′ on V induces an action of H on V , and the
latter inherits the basic properties of the former (it is orthogonal and transitive on
the unit sphere Sk−1 of V ), but now the H-action is effective.

The compact connected Lie group H acts effectively and transitively on the unit
sphere Sk−1 of V . Montgomery and Samelson [136], and Borel [38], classified com-
pact connected Lie groups acting effectively and transitively on spheres (see also [32,
p. 179]). In particular (see [136, Theorem I]), we have that either H is simple or
H = (H1 × H2)/N, where H1, H2 are connected simple Lie groups and N is a finite
normal subgroup of H1 × H2; moreover, the subgroup of H corresponding to H1 still
acts transitively on Sk−1.

Proposition 4.3.1. Let V be a protohomogeneous real subspace of Hn of dimension
k ≥ 5. Then, there exists a connected Lie subgroup S of the Spn-factor of Sp1Spn that
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acts transitively on the unit sphere Sk−1 of V . Moreover, the elements of S commute
with any complex structure J ∈ J.

Proof. Let h′ and h′′ denote the Lie algebras of H′ and H′′, respectively. Since h′ is
compact, and hence reductive, the ideal h′′ of h′ admits a complementary ideal h of
h′ such that h′ = h ⊕ h′′ and h ≃ h′/h′′. Note that the Lie algebra of H = H′/H′′ is

isomorphic to h. If Ĥ denotes the connected subgroup of H′ with Lie algebra h, then
H′ = Ĥ · H′′ and hence H = H′/H′′ ∼= Ĥ/(Ĥ ∩ H′′) is a finite quotient of Ĥ.

If H is simple, put s := h. If H is not simple, put s := h1, where h1 is the ideal of
h whose associated connected Lie subgroup of H still acts transitively on Sk−1. Note
that, in any case, the connected Lie subgroup S of Ĥ ⊂ H′ ⊂ Sp1Spn with Lie algebra
s acts transitively on the unit sphere Sk−1 of V .

Recall that h′ is a Lie subalgebra of the direct sum Lie algebra sp(1) ⊕ sp(n).
Consider πsp(1) : sp(1) ⊕ sp(n) → sp(1) the projection map onto the first factor, and
Ψ = πsp(1)|s : s → sp(1) its restriction to s, which is a Lie algebra homomorphism.

Since KerΨ is an ideal of s and s is simple, we have KerΨ = 0 or KerΨ = s. If
KerΨ = 0, then s is isomorphic to a subalgebra of sp(1); but dim sp(1) = 3, so S
cannot act transitively on Sk−1, k ≥ 5. Hence, KerΨ = s, and thus, ImΨ = 0, that is,
s is contained in the sp(n)-factor of the Lie algebra of Sp1Spn. This proves the first
part of the claim.

The connected subgroup S of Spn ⊂ Sp1Spn with Lie algebra s, which acts tran-
sitively on the unit sphere of V , commutes with the elements of the Sp1-factor of
Sp1Spn. Since the quaternionic structure J of Hn is induced precisely by the action of
the Sp1-factor on Hn, we obtain that the elements of S commute with any J ∈ J.

As a consequence, we have

Corollary 4.3.2. Let V ⊂ Hn be a protohomogeneous real subspace of dimension
k ≥ 5 with constant quaternionic Kähler angle Φ(V ) = (φ1, φ2, φ3). Then, there
exists a canonical basis {J1, J2, J3} of J such that the Kähler angle of any unit vector
v ∈ V with respect to Ji and V is φi, for each i ∈ {1, 2, 3}.

Proof. It suffices to show that the bilinear form Lv given in Lemma 4.1.1 is indepen-
dent of v ∈ Sk−1. Indeed, given v, w ∈ Sk−1, there exists T ∈ S such that Tv = w.
Since T commutes with all J ∈ J and preserves V , we have

Lw(J, J
′) = ⟨PJw,PJ′w⟩ = ⟨πV JTv, πV J ′Tv⟩ = ⟨πV TJv, πV TJ ′v⟩
= ⟨TπV Jv, TπV J ′v⟩ = ⟨TPJv, TPJ′v⟩ = ⟨PJv, PJ′v⟩ = Lv(J, J

′),

for all J , J ′ ∈ J.

4.3.2 Factorization Lemma

Let V be a real subspace of Hn of constant quaternionic Kähler angle (φ1, φ2, φ3)
with φ2 ̸= π/2. Assume that there exists a canonical basis {J1, J2, J3} of J such that
the Kähler angle of any non-zero vector v ∈ V with respect to Ji and V is φi, for
i ∈ {1, 2, 3}. Note that, by Corollary 4.3.2, if V is protohomogeneous of dimension at
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least 5, then the previous assumption holds. In view of Proposition 4.2.2 (and leaving
the case k = 3 for later), we will assume that dimR V = 4l with l ∈ N.

Let us regard Hn as a complex vector space C2n with respect to the complex
structure Ji. By [61, p. 1191], we have that P̄i := Pi/ cos(φi) = πV Ji/ cos(φi) leaves
V invariant and defines an orthogonal complex structure in V , for each i ∈ {1, 2},
and also for i = 3 if and only if φ3 ̸= π/2. Furthermore, we can easily check that
P̄iP̄j = −P̄jP̄i, for i ̸= j. Indeed, if v, w ∈ V , then Lemma 4.1.1 yields

0 = ⟨P̄i(v + w), P̄j(v + w)⟩ = ⟨P̄iv, P̄jw⟩+ ⟨P̄jv, P̄iw⟩ = −⟨P̄jP̄iv, w⟩ − ⟨P̄iP̄jv, w⟩.

Hence, V has a module structure over the Clifford algebra Cl3 if φ3 ̸= π/2, or over
Cl2 if φ3 = π/2. It is well known that there are exactly two inequivalent irreducible
Clifford modules over Cl3, both of dimension 4 (we will denote them by V 0 and
V 1), whereas there is exactly one irreducible Cl2-module up to equivalence, again of
dimension 4 (we will denote it by V 0). Moreover, Clifford modules are semisimple.
This implies that, if φ3 ̸= π/2, we can decompose V into a direct sum of irreducible
Cl3-modules as follows

V =

(
l0⊕
V 0

)
⊕

(
l1⊕
V 1

)
,

where l0 + l1 = l, whereas if φ3 = π/2 the Cl2-module V can be decomposed as

V =

l⊕
V 0.

The above decompositions can be assumed to be orthogonal because the complex
structures P̄i are orthogonal. This also implies that two different summands are H-
orthogonal: if v, w ∈ V belong to two different summands, ⟨Jkv, w⟩ = ⟨Pkv, w⟩ = 0
by the P̄k-invariance. Finally, since P̄i leaves each factor V r (r ∈ {0, 1}) invariant, we
deduce that each V r has constant quaternionic Kähler angle (φ1, φ2, φ3). This leads
us to state the following:

Lemma 4.3.3. Let V be a real subspace of Hn of dimension 4l, with l ∈ N, and
constant quaternionic Kähler angle (φ1, φ2, φ3). Assume that there exists a canonical
basis {J1, J2, J3} of J such that the Kähler angle of any non-zero v ∈ V with respect
to Ji and V is φi, for each i ∈ {1, 2, 3}. Then, there is an H-orthogonal decomposition

V =

l⊕
r=1

Vr,

where each Vr has dimension 4 and Φ(Vr) = (φ1, φ2, φ3) as a subspace of Hn.
Conversely, let V be a real subspace of Hn given by an H-orthogonal direct sum

V :=
⊕l

r=1 Vr, where each Vr has dimension 4, and Φ(Vr) = (φ1, φ2, φ3). Let
{J1, J2, J3} be a canonical structure of J such that every non-zero vector in Vr has
Kähler angle φi with respect to Ji and Vr, for each i ∈ {1, 2, 3} and each r ∈ {1, . . . , l}.
Then, Φ(V ) = (φ1, φ2, φ3).



72 4 Homogeneous hypersurfaces in HHn

Proof. The first assertion has been proved above under the assumption φ2 ̸= π/2. If
φ2 = π/2, the first claim follows from the classification of subspaces V with Φ(V ) =
(φ, π/2, π/2), φ ∈ [0, π/2] (cf. Section §4.1 and [13, pp. 230-232]).

In order to prove the converse, we first note that πV (HVr) = Vr, for each r ∈
{1, . . . , l}. Indeed, for every v ∈ Vr and w ∈ Vs, r ̸= s, ⟨πV Jiv, w⟩ = ⟨Jiv, w⟩ = 0,
where in the last equality we have used HVr ⊥ HVs. Hence, πV J(Vr) ⊂ Vr, and since
πV (Vr) = Vr, we deduce πV (HVr) = Vr.

Now let v =
∑l
r=1 vr ∈ V , with vr ∈ Vr for each r ∈ {1, . . . , l}. Denoting as usual

Pi = πV Ji, for each i ∈ {1, 2, 3}, we have

Lv(Ji, Jj) = ⟨Piv, Pjv⟩ =
l∑

r,s=1

⟨πV Jivr, πV Jjvs⟩ =
l∑

r=1

⟨πV Jivr, πV Jjvr⟩

=

l∑
r=1

⟨Pivr, Pjvr⟩ =
l∑

r=1

cos2(φi)δij∥vr∥2 = cos2(φi)δij∥v∥2,

where in the third equality we have used πV (HVr) = Vr and Vr ⊥ Vs for all r, s ∈
{1, . . . , l}, and in the fifth one we have used that the quaternionic Kähler angle of
vr with respect to Vr and {J1, J2, J3} is (φ1, φ2, φ3). Since v ∈ V is arbitrary, by
Lemma 4.1.1 we conclude that Φ(V ) = (φ1, φ2, φ3).

4.4 Low dimensional subspaces with constant
quaternionic Kähler angle

As a consequence of Proposition 4.2.2, we only have to study subspaces of dimensions 3
and multiples of 4. The latter can be reduced to studying subspaces of dimension 4 by
virtue of Corollary 4.3.2 and Lemma 4.3.3. We devote this section to the classification
of (not necessarily protohomogeneous) real subspaces of dimensions k ∈ {3, 4} with
constant quaternionic Kähler angle. The main tool that we will use in this section is
the isospectrality of the Kähler angle map Ω introduced in Equation (4.1). We start
with a lemma that provides an appropriate basis of the subspace.

Lemma 4.4.1. Let V be a real subspace of Hn of dimension k ∈ {3, 4} with Φ(V ) =
(φ1, φ2, φ3). Let e0 ∈ V be a unit vector. Then, there exists a canonical basis
{J1, J2, J3} of J and vectors ei ∈ Hn ⊖He0, i ∈ {1, . . . , k − 1}, such that

cos(φi)Jie0 + sin(φi)Jiei, i ∈ {0, . . . , k − 1}, (4.2)

constitute an R-orthonormal basis of V , where we put J0 := Id and φ0 = 0.
Moreover, for each i ∈ {0, . . . , k − 1} with φi ̸= π/2, we have

P̄ie0 = cos(φi)Jie0 + sin(φi)Jiei,

where P̄i = Pi/ cos(φi) = πV Ji/ cos(φi).
Finally, if φi = 0 we take ei = 0, whereas if φi > 0, then ei is a unit vector.
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Proof. Let e0 ∈ V be a unit vector. By Lemma 4.1.1, there is a canonical ba-
sis {J1, J2, J3} of J such that e0 has Kähler angle φi with respect to Ji for i ∈
{1, 2, 3}, and ⟨Pie0, Pje0⟩ = cos2(φi)δij . In particular, ⟨P̄ie0, P̄je0⟩ = 0 for any i,
j ∈ {0, . . . , k − 1}, i ̸= j, with φi, φj ̸= π/2.

Fix i ∈ {1, 2, 3}. If φi = 0, then we take ei = 0. Let us assume first that
φi ∈ (0, π/2). By regarding Hn as a complex vector space C2n with respect to
the complex structure Ji, [13, Lemma 2] yields the existence of a unit vector ei ∈
Hn ⊖ spanR{e0, Jie0} satisfying

P̄ie0 = cos(φi)Jie0 + sin(φi)Jiei.

We have to see that ei ∈ Hn ⊖ He0. Observe that Hn ⊖ spanR{e0, Jie0} coincides
with the orthogonal sum (Hn⊖He0)⊕spanR{Ji+1e0, Ji+2e0}, where indices are taken
modulo 3. Let a, b ∈ R. Then

⟨ei, aJi+1e0 + bJi+2e0⟩ = − 1

sin(φi)
⟨JiP̄ie0 + cos(φi)e0, aJi+1e0 + bJi+2e0⟩

=
1

sin(φi) cos(φi)
(a⟨Pie0, Pi+2e0⟩ − b⟨Pie0, Pi+1e0⟩) = 0,

where in the last equality we have used Lemma 4.1.1. Therefore, ei ∈ Hn ⊖He0.
Now if φ2 = π/2, subspaces V with Φ(V ) = (φ, π/2, π/2), φ ∈ [0, π/2], are

classified (see Section §4.1) and they can be spanned by a basis as in the statement (see
[13, p. 232] and note that the {ei} in the statement do not have to be H-orthonormal).

Thus, we finally have to deal with the case k = 4, φ2 ̸= π/2, and φ3 = π/2. Then,
by the previous argument, there exists a unit vector v ∈ Hn such that {e0, P̄1e0, P̄2e0, v}
is an R-orthonormal basis of V , where P̄ie0 = cos(φi)Jie0 + sin(φi)Jiei, i ∈ {1, 2}.
Recalling the definition of the Kähler angle map (see Equation (4.1)), we have

tr(Ω(e0)) =

3∑
i=1

⟨Pie0, Pie0⟩

=

3∑
i=1

(
⟨Pie0, e0⟩2 + ⟨Pie0, P̄1e0⟩2 + ⟨Pie0, P̄2e0⟩2 + ⟨Pie0, v⟩2

)
= cos2(φ1) + cos2(φ2) +

3∑
i=1

⟨Jie0, v⟩2,

where we have used Lemma 4.1.1 and P̄ie0 = Pie0/ cos(φi). Since the quaternionic
Kähler angle of V is Φ(V ) = (φ1, φ2, π/2), the eigenvalues of Ω(e0) are cos2(φ1),
cos2(φ2) and 0, and hence we deduce that v ∈ Hn ⊖ He0. Thus, taking e3 = −J3v
yields the result.

Remark 4.4.2. Whenever φ1 > 0, the orthogonality of (4.2) yields ⟨J3e1, e2⟩ = 0, and
if k = 4, also ⟨J1e2, e3⟩ = ⟨J2e3, e1⟩ = 0.
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4.4.1 Subspaces of dimension three

In this subsection we classify 3-dimensional real subspaces of Hn with constant
quaternionic Kähler angle.

Proposition 4.4.3. Let V ⊂ Hn be a real subspace of dimension 3. Then, V has
constant quaternionic Kähler angle if and only if Φ(V ) = (φ,φ, π/2), φ ∈ [0, π/2],
and for any unit e0 ∈ V , there is a canonical basis {J1, J2, J3} of J such that

{e0, cos(φ)J1e0 + sin(φ)J1e1, cos(φ)J2e0 + sin(φ)J2e2} (4.3)

is an orthonormal basis of V , where, if φ ̸= 0, e1, e2 are unit vectors satisfying
e1, e2 ∈ Hn⊖He0, e2 ∈ Hn⊖ (ImH)e1, and either ⟨e1, e2⟩ = cos(φ)/(cos(φ)− 1) with
φ ∈ [π/3, π/2], or ⟨e1, e2⟩ = cos(φ)/(cos(φ) + 1) with φ ∈ (0, π/2].

Proof. By Proposition 4.2.2, we have that φ1 = φ2 = φ ∈ [0, π/2] and φ3 = π/2. Let
us assume that V is spanned by the basis described in Lemma 4.4.1 with k = 3. If
φ = 0 or φ = π/2 the claim follows from the classification of subspaces with constant
quaternionic Kähler angle (0, 0, π/2) or (π/2, π/2, π/2); see Section §4.1.

Thus, let us assume φ ∈ (0, π/2). Then, for each l ∈ {1, 2} and understanding the
subscript l + 1 ∈ {1, 2} modulo 2,

Ω(P̄le0)ij = ⟨PiP̄le0, PjP̄le0⟩

= ⟨JiP̄le0, e0⟩⟨JjP̄le0, e0⟩+
2∑
r=1

⟨JiP̄le0, P̄re0⟩⟨JjP̄le0, P̄re0⟩,

= ⟨P̄le0, Pie0⟩⟨P̄le0, Pje0⟩+ ⟨JiP̄le0, P̄l+1e0⟩⟨JjP̄le0, P̄l+1e0⟩,

where in the second equality we have calculated the orthogonal projection of vectors
onto V by using the orthonormal basis {e0, P̄1e0, P̄2e0} of V . Hence, for l ∈ {1, 2},
using Lemma 4.4.1 we have

Ω(P̄le0)ll = cos2(φ) + ⟨el, Jl+1el+1⟩2 sin4(φ),
Ω(P̄le0)l+1,l = ⟨e1, J1e2⟩⟨e1, J2e2⟩ sin4(φ),

Ω(P̄le0)l+1,l+1 = ⟨el+1, Jlel⟩2 sin4(φ),
Ω(P̄le0)13 = ⟨e2, J2e1⟩ sin2(φ)(cos2(φ) + ⟨e1, e2⟩ sin2(φ)),
Ω(P̄le0)23 = −⟨e1, J1e2⟩ sin2(φ)(cos2(φ) + ⟨e1, e2⟩ sin2(φ)),
Ω(P̄le0)33 = (cos2(φ) + ⟨e1, e2⟩ sin2(φ))2.

(4.4)

Now, since Ω(P̄le0) is symmetric with eigenvalues cos2(φ) (of multiplicity 2) and 0,
by the min-max theorem, one obtains

0 ≤ Ω(P̄le0)ll ≤ cos2(φ), l ∈ {1, 2}.

This implies ⟨e1, J2e2⟩ = ⟨e2, J1e1⟩ = 0, which together with Remark 4.4.2 yields
e2 ∈ Hn⊖ (ImH)e1. Taking again into account the spectrum of Ω(P̄1e0), we have the
following relation for its trace,

2 cos(φ)2 = tr(Ω(P̄1e0)) = (cos2(φ) + ⟨e1, e2⟩ sin2(φ))2 + cos2(φ).
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From this and the fact that e1 and e2 are unit vectors, we deduce that either ⟨e1, e2⟩ =
cos(φ)/(cos(φ) − 1) where φ ∈ [π/3, π/2) or ⟨e1, e2⟩ = cos(φ)/(1 + cos(φ)) where
φ ∈ (0, π/2). This proves the necessity of the statement.

For the converse we take an arbitrary unit vector v ∈ V which we write as

v = x0e0 + x1
(
cos(φ)J1e0 + sin(φ)J1e1

)
+ x2

(
cos(φ)J2e0 + sin(φ)J2e2

)
.

Then, if ε ∈ {±1} is such that ⟨e1, e2⟩ = cos(φ)/(1 + ε cos(φ)), we have

Ω(v) = cos2(φ)

x20 + x21 x1x2 −εx0x2
x1x2 x20 + x22 εx0x1

−εx0x2 εx0x1 x21 + x22

 .

Since v is a unit vector, x20 + x21 + x22 = 1, and it is now easy to see that Ω(v) has a
double eigenvalue cos2(φ), and a simple eigenvalue 0.

Remark 4.4.4. We will denote by V φ+ and V φ− any real subspace of Hn constructed
as in Proposition 4.4.3, depending on whether ⟨e1, e2⟩ = cos(φ)/(cos(φ) + 1) for
φ ∈ (0, π/2], or ⟨e1, e2⟩ = cos(φ)/(cos(φ) − 1) for φ ∈ [π/3, π/2], respectively. Note
that the subspaces V φ± can be constructed as subspaces of any Hn with n ≥ 3. One

can easily check that the only one that fits into an H2 is V
π/3
− (but it cannot fit into

H).

Proposition 4.4.5. Let V be a subspace of Hn with constant quaternionic Kähler
angle and dimension 3. Then V is protohomogeneous.

Proof. We know from Proposition 4.4.3 that Φ(V ) = (φ,φ, π/2). We can assume that
φ ∈ (0, π/2) since, otherwise, V is known to be protohomogeneous (see Section §4.1).

Let e0 ∈ V be an arbitrary unit vector. By Lemma 4.1.1 there is a canonical
basis {J1, J2, J3} of J such that e0 has Kähler angle φ with respect to J1 and J2, and
Kähler angle π/2 with respect to J3. In view of Lemma 4.4.1 and Proposition 4.4.3,
let us consider the unit vectors ei ∈ Hn ⊖He0, i ∈ {1, 2}, given by

ei := −(JiP̄ie0 + cos(φ)e0)/ sin(φ), i ∈ {1, 2}, (4.5)

where P̄i := πV Ji/ cos(φ). On the one hand, by (4.5) we have

⟨e1, e2⟩ =
1

sin2(φ)
⟨J1P̄1e0 + cos(φ)e0, J2P̄2e0 + cos(φ)e0⟩

=
1

sin2(φ)

(
⟨J1P̄1e0, J2P̄2e0⟩ − cos2(φ)

)
.

(4.6)

On the other hand, again by Proposition 4.4.3, ⟨e1, e2⟩ can take two possible values.
We will first see that, given V , ⟨e1, e2⟩ is independent of e0.

Let S2 denote the unit sphere of V . We define Θ: S2 → R by Θ(e0) = ⟨e1, e2⟩.
We claim that Θ is well defined. Let {J ′

1, J
′
2, J3} be another canonical basis of J such

that e0 has Kähler angle φ with respect to J ′
i , i ∈ {1, 2}, and let e′i := −(J ′

iP̄
′
ie0 +
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cos(φ)e0)/ sin(φ) where P̄ ′
i := πV J

′
i/ cos(φ) for i ∈ {1, 2}. Then, there is θ ∈ [0, 2π)

such that J ′
i = cos(θ)Ji + (−1)i+1 sin(θ)Ji+1 for i ∈ {1, 2} and subscripts modulo 2.

Thus,

J ′
iP̄

′
i = (cos(θ)Ji + (−1)i+1 sin(θ)Ji+1)(cos(θ)P̄i + (−1)i+1 sin(θ)P̄i+1)

= cos2(θ)JiP̄i + sin2(θ)Ji+1P̄i+1 + (−1)i+1 cos(θ) sin(θ)(J1P̄2 + J2P̄1).
(4.7)

Consequently, using Equation (4.6) twice, and then (4.7), we get, after some calcula-
tions,

⟨e1, e2⟩ − ⟨e′1, e′2⟩ =
1

sin2(φ)

(
⟨J1P̄1e0, J2P̄2e0⟩ − ⟨J ′

1P̄
′
1e0, J

′
2P̄

′
2e0⟩

)
= 0,

which implies that Θ is well-defined.
Now note that the assignment e0 ∈ S2 7→ span{J1, J2} ∈ G2(J), where G2(J) is the

Grassmannian of 2-planes of J ∼= R3, is continuous due to the continuous dependence
of the quadratic form J ∈ J 7→ Lv(J, J) = ⟨PJv, PJv⟩ ∈ R on v. Hence, the map Θ is
also continuous. But, as mentioned just after (4.6), Θ(S2) has at most two elements.
Therefore, Θ is constant on S2.

Finally, we prove that V is protohomogeneous. Let e0, e
′
0 be arbitrary unit vectors

in V . Let {J1, J2, J3}, {J ′
1, J

′
2, J

′
3} be canonical bases of J, and e1, e2, e

′
1, e

′
2 be unit

vectors in V such that both (4.3), and (4.3) with e′i instead of ei and J ′
i instead

of Ji, are orthonormal bases of V . Both sets of vectors {e0, e1, e2} and {e′0, e′1, e′2}
span a totally real subspace of Hn, and since Θ is constant, ⟨ei, ej⟩ = ⟨e′i, e′j⟩ for all
i, j ∈ {0, 1, 2}. It then follows that there exists an element T ∈ Sp1Spn such that
Tei = e′i for each i ∈ {0, 1, 2}, and TJj = J ′

jT for each j ∈ {1, 2, 3}. Thus, by (4.5)

we get T P̄ie0 = P̄ ′
ie

′
0 for i ∈ {0, 1, 2}, where P̄0 = P̄ ′

0 = Id. Therefore, T is an element
of Sp1Spn such that TV = V and Te0 = e′0. Since e0, e

′
0 are arbitrary, this proves

that V is protohomogeneous.

Finally we show that the two types of subspaces V φ+ and V φ− introduced in Re-
mark 4.4.4 are indeed inequivalent for φ ̸= π/2. Recall that V φ+ is defined for all
φ ∈ (0, π/2], but V φ− only for φ ∈ [π/3, π/2].

Proposition 4.4.6. Let φ ∈ [π/3, π/2]. Then there exists T ∈ Sp1Spn such that
TV φ+ = V φ− if and only if φ = π/2.

Proof. If φ = π/2, then V
π/2
+ and V

π/2
− are totally real, therefore equivalent. Let us

assume that φ ̸= π/2 and that there is T ∈ Sp1Spn such that TV φ+ = V φ− . By applying
an element of Sp1Spn if necessary, we can assume that there is a unit vector e0 ∈
V φ+ ∩ V φ− and that e0 has quaternionic Kähler angle (φ,φ, π/2) with respect to both
V φ+ and V φ− and a common canonical basis {J1, J2, J3} of J. Then, by Lemma 4.4.1
and Proposition 4.4.3, V φ± is spanned by the basis {e0, P̄±

1 e0, P̄
±
2 e0}, where P̄

±
i :=

πV φ
±
Ji/ cos(φ), i ∈ {1, 2}. Moreover,

P̄±
i e0 = cos(φ)Jie0 + sin(φ)Jie

±
i , with ⟨e±1 , e

±
2 ⟩ =

cos(φ)

cos(φ)± 1
,



4.4.2 Subspaces of dimension four 77

and e±i ∈ Hn ⊖He0, i ∈ {1, 2}.
By Proposition 4.4.5, we can assume that Te0 = e0. Let J ′ = TJ3T

−1 ∈ J.
Since J3e0 ∈ Hn ⊖ V φ+ , we have J ′e0 = J ′Te0 = TJ3e0 ∈ Hn ⊖ V φ− . This implies
TJ3 = εJ3T , where ε ∈ {−1, 1}, because ±J3 are the only complex structures in J
that send e0 to Hn ⊖ V φ− . Therefore, there exists θ ∈ [0, 2π) such that

TJi = εi(cos(θ)Ji + (−1)i+1 sin(θ)Ji+1)T, i ∈ {1, 2}, and TJ3 = εJ3T. (4.8)

Using (4.8) and Te0 = e0, we have

T P̄+
1 e0 =cos(φ)TJ1e0 + sin(φ)TJ1e

+
1

=ε cos(φ)(cos(θ)J1e0 + sin(θ)J2e0)

+ ε sin(φ)(cos(θ)J1Te
+
1 + sin(θ)J2Te

+
1 ).

(4.9)

By Proposition 4.4.5, V φ± is protohomogeneous, and note that SO3 is the only
connected subgroup of Sp1Spn ⊂ SO4n that acts transitively and effectively on the unit
sphere of V φ± . Thus, we can assume that T P̄+

1 e0 = εP̄−
1 e0, just by composing T with

some element in the isotropy of the action of SO3 on V φ− at e0. But inserting (4.9) and
P̄−
1 e0 = cos(φ)J1e0 + sin(φ)J1e

−
1 into the equality T P̄+

1 e0 = εP̄−
1 e0, and analyzing

the He0 and Hn ⊖ He0 components (note that e±1 ∈ Hn ⊖ He0, Te0 = e0, and T
preserves H-orthonormality) we get θ = 0 and Te+1 = e−1 . Moreover, by (4.8) we get
TJi = εiJiT , i ∈ {1, 2, 3}.

Since Te0 = e0, T P̄
+
1 e0 = εP̄−

1 e0 and TV φ+ = V φ− , we must have T P̄+
2 e0 =

±P̄−
2 e0. Then, inserting P̄±

2 e0 = cos(φ)J2e0 + sin(φ)J2e
±
2 in the last equality, and

using TJ2 = J2T , we deduce that Te+2 = e−2 . But this jointly with Te+1 = e−1 yields
a contradiction with the fact that T is an orthogonal transformation of Hn, because
⟨e+1 , e

+
2 ⟩ ≠ ⟨e−1 , e

−
2 ⟩ for all φ ̸= π/2.

4.4.2 Subspaces of dimension four

The aim of this subsection is to classify 4-dimensional real subspaces of Hn with
constant quaternionic Kähler angle.

We start by restricting our attention to subspaces with φ1 = 0.

Proposition 4.4.7. Let V ⊂ Hn be a real subspace of dimension 4 with constant
quaternionic Kähler angle (0, φ2, φ3). Then, φ2 = φ3 ∈ [0, π/2].

Proof. First of all, if φ2 = 0, then φ3 = 0 by a combination of [13, Proposition 9] and
the fact that subspaces with Φ(V ) = (0, 0, π/2) have dimension 3 (see Section §4.1).
Hence, let us assume that φ2 ̸= 0. Lemma 4.4.1 yields a basis {e0, J1e0, v2, v3} of
V , where vi = cos(φi)Jie0 + sin(φi)Jiei, for certain unit ei ∈ Hn ⊖ He0, i ∈ {2, 3}.
Therefore, a computation as in Equations (4.4), for each i ∈ {2, 3}, gives

Ω(vi)11 =
(
cos(φ2) cos(φ3) + ⟨e2, e3⟩ sin(φ2) sin(φ3)

)2
,

Ω(vi)22 = cos(φi)
2 + ⟨J3e3, e2⟩2 sin2(φ2) sin

2(φ3),

Ω(vi)33 = cos(φi)
2 + ⟨J2e2, e3⟩2 sin2(φ2) sin

2(φ3).
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Hence, by the isospectrality of Ω,

0 = tr(Ω(v2))− tr(Ω(v3)) = 2 cos2(φ2)− 2 cos2(φ3),

from where we conclude φ2 = φ3.

In view of Proposition 4.4.7, all real subspaces V of Hn with Φ(V ) = (0, φ2, φ3)
actually satisfy Φ(V ) = (0, φ, φ). Note that such subspaces have been classified
(see Section §4.1).

Thus, in the following results we will analyze the case φ1 > 0. We consider the
basis of V given in Lemma 4.4.1.

Lemma 4.4.8. Let V ⊂ Hn be a real subspace of dimension 4 such that Φ(V ) =
(φ1, φ2, φ3) with φ1 > 0. For each i ∈ {1, 3} with φi ̸= π/2, we have ⟨ei, Jjej⟩ = 0
for all j ∈ {1, 2, 3}.

Proof. According to Lemma 4.4.1, e0 has Kähler angle φi with respect to V and
Ji ∈ J for each i ∈ {1, 2, 3}. Let us regard Hn as a complex Euclidean space C2n

whose complex structure is Ji, for i ∈ {1, 2, 3}. By [61, Theorem 2.7] there is a
non-empty finite subset Ψi ⊂ [0, π/2] such that V =

⊕
φ∈Ψi V iφ is a C-orthonormal

decomposition of V and V iφ ⊂ C2n is a real subspace with constant Kähler angle

φ ∈ Ψi. It follows that any non-zero v ∈ V iφ has Kähler angle φ with respect to V

and Ji, and the minimum (resp. maximum) of Ψi coincides with the minimum (resp.
maximum) Kähler angle of a non-zero vector v ∈ V with respect to V and Ji.

We claim that φ1 ∈ Ψ1. On the one hand, if there existed φ ∈ Ψ1 such that
φ < φ1, then there would be vectors in V whose Kähler angle with respect to V and
J1 ∈ J is φ < φ1, thus contradicting the minimality of φ1 by Lemma 4.1.1. On the
other hand, if φ > φ1 for all φ ∈ Ψ1, then we would get a contradiction with the fact
that e0 has Kähler angle φ1 with respect to J1. Analogously, we get that φ3 ∈ Ψ3.

Now assume φ1 ̸= π/2. By [61, p. 1190–1191] and the discussion above, we have
a decomposition V = Vφ1 ⊕ Vψ1 into real subspaces of constant Kähler angle with
respect to the complex structure J1, where ψ1 ∈ Ψ1 (the possibility ψ1 = φ1 is
allowed). We also have that P̄1 := πVφ1

J1/ cos(φ1) = πV J1/ cos(φ1)|Vφ1
defines a

complex structure on Vφ1
. As e0 ∈ Vφ1

, we get Vφ1
= spanR{e0, P̄1e0}. Moreover,

CVφ1
⊥ CVψ1

, so Vψ1
= spanR{P̄2e0, P̄3e0}, and for j ∈ {2, 3}, using Lemma 4.4.1,

0 = ⟨P̄1e0, J1P̄je0⟩ = sin(φ1) sin(φj)⟨e1, Jjej⟩.

Since φ1 > 0, we get ⟨e1, Jjej⟩ = 0. A similar argument works for φ3, if φ3 ̸= π/2.

Before addressing the classification, we state a lemma that refines [60, Lemma 5.1].

Lemma 4.4.9. Assume 0 < φ1 ≤ φ2 ≤ φ3 ≤ π/2, and let ε ∈ {−1, 1}. Then, there
exists a subset {e1, e2, e3} of unit vectors of R3 with inner products

⟨ei, ei+1⟩ =
ε cos(φi+2)− cos(φi) cos(φi+1)

sin(φi) sin(φi+1)
for each i ∈ {1, 2, 3}
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if and only if cos(φ1) + cos(φ2)− ε cos(φ3) ≤ 1.
Furthermore, the subspace spanR{e1, e2, e3} has dimension 2 if and only if cos(φ1)+

cos(φ2) + ε cos(φ3) = 1, and dimension 3 otherwise.

Proof. A subset {e1, e2, e3} of the Euclidean space R3 satisfies the inner product rela-
tions in the statement if and only if the associated Gram matrix G = (⟨ei, ej⟩)1≤i,j≤3

is positive semi-definite. This happens precisely when all principal minors of G are
non-negative; in this proof, by Gij we denote the matrix of order 2 resulting from
deleting the i-th row and the j-th column of G. Let xi := cos(φi) for each i ∈ {1, 2, 3}.
Hence, G is positive semi-definite if and only if detGii ≥ 0 for all i ∈ {1, 2, 3} and
detG ≥ 0. We compute

det(G) =
(ε+ x1 − x2 − x3)(−ε+ x1 + x2 − x3)(−ε+ x1 − x2 + x3)(ε+ x1 + x2 + x3)

(1− x2
1)(1− x2

2)(1− x2
3)

.

Taking into account that 1 > x1 ≥ x2 ≥ x3 ≥ 0, one can check that detG ≥ 0 if
and only if −1 + x1 + x2 − εx3 ≤ 0. Similarly,

det(Gii) =
(1− x21 − x22 − x23 + 2εx1x2x3)∏

j ̸=i(1− x2j )
, i ∈ {1, 2, 3}.

Hence, det(Gii) ≥ 0 if and only if

1− x21 − x22 − x23 + 2εx1x2x3 ≥ 0. (4.10)

Now, if 1 > x1 ≥ x2 ≥ x3 ≥ 0, one can show that (4.10) holds provided that
−1 + x1 + x2 − εx3 ≤ 0. This completes the proof of the first claim of the lemma.

Assume that we are in the situation of the first assertion of the statement. Then
{e1, e2, e3} spans a 3-dimensional subspace if and only ifG is positive definite, which in
this situation amounts to detG > 0. This happens precisely when x1 + x2 − εx3 < 1.
Hence, the proof of the lemma will be complete if we show that spanR{e1, e2, e3}
cannot have dimension 1. Assume this is the case. Then the rank of G is 1. Hence
x1 = 1− x2 + εx3, and the minor det(G33) vanishes, i.e.

0 = det(G33) = − 2(1 + ϵx3)

(1 + x2)(−2 + x2 − ϵx3)
.

Therefore, x3 = −ε, which yields a contradiction. This finishes the proof.

We are now in position to complete the description of 4-dimensional real subspaces
of Hn with constant quaternionic Kähler angle.

Proposition 4.4.10. Let V ⊂ Hn be a real subspace of dimension 4 and e0 ∈ V
a unit vector. Then V has constant quaternionic Kähler angle Φ(V ) = (φ1, φ2, φ3),
with φ1 > 0, if and only if there is a canonical basis {J1, J2, J3} of J, ε ∈ {−1, 1},
and unit vectors e1, e2, e3 ∈ Hn ⊖He0 with ei ∈ Hn ⊖ (ImH)ej, i, j ∈ {1, 2, 3}, such
that

(i) 0 < φ1 ≤ φ2 ≤ φ3 ≤ π/2,
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(ii) cos(φ1) + cos(φ2)− ε cos(φ3) ≤ 1,

(iii) for all i ∈ {1, 2, 3} and indices modulo 3,

⟨ei, ei+1⟩ =
ε cos(φi+2)− cos(φi) cos(φi+1)

sin(φi) sin(φi+1)
,

(iv) {cos(φi)Jie0 + sin(φi)Jiei : i = 0, 1, 2, 3} is an orthonormal basis of V , where
for simplicity we put φ0 := 0 and J0 := Id.

Moreover, if V is as above, the Kähler angle of any non-zero v ∈ V with respect
to Ji and V is φi, for each i ∈ {1, 2, 3}.

Proof. In order to prove the necessity, let us assume that V is spanned by the ba-
sis described in Lemma 4.4.1 with k = 4. Notice that φ2 = π/2 implies Φ(V ) =
(φ, π/2, π/2); such subspaces are classified (see Section §4.1), and [13, p. 232], to-
gether with some straightforward calculations, show that they can be spanned by a
basis as above. Thus, we can suppose φ1, φ2 ∈ (0, π/2).

Let us first assume φ3 ̸= π/2. A long but elementary calculation, similar to the
one used to obtain Equations (4.4), using the isospectrality of Ω, Remark 4.4.2 and
Lemma 4.4.8, yields

3∏
j=1

cos2(φj) = det(Ω(P̄ie0))

= cos2(φi)

3∏
j=1
j ̸=i

(cos(φi) cos(φj) + ⟨ei, ej⟩ sin(φi) sin(φj))2,

for each i ∈ {1, 2, 3}. This implies for i ∈ {1, 2, 3},

cos2(φi+2) = (cos (φi) cos(φi+1) + ⟨ei, ei+1⟩ sin (φi) sin (φi+1))
2. (4.11)

Using (4.11), we can also calculate for i ∈ {1, 3}
3∑
j=1

cos2(φj) = tr(Ω(P̄ie0)) =

3∑
j=1

cos2(φj) + ⟨e2, Jiei⟩2 sin2(φi) sin2(φ2),

which implies ⟨e2, Jiei⟩ = 0, i ∈ {1, 3}. This, along with Remark 4.4.2 and also with
Lemma 4.4.8, shows that ei ∈ Hn⊖(ImH)ej , i, j ∈ {1, 2, 3}. Furthermore, (4.11) gives
rise to the two possible expressions for ⟨ei, ei+1⟩ in the statement (corresponding to
ε = 1 or ε = −1). Note that such expressions are incompatible for a fixed V , that is,
if for some i ∈ {1, 2, 3} we have

⟨ei, ei+1⟩ =
cos(φi+2)− cos(φi) cos(φi+1)

sin(φi) sin(φi+1)
,

⟨ei+1, ei+2⟩ = −cos(φi) + cos(φi+1) cos(φi+2)

sin(φi+1) sin(φi+2)
,
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then one can check that det
(
Ω((e0 + P̄i+1e0)/

√
2)
)
= 0, which gives a contradic-

tion with the assumption φ3 ̸= π/2. Finally, the inequality in item (4.4.10) of the
statement follows from Lemma 4.4.9.

Now assume that φ3 = π/2. Let {e0, P̄1e0, P̄2e0, J3e3} be the orthonormal basis
provided by Lemma 4.4.1. A similar computation as in (4.4), using the isospectrality
of Ω and Lemma 4.4.8, yields

2∑
i=1

cos2(φi) = tr(Ω(P̄1e0)) + tr(Ω(P̄2e0))− tr(Ω(J3e3))

= cos2(φ1) + cos2(φ2) + 2 sin2(φ1) sin
2(φ2)⟨J1e1, e2⟩2

+ 2 (cos(φ1) cos(φ2) + sin(φ1) sin(φ2)⟨e1, e2⟩)2 .

Then,
⟨e2, J1e1⟩ = 0 and ⟨e1, e2⟩ = − cot(φ1) cot(φ2). (4.12)

Also, using (4.12), if i ∈ {1, 2} we get

0 = det

(
Ω

(
1√
2
e0 +

1√
2
P̄ie0

))
=

1

4
⟨e3, Jiei⟩2 cos2(φ1) cos

2(φ2) sin
2(φi).

Thus,
⟨e3, Jiei⟩ = 0, i ∈ {1, 2}. (4.13)

Taking into account (4.12) and (4.13), we can calculate

2∑
i=1

cos2(φi) = tr(Ω(P̄1e0)) = cos2(φ1) + ⟨e1, e3⟩2 sin2(φ1),

2∑
i=1

cos2(φi) = tr(Ω(P̄2e0)) = cos2(φ2) + sin2(φ2)(⟨e2, e3⟩2 + ⟨e2, J3e3⟩2),

whence
⟨e1, e3⟩ = ε cos(φ2)/ sin(φ1),

cos2(φ1) = sin2(φ2)(⟨e2, e3⟩2 + ⟨e2, J3e3⟩2),
(4.14)

for some ε ∈ {−1, 1}. Using these relations we compute

2∑
i=1

cos2(φi) = tr

(
Ω

(
1√
2
P̄1e0 +

1√
2
P̄2e0

))
=

2∑
i=1

cos2(φi) + ε
1

2
⟨e2, J3e3⟩ sin(2φ2),

from where (note that we are assuming φ2 ̸= π/2)

⟨e2, J3e3⟩ = 0 and ⟨e2, e3⟩ = ε′ cos(φ1)/ sin(φ2), (4.15)

for some ε′ ∈ {−1, 1}. Remark 4.4.2, Lemma 4.4.8 and Equations (4.12), (4.13), (4.14)
and (4.15) imply ei ∈ Hn ⊖ (ImH)ej , i, j ∈ {1, 2, 3}. Furthermore, if ε′ = −ε, we
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have that 0 is an eigenvalue of Ω
(
(e0 + J3e3)/

√
2
)
with double multiplicity, yielding a

contradiction with the fact φ2 ̸= π/2. Hence, ε′ = ε which, along with Lemma 4.4.9,
concludes the proof of the necessity in the statement.

The converse implication follows from verifying by direct calculation that the
matrix Ω(v) is diagonal with diagonal entries cos2(φ1), cos

2(φ2), cos
2(φ3), for any

unit v spanned by the basis of V given in the statement. This also proves the final
claim of the proposition.

Remark 4.4.11. In view of Proposition 4.4.10, there can be zero, one or two types of
4-dimensional real subspaces V of Hn with Φ(V ) = (φ1, φ2, φ3), φ1 > 0, depending
on whether the triple (φ1, φ2, φ3) satisfies cos(φ1) + cos(φ2)− cos(φ3) > 1, cos(φ1) +
cos(φ2)−cos(φ3) ≤ 1 < cos(φ1)+cos(φ2)+cos(φ3), or cos(φ1)+cos(φ2)+cos(φ3) ≤ 1,
respectively. Thus, it will be convenient to denote by V+ and V− the subspaces
described in Proposition 4.4.10 with ε = 1 or ε = −1, respectively. Note that such
subspaces depend on the triple (φ1, φ2, φ3), but we do not specify this in the notation
for the sake of simplicity.

Observe that, if φ3 = π/2, V+ and V− are actually equivalent, i.e. there exists
T ∈ Sp1Spn such that TV+ = V−. Indeed, one can take a T ∈ Sp1Spn that commutes
with Ji for all i ∈ {1, 2, 3}, fixes each ei with i ∈ {0, 1, 2}, and sends e3 to −e3. For
convenience, from now on we will say that any 4-dimensional real subspace of Hn with
constant quaternionic Kähler angle (φ1, φ2, π/2) is of type V+, and not of type V−.

In order to encompass all examples of 4-dimensional subspaces with constant
quaternionic Kähler angle into the V±-notation, we have to consider the case φ1 = 0
analyzed in Proposition 4.4.7. Thus, we adopt the convention that any 4-dimensional
real subspace V with Φ(V ) = (0, φ, φ), φ ∈ [0, π/2], is of type V+, and not of type
V−.

Remark 4.4.12. The choice of the ±-notation in Remark 4.4.11 is motivated by certain
important property of these subspaces that we now explain. Assume φ3 ̸= π/2. The
last claim of Proposition 4.4.10 enables us to reproduce the discussion in Section §4.3
applied to V = V±, and hence, P̄i = πV±Ji/ cos(φi), i ∈ {1, 2, 3}, determine a Cl3-
module structure on V±, which must be irreducible since dimR V± = 4. By the
classification of Clifford modules, either P̄1P̄2 = P̄3 (and hence P̄iP̄i+1 = P̄i+2 for all
i ∈ {1, 2, 3}) or P̄1P̄2 = −P̄3 (and hence P̄iP̄i+1 = −P̄i+2 for all i ∈ {1, 2, 3}). One
can easily check using the basis of V± in Proposition 4.4.10 that V+ satisfies precisely
the former relation, whereas V− satisfies the latter.

Remark 4.4.13. Let V be a real subspace of dimension 4 in Hn, n ≥ 4, with Φ(V ) =
(φ1, φ2, φ3). If φ1 = 0, by Proposition 4.4.7 we have Φ(V ) = (0, φ, φ) for some
φ ∈ [0, π/2]. In this case, when φ = 0, V is quaternionic, i.e. V = Hv, for some
non-zero vector v ∈ V , whereas if φ > 0, V cannot fit inside a quaternionic line H,
but can be placed in some H2 (see Section §4.1), and thus HV = H2.

Now assume φ1 > 0. By Proposition 4.4.10 and Lemma 4.4.9, V can be placed in
some H3 if and only if V = V+ and cos(φ1)+cos(φ2)− cos(φ3) = 1, or if V = V− and
cos(φ1)+cos(φ2)+cos(φ3) = 1; in this case HV = H3. Otherwise we have HV = H4.

We end this section by showing that V+ and V− are not equivalent.
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Proposition 4.4.14. There does not exist T ∈ Sp1Spn such that TV+ = V−.

Proof. We can assume that Φ(V+) = Φ(V−) since the quaternionic Kähler angle
is preserved by transformations in Sp1Spn. We also assume φ3 ̸= π/2 in view of
Remark 4.4.11. We consider the bases for V± given in Proposition 4.4.10, where
we use the notation e±i accordingly, and assume without loss of generality that the
canonical basis {J1, J2, J3} of J used is the same in both cases.

Let us suppose that there is T ∈ Sp1Spn such that TV+ = V−. Denote by π+
and π− the orthogonal projections onto V+ and V−, respectively. By assumption
Tπ+ = π−T . Let {J ′

1, J
′
2, J

′
3} be the canonical basis of J given by J ′

i = TJiT
−1,

i ∈ {1, 2, 3}, and denote P+
i = π+Ji and P

′
i = π−J

′
i , i ∈ {1, 2, 3}. Then, for any unit

vector w ∈ V− and i, j ∈ {1, 2, 3}, we have

⟨P ′
iw,P

′
jw⟩ = ⟨π−TJiT−1w, π−TJjT

−1w⟩ = ⟨Tπ+JiT−1w, Tπ+JjT
−1w⟩

= ⟨TP+
i T

−1w, TP+
j T

−1w⟩ = ⟨P+
i T

−1w,P+
j T

−1w⟩ = cos2(φi)δij ,

where in the last equality we have used the last claim of Proposition 4.4.10 applied
to V+.

Thus, the canonical basis {J ′
1, J

′
2, J

′
3} of J diagonalizes the bilinear form L−

w (given
in Proposition 4.1.1) associated with the subspace V−, for any unit vector w ∈ V−.
By the last claim of Proposition 4.4.10 applied to V−, the basis {J1, J2, J3} also has
this property. Hence, there exists an orthogonal matrix A ∈ SO3 such that

(J ′
1, J

′
2, J

′
3) = (J1, J2, J3)A

and A commutes with the diagonal matrix with diagonal entries (φ1, φ2, φ3). Then
V− coincides with the span of

{e−0 , cos(φ1)J
′
1e

−
0 + sin(φ1)J

′
1e

−
1 , cos(φ2)J

′
2e

−
0 + sin(φ2)J

′
2e

−
2 , cos(φ3)J

′
3e

−
0 + sin(φ3)J

′
3e

−
3 },

where in this basis we have just changed Ji by J
′
i in the original basis of V−. Since for

V− we had P̄−
1 P̄

−
2 = −P̄−

3 by Remark 4.4.12, where P̄−
i = π−Ji/ cos(φi), i ∈ {1, 2, 3},

we also have P̄ ′
1P̄

′
2 = −P̄ ′

3, where P̄
′
i = P ′

i/ cos(φi) = π−J
′
i/ cos(φi), i ∈ {1, 2, 3}.

However, denoting P̄+
i = π+Ji/ cos(φi), i ∈ {1, 2, 3}, which by Remark 4.4.12

satisfy P̄+
1 P̄

+
2 = P̄+

3 , we obtain:

P̄ ′
1P̄

′
2 =

1

cos(φ1) cos(φ2)
π−J

′
1π−J

′
2 =

1

cos(φ1) cos(φ2)
π−TJ1T

−1π−TJ2T
−1

=
1

cos(φ1) cos(φ2)
Tπ+J1π+J2T

−1 = T P̄+
1 P̄

+
2 T

−1 = T P̄+
3 T

−1

=
1

cos(φ3)
Tπ+J3T

−1 =
1

cos(φ3)
π−TJ3T

−1 =
1

cos(φ3)
π−J

′
3 = P̄ ′

3,

which leads to a contradiction with P̄ ′
1P̄

′
2 = −P̄ ′

3.
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4.5 Inhomogeneous isoparametric hypersurfaces
with constant principal curvatures

In this section we investigate when an H-orthogonal sum of copies of the subspaces
V± introduced in the previous section gives rise to a protohomogeneous real sub-
space of Hn. In particular, we obtain subspaces with constant quaternionic Kähler
angle that are not protohomogeneous. As a consequence of [60, Theorem 4.5] these
subspaces give rise to examples of inhomogeneous isoparametric hypersurfaces with
constant principal curvatures in quaternionic hyperbolic spaces.

Let us consider a real subspace V of Hn such that

(C1) V =
⊕l

r=1 Vr, where

(C2) dimR Vr = 4, for each r ∈ {1, . . . , l},

(C3) Vr and Vs are H-orthogonal for every r, s ∈ {1, . . . , l}, r ̸= s,

(C4) Φ(Vr) = (φ1, φ2, φ3), for all r ∈ {1, . . . , l},

(C5) {J1, J2, J3} is a canonical basis of J such that every non-zero vector in Vr,
r ∈ {1, . . . , l}, has Kähler angle φi with respect to Ji for each i ∈ {1, 2, 3}.

Then, Lemma 4.3.3 guarantees that Φ(V ) = (φ1, φ2, φ3). By Proposition 4.4.10,
Remark 4.4.11 and Proposition 4.4.14, each factor Vr is either equivalent to V+ or to
V−. Then, if we define l+ and l− as the number of subspaces in the decomposition of
V equivalent to V+ and to V−, respectively, we have l = l+ + l−. In this situation we
say that the real subspace V has type (l+, l−).

We claim that the type of V is well defined for real subspaces of Hn in the condi-
tions (C1-5) above. If φ3 = π/2, then by Remark 4.4.11 the type of V is (l, 0). Let
us assume that φ3 ̸= π/2. As usual, we let P̄i = πV Ji/ cos(φi), for each i ∈ {1, 2, 3};
since HVr ⊥ HVs for r ̸= s, we have P̄i|Vr = πVrJi/ cos(φi). Thus, it follows from
Remark 4.4.12 that P̄1P̄2|Vr

= P̄3|Vr
or P̄1P̄2|Vr

= −P̄3|Vr
, depending on whether

Vr is equivalent to V+ or V−, respectively. Hence, dimR Ker(P̄1P̄2 − P̄3) = 4l+ and
dimR Ker(P̄1P̄2+ P̄3) = 4l−. Moreover, the type is independent of the canonical basis
of J chosen. Indeed, if {J ′

1, J
′
2, J

′
3} is another canonical basis satisfying (C5), then

there exists an orthogonal matrix A ∈ SO3 such that (J ′
1, J

′
2, J

′
3) = (J1, J2, J3)A and

commuting with the diagonal matrix with diagonal entries (φ1, φ2, φ3), and one can
easily argue (similarly as in the proof of Proposition 4.4.14) that Ker(P̄ ′

1P̄
′
2 ± P̄ ′

3) =
Ker(P̄1P̄2 ± P̄3). All in all, the type is well defined. More than that, a slight modifi-
cation of the previous argument shows that two real subspaces V and W of Hn in the
conditions (C1-5) are equivalent if and only if Φ(V ) = Φ(W ) and their types coincide.

Proposition 4.5.1. Let V be a real subspace of Hn satisfying conditions (C1-5).
Then, V is protohomogeneous if and only if the type of V is (l, 0) or (0, l).

Proof. Assume that V is protohomogenous. By conditions (C1-5), V =
⊕l

r=1 Vr,
where each factor Vr is equivalent either to V+ or to V−. If φ3 = π/2, by Remark 4.4.11
each factor Vr is equivalent to V+, whence V has type (l, 0).



4.5 Inhomogeneous examples 85

Let us suppose that V has type (l+, l−) where l+, l− ≥ 1. In this case, k =
4l ≥ 8. Let r, s ∈ {1, . . . , l}, r ̸= s, be such that Vr is equivalent to V+, and Vs is
equivalent to V−. Let v+ and v− be unit vectors in Vr and Vs, respectively. Since V
is protohomogeneous, there is T ∈ Sp1Spn such that TV = V and Tv+ = v−. Now,
since k ≥ 8, by Proposition 4.3.1 we can assume that T is such that TJi = JiT for
each i ∈ {1, 2, 3}. Then,

TPiv+ = TπV Jiv+ = πV TJiv+ = πV JiTv+ = πV Jiv− = Piv−,

for each i ∈ {1, 2, 3}. Then, T sends the subspace Vr = span{v+, P1v+, P2v+, P3v+}
onto Vs = span{v−, P1v−, P2v−, P3v−}. This yields a contradiction with Proposition
4.4.14.

Now we will prove the converse. Let V be of type (l, 0) or (0, l). We can assume
φ1 > 0. Otherwise, by Proposition 4.4.7 we have Φ(V ) = (0, φ, φ) with φ ∈ [0, π/2],
and then V is protohomogeneous (see Section §4.1). We can also assume φ2 < π/2.
Otherwise, Φ(V ) = (φ, π/2, π/2) for φ ∈ [0, π/2], and then V would again be proto-
homogeneous (see Section §4.1).

As usual, consider the transformations P̄i = πV Ji/ cos(φi) for each i ∈ {1, 2, 3}
with φi ̸= π/2, and define P̄3 := P̄1P̄2 if φ3 = π/2. By the characterization of
type, we have P̄1P̄2 = εP̄3, where ε = 1 if the type of V is (l, 0), and ε = −1 if
the type of V is (0, l). Thus, taking into account condition (C5) and the discussion
in Subsection §4.3.2 (or alternatively by the very definition of V ), we deduce that
{P̄1, P̄2, εP̄3} is a canonical basis of a quaternionic structure on V .

Let v1, w1 ∈ V be arbitrary unit vectors. Then, {P̄iv1}3i=0 and {P̄iw1}3i=0, where
P̄0 = Id, are R-orthonormal bases for some 4-dimensional subspaces Vv1 and Vw1

of
V , respectively. By construction, Vv1 and Vw1

are P̄i-invariant for each i ∈ {1, 2, 3},
and then {P̄1, P̄2, εP̄3} is a canonical basis of a quaternionic structure when restricted
to Vv1 and to Vw1 . Moreover, every non-zero vector in Vv1 or Vw1 has Kähler angle
φi with respect to Ji, for each i ∈ {1, 2, 3}, by Proposition 4.4.10. In conclusion, Vv1
and Vw1

are both equivalent either to V+ or to V−, depending on whether the type of
V is (l, 0) or (0, l), respectively.

Proceeding inductively we can choose unit vectors v2, w2, . . . , vl, wl and define
decompositions V =

⊕l
r=1 Vvr and V =

⊕l
r=1 Vwr

satisfying (C1-5), and such that
Vvr = span{P̄ivr}3i=0 and Vwr

= span{P̄iwr}3i=0 for each r ∈ {1, . . . , l}. Furthermore,
all these subspaces Vvr and Vwr

are equivalent to either V+ or to V−, depending
on the type of V . Thus, for each r ∈ {1, . . . , l} there exist Tr ∈ Spn ⊂ Sp1Spn
such that TrVvr = Vwr , Tr(HVvr ) = HVwr , Tr|Hn⊖HVvr

= Id, and TrJi = JiTr for each
i ∈ {1, 2, 3}. Now let e0 = v1, e1, e2, e3 be the unit vectors given in Proposition 4.4.10
for the subspace Vv1 , and similarly f0 = w1, f1, f2, f3 the unit vectors associated
with the subspace Vw1

. Since ⟨ei, ej⟩ = ⟨fi, fj⟩ for all i, j ∈ {0, 1, 2, 3}, and both
sets of vectors span a totally real subspace of Hn, there exists T ′

1 ∈ Spn ⊂ Sp1Spn
satisfying, in addition to the properties of the previously constructed T1, the relations
T ′
1ej = fj for each j ∈ {0, 1, 2, 3} (in particular T ′

1v1 = w1), and T
′
1Ji = JiT

′
1 for each

i ∈ {1, 2, 3}. Therefore, the composition T = T ′
1T2 . . . Tr ∈ Spn satisfies TV = V and

Tv1 = w1, which shows that V is protohomogeneous.
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Remark 4.5.2. We observe that an H-orthogonal direct sum of real subspaces of di-
mension 4 with the same constant quaternionic Kähler angle (i.e. any subspace V
satisfying (C1-4)) is protohomogeneous if and only if any two factors are congruent
under an element of Spn. The direct implication follows from a combination of the
simultaneous diagonalization result in Corollary 4.3.2 (which implies condition (C5)),
Lemma 4.3.3 (which guarantees that V has constant quaternionic Kähler angle) and
Proposition 4.5.1 (whose proof implies that any two factors are congruent under an
element of Spn). The converse follows from a direct calculation using the fact that
condition (C5) is satisfied if any two factors are congruent under an element of Spn,
as the elements of Spn commute with any J ∈ J.

Remark 4.5.3. If we combine Propositions 4.4.10 and 4.5.1, they imply that any
4-dimensional real subspace of Hn with constant quaternionic Kähler angle is proto-
homogeneous. Recall that, by Propositions 4.4.3 and 4.4.5, the same happens with
any 3-dimensional real subspace of Hn with constant quaternionic Kähler angle. This,
along with Proposition 4.2.2 and the well-known protohomogeneity of subspaces V
with Φ(V ) = (φ, π/2, π/2), φ ∈ [0, π/2], implies that any real subspace of Hn with
constant quaternionic Kähler angle and dimension k ̸= 4l, for all l ∈ N, l ≥ 2, is
protohomogeneous.

An immediate consequence of Proposition 4.5.1, along with Lemma 4.3.3, is the
existence of non-protohomogeneous subspaces with constant quaternionic Kähler an-
gle.

Corollary 4.5.4. A real subspace V of Hn, satisfying conditions (C1-5) above in this
section and of type (l+, l−) with l+, l− ≥ 1, has constant quaternionic Kähler angle
but is not protohomogeneous.

Apart from the purely linear algebraic relevance of the examples described in
Corollary 4.5.4, our interest in them stems from the theory of isoparametric hyper-
surfaces in symmetric spaces of non-compact type, which we briefly describe now in
the particular case of the quaternionic hyperbolic space HHn+1; we refer to [60, 65]
for more details.

Following the notation in Subsection §1.3.3, let M = HHn+1 = G/K, where G =
Sp1,n+1, and K = Sp1 × Spn+1 is the isotropy group at some base point o ∈ HHn+1.
Let AN be the solvable part of the Iwasawa decomposition of G = Sp1,n, and a⊕ n =
a⊕ gα ⊕ g2α its Lie algebra, where gα ∼= Hn.

Given any non-zero real subspace V of gα ∼= Hn, we define SV as the connected
subgroup of AN with Lie algebra

sV = a⊕ (gα ⊖ V )⊕ g2α.

Then, by [60, Theorem 4.5], the orbit of SV through the base point o, together with
the distance tubes around it, constitute an isoparametric family of hypersurfaces
on HHn+1:

Theorem 4.5.5. The tubes of any radius around the submanifold SV · o are isopara-
metric hypersurfaces of HHn+1. Moreover, they have constant principal curvatures if
and only if V has constant quaternionic Kähler angle in Hn.
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As a consequence we get Theorem C.

Proof of Theorem C. The combination of Theorem 3.4.1, Corollary 4.5.4 and The-
orem 4.5.5 guarantees the existence of inhomogeneous isoparametric hypersurfaces
with constant principal curvatures in quaternionic hyperbolic spaces.

We note that this construction does not provide any such example in HHn+1 with
n ≤ 6, but it does so for n ≥ 7. This follows from Corollary 4.5.4 along with the fact
that, by Remark 4.4.13, the lowest integer n such that Hn admits a real subspace
V of type (l+, l−) with l+, l− ≥ 1 is n = 7. Indeed, we can take V = V+ ⊕ V− ⊂
Hn satisfying conditions (C1-5), for any triple (φ1, φ2, φ3), φ3 ̸= π/2, such that
cos(φ1)+cos(φ2)+cos(φ3) = 1 if n = 7, or such that cos(φ1)+cos(φ2)+cos(φ3) ≤ 1
if n ≥ 8.

4.6 Proofs of Theorems A and B

In this section we conclude the proof of the classification of protohomogeneous sub-
spaces of any dimension k > 0 in Hn by providing their moduli space.

Proof of Theorem A. We recall from the statement of Theorem A the definition of
the sets Λ = {(φ1, φ2, φ3) ∈ [0, π/2]3 : φ1 ≤ φ2 ≤ φ3}, and

R+
3 = {(φ,φ, π/2) ∈ Λ : φ ∈ [0, π/2]},

R−
3 = {(φ,φ, π/2) ∈ Λ : φ ∈ [π/3, π/2)},

R+
4 = {(φ1, φ2, φ3) ∈ Λ : cos(φ1) + cos(φ2)− cos(φ3) ≤ 1},

R−
4 = {(φ1, φ2, φ3) ∈ Λ : cos(φ1) + cos(φ2) + cos(φ3) ≤ 1, φ3 ̸= π/2},
S = {(φ1, φ2, φ3) ∈ Λ : cos(φ1) + cos(φ2) + ε cos(φ3) = 1, for ε = ±1}.

Note that R±
3 (resp. R±

4 ) is the set of possible triples that arise as quaternionic
Kähler angles of the 3-dimensional (resp. 4-dimensional) subspaces V φ± (resp. V±)
introduced in Remark 4.4.4 (resp. Remark 4.4.11). Notice that R−

3 ⊂ R+
3 , R

−
4 ⊂ R+

4 ,
S ⊂ R+

4 ∪ R−
4 , and R−

4 is precisely the set of triples for which there exist non-
protohomogeneous subspaces with constant quaternionic Kähler angle.

Let V be a non-zero protohomogeneous subspace of real dimension k in Hn. The
proof of Theorem A follows from the discussion of the following four cases:

(1) Case k ≡ 0 (mod 4). By Corollary 4.3.2 and Lemma 4.3.3, V satisfies conditions
(C1-5) in Section §4.5, and by Proposition 4.5.1, V is of type (k/4, 0) or (0, k/4).

Put V =
⊕k/4

r=1 Vr as in (C1). Now, by Remark 4.4.13 we have dimH(HVr) ∈
{1, 2, 3, 4}, depending on the value of the triple Φ(V ). Thus, combining this
with the fact that HVr ⊥ HVs = 0 for r ̸= s, we can distiguish four subcases
of relative sizes of n and k, and determine the possible triples Φ(V ) for each
subcase:

(a) If k > 2n, then Φ(V ) = (0, 0, 0).
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(b) If 4n/3 < k ≤ 2n, then Φ(V ) ∈ {(0, φ, φ) ∈ Λ : φ ∈ [0, π/2]}.
(c) If n < k ≤ 4n/3, then Φ(V ) ∈ S.

(d) Let us assume that k ≤ n. If V is of type (k/4, 0), then Φ(V ) ∈ R+
4 ,

whereas if V is of type (0, k/4), then Φ(V ) ∈ R−
4 . Observe that for each

triple (φ1, φ2, φ3) in R−
4 (resp. in R+

4 \R−
4 ) we have exactly two (resp. one)

inequivalent protohomogeneous subspaces V of dimension k with Φ(V ) =
(φ1, φ2, φ3).

(2) Case k odd, k ̸= 3. By Proposition 4.2.2 we have Φ(V ) = (π/2, π/2, π/2).
Hence, by the classification of totally real subspaces, we must have k ≤ n.

(3) Case k ≡ 2 (mod 4). By Proposition 4.2.2 we have Φ(V ) = (φ, π/2, π/2), for
some φ ∈ [0, π/2]. These examples are classified (see Section §4.1). Thus,
we must have k ≤ 2n. Furthermore, when n < k ≤ 2n, we have Φ(V ) =
(0, π/2, π/2), whereas when k ≤ n we have Φ(V ) = (φ, π/2, π/2), for some
φ ∈ [0, π/2].

(4) Case k = 3. By Proposition 4.2.2, Φ(V ) = (φ,φ, π/2) for some φ ∈ [0, π/2]. If
n ≥ 3, Propositions 4.4.3 and 4.4.6 guarantee that, for each triple (φ,φ, π/2)
in R−

3 (resp. in R+
3 \ R−

3 ) we have exactly two (resp. one) inequivalent sub-
spaces with Φ(V ) = (φ,φ, π/2). By Remark 4.4.4, if n = 2, we have Φ(V ) ∈
{(0, 0, π/2), (π/3, π/3, π/2)}, whereas if n = 1, Φ(V ) = (0, 0, π/2).

Proof of Theorem B. This follows from combining Theorem A with the theory of
cohomogeneity one actions on symmetric spaces of non-compact type and rank one
(cf. Section §3.4). We just have to note that the action producing the solvable foliation
(resp. the action with a totally geodesic singular orbit HHℓ, ℓ ∈ {1, . . . , n}) can be
recovered by the method that yields the actions with a non-totally geodesic singular
orbit by taking V as a 1-dimensional subspace of gα ∼= Hn (resp. by taking V as a
quaternionic subspace Hn−ℓ+1 in gα ∼= Hn).
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Chapter 5

Totally geodesic submanifolds

Intuitively, a submanifold of a Riemannian manifold is totally geodesic if it curves
as the ambient space. If we accept the second fundamental form as a way of mea-
suring how complicated the extrinsic geometry of a submanifold is, it turns out that
totally geodesic submanifolds are those with the simplest one, i.e. vanishing second
fundamental form.

Totally geodesic submanifolds play a fundamental role in Riemannian geometry.
To begin with, apart from their intrinsic interest, their use has had a great impact,
not only on the geometry of submanifolds, but also in areas of geometry closer to
topology, such as the study of spaces with positive curvature, or even in number
theory (the study of arithmetic groups), as we briefly discuss below.

Alexandrov’s Theorem [2] states that an embedded hypersurface in the Euclidean
space has constant mean curvature if and only if it is a round sphere. This theorem
was generalized in several directions, see e.g. [92, 93] for some examples in the context
of symmetric spaces. The method that Alexandrov used to prove this theorem was
to reflect a given hypersurface with constant mean curvature with respect to totally
geodesic hyperplanes and use a maximum principle for elliptic operators. The use of
totally geodesic hypersurfaces in this situation is crucial since it guarantees that the
reflection is an isometry.

A map f : N → M between (not necessarily connected) manifolds is said to be
ℓ-connected if πi(f) : πi(N) → πi(M), the induced map between the i-th homotopy
groups, is an isomorphism for every i < ℓ and a surjection for i = ℓ. Let M be a
compact Riemannian manifold with positive curvature and dimension n. A classical
result in the area of spaces with positive curvature is Frankel’s Theorem, see [80],
which states that two compact totally geodesic submanifolds of M with dimensions
n1 and n2 must intersect provided that n1 + n2 ≥ n. Moreover, Frankel proved that
a smooth compact totally geodesic embedding f : N →M , where 2 dimN ≥ n, must
be 1-connected, see [81]. In 2003, Wilking [184] generalized this fact by proving the
so-called connectedness principle for manifolds with positive curvature. This states
that if N is a compact embedded totally geodesic submanifold ofM of codimension k,
then the inclusion map N ↪→ M is (n − 2k + 1)-connected. This principle has been
shown to constitute a fundamental tool to prove rigidity results in spaces with positive
curvature, see e.g. [104, 185].

In the context of hyperbolic geometry, or more generally, locally symmetric spaces
of non-compact type, totally geodesic submanifolds also appear to be highly signifi-
cant. LetM = G/K be a symmetric space of non-compact type. Recall that a discrete
subgroup Γ of G is said to be a lattice if the quotient Γ\G has finite volume. This
implies that if Γ acts freely on M , the space Γ\M is a locally symmetric space of
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non-compact type with finite volume. An important notion in this context is that of
arithmetic subgroup, which leads to interesting examples of locally symmetric spaces.
Intuitively, a subgroup is arithmetic if all its points have integer coordinates such as
SL2(Z) in SL2(R); see [137, Chapter 5] for a precise definition of arithmetic lattice. Let
Γ be a lattice of SO0

1,n, M = RHn = SO0
1,n/SOn, and let N = Γ\M be its associated

locally symmetric space, where n ≥ 2. Bader, Fisher, Miller, and Stover [8] proved
that if N contains infinitely many properly immersed closed maximal totally geodesic
submanifolds of dimension at least two, then Γ is arithmetic. They also proved a
similar result in the case that M = CHn, see [9].

Taking the previous discussion into account, it makes sense to carry out a sys-
tematic study of totally geodesic submanifolds in Riemannian manifolds. As we will
see, totally geodesic submanifolds are naturally linked to the presence of isometries.
Hence, the theory of totally geodesic submanifolds is specially rich on homogeneous
spaces, and particularly on symmetric ones. The study and classification of totally
geodesic submanifolds in given Riemannian manifolds will be the main goal of the
rest of this thesis.

This chapter aims to give an overview of the basic concepts related to totally
geodesic submanifolds in Riemannian manifolds. It is structured as follows. In
Section §5.1 we recall some well-known facts about totally geodesic submanifolds
in Riemannian manifolds. Later, in Section §5.2, we discuss the existence and the
uniqueness of totally geodesic submanifolds, and we prove that under certain circum-
stances a totally geodesic submanifold can be extended to a complete one. Finally,
in Section §5.3 we review some background related to totally geodesic submanifolds
in symmetric spaces and we discuss the most important results concerning totally
geodesic submanifolds in symmetric spaces.

5.1 Totally geodesic submanifolds in Riemannian
manifolds

Let M̄ and M be connected Riemannian manifolds and f : M → M̄ an isometric
immersion. We denote by ∇̄ and ∇ the Levi-Civita connections of M̄ and M , re-
spectively. Recall that f : M → M̄ is a totally geodesic immersion in M̄ if its second
fundamental form II vanishes identically. The following lemma expresses a series of
relevant equivalences (cf. [147, Proposition 13, p. 104]).

Lemma 5.1.1. Let M be a connected immersed submanifold of M̄ . Then, the fol-
lowing statements are equivalent:

i) M is totally geodesic.

ii) If α is a curve in M and v ∈ Tα(0)M , the parallel transport of v along α is the
same for M and M̄ .

iii) Every geodesic of M is a geodesic of M̄ .
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iv) The geodesic γv of M̄ with initial conditions γ̇(0) = p and γ̇v(0) = v ∈ TpM
satisfies that γv(t) ∈M for every t ∈ (−ε, ε) for some ε > 0.

From now on, unless otherwise stated, totally geodesic submanifolds will be un-
derstood as immersed submanifolds of the ambient space.

Let us denote by exp the exponential map of M̄ . Let us consider two totally
geodesic submanifolds M1 and M2 of M̄ . Moreover, assume that TpM1 = TpM2 for
some p ∈ M1 ∩M2. Then, by Lemma 5.1.1, there exists some open neighborhood
U of 0 ∈ TpM1 = TpM2 such that expp(U) ⊂ M1 ∩M2. Moreover, if Mi is complete
for each i ∈ {1, 2}, we have that M1 = exppTpM1 = exppTpM2 = M2 (since every

geodesic of Mi is a geodesic in M̄). This proves the following useful lemma.

Lemma 5.1.2. Let Mi be a totally geodesic submanifold of M̄ , where i ∈ {1, 2}. If
TpM1 = TpM2 for some p ∈M1∩M2, thenM1 andM2 coincide around a neighborhood
of p ∈ M̄ . Furthermore, if M1 and M2 are complete, then

M1 = exppTpM1 = exppTpM2 =M2.

Let us consider two totally geodesic submanifolds M1 and M2 of M̄ intersecting
at p ∈ M1 ∩ M2. By Lemma 5.1.1, we can find a small neighborhood Ui of 0 in
TpMi ⊂ TpM̄ such that expp(Ui) ⊂Mi, for each i ∈ {1, 2}. Thus,

expp(U1 ∩ U2) ⊂ expp(U1) ∩ expp(U2) ⊂M1 ∩M2

is a chain of inclusions of open subsets of M1 ∩M2. This shows the following.

Lemma 5.1.3. Let Mi be a totally geodesic submanifold of M̄ , where i ∈ {1, 2}.
Then, for any p ∈ M1 ∩M2, there is an open neighborhood of p in M1 ∩M2 that
is an embedded totally geodesic submanifold of M̄ . In particular, every connected
component of M1 ∩M2 is a totally geodesic submanifold of M̄ .

The next result tells us that a way to construct totally geodesic submanifolds is by
using the isometry group of the ambient space M̄ (cf. [112, Chapter II, Theorem 5.1]).

Theorem 5.1.4. Let M̄ be a Riemannian manifold and let S ⊂ Isom(M̄) be a subset.
Then, every connected component of

Fix(S) := {p ∈ M̄ : φ(p) = p for every φ ∈ S}

is a totally geodesic closed submanifold of M̄ .

Proof. Let p ∈ Fix(S) and take V = {v ∈ TpM̄ : φ∗pv = v for every φ ∈ S}. Now
choose a normal neighborhood U of M̄ around p. We claim that U ∩ Fix(S) =
expp(exp

−1
p (U) ∩ V ). Notice that this implies that every connected component of

Fix(S) is an embedded submanifold of M̄ , since V is a linear subspace of TpM̄ .
On the one hand, let us consider a geodesic γv starting at p = γ(0) with γ̇(0) =

v ∈ exp−1
p (U) ∩ V . Thus, since v ∈ V , the uniqueness of geodesics, and the fact that

isometries map geodesics to geodesics imply that φ ◦ γ = γ for every φ ∈ S. This
proves that expp(exp

−1
p (U) ∩ V ) ⊂ U ∩ Fix(S), since U is a normal neighborhood.
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On the other hand, assume that q ∈ U ∩Fix(S) and that there is not any geodesic
γv starting at p with initial velocity in exp−1

p (U)∩ V reaching q. However, since U is
a normal neighborhood there exists a unique minimizing-length geodesic γ joining p
and q. Since γ cannot have initial velocity in exp−1

p (U) ∩ V , there is some isometry
φ ∈ S such that φ ◦γ is a geodesic different from γ but connecting p and q. Then, we
get a contradiction with the uniqueness of γ, and U ∩ Fix(S) ⊂ expp(exp

−1
p (U) ∩ V ).

Thus, for every p ∈ Fix(S) there is a neighborhood U of p ∈ M̄ such that U∩Fix(S)
is a submanifold of M̄ . Hence, every geodesic of M̄ with intial conditions in Fix(S)
stays for a while in Fix(S), proving that Fix(S) consists of an union of totally geodesic
submanifolds. By definition, Fix(S) is closed. Therefore, every connected component
of Fix(S) is a totally geodesic closed embedded submanifold of M̄ .

Although the above result shows that the existence of totally geodesic subman-
ifolds is linked to the existence of isometries, there are totally geodesic submani-
folds that are not fixed points of a set of isometries. Furthermore, it is known that
“generic” Riemannian manifolds do not admit totally geodesic submanifolds of di-
mension greater than 1, see [142].

Theorem 5.1.4 suggests that in a Riemannian manifold with few isometries there
are few totally geodesic submanifolds. This implies that an interesting setting to study
totally geodesic submanifolds is that of homogeneous spaces, which have a large group
of isometries. A useful characterization of these spaces in terms of Killing fields is the
following.

Lemma 5.1.5. Let M be a connected Riemannian manifold. Then, the following
statements are equivalent:

i) M is homogeneous.

ii) There exists some point p ∈M such that TpM is spanned by Killing vector fields
of M evaluated at p.

iii) For every p ∈M , TpM is spanned by Killing vector fields of M evaluated at p.

Proof. LetM = G/K be a homogeneous space with reductive decomposition g = k⊕p
corresponding to some point o ∈M . Notice that p is identified with ToM . Thus, the
Killing vector fields induced by elements of p, when evaluated at o, span ToM .

If M is a Riemannian manifold and there is a point p ∈ M such that TpM is
spanned by the Killing vector fields evaluated at p, then there exists some open
neighborhood U of p such that every point in U lies on an integral curve of a Killing
vector field. This implies that the orbit of p by the action of the isometry group is
open. However, since it is also closed, we have that the isometry group acts transitively
on M .

The next proposition shows that totally geodesic submanifolds of homogeneous
spaces are again homogeneous spaces.

Proposition 5.1.6. Let M̄ be a homogeneous Riemannian manifold and let M be a
complete totally geodesic submanifold of M̄ . Then, M is homogeneous.
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Proof. Let X be a Killing vector field of M̄ . Thus, for each p ∈ M , we have the
orthogonal decomposition

X(p) = X(p)TpM +X(p)νpM for every p ∈M,

where X(p)TpM and X(p)νpM denote the orthogonal projections of X(p) to TpM and
νpM , respectively. Since X is a Killing vector field of M̄ , for each Y ∈ Γ(TM), we
have

0 = ⟨∇̄YX,Y ⟩ = ⟨∇̄YXTM , Y ⟩+ ⟨∇̄YXνM , Y ⟩ = ⟨∇YXTM , Y ⟩,
since M is totally geodesic. Thus, the tangential projection of a Killing vector field
of M̄ to M , when restricted to M , is a Killing vector field of M , since M is complete.
The tangent space of M̄ at every point of M̄ is generated by Killing fields of M̄ ,
implying that the tangent space of M at every point is generated by projecting these
Killing vector fields. Hence, by Lemma 5.1.5, M is homogeneous.

Notice that complete totally geodesic submanifolds of M̄ are intrinsically homo-
geneous, but they are not necessarily extrinsically homogeneous. However, the con-
nected components of the fix point set of any collection of isometries are extrinsically
homogeneous submanifolds, see [14, Lemma 9.1.1]. This shows once again that the
fixed points sets of isometries provide the most natural and well-behaved examples of
totally geodesic submanifolds.

5.2 On the existence and uniqueness of totally
geodesic submanifolds

In this section we discuss the existence and the uniqueness of totally geodesic sub-
manifolds, and we prove that under certain hypotheses a totally geodesic submanifold
can be extended to a complete one.

The next result was proved by Cartan. A proof of it can be consulted in [14,
p. 274]. In this section Bε(0) denotes the ball of radius ε > 0 around the origin in a
tangent space TpM̄ of an ambient manifold M̄ .

Theorem 5.2.1. Let M̄ be a Riemannian manifold, p ∈ M̄ and V be a linear subspace
of TpM̄ . Then, there exists a totally geodesic submanifold M of M̄ with p ∈ M
and TpM = V if and only if there exists some ε > 0 such that for every geodesic
γ : [0, 1] → M̄ with γ(0) = p and γ̇(0) ∈ V ∩Bε(0), the Riemannian curvature tensor
of M̄ at γ(1) preserves the parallel transport of V along γ from p to γ(1).

Our intention for this subsection is to enhance Theorem 5.2.1 by proving a global
version of it, see Lemma 5.2.5. From now on we assume that M̄ is an analytic Rie-
mannian manifold. We denote the Grassmann bundle of k-planes of TM̄ by Gk(TM̄)
and the injectivity radius of M̄ at p by inj(p). We mainly follow [14, §10.3].

Lemma 5.2.2. Let M̄ be an analytic Riemannian manifold and let M be a totally
geodesic submanifold of M̄ passing through p ∈ M̄ . Then, expp(Bδ(0) ∩ TpM) is an

embedded totally geodesic submanifold of M̄ for every δ ∈ (0, inj(p)).



96 5 Totally geodesic submanifolds

Proof. Let V = TpM . By Theorem 5.2.1, there exists some ε > 0 such that for every
geodesic γv : [0, 1] → M̄ with γv(0) = p and γ̇v(0) = v ∈ Bε(0)∩TpM , the Riemannian
curvature tensor of M̄ at γ(1) preserves the parallel transport of V along γ from p to
γ(1).

Now consider the geodesic γ̂v : [0, 1] → M̄ with γ̂v(0) = p and with initial velocity
v ∈ (Bδ(0) \ Bε(0)) ∩ TpM . We extend X,Y, Z ∈ V and ξ ∈ V ⊥ := TpM̄ ⊖ V to
parallel vector fields along γ̂v. Thus, the map Φ: [0, 1] → R, given by t ∈ [0, 1] 7→
⟨R̄(X(t), Y (t)), Z(t), ξ(t)⟩ is analytic. However, by the uniqueness of parallel trans-
port, Φ restricted to [0, ε

2||v|| ) is identically zero, which implies that Φ is identically

zero by the analiticity of Φ. Consequently, the result follows by Theorem 5.2.1.

Let fi : Mi → M̄ , with i ∈ {1, 2}, be an isometric immersion. We say that f1 and
f2 are equivalent if there exists an isometry φ : M1 →M2 such that f1 = f2◦φ. Notice
that every isometric immersion f : M → M̄ induces a smooth map f̃ : M → Gk(TM̄),

given by f̃(p) = f∗p(TpM), for every p ∈ M , where k = dimM . The isometric

immersion (M,f) is said to be compatible if M is connected and f̃ is injective. Since
totally geodesic submanifolds are locally determined by its tangent space at some
point, see Lemma 5.1.2, every compatible totally geodesic isometric immersion f is
completely determined, up to equivalence, by the image of f̃ in Gk(TM̄).

Let T be the collection of all the equivalence classes of compatible totally geodesic
immersions into M̄ . We define a partial order ⪯ in T in the following way. We write
(M1, f1) ⪯ (M2, f2) if there exists an injective local isometry i : M1 → M2 such that
f1 = f2 ◦ i. If this happens, we say that (M2, f2) extends (M1, f1). By Lemma 5.1.2,

we have (M1, f1) ⪯ (M2, f2) if and only if f̃1(M1) ⊂ f̃1(M2).
For each V ∈ Gk(TM̄), we denote by FV the set of totally geodesic immersions

f : M → M̄ from a connected Riemannian manifold M into M̄ with V ∈ f̃(M).

Moreover, we define GV :=
⋃
f∈FV

f̃(M) ⊂ Gk(TM̄).
The following lemma is a technical one, see [14, §10.3] for a proof.

Lemma 5.2.3. Following the notation above, let us assume that GV ̸= ∅ and consider
a set of compatible totally geodesic isometric immersions {fi : Mi → M̄}i∈I such that

GV =
⋃
i∈I f̃i(Mi). Furthermore, let Y =

⊔
i∈IMi and consider the equivalence

relation ∼ in Y such that

pi ∼ pj if pi ∈Mi, pj ∈Mj and f̃i(pi) = f̃j(pj), where i, j ∈ I.

Then, the following statements hold:

i) M̂ = Y/ ∼ is a connected smooth manifold.

ii) The map g : M̂ → M̄ , [pi] 7→ fi(pi) is a compatible totally geodesic immersion.

iii) (M̂, g) extends (Mi, fi) for every i ∈ I.

iv) (M̂, g) is maximal for ⪯.
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The isometric immersion g : M̂ → M̄ constructed in Lemma 5.2.3 is, up to equiv-
alence, the unique maximal compatible totally geodesic isometric immersion into M̄
with V ∈ g̃(M̂).

Lemma 5.2.4. Let M be a compatible totally geodesic submanifold of an analytic
and complete Riemannian manifold M̄ . Then, M̂ , the extension of M given by
Lemma 5.2.3, is complete.

Proof. By Lemma 5.2.3, there exists an extension of (M,f) given by (M̂, g). We will

prove that (M̂, g) is complete.

Let us proceed by contradiction. Thus, we will assume that γ : [0, b) → M̂ is a unit

speed geodesic in M̂ that cannot be further extended beyond b > 0. Now consider
the geodesic g ◦ γ in M̄ . Since M̄ is complete, there exists q = limt→b− g(γ(t)) ∈ M̄ .

Notice that q ̸∈ g(M̂). Furthermore, there exists a uniformly normal neighborhood
U around q in M̄ . Then, there is some ε > 0 such that the injectivity radius satisfies
inj(p) ≥ ε for every p ∈ U . Now take t0 such that b− t0 < ε and q′ = g ◦ γ(t0) ∈ U .
Since q′ ∈ U , by Lemma 5.2.2, there is a totally geodesic submanifold N of M̄ passing
through q′ which also contains q. However, by Lemma 5.2.3, N is extended by M̂
contradicting the assumption that q ̸∈ g(M̂).

Let k be a non-negative integer. The k-th covariant derivative of the curvature
tensor R̄ denoted by ∇̄kR̄ is a (1, k + 3)-tensor. A subspace V ⊂ TpM̄ is invariant
under (∇̄kR̄)p if

(∇̄kR̄)(V1, . . . , Vk, X, Y, Z) ∈ V

for every X,Y, Z, V1, . . . , Vk ∈ V .

Theorem 5.2.5. Let M̄ be an analytic complete Riemannian manifold, p ∈ M̄ and
V a linear subspace of TpM̄ . There exists a complete totally geodesic submanifold M
of M̄ such that p ∈ M and expp(V ) = M if and only if (∇̄kR̄)p leaves V invariant
for every k ≥ 0.

Proof. Let us extend X,Y, Z ∈ V and ξ ∈ V ⊥ := TpM̄ ⊖ V to parallel vector fields
along an arbitrary geodesic γ : [0, 1] → M̄ starting at p ∈ M̄ . Then, if V is invariant
under (∇̄kR̄)p for every k ≥ 0 we have

d

dt

k

|t=0
R̄(X(t), Y (t), Z(t), ξ(t)) = 0, for every k ≥ 0.

By the analiticity of M̄ , this shows that R̄(X(t), Y (t), Z(t), ξ(t)) = 0 for every t ∈
[0, 1]. Then, by Theorem 5.2.1, there exists a totally geodesic submanifold N of M̄
with TpN = V defined locally around p ∈ N . Now, this totally geodesic submanifold
N can be extended to a complete totally geodesic submanifold M by Lemma 5.2.3
and Lemma 5.2.4.

Conversely, if M is a totally geodesic submanifold of M̄ , Gauss formula together
with Gauss and Codazzi equations imply that TpM is invariant under (∇̄kR̄)p for
every k ≥ 0 and p ∈M .
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5.3 Totally geodesic submanifolds in symmetric
spaces

The purpose of this section is to recall some well-known facts and results related to
totally geodesic submanifolds in a very particular case of ambient spaces: symmetric
spaces.

LetM = G/K be a connected Riemannian symmetric space, where G = Isom0(M)
is the connected component of the identity of the isometry group of M and the
Lie group K = {g ∈ G : g · o = o} is the isotropy at some point o ∈ M . Let
g be the Lie algebra of G. Let Bg be the Killing form of g, which is defined as
Bg(X,Y ) = tr(adX adY ) for X,Y ∈ g, where ad stands for the adjoint representation
of g.

We consider the geodesic symmetry so at the base point o ∈ M ; it gives rise to
an involutive automorphism σ of G defined by σ(g) = sogso whose differential at the
identity σ∗e is denoted by θ. The map θ is a Lie algebra automorphism of g, and g
decomposes as the direct sum of vector spaces g = k ⊕ p, where k is the fixed point
set of θ and p is the eigenspace of θ corresponding to the eigenvalue −1. In case
−Bg(θX, Y ) is positive definite, this splitting is called the Cartan decomposition of g
with respect to θ, and the involution θ is called a Cartan involution of g.

We recall that for any real semisimple Lie algebra there exists a Cartan involution,
and any two Cartan involutions in a real semisimple Lie algebra differ by an inner
automorphism.

Recall from Subsection §1.3.2 that a symmetric space is irreducible if the universal
cover M̃ of M , which is again a symmetric space, is not isometric to a non-trivial
product of symmetric spaces. Moreover, a symmetric space is said to be of compact
type, non-compact type or Euclidean type if Bg|p×p, the restriction of the Killing
form Bg to p, is negative definite, positive definite or identically zero, respectively.
WhenM is of compact type, thenM is compact with non-negative sectional curvature
and G is a compact semisimple Lie group. If M is of non-compact type, then M is
diffeomorphic to Rn, for some n ≥ 2, and G is a non-compact semisimple Lie group.
The universal cover of a symmetric space splits as a Riemannian product

M̃ =M0 ×M+ ×M−,

where M0, which is called the flat factor, is isometric to a Euclidean space, and M+

and M− are simply connected symmetric spaces of compact and non-compact type,
respectively. It is said that M is semisimple if M0 is a point.

Let Σ be a connected totally geodesic submanifold of a symmetric spaceM = G/K.
By the homogeneity of M , we can assume without loss of generality that o ∈ Σ. By
Theorem 5.2.5 and the fact that symmetric spaces have parallel curvature tensor, a
totally geodesic submanifold Σ of M with o ∈ Σ and V = ToΣ ⊂ ToM exists if and
only if V ⊂ ToM is curvature invariant. This means that Ro(V, V )V ⊂ V , where R
is the Riemannian curvature tensor of M . Recall that using the identification of p
and ToM , we can write the curvature tensor of M at o as

Ro(X,Y )Z = −[[X,Y ], Z], for X,Y, Z ∈ ToM .
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Thus, a subspace V ⊂ p is curvature invariant if and only if [[X,Y ], Z] ∈ V for every
X,Y, Z ∈ V . A subspace V of p with this property is called a Lie triple system in p.
Hence, there is a one-to-one correspondence between Lie triple systems V in p and
complete totally geodesic submanifolds Σ in M containing o ∈ M . In this chapter
we consider only complete totally geodesic submanifolds since every totally geodesic
submanifold of a symmetric space can be extended to a complete one. Furthermore,
if V is a Lie triple system in p such that its orthogonal complement in p is also a Lie
triple system, we say that V is a reflective Lie triple system and the corresponding
totally geodesic submanifold is called reflective. A submanifold of M is reflective if
and only if it is a connected component of the fixed point set of an involutive isometry,
see [125].

As we saw in Proposition 5.1.6, complete totally geodesic submanifolds of homo-
geneous spaces are (intrinsically) homogeneous. However, in the setting of symmetric
spaces, we have that complete totally geodesic submanifolds are extrinsically homo-
geneous. To obtain a homogeneous presentation of a totally geodesic submanifold
from a Lie triple system we proceed as follows. Let V ⊂ p be a Lie triple system in p.
Define g′ := [V, V ]⊕V ⊂ k⊕p, which is clearly a subalgebra of g since V is a Lie triple
system. It turns out that if we consider G′, the connected Lie subgroup of G with Lie
algebra g′, then the G′-orbit through o ∈M is a totally geodesic submanifold Σ ⊂M
with ToΣ = V , see [14, Proposition 11.1.2]. This shows that if Σ ⊂ M is a totally
geodesic submanifold passing through o, then pΣ := ToΣ is a Lie triple system in p
and we can define

kΣ := [pΣ, pΣ], gΣ := kΣ ⊕ pΣ.

Then kΣ ⊂ k and gΣ ⊂ g are subalgebras and if we consider the connected Lie
subgroups GΣ ⊂ G with Lie algebra gΣ and KΣ ⊂ K with Lie algebra kΣ, then Σ =
GΣ/KΣ as homogeneous spaces. Moreover, every totally geodesic submanifold Σ ofM
is invariant under sp for every p ∈ Σ. Thus every totally geodesic submanifold Σ ⊂
M is a symmetric space with respect to its induced Riemannian metric. A totally
geodesic submanifold of a symmetric space is said to be semisimple if it is a semisimple
symmetric space. Finally, observe that if V is a Lie triple system in p, then iV is a
Lie triple system in ip, where i is the imaginary unit (see Subsection §1.3.2). This
means that a totally geodesic submanifold Σ of G/K containing o corresponds to a
totally geodesic submanifold Σ∗ of the dual symmetric space G∗/K∗, and Σ∗ is dual
to Σ. Hence, when studying totally geodesic submanifolds it will not be restrictive to
assume that our ambient symmetric space is either of compact type or of non-compact
type.

In the compact setting, the problem of determining the topology of the sym-
metric space that corresponds to a particular Lie triple system is, in general, not
straightforward: the Lie triple system determines the symmetric space only up to
local isometry. In the non-compact setting, however, we do not have this difficulty:
any complete totally geodesic submanifold of a symmetric space of non-compact type
is simply connected.

The problem of classifying totally geodesic submanifolds in Riemannian symmetric
spaces has been a relevant and outstanding topic of research in submanifold geometry
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in the last decades. It was started in 1963 when, in his seminal paper, Wolf [187]
classified totally geodesic submanifolds in symmetric spaces of rank one. For rank two
this problem has been addressed by Chen and Nagano [48, 49] and Klein [107, 108,
109], who found some omissions in the works of Chen and Nagano and completed the
classification. Up to now, there are only complete classifications in symmetric spaces
of rank less than three.

However, classification results for some special kinds of totally geodesic submani-
folds are known. A complete, totally geodesic, proper submanifold is said to be max-
imal if it is maximal with respect to the inclusion among complete, totally geodesic,
proper submanifolds. For example, Ikawa and Tasaki [96] proved that a totally
geodesic submanifold in a simple compact Lie group equipped with a bi-invariant
metric is maximal if and only if it is a maximal subgroup or a Cartan embedding.
Moreover, in [96] they also studied totally geodesic submanifolds of maximal rank.
Another special class of totally geodesic submanifolds is that of reflective subman-
ifolds. They are totally geodesic submanifolds that arise as connected components
of the fixed point set of an involutive isometry. Reflective submanifolds have been
classified by Leung in [123, 124]. Moreover, Lagrangian totally geodesic submanifolds
of Hermitian symmetric spaces were classified by Jaffee [101, 102] and independently
by Leung [125]. More recently, Mashimo [132] classified totally geodesic surfaces in
classical symmetric spaces.

An important invariant of a symmetric space is the index. The index of a sym-
metric space M , denoted by i(M), is the minimal codimension of a proper totally
geodesic submanifold of M . We will say that a totally geodesic submanifold Σ of M
realizes the index of M if Σ has codimension equal to i(M). In a series of papers,
Berndt, Olmos and Rodŕıguez [20, 21, 22, 23, 24] computed the index of irreducible
symmetric spaces. In particular, they proved the so-called index conjecture, which
can be stated as follows. Let M be an irreducible symmetric space of non-compact
type different from G2

2/SO4. Then, there is some reflective submanifold Σ ofM whose
codimension equals the index of M .



Chapter 6

Totally geodesic submanifolds in
products of rank one symmetric

spaces

The classification of totally geodesic submanifolds in symmetric spaces was started
in 1963 by Wolf [187], who classified these objects in symmetric spaces of rank one.
Throughout this chapter, we extend Wolf’s result to products of rank one symmetric
spaces. The contents of this chapter have given rise to the paper [160].

We start by studying totally geodesic submanifolds in a product of two symmetric
spaces of rank one. In particular, we classify totally geodesic submanifolds in simply
connected reducible symmetric spaces of rank two. In the non-compact setting these
are products of hyperbolic spaces FHn, where F ∈ {R,C,H,O}.

Moreover, we will introduce some slight modification of Young tableaux that we
call adapted Young tableaux (see Section §6.2 for the definition), which will be useful
to classify totally geodesic submanifolds in arbitrary products of symmetric spaces of
rank one and to determine their isometry type via Corollary 6.2.11. Young tableaux
have been used to classify irreducible representations of the symmetric group and
they provide an effective way to gain understanding of a given irreducible represen-
tation. We prove a result (Proposition 6.2.12) that gives a correspondence between
these adapted Young tableaux and semisimple totally geodesic submanifolds in prod-
ucts of rank one symmetric spaces. This leads to the following theorem, which, via
duality, gives a classification of totally geodesic submanifolds in arbitrary products of
symmetric spaces of rank one.

Theorem A. LetM =M1×· · ·×Mr, whereMi is a symmetric space of non-compact
type and rank one for each i ∈ {1, . . . , r}.

Then, a submanifold Σ of M is totally geodesic if and only if Σ = Σ0×ΣT , where
ΣT is a semisimple totally geodesic submanifold corresponding to a Young tableau T
adapted to Mσ(1)×· · ·×Mσ(k), Σ0 is a flat totally geodesic submanifold of Mσ(k+1)×
· · · ×Mσ(r), σ is any permutation of {1, . . . , r}, and k ∈ {1, . . . , r}.

In 1977, Chen and Nagano [48, 49] gave a classification of maximal totally geodesic
submanifolds in irreducible symmetric spaces of rank two. In this classification there
were some examples missing that were found by Klein in a series of papers [107, 108,
109]. In view of the known results, Theorem A provides the first classification of (not
necessarily maximal) totally geodesic submanifolds in some symmetric space of rank
higher than two.

101
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A special class of symmetric spaces where totally geodesic submanifolds can be
studied is that of Hermitian symmetric spaces. On the one hand, we can use the
notion of Kähler angle (see Section §4.1) to measure how a submanifold fails to be
complex in a Hermitian symmetric space. For example, a totally geodesic submanifold
is complex or totally real if and only if it has constant Kähler angle equal to 0 or to π/2,
respectively. On the other hand, complex totally geodesic submanifolds in Hermitian
symmetric spaces were classified by Ihara in [95], and real forms, which constitute
a particular type of totally real and totally geodesic submanifolds, were studied and
classified by Jaffe [101, 102] and Leung [124, 125].

While in complex projective spaces (the Hermitian symmetric spaces of compact
type and rank one) a totally geodesic submanifold is either complex or totally real,
in the rank two case the situation is more involved. Klein [107, 109] found two
examples of irreducible totally geodesic submanifolds that are neither complex nor
totally real, one example in the complex quadric and another one in the complex
2-plane Grassmannian. These examples have non-trivial constant Kähler angle, i.e.
they have Kähler angle different from 0 and π/2, and they have been the only known
totally geodesic submanifolds with non-trivial constant Kähler angle up to the present.
In particular, these two examples have constant Kähler angle equal to arccos(1/5).

In this chapter, we will also give a method to construct infinitely many examples
of irreducible totally geodesic submanifolds with non-trivial constant Kähler angle
in irreducible Hermitian symmetric spaces of higher rank. This method will rely on
the construction of certain totally geodesic submanifolds contained in a product of
Hermitian symmetric spaces. Clearly, Cn, n ≥ 2, is a Hermitian symmetric space
where every φ ∈ [0, π/2] can be realized as the constant Kähler angle of some totally
geodesic submanifold. Therefore, we exclude from our study flat Hermitian symmet-
ric spaces. Let Jr be the set of Kähler angles of totally geodesic submanifolds in
irreducible non-flat Hermitian symmetric spaces of rank r, and J =

⋃
r≥1 Jr the set

of Kähler angles of totally geodesic submanifolds in non-flat irreducible Hermitian
symmetric spaces. As a consequence of the classification results in rank one and two,
we have

J1 = {0, π/2}, J2 = {0, arccos(1/5), π/2}.

Consequently, an interesting problem is to compute J or Jr. In this chapter, we will
prove the following result.

Theorem B. Let J be the set of Kähler angles of totally geodesic submanifolds in
non-flat irreducible Hermitian symmetric spaces. Then J contains a dense subset of
[0, π/2].

This chapter is structured as follows. In Section §6.1, we introduce the notion
of diagonal totally geodesic submanifold. Then, we give a structure result for totally
geodesic submanifolds of maximal rank in reducible symmetric spaces. In Section §6.2,
we classify totally geodesic submanifolds in reducible symmetric spaces of rank two.
Furthermore, we introduce the notion of adapted Young tableau, which is used to
classify totally geodesic submanifolds in products of an arbitrary number of rank one
symmetric spaces (Theorem A). Finally, in Section §6.3, we construct totally geodesic
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submanifolds with non-trivial constant Kähler angle in complex Grassmannians, and
prove Theorem B.

6.1 Diagonal totally geodesic submanifolds

In what follows, we introduce the notions of k-diagonal linear subspace and of k-
diagonal totally geodesic submanifold.

Let V be a vector space equipped with a positive definite scalar product and let
us choose subspaces Vi ⊂ V such that V =

⊕r
i=1 Vi is an orthogonal decomposition

of V . We say that a subspace W ⊂ V is k-diagonal with respect to the above
decomposition if there is a collection of indexes {i1, . . . , ik} ⊂ {1, . . . , r} such that
every non-zero element of W has non-trivial projection onto Vl if and only if l = ij
for some j ∈ {1, . . . , k}. For instance, let V := R3 and consider Vi := span{ei},
where {ei}3i=1 is the canonical basis of R3. Then, we have that W = span{e1 + e2}
is a 2-diagonal subspace and W ′ = span{e1 + e2, e1 + e3} is not k-diagonal for any
k ∈ {1, 2, 3}.

Let M be a complete connected Riemannian manifold. Then, by the De-Rham
Theorem, the universal cover M̃ ofM splits as a Riemannian product M̃ =M0×M1×
· · · ×Mr, where M0 a Euclidean space and Mi is a connected, complete, irreducible,
simply connected and non-flat Riemannian manifold for each i ∈ {1, . . . , r}. Moreover,

this decomposition is unique up to order. Let p = (p0, . . . , pr) ∈ M̃ , Σ ⊂ M a

submanifold, and π : M̃ →M the universal covering map such that q = π(p) ∈ Σ.

Then, TpM̃ =
⊕r

i=0 TpiMi, and since π∗p is a linear isometry, we have an orthogonal
decomposition of TqM given by

TqM =

r⊕
i=0

π∗pTpiMi. (6.1)

Then, we say that Σ is k-diagonal at q ∈ Σ if TqΣ ⊂ TqM is k-diagonal with respect
to the decomposition in Equation (6.1), and we say that Σ is diagonal at q if Σ is
k-diagonal at q for some k > 1. It is easy to check that this definition does not depend
on p ∈ π−1(q).

If our ambient space is homogeneous and Σ is extrinsically homogeneous, we say
that Σ ⊂ M is k-diagonal if there is some point q ∈ Σ satisfying that TqΣ ⊂ TqM is
k-diagonal with respect to the decomposition in Equation (6.1). Observe that if the
previous property holds for some point in Σ, then it holds for every point in Σ.

In the present chapter, our interest is on Riemannian symmetric spaces, so let
M = G/K be a simply connected Riemannian symmetric space. Hence, by De-Rham
Theorem,M = M0×· · ·×Mr, whereM0 is isometric to some Euclidean space andMi

is a simply connected, irreducible, semisimple symmetric space for each i ∈ {1, . . . , r}.
Moreover, we can identify TpM with

p :=

r⊕
i=0

pi, (6.2)
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where pi is a Lie triple system in p, which is identified with the tangent space TpiMi

of the i-th factor in the decomposition of M . Observe that [pi, pj ] = 0, for each i, j ∈
{0, . . . , r}, i ̸= j, and that p0 is identified with the flat factor in the decomposition of
M given by De-Rham Theorem, so [p0, p0] = 0. Furthermore, we can define

ki := [pi, pi], gi := ki ⊕ pi,

where i = 1, . . . , r. Then, ki and gi are the Lie algebras corresponding to the isotropy
and isometry groups ofMi, respectively. On p (and hence, on each pi) we will consider
the inner product ⟨·, ·⟩ induced from the metric of M (resp. from the metric of Mi)
via the identification p ∼= ToM (resp. pi ∼= ToiMi).

Let Σ ⊂ M be a totally geodesic submanifold through the point o ∈ Σ ⊂ M .
Then, there is a Lie triple system pΣ ⊂ p corresponding to Σ. Notice that if aΣ is a
maximal abelian subspace of pΣ, then it is contained in a maximal abelian subspace a
of p. By the discussion above, since totally geodesic submanifolds in symmetric spaces
are extrinsically homogeneous, a totally geodesic submanifold Σ ⊂M is k-diagonal if
and only if pΣ ⊂ p is k-diagonal with respect to the decomposition in (6.2).

Notice that proji pΣ is a Lie triple system in pi, where proji : p → pi is the orthog-
onal projection onto pi. Indeed, given X,Y, Z ∈ pΣ, we have

[[projiX,proji Y ],proji Z] = proji[[X,Y ], Z] ∈ proji pΣ,

since the projection proji : g → gi is a Lie algebra homomorphism and pΣ is a Lie
triple system. Hence, giΣ := proji pΣ ⊕ [proji pΣ,proji pΣ] is a Lie subalgebra of gi.
Let GΣ and GiΣ be the connected subgroups of G with Lie algebras gΣ := pΣ⊕ [pΣ, pΣ]
and giΣ, respectively. Therefore, by [14, Proposition 11.1.2], we have that Σ = GΣ · o
and projiΣ = proji(GΣ · o) = GiΣ · o are totally geodesic submanifolds in M and Mi,
respectively, where by proji we also denote the projection M →Mi. Thus, we obtain
the following useful lemma.

Lemma 6.1.1. Let M =M0 × · · · ×Mr be a product of simply connected symmetric
spaces and Σ be a totally geodesic submanifold of M . Then, proji Σ is a totally
geodesic submanifold of Mi for each i ∈ {0, . . . , r}.

The following result gives a sufficient condition for a totally geodesic submanifold
Σ ⊂M to be not diagonal, namely rankΣ = rankM .

Proposition 6.1.2. Let M = M1 × · · · ×Mr be a product of simply connected irre-
ducible symmetric spaces and Σ ⊂ M a totally geodesic submanifold with the same
rank as M . Then, Σ = Σ1×· · ·×Σr, where Σi ⊂Mi is a totally geodesic submanifold.

Proof. Let pΣ be the Lie triple system in p corresponding to Σ. We clearly have
pΣ ⊂

⊕r
i=1 proji pΣ. Let Xj ∈ projj pΣ for some j ∈ {1, . . . , r}, and X ∈ pΣ such

that projj X = Xj . Let aΣ ⊂ pΣ be a maximal abelian subspace containing X.
Since Σ has the same rank as M , aΣ is a maximal abelian subspace of p. But every
maximal abelian subspace of p is the sum of maximal abelian subspaces ai of pi.
Thus, X =

∑r
i=1Xi, where Xi ∈ ai ⊂ aΣ ⊂ pΣ and ai is a maximal abelian subspace

of pi. In particular, Xj belongs to pΣ. Since j ∈ {1, . . . , r} was arbitrary, we have
pΣ =

⊕r
i=1 proji pΣ. By Lemma 6.1.1, we have Σ = Σ1 × · · · × Σr, where each

Σi := proji Σ is a totally geodesic submanifold of Mi, for each i ∈ {1, . . . , r}.
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6.2 Totally geodesic submanifolds in products of
symmetric spaces of rank one

In this section, we give a classification of totally geodesic submanifolds in products of
symmetric spaces of rank one.

Let us recall the classification of totally geodesic submanifolds in symmetric spaces
of rank one. Let M be a symmetric space of non-compact type and rank one. Then,
M is either a real hyperbolic space RHn, n ≥ 2, a complex hyperbolic space CHn,
n ≥ 2, a quaternionic hyperbolic space HHn, n ≥ 2, or the Cayley hyperbolic plane
OH2. We use the notation FHn, where F ∈ {R,C,H,O} and n = 2 if F = O.
Furthermore, the metric of FHn is such that its sectional curvature is equal to −c in
the real case, or pinched between −c and −c/4 in the other cases, for some c > 0. In
this case we will write FHn(c) and simply FHn when the minimal absolute value of the
sectional curvatures is equal to 1. Wolf [187] classified totally geodesic submanifolds in
symmetric spaces of rank one and compact type. Hence, by duality we obtain the list
of proper, non-flat, totally geodesic submanifolds of symmetric spaces of non-compact
type and rank one up to congruence (see Table 6.1).

RHn

RHk 1 ≤ k ≤ n− 1

CHn

CHk 2 ≤ k ≤ n− 1

RHk 1 ≤ k ≤ n

RH2(4)

HHn

HHk 2 ≤ k ≤ n− 1

CHk 2 ≤ k ≤ n

RHk 2 ≤ k ≤ n

RHk(4) 1 ≤ k ≤ 4

OH2

HH2

CH2

RH2

RHk(4) 1 ≤ k ≤ 8

Table 6.1: Totally geodesic submanifolds of dimension d ≥ 2 in symmetric spaces of
non-compact type and rank one, up to congruence.

Notice that in CH2 there are two non-congruent totally geodesic submanifolds
homothetic to RH2: RH2 and RH2(4) (which are totally real and complex in CH2,
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respectively). Also, in HH3 there are two non-congruent totally geodesic submanifolds
homothetic to RH3: RH3 and RH3(4) ⊂ RH4(4). Finally, in HH4 there are two non-
congruent totally geodesic submanifolds homothetic to RH4: RH4 and RH4(4).

Now, we will set the following notation for the rest of this section. Let M =
M1 × · · · ×Mr, where Mi = Gi/Ki = FiHni(ci) is a symmetric space of non-compact
type and rank one for each i ∈ {1, . . . , r}. Let o = (o1, . . . , or) ∈ M . Hence, we can
identify ToM with a Lie triple system p such that p =

⊕r
i=1 pi, where pi is identified

with ToiFiHni(ci). This implies that gi = pi ⊕ [pi, pi] is the Lie algebra of Gi.

Lemma 6.2.1. Let M = M1 × · · · × Mr, where each Mi is a simply connected,
irreducible symmetric space. Let Σ be an irreducible, non-flat, totally geodesic sub-
manifold of M . Then:

i) Σ is k-diagonal for some k ∈ {1, . . . , r} in M .

Moreover, if M is of non-compact type, the following statements hold:

ii) There is some permutation σ of {1, . . . , r} such that Σ is a totally geodesic
submanifold of Nσ(1) × · · · ×Nσ(k), where Nσ(j) := projσ(j) Σ, j ∈ {1, . . . , r}, is
a totally geodesic submanifold of Mσ(j) for every j ∈ {1, . . . , k}.

iii) The embedding of Σ is given by Ψ: Σ → M , Ψ(p) = (Ψ1(p), . . . ,Ψr(p)), where
each map Ψj := projj : Σ → Nσ(j) is a homothety for every j ∈ {1, . . . , k}, and
Ψl : Σ → Nσ(l) is a constant map for every l ∈ {k + 1, . . . , r}.

Proof. Let Σ be an irreducible, non-flat, totally geodesic submanifold of M . Let
proji : gΣ → gi be the i-th orthogonal projection onto gi for i ∈ {1, . . . , r}. We
will prove that proji is either the zero map or injective. Since Σ is an irreducible
symmetric space, its isotropy representation is irreducible. Furthermore, since Σ is
semisimple by our assumptions, we have that kΣ := [pΣ, pΣ] is the Lie algebra of the
isotropy group of Σ. However, Ker proji|pΣ

⊂ pΣ is an invariant subspace under the
isotropy representation of Σ since

proji[Z,X] = [proji Z,proji|pΣ
X] = 0,

where X ∈ Ker proji|pΣ
and Z ∈ kΣ. Thus, Ker proji = 0 or Ker proji|pΣ

= pΣ. This
implies pΣ ⊂ pσ(1) ⊕ · · · ⊕ pσ(k) for some k ∈ {1, . . . , r} and some permutation σ of
{1, . . . , r} such that Ker projσ(j)|pΣ

= 0 for j ∈ {1, . . . , k} and Ker projσ(l)|pΣ
= pΣ

for l ∈ {k + 1, . . . , r}. For a non-zero X ∈ pΣ, we have projσ(j)X ̸= 0 if and
only if j ∈ {1, . . . , k}. Hence, every non-zero element X in pΣ can be written as

X =
∑k
j=1Xj , where each Xj ∈ pσ(j) is non-zero. Thus, Σ is k-diagonal and we have

proved i).
Furthermore, pΣ ⊂ projσ(1) pΣ ⊕ · · · ⊕ projσ(k) pΣ, where each projσ(j) pΣ is a Lie

triple system of pΣ by Lemma 6.1.1. Moreover, Ker projσ(j) is an ideal of gΣ. For
every j ∈ {1, . . . , k} we have Ker projσ(j)|pΣ

= 0, which implies that Ker projσ(j) = 0,
since gΣ is simple as Σ is an irreducible symmetric space of non-compact type. Thus,
projσ(j) : gΣ → projσ(j) gΣ is a Lie algebra isomorphism for each j ∈ {1, . . . , k}.
Hence, projσ(j) gΣ = projσ(j) pΣ ⊕ [projσ(j) pΣ,projσ(j) pΣ] is the Lie algebra of the
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isometry group of Nσ(j), the totally geodesic submanifold of Mσ(j) associated with
the Lie triple system projσ(j) pΣ in pσ(j). Additionally, taking into account that
Ker projσ(j)|pΣ

= pΣ if and only if l ∈ {k + 1, . . . , r}, we have that Σ projects onto

a point in Mσ(l) if and only if l ∈ {k + 1, . . . , r}. Therefore, we have that Σ ⊂
Nσ(1) × · · · × Nσ(k), where Nσ(j) is a totally geodesic submanifold of Mσ(j), which
proves ii).

Finally, we will prove that projσ(i) is a homothety between Σ and Nσ(i). Let
us fix some i ∈ {1, . . . , k} and let us consider the inner product in pΣ given by
(X,Y )i := ⟨projσ(i)X,projσ(i) Y ⟩, for X,Y ∈ pΣ, where ⟨·, ·⟩ is the inner product in
p induced by its identification with ToM . Let g ∈ KΣ, where KΣ is the connected Lie
subgroup of GΣ with Lie algebra kΣ. Then, g =

∏k
i=1 gσ(i) for some gσ(i) ∈ πiKΣ,

where πi : G1 × · · · × Gr → Gi is the projection onto the i-th factor. Thus, for any
X,Y ∈ pΣ,

(Ad(g)X,Ad(g)Y )i = ⟨projσ(i) Ad(g)X,projσ(i) Ad(g)Y ⟩
= ⟨projσ(i) Ad(gσ(i))X,projσ(i) Ad(gσ(i))Y ⟩
= ⟨Ad(gσ(i)) projσ(i)X,Ad(gσ(i)) projσ(i) Y ⟩
= ⟨projσ(i)X,projσ(i) Y ⟩ = (X,Y )i,

where we have used that Ad(gσ(i)) is a linear isometry for ⟨·, ·⟩ which leaves projσ(i) pΣ
invariant, since gσ(i) belongs to the isotropy of Nσ(i) for each i ∈ {1, . . . , k}. Hence,
(·, ·)i is a KΣ-invariant inner product in pΣ. Moreover, since the isotropy represen-
tation of Σ is irreducible by assumption, Schur Lemma implies that projσ(i) is a ho-
mothety between the Lie triple systems pΣ and projσ(i) pΣ for each i ∈ {1, . . . , k}.
In addition to that, projσ(i) : pΣ → projσ(i) pΣ preserves the sectional curvature
since it preserves the Lie bracket. Thus, by [189, Theorem 1.9.2] we have that
projσ(i) : Σ → projσ(i) Σ is an affine diffeomorphism since Σ and projσ(i) Σ are simply
connected. Now let p ∈ Σ, γ be a path in Σ joining o and p and γ̃ := projσ(i) γ. Let
Pγ and Pγ̃ be the parallel transports along to γ and γ̃, respectively. Since projσ(i) is

affine, we have projσ(i)∗p = Pγ̃ ◦ projσ(i)∗o ◦P
−1
γ for every p ∈ M . However, Pγ and

Pγ̃ are isometries and projσ(i)∗o is a homothety since projσ(i) : pΣ → projσ(i) pΣ is a
homothety. Thus, projσ(i)∗p is also a homothety for every p ∈ M and it turns out

that proji : Σ → projσ(i) Σ is a homothety. Consequently, we have proved iii).

Remark 6.2.2. Observe that this lemma admits a converse. Let M = M1 × · · · ×
Mr, where each Mi is an irreducible symmetric space of non-compact type. Let
Σ be a Riemannian manifold and consider the embedding Ψ: Σ → M , Ψ(p) =
(Ψ1(p), . . . ,Ψr(p)), where each map Ψj : Σ → Nj is either a homothety or a con-
stant map, and Nj is any totally geodesic submanifold of Mj , j ∈ {1, . . . , r}. Then,
Ψ(Σ) is a totally geodesic submanifold of N1 × · · · × Nr, since homotheties carry
geodesics into geodesics. Therefore, Ψ(Σ) is a totally geodesic submanifold of M .

Remark 6.2.3. One important consequence of the previous result that deserves to
be highlighted is the following. Let Σ be an irreducible, non-flat, r-diagonal totally
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geodesic submanifold of M = M1 × · · · ×Mr, where Mi is an irreducible symmet-
ric space of non-compact type for each i ∈ {1, . . . , r}. Then, with the usual no-
tation, pΣ ⊂ p1 ⊕ · · · ⊕ pr is an r-diagonal Lie triple system, and we can define
a Lie algebra isomorphism Φi := proji : gΣ → proji gΣ, which sends pΣ onto the
Lie triple system proji pΣ in pi. Therefore, pΣ = {

∑r
i=1 φiX : X ∈ proj1 pΣ},

where φi := ΦiΦ
−1
1 : proj1 gΣ → proji gΣ is a Lie algebra isomorphism sending

proj1 pΣ onto proji pΣ for each i ∈ {1, . . . , r}. Let s ∈ {1, . . . , r}. Notice that
pΣs = {

∑s
i=1 φiX : X ∈ proj1 pΣ} is an s-diagonal Lie triple system in p such

that gΣs is isomorphic to gΣ and then Σs, the totally geodesic submanifold of M
corresponding to pΣs , is homothetic to Σ.

Proposition 6.2.4. Let Σ1,Σ2 be r-diagonal, non-flat, irreducible, totally geodesic
submanifolds in M =M1×· · ·×Mr, where each Mi is an irreducible symmetric space
of non-compact type homothetic to both Σ1 and Σ2. Then, there is g ∈ Isom(M1) ×
· · · × Isom(Mr) ⊂ Isom(M) such that gΣ1 = Σ2.

Proof. Let pΣ1
= {

∑k
i=1 φiX : X ∈ p1}, pΣ2

= {
∑k
i=1 ψiX : X ∈ p1} and gΣj

:=
pΣj ⊕ [pΣj , pΣj ], for j ∈ {1, 2}, where φi, ψi : g1 → gi are Lie algebra isomorphisms
sending p1 onto pi for i ∈ {2, . . . , r}, and φ1 = ψ1 = Idg1 , where Idg1 is the identity
map of g1. Here we are using Remark 6.2.3 along with the assumption that each Mi

is an irreducible symmetric space of non-compact type homothetic to Σ1 and Σ2.
Let σi := ψiφ

−1
i ∈ Aut(gi). First of all, observe that σi|pi

is a linear isometry
of pi since σi ∈ Aut(gi) and the inner product on pi is the restriction of the Killing
form of gi, up to scaling. Furthermore, σi|pi

preserves the curvature tensor of Mi

at oi since this is given by Lie brackets. Hence, σi|pi
is a linear isometry of pi that

preserves sectional curvature at oi. Thus, by [189, Corollary 2.3.14], σi|pi
extends

to an isometry gi ∈ Isom(Mi) that fixes oi ∈ Mi, since it leaves pi invariant. Then,
σi = Ad(gi) and if g :=

∏r
i=1 gi, where g1 is the identity element of Isom(M1), we

obtain

Ad(g)−1gΣ2 =

r∏
i=1

Ad(gi)
−1gΣ2 =

{ r∑
i=1

Ad(gi)
−1ψiX : X ∈ g1

}

=

{ r∑
i=1

φiX : X ∈ g1

}
= gΣ1

,

where we have used σi = ψiφ
−1
i and Ad(gi)|gj

= Idgj
for i ̸= j. Therefore, there is a

g ∈ Isom(M1) × · · · × Isom(Mr) ⊂ Isom(M) such that gGΣ1
= GΣ2

g. Consequently,
gΣ1 = gGΣ1

· o = GΣ2
g · o = GΣ2

· o = Σ2, since g fixes o.

Lemma 6.2.5. Let Σ be a totally geodesic submanifold of M =M1×· · ·×Mr, where
Mi is a symmetric space of non-compact type and rank one, for each i ∈ {1, . . . , r}.
Moreover, let Σ = Σ1 × Σ2, where Σ1 is irreducible and not flat. Then, if projiΣ1

and projj Σ2 have positive dimension, we have that i ̸= j.

Proof. Let Σ = Σ1×Σ2 be a totally geodesic submanifold ofM , where Σ1 is irreducible
and not flat. Let pΣ = pΣ1 ⊕ pΣ2 ⊂ p =

⊕r
i=1 pi be the corresponding Lie triple
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system. Fix some i ∈ {1, . . . , r}. Let us suppose that p̂j := proji pΣj has positive
dimension for both j = 1 and j = 2. By Lemma 6.2.1, we have that dim p̂1 > 1, since
Σ1 is irreducible and not flat. Thus, we can choose X ∈ p̂1 and Y ∈ p̂2 spanning a
2-plane in pi. Moreover, the sectional curvature sec of Mi is given by

sec(X,Y ) = − ⟨[[X,Y ], Y ], X⟩
⟨X,X⟩⟨Y, Y ⟩ − ⟨X,Y ⟩2

.

In particular, [p̂1, p̂2] ̸= 0, since Mi has negative sectional curvature. However, we
have [p̂1, p̂2] = [proji pΣ1

,proji pΣ2
] = proji[pΣ1

, pΣ2
] = 0, since Σ is a Riemannian

product of the symmetric spaces Σ1 and Σ2. Therefore, we obtain a contradiction
with the assumption that both p̂1 and p̂2 have positive dimension.

Remark 6.2.6. It is important to notice that the previous lemma is not true when the
ambient space is a product of irreducible symmetric spaces of rank greater than one.
For instance, one can find a totally geodesic submanifold Σ homothetic to RH2×RH2

in M = M1 ×M2, with Mi = SO2,4/(SO2 × SO4) for each i ∈ {1, 2}, such that both
factors of Σ have non-trivial projection onto each factor of M . Thus, applying [107,
Theorem 4.1 and §5] and duality, there is a totally geodesic submanifold Σ1

i×Σ2
i ⊂Mi,

where Σ1
i and Σ2

i are mutually isometric real hyperbolic planes, for each i ∈ {1, 2}.
Now we can consider Σ̂j a 2-diagonal totally geodesic submanifold in Σj1 × Σj2 for

each j ∈ {1, 2}. Thus, Σ := Σ̂1 × Σ̂2 is a totally geodesic submanifold homothetic to
RH2 × RH2 in M such that both factors of Σ have non-trivial projection onto each
factor of M .

Proposition 6.2.7. Let M1 and M2 be irreducible symmetric spaces of compact and
non-compact type, respectively. If Σ ⊂ M1 ×M2 is a diagonal totally geodesic sub-
manifold, then Σ is flat.

Proof. Let Σ be a totally geodesic submanifold of M1 ×M2. By De-Rham Theorem,
we have that the universal covering of Σ is Σ̃ = Σ0 × Σ1 × · · · × Σs, where Σ0 is flat
and each Σi is an irreducible semisimple symmetric space. Moreover, pΣ =

⊕s
i=0 pΣi

,
where pΣi

⊂ pΣ ⊂ p1 ⊕ p2 is a Lie triple system corresponding to the irreducible
symmetric space Σi, for each i ∈ {0, . . . , s}, and p1, p2 are the Lie triple systems
corresponding to M1 and M2, respectively.

Let us fix some i ∈ {1, . . . , s}. Then Σi is semisimple, and we have that kΣi
:=

[pΣi
, pΣi

] is the Lie algebra of the isotropy of Σi, and gΣi
:= kΣi

⊕pΣi
is the Lie algebra

of the isometry group of Σi. Now, we define φij : gΣi → gj , where φijX = projj X for
each i ∈ {1, . . . , s} and j ∈ {1, 2}, gj is the Lie algebra of the isometry group of Mj ,
and projj : g1 ⊕ g2 → gj is the projection map. Notice that Kerφij|pΣi

⊂ pΣi
is an

invariant subspace for the isotropy representation of Σi. Since Σi is irreducible, we
have Kerφij|pΣi

= 0 or Kerφij|pΣi
= pΣi

. Moreover, as pΣi
is diagonal by assumption,

Kerφij|pΣi
= 0 for every j ∈ {1, 2}. On the one hand, if Σi is a compact simple Lie

group, kΣi is simple, and hence, Kerφij|kΣi
= 0 or Kerφij|kΣi

= kΣi , since Kerφij|kΣi

is an ideal of kΣi
. In any other case, gΣi

is simple. Then, we have Kerφij = 0 or
Kerφij = gΣi

. However, Kerφij|pΣi
= 0 and this implies that Kerφij = 0.
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To sum up, for each j ∈ {1, 2}, we have Kerφij = 0 or Kerφij = kΣi . Let us
assume that Kerφij = kΣi for some j ∈ {1, 2}. In this case φijgΣi = φijpΣi is
an abelian Lie algebra. Since gΣi

is semisimple and gΣi
⊂ φijgΣi

⊕ φikgΣi
, where

k ∈ {1, 2} \ {j}, we have

gΣi = [gΣi , gΣi ] ⊂ [φijgΣi⊕φikgΣi , φijgΣi⊕φikgΣi ] ⊂ [φikgΣi , φikgΣi ] ⊂ φikgΣi ⊂ gk.

Therefore, we obtain a contradiction with the assumption that pΣ is diagonal. Now
let us assume that Kerφij = 0 for every j ∈ {1, 2}. This implies that gΣi

and
φijgΣi

are isomorphic for every j ∈ {1, 2}. In particular, φijgΣi
is simple for every

i ∈ {1, . . . , s} and j ∈ {1, 2}, and φi1gΣi is isomorphic to φi2gΣi . Now, as φi1gΣi

is a subalgebra of g1, we have that φi1gΣi is a compact Lie algebra. Moreover,
φi2gΣi

= φi2pΣi
⊕ [φi2pΣi

, φi2pΣi
], where φi2pΣi

is a Lie triple system, is not a
compact Lie algebra since it is simple and then it is the Lie algebra of the isometry
group of an irreducible symmetric space of non-compact type (see discussion above
Lemma 6.2.1).

Consequently, we obtain a contradiction with the existence of (non-trivial) irre-
ducible semisimple factors of Σ, which yields our result.

We now introduce a notation that will be useful in what follows. Let M and Σ
be two symmetric spaces. We will write (Σ) ≤ M if M contains a totally geodesic
submanifold isometric to Σ.

A simply connected, reducible symmetric space M of rank 2 is a product of two
simply connected irreducible symmetric spaces of rank one, M1 and M2. Let Σ be a
totally geodesic submanifold in M = M1 ×M2. Notice that if Σ is reducible, then
it has maximal rank and Proposition 6.1.2 implies that Σ = Σ1 × Σ2, where Σi is
a totally geodesic submanifold of Mi for each i ∈ {1, 2}. Now, if Σ is irreducible,
it must be either a geodesic or a semisimple totally geodesic submanifold. Let us
assume that Σ is an irreducible semisimple totally geodesic submanifold of M . Then,
by Lemma 6.2.1 i), Σ is either 1-diagonal or 2-diagonal. If Σ is 1-diagonal, clearly
Σ = Σi × {pj}, where Σi is a totally geodesic submanifold of Mi and pj ∈ Mj for
distinct i, j ∈ {1, 2}.

Let us assume that M1 is of compact type and M2 is of non-compact type. By
Proposition 6.2.7, M = M1 ×M2 has no diagonal totally geodesic submanifolds of
dimension greater than one. Hence, a 2-diagonal totally geodesic submanifold is a
geodesic.

Let us assume that M1 is flat and M2 is of non-compact type. We can suppose
that Σ is an irreducible semisimple 2-diagonal totally geodesic submanifold. Thus,
every non-zero vector in pΣ is of the form X = X1 +X2, where Xi ∈ pi is a non-zero
vector in pi for each i ∈ {1, 2}. However, since Σ is semisimple, then pΣ has dimension
greater than one. Moreover, dimproj1 pΣ = 1. Hence, there exists a non-zero vector
X ′ in pΣ ∩ proj2 pΣ, contradicting the assumption that Σ is 2-diagonal.

To sum up the above discussion: if M1 and M2 have opposite types or one of
them is flat, then every totally geodesic submanifold Σ in M = M1 ×M2 is either a
geodesic or equal to Σ1 × Σ2, where Σi ⊂ Mi is a totally geodesic submanifold for



6.2 Totally geodesic submanifolds in products of symmetric spaces of rank one 111

each i ∈ {1, 2}. In view of the argumentation above, by duality we will assume that
both factors inM are of non-compact type. In this case, we have the following result.

Theorem 6.2.8. Let Mi := FiHni(ci) be a symmetric space of non-compact type and

rank one for i = 1, 2. Given positive numbers c′1, c
′
2, we define the quantity c =

c′1c
′
2

c′1+c
′
2
.

Then, Σ ⊂M1 ×M2 is a totally geodesic submanifold if and only if it is equal to one
in the list below:

i) A geodesic in M1 ×M2.

ii) A product Σ1×Σ2, where Σi ⊂Mi is a totally geodesic submanifold for i ∈ {1, 2}.

iii) A totally geodesic diagonal FHn(c), with F ̸= R and c′i = ci, whenever (FHn(ci)) ≤
Mi for every i ∈ {1, 2}.

iv) A totally geodesic diagonal RHn(c), with c′i ∈ {ci, ci4 }, whenever (RH
n(c′i)) ≤Mi

for every i ∈ {1, 2}.

Remark 6.2.9. The diagonal embeddings in items iii) and iv) are the ones described
in Lemma 6.2.1 iii). These are of the form Ψ: Σ →M1×M2, p ∈ Σ 7→ (Ψ1(p),Ψ2(p)),
where Ψi is a homothety between Σ and some totally geodesic submanifold Ni of Mi

for each i ∈ {1, 2} (see Remark 6.2.2).

Proof. Let us assume that Σ has rank two. Then, by Proposition 6.1.2, Σ = Σ1×Σ2,
where Σi ⊂ Mi is totally geodesic for each i = 1, 2, which corresponds to item ii) in
the statement.

Now assume that Σ has rank one. Then it is either a geodesic, which corresponds
to item i), or it is semisimple. In this latter case, Σ must be isometric to FHn(c) for
some F ∈ {R,C,H,O} and c > 0. If Σ is not diagonal, it is 1-diagonal by Lemma
6.2.1 and it must be congruent to Σ1×{p2} or to {p1}×Σ2, where Σi ⊂ FiHni(ci) is a
totally geodesic submanifold and pi ∈Mi for i = 1, 2. This corresponds to item ii) in
the statement. Moreover, if it is diagonal, it is 2-diagonal. Then, by Lemma 6.2.1 and
the classification of totally geodesic submanifolds in the rank one symmetric spaces
(see Table 6.1), we have that Σ ⊂ FHn(c′1) × FHn(c′2), for some positive numbers c′1
and c′2. Let us further assume that F ̸= R. Hence, by the classification in rank one,
c′i = ci for i = 1, 2. We will prove that the sectional curvature of Σ satisfies

sec(X,Y ) ∈
[
− c1c2
c1 + c2

,− c1c2
4(c1 + c2)

]
,

for any X,Y ∈ pΣ spanning a 2-plane. Let p′i := proji pΣ be a Lie triple system
associated with ToiFHn(ci), where oi ∈ FHn(ci). Moreover, consider the Lie algebra
of the isometry group of FHn(ci), which is g′i := p′i⊕[p′i, p

′
i]. Then, the Lie triple system

corresponding to Σ is pΣ = {X1 + φX1 : X1 ∈ p′1} for some Lie algebra isomorphism
φ : g′1 → g′2 that sends p′1 onto p′2 (see Remark 6.2.3). Now let ⟨·, ·⟩1 be the metric
of FHn(1), and sec1(·, ·) its sectional curvature. We can regard the induced metric of
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FHn(ci) on p′i as a positive multiple of ⟨·, ·⟩1. Hence, we can write the metric of Σ at
(o1, o2) as

⟨·, ·⟩ := λ1⟨proj1 ·,proj1 ·⟩1 + λ2⟨proj2 ·,proj2 ·⟩1,

for some λ1, λ2 > 0. Let X = X1 + φX1, Y = Y1 + φY1 ∈ pΣ, where X1, Y1 ∈ p′1
satisfy ⟨X1, X1⟩1 = ⟨Y1, Y1⟩1 = 1 and ⟨X1, Y1⟩1 = 0. Moreover, we have

⟨[[X,Y ], Y ], X⟩ = λ1⟨[[X1, Y1], Y1], X1⟩1 + λ2⟨[[φX1, φY1], φY1], φX1⟩1
= λ1⟨[[X1, Y1], Y1], X1⟩1 + λ2⟨φ[[X1, Y1], Y1], φX1⟩1
= −(λ1 + λ2) sec1(X1, Y1),

⟨X,X⟩ = λ1⟨X1, X1⟩1 + λ2⟨φX1, φX1⟩1 = λ1 + λ2,

⟨Y, Y ⟩ = λ1⟨Y1, Y1⟩1 + λ2⟨φY1, φY1⟩1 = λ1 + λ2,

⟨X,Y ⟩ = λ1⟨X1, Y1⟩1 + λ2⟨φX1, φY1⟩1 = 0,

where we have used that φ preserves ⟨·, ·⟩1 since φ preserves the Killing form. Thus,
the sectional curvature at (o1, o2) ∈ Σ of the 2-plane spanned by {X,Y } is given by

sec(X,Y ) =
sec1(X1, Y1)

λ1 + λ2
=

c1c2
c1 + c2

sec1(X1, Y1) ∈
[
− c1c2
c1 + c2

,− c1c2
4(c1 + c2)

]
,

since λi = 1/ci for each i ∈ {1, 2}, because λg has sectional curvature 1
λ sec, when g

is a Riemannian metric, sec its sectional curvature and λ a positive number. Hence,
Σ must be isometric to a diagonal FHn( c1c2

c1+c2
) whenever (FHn(ci)) ≤ Mi for every

i ∈ {1, 2} and F ̸= R. This corresponds to item iii) in the statement.
Now let us assume that F = R. Again, by Lemma 6.2.1 and the classification

of totally geodesic submanifolds in symmetric spaces of non-compact type and rank
one (see Table 6.1), we have Σ ⊂ RHn(c′1) × RHn(c′2), where c′i ∈ {ci, ci/4} is such
that (RHn(c′i)) ≤Mi for every i ∈ {1, 2}. A similar computation as above yields that

the sectional curvature of Σ is equal to − c′1c
′
2

c′1+c
′
2
. Then, Σ is isometric to RHn( c′1c

′
2

c′1+c
′
2
),

which corresponds to item iv) in the statement.

Remark 6.2.10. Notice that unlike in the irreducible rank one case, ifM is a reducible
space of rank two then we can find mutually isometric diagonal totally geodesic sub-
manifolds Σ1 and Σ2 which are not congruent in M . This implies that the hypothesis
ofMi being homothetic to Σ1 and Σ2 for each i ∈ {1, 2} in Proposition 6.2.4 is crucial.
Let us consider M =M1×M2, where M1 = CH2 and M2 = CH3. Let us assume that
there is some φ ∈ Isom(M) such that φΣ1 = Σ2 where

Σ1 := RH2(4/5) ⊂ L1 := RH2(4)× RH2 ⊂ CH2 × CH2 ⊂M1 ×M2,

Σ2 := RH2(4/5) ⊂ L2 := RH2 × RH2(4) ⊂ CH2 × CH2 ⊂M1 ×M2.

Clearly, each isometry of M1 ×M2 must preserve both factors since M1 and M2 are
not isometric. Then, we have Σ2 ⊂ φL1 ∩ L2. However, since RH2(4) and RH2 are
complex and totally real submanifolds in CH2, respectively, we have φL1∩L2 ⊂ R×R,
where R × R is a maximal totally geodesic flat submanifold of M1 ×M2. Moreover,
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since the intersection of totally geodesic submanifolds is totally geodesic, this implies
that Σ2 ⊂ φL1 ∩ L2 ⊂ R × R ⊂ M1 ×M2, which contradicts the fact that Σ2 is not
flat and proves that such φ cannot exist.

Let us recall that the elementary symmetric polynomial ek of order k ∈ {0, . . . , n}
in n variables is defined as ek(X1, . . . , Xn) =

∑
1≤i1<...<ik≤nXi1 · · ·Xik . Then, we

have the following generalization of Theorem 6.2.8 to the case of diagonal totally
geodesic submanifolds in arbitrary products of symmetric spaces of rank one.

Corollary 6.2.11. LetM =M1×· · ·×Mr, where eachMi = FiHni(ci) is a symmetric
space of non-compact type and rank one for i ∈ {1, . . . , r}. Given positive numbers
{c′i}ri=1, we define the quantity

c :=

∏r
i=1 c

′
i

er−1(c′1, . . . , c
′
r)
,

where er−1 is the elementary symmetric polynomial of degree r − 1 in r variables.
If Σ is a non-flat, irreducible, r-diagonal, totally geodesic submanifold in M , then

it is isometric to one in the list below:

i) RHn(c), with c′i ∈ {ci, ci4 }, whenever (RHn(c′i)) ≤Mi for every i ∈ {1, . . . , r}.

ii) FHn(c), with F ̸= R and c′i = ci, whenever (FHn(ci)) ≤ Mi, for every i ∈
{1, . . . , r}.

Proof. Let Σ ⊂M be a non-flat, r-diagonal, irreducible, totally geodesic submanifold.
We will proceed by induction on r. The statement is true for r = 1 by the classification
of totally geodesic submanifolds in symmetric spaces of non-compact type and rank
one (see Table 6.1). Let us assume that it is true for r − 1 factors and we will prove

it for r. Observe that Σ is contained in Σ̂ × Σ̂′ where Σ̂ is the projection of Σ onto
M1 × · · · ×Mr−1 and Σ̂′ is the projection of Σ onto Mr. By Lemma 6.1.1, we have

that Σ̂ and Σ̂′ are totally geodesic submanifolds of M . Furthermore, by Lemma
6.2.1 iii) and Remark 6.2.3, we have that Σ̂ and Σ̂′ are homothetic to Σ. Moreover,

Σ̂ is (r − 1)-diagonal in M , since Σ is r-diagonal in M , and by induction hypothesis,

Σ̂ is isometric to FHn(c̃) for F ∈ {R,C,H,O}, where

c̃ =

∏r−1
i=1 c

′
i

er−2(c′1, . . . , c
′
r−1)

,

with c′i ∈ {ci, ci/4} for each i ∈ {1, . . . , r − 1}. Let us assume that F = R, since
the result follows similarly in the other cases. Then, by Theorem 6.2.8, since Σ is
2-diagonal in Σ̂ × Σ̂′, and Σ̂ and Σ̂′ are of rank one, the sectional curvature of Σ is
equal to the opposite of

c =
c̃ c′r
c̃+ c′r

=

∏r
i=1 c

′
i

er−1(c′1, . . . , c
′
r)
,

where we have used er−1(X1, . . . , Xr) = er−1(X1, . . . , Xr−1)+er−2(X1, . . . , Xr−1)Xr,
for arbitrary variables X1, . . . , Xr.



114 6 Totally geodesic submanifolds in products of rank one symmetric spaces

Now we will provide the classification of totally geodesic submanifolds in products
of symmetric spaces of rank one by introducing a combinatorial object that we call
adapted Young tableau.

We first recall the well-known notions of partition of a positive integer and of
Young diagram. Let r ≥ 1 be a positive integer. Then, a partition of r is a vector
λ = (λ1, . . . , λk) ∈ Zk such that r =

∑k
j=1 λj and λ1 ≥ . . . ≥ λk ≥ 1. For each

partition λ we associate a Young diagram. This is a collection of boxes with λj boxes
in the j-th row, for each j ∈ {1, . . . , k}.

Now we will introduce the notion of Young tableau adapted to a product M
of symmetric spaces of non-compact type and rank one. Let us consider M =
F1H

n1(c1) × · · · × FrHnr (cr), where ni ≥ 2, ci > 0 and Fi ∈ {R,C,H,O} for each
i ∈ {1, . . . , r}. Let λ = (λ1, . . . , λk) be a partition of r and let us consider its Young
diagram. We will add to the m-th box in the j-th row a totally geodesic inclusion

F′
ij,m

H
n′
ij,m (c′ij,m) ⊂ Fij,mHnij,m (cij,m), for every j ∈ {1, . . . , k} and m ∈ {1, . . . , λj},

where
⊔k
j=1{ij,1, . . . , ij,λj} = {1, . . . , r}. Furthermore, we require all totally geodesic

submanifolds appearing in the j-th row to be mutually homothetic. A Young diagram
with this information will be called Young tableau adapted to M . See Figure 6.1 for
various examples of this.

RH3(c1) ⊂ RH3(c1) RH3(c2/4) ⊂ CH3(c2) RH3(c3) ⊂ HH3(c3) RH3
(

c1c2c3
c1c2+4c1c3+c2c3

)
CH2(c2) ⊂ CH3(c2) CH2(c3) ⊂ HH3(c3) CH2

(
c2c3
c2+c3

)
RH2(c1) ⊂ RH3(c1) RH2(c1)

RH3(c1) ⊂ RH3(c1) RH3(c1)

RH3(c2/4) ⊂ CH3(c2) RH3(c2/4)

RH4(c3) ⊂ HH3(c3) RH4(c3)

Figure 6.1: Three examples of Young tableaux adapted to the productM = RH3(c1)×
CH3(c2) × HH3(c3), along with the irreducible factors of the corresponding totally
geodesic submanifolds presented at the end of each row (see Proposition 6.2.12).
Notice that the isometry type of these totally geodesic submanifolds can be computed
using Corollary 6.2.11.

Proposition 6.2.12. Let M =M1×· · ·×Mr, where Mi is a symmetric space of non-
compact type and rank one for each i ∈ {1, . . . , r}. Then, the following statements
hold:

i) For each Young tableau T adapted to M we can attach a set S(T ) of semisimple
totally geodesic submanifolds ΣT ofM that have non-trivial projection onto each
factor of M .

ii) If ΣT and Σ̃T belong to S(T ), then ΣT is isometric to Σ̃T .

iii) If Σ is a semisimple totally geodesic submanifold of M that has non-trivial
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projection onto each factor of M , then it is equal to some ΣT ∈ S(T ) for some
Young tableau T adapted to M .

Proof. First of all, we will see how to construct a totally geodesic submanifold of M
from a Young tableau adapted to M . Let T be a Young tableau adapted to M and
let us assume that it has k rows. Let us further assume that it has λj boxes in the
j-th row. Namely,

F′
ij,1H

n′
ij,1 (c′ij,1) ⊂ Fij,1H

nij,1 (cij,1), . . . ,F′
ij,λj

H
n′
ij,λj (c′ij,λj

) ⊂ Fij,λj
H
nij,λj (cij,λj

)

are the labels in the boxes in the j-th row, where we have
⊔k
j=1{ij,1, . . . , ij,λj

} =

{1, . . . , r}. Let pij,m be a Lie triple system corresponding toMij,m = Fij,mHnij,m (cij,m),
for each m ∈ {1, . . . , λj}. Then, for each m ∈ {1, . . . , λj}, there is some Lie triple
system p′ij,m ⊂ pij,m that corresponds to the totally geodesic embedding in the m-th
box of the j-th row of T . Notice that, by construction of T , these totally geodesic
submanifolds are mutually homothetic. Let us define g′ij,m := p′ij,m ⊕ [p′ij,m , p

′
ij,m

].

Clearly, for any fixed j ∈ {1, . . . , k}, all these Lie algebras g′ij,m , m ∈ {1, . . . , λj},
are mutually isomorphic because they are the Lie algebras of the isometry groups
of mutually homothetic semisimple symmetric spaces. Let φj1,m : g′ij,1 → g′ij,m be

a Lie algebra isomorphism sending p′ij,1 into p′ij,m for m ∈ {2, . . . , λj}, and φj1,1 be

the identity map of g′ij,1 . Now, we define p̂j :=
{∑λj

m=1 φ
j
1,mX : X ∈ p′ij,1

}
for each

j ∈ {1, . . . , k}. Then, p̂j is a Lie triple system in p that is λj-diagonal.

We perform this process for each row j ∈ {1, . . . , k} to define pT :=
⊕k

j=1 p̂j . By

construction, we have that [p̂j , p̂j′ ] = 0 for j ̸= j′ in {1, . . . , k}. Hence, pT is a Lie
triple system in p and we will denote by ΣT = Σ1× · · ·×Σk its corresponding totally
geodesic submanifold, where Σj is the totally geodesic submanifold corresponding
to p̂j . Consequently, for a Young tableau T adapted to M , we have constructed a
semisimple totally geodesic submanifold ΣT ofM , that has non-trivial projection onto
each factor of M . However, notice that this construction depends on the Lie triple
system p′ij,m in the subspace pij,m and on the Lie algebra isomorphism φj1,m that we
chose, and if we choose different Lie triple systems and isomorphisms, we get different
semisimple totally geodesic submanifolds with non-trivial projection onto each factor
ofM . Hence, for each Young tableau T adapted toM we can attach a set S(T ) which
is equal to the set of all the totally geodesic submanifolds that can be constructed
from T through the process described above. This proves i).

Now we will check that all totally geodesic submanifolds in S(T ) are mutually
isometric. First of all, observe that two totally geodesic submanifolds of a symmetric
space of rank one are congruent if and only if they are isometric. Hence, the totally

geodesic embedding F′
ij,m

H
n′
ij,m (c′ij,m) ⊂ Fij,mHnij,m (cij,m) represents a congruence

class of totally geodesic embeddings in Mij,m = Fij,mHnij,m (cij,m). Let Nij,m and

Ñij,m be congruent totally geodesic submanifolds in Mij,m corresponding to the in-
clusion in the m-th box of the j-th row for each m ∈ {1, . . . , λj} and j ∈ {1, . . . , r}.
Then, there is a isometry φij,m of Mij,m such that φij,mNij,m = Ñij,m . Following the
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above procedure, we obtain two different λj-diagonal totally geodesic submanifolds,
namely,

Σj ⊂ Nij,1 × · · · ×Nij,λj
and Σ̃j ⊂ Ñij,1 × · · · × Ñij,λj

,

such that Σj and Σ̃j are homothetic to Nij,m and Ñij,m for every m ∈ {1, . . . , λj} and
for each j ∈ {1, . . . , k}. Now let

φj := (φij,1 , . . . , φij,λj
) : Mij,1 × · · · ×Mij,λj

→Mij,1 × · · · ×Mij,λj
.

Then, φj is an isometry ofMij,1×· · ·×Mij,λj
for every j ∈ {1, . . . , k}. Moreover, φjΣj

is a non-flat, irreducible, λj-diagonal totally geodesic submanifold in Ñij,1×· · ·×Ñij,λj
.

By Proposition 7.3.1, there is ψj ∈ Isom(Ñij,1)×· · ·×Isom(Ñij,λj
) such that ψjφjΣj =

Σ̃j . Consequently, Σ = Σ1 × · · · × Σk is isometric to Σ̃ = Σ̃1 × · · · × Σ̃k. This proves
ii).

Let Σ ⊂ M be a semisimple totally geodesic submanifold that has non-trivial
projection onto each factor of M . Let k ≤ r be the rank of Σ. By combining De-
Rham Theorem, Lemma 6.2.1 and Lemma 6.2.5, we can ensure the existence of a
partition {{ij,1, . . . , ij,λj

} : j ∈ {1, . . . , k}} of {1, . . . , r} satisfying:

� Σ = Σ1 × · · · × Σk, where Σj has rank one for every j ∈ {1, . . . , k}.

� Σj ⊂M is λj-diagonal for every j ∈ {1, . . . , k}.

� r =
∑k
j=1 λj .

� Σj ⊂ Nj := Nij,1 × · · · × Nij,λj
, where Nij,m ⊂ Mij,m is a totally geodesic

submanifold homothetic to Σj for each j ∈ {1, . . . , k} and m ∈ {1, . . . , λj}.

Then, up to some reordering, we can assume that (λ1, . . . , λk) is a partition of r. Let
T be the Young diagram associated with (λ1, . . . , λk). Then, Σj projects non-trivially
exactly onto λj factors of M . We fill the λj boxes of the j-th row of T with the data
corresponding to the totally geodesic inclusion resulting from projecting Σj in each
of these factors. Therefore, we can find a Young tableau T adapted to M such that
Σ = Σ1 × · · · × Σk is equal to some ΣT in S(T ). This proves iii).

We are now ready to prove the first main theorem of this chapter.

Proof of Theorem A. By Proposition 6.2.12, it follows that Σ0 × ΣT is a totally
geodesic submanifold of M , where ΣT is a semisimple totally geodesic submanifold
corresponding to a Young tableau T adapted toMσ(1)×· · ·×Mσ(k), Σ0 is a flat totally
geodesic submanifold of Mσ(k+1) × · · · ×Mσ(r), σ is any permutation of {1, . . . , r},
and k ∈ {1, . . . , r}.

Let Σ be a totally geodesic submanifold of M . By De-Rham Theorem we have
Σ = Σ0 × Σ1, where Σ0 is flat and Σ1 is semisimple. Then, Σ1 projects non-trivially
ontoMσ(1)×· · ·×Mσ(k) for some k ∈ {1, . . . , r} and some permutation σ of {1, . . . , r}.
Thus, by Lemma 6.2.5, we have Σ0 ⊂ Mσ(k+1) × · · · ×Mσ(r). Now, by Proposition
6.2.12, there is a Young tableau T adapted toMσ(1)×· · ·×Mσ(k) such that Σ1 is equal
to some ΣT in S(T ). Therefore, Σ is equal to Σ0 × ΣT as submanifolds in M .



6.3 Totally geodesic submanifolds in Hermitian symmetric spaces 117

6.3 Totally geodesic submanifolds in Hermitian
symmetric spaces

In this section we construct infinitely many examples of totally geodesic submani-
folds in Hermitian symmetric spaces that have constant Kähler angle different from
0 or π/2.

We start by recalling the notion of Kähler angle (see Section §4.1). Let us equip
the complex vector space Cn with ⟨·, ·⟩, the scalar product given by considering the
real part of its standard Hermitian scalar product, and denote the complex structure
of Cn by J (multiplication by the imaginary unit). Furthermore, let us consider a real
vector subspace V ⊂ Cn and the orthogonal projection πV : Cn → V onto V . The
Kähler angle of a non-zero v ∈ V with respect to V is defined as the value φ ∈ [0, π/2]
such that ⟨πV Jv, πV Jv⟩ = cos2(φ)⟨v, v⟩. We say that a real subspace V ⊂ Cn has
constant Kähler angle φ ∈ [0, π/2] if the Kähler angle of every non-zero vector v ∈ V
is φ. In particular, V ⊂ Cn has constant Kähler angle equal to 0 if and only if it is a
complex subspace, and it has constant Kähler angle equal to π/2 if and only if it is
totally real. Also, a submanifold Σ in a Kähler manifold M is said to have constant
Kähler angle φ ∈ [0, π/2] if the tangent space of Σ at each point is a subspace with
constant Kähler angle φ in the corresponding tangent space of M . In the setting
of Hermitian symmetric spaces, since totally geodesic submanifolds are homogeneous
and the isometries that belong to the connected component of the identity of the
isometry group are holomorphic (see [90, Chapter VIII, §4]), the previous property
needs to be checked only at one point.

Now we will recall some known facts about complex Grassmannians that will be
useful in this section. Let M = Gk(Cn+k) be the Grassmannian of complex k-planes
in Cn+k. Then, we have M = G/K, with G = SUn+k and K = S(Uk × Un). We can
decompose sun+k as sun+k = k⊕ p where

k =

{(
A 0
0 B

)
: A ∈ uk, B ∈ un, trA+ trB = 0

}
,

p =

{(
0 X

−X∗ 0

)
: X ∈ Mk,n(C)

}
.

(6.3)

Furthermore, M = G/K is a Hermitian symmetric space. Then, p inherits a complex
structure J which is given by adZ|p for some Z ∈ Z(k) (see [110, Theorem 7.117]).

Hence, we can identify p with the complex vector space Ck⊗Cn by the usual isomor-
phism with matrices with complex entries.

For k = 1, we have G1(Cn+1), which is the complex projective space CPn. In this
case the Lie algebra of the isometry group is sun+1. Let Θ: sun+1 → sun+1 be such
that X ∈ sun+1 is mapped to X ∈ sun+1, the complex conjugate of X. Clearly, Θ is
a Lie algebra automorphism of sun+1 and preserves p. Furthermore, let {e1, . . . , en}
be the canonical C-orthonormal basis for p ≡ Cn. Observe that we have

Θei = ei, ΘJei = −Jei, (6.4)

for every i = 1, . . . , n.
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Theorem 6.3.1. Let M = CPn×
k)
· · · ×CPn, n ≥ 1. Then, for each s ∈ {0, . . . , k},

there is a k-diagonal totally geodesic submanifold homothetic to CPn in M with con-
stant Kähler angle φ ∈ [0, π/2] satisfying

cos(φ) =

∣∣∣∣2s− k

k

∣∣∣∣ .
Proof. First of all, let pi be the Lie triple system corresponding to the i-th factor
of M . Then, gi = pi ⊕ ki ≃ sun+1, where ki := [pi, pi]. Moreover, consider the

complex structure J = (J1, . . . , Jk) of
⊕k

i=1 pi, where Ji is the complex structure
induced by some element in Z(ki). Let σi : g1 → gi be a Lie algebra isomorphism for
i ∈ {2, . . . , k}, and σ1 := Idg1

. Furthermore, let us assume that σi restricted to k1
induces an isomorphism between k1 and ki. Thus, we have σi adZ X = adσiZ σiX,
for each X ∈ p1 and Z ∈ Z(k1). In particular, by the discussion above and taking
into account that dimZ(ki) = 1, we have σiJ1X = ±JiσiX, for every X ∈ p1, where
we denote by J1 and Ji the complex structures of both p1 and pi, respectively. We
will declare σi = σ+

i , when σiJ1(σi)
−1 = Ji, and σi = σ−

i , when σiJ1(σi)
−1 = −Ji.

Additionally, notice that σ−
i = σ+

i ◦Θ. Let us consider

pΣs :=

{
s∑
i=1

σ+
i X +

k∑
i=s+1

σ−
i X : X ∈ p1

}
,

for each s ∈ {0, . . . , k}. Clearly, this is a Lie triple system and it must correspond to
some totally geodesic submanifold Σs of M that is homothetic to CPn by Corol-
lary 6.2.11 via duality (see also Remark 6.2.3). Let us choose a C-orthonormal
basis {ei}ni=1 for p1 satisfying Equation (6.4). Then, taking into account that σ+

i

restricted to k1 gives an isomorphism onto ki, and Equation (6.4), we can express pΣs

as spanR{vi, wi}ni=1, where

vi :=
1√
k

k∑
j=1

σ+
j ei, wi :=

1√
k

s∑
j=1

σ+
j J1ei −

1√
k

k∑
j=s+1

σ+
j J1ei

constitute an orthonormal basis of pΣs . Let v ∈ pΣs be a unit vector. Then, we can
write v =

∑n
i=1 (aivi + biwi), where {ai}ni=1 and {bi}ni=1 are real numbers satisfying

that
∑n
i=1

(
a2i + b2i

)
= 1. Now we have

πpΣsJv = πpΣs

( n∑
j=1

(aiJvi + biJwi)

)
=

n∑
i=1

(aiπpΣsJvi + biπpΣsJwi),

where πpΣs denotes the orthogonal projection onto pΣs . Moreover,

πpΣsJvi =

n∑
j=1

(⟨Jvi, vj⟩vj + ⟨Jvi, wj⟩wj) = ⟨Jvi, wi⟩wi

πpΣsJwi =

n∑
j=1

(⟨Jwi, vj⟩vj + ⟨Jwi, wj⟩wj) = ⟨Jwi, vi⟩vi,
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for each i ∈ {1, . . . , n}, where we have used that σ+
j is a linear isometry, since all the

factors in M are mutually isometric. Furthermore, using again that σ+
j is a linear

isometry that commutes with Jj , we get

⟨Jvi, wi⟩ =
1

k

 s∑
j=1

⟨Jjσ+
j ei, σ

+
j J1ei⟩ −

k∑
j=s+1

⟨Jjσ+
j ei, σ

+
j J1ei⟩

 =
2s− k

k
.

Consequently, combining these equations, we conclude

⟨πpΣsJv, πpΣsJv⟩ =
n∑
i=1

(a2i ⟨Jvi, wi⟩2 + b2i ⟨Jwi, vi⟩2) =
n∑
i=1

(a2i + b2i )⟨Jvi, wi⟩2

=

(
2s− k

k

)2

.

Since v is an arbitrary unit vector in pΣs , we have that Σs has constant Kähler angle
equal to φ ∈ [0, π/2], where cos(φ) =

∣∣ 2s−k
k

∣∣.
Thus, Theorem 6.3.1 gives a method to construct totally geodesic submanifolds

with constant Kähler angle in Hermitian symmetric spaces. We only need to find
a product of complex projective spaces embedded in a totally geodesic way and use
Theorem 6.3.1. In particular, in the complex Grassmannians these products are very
abundant as the following lemma shows.

Lemma 6.3.2. Let (n1, . . . , nk) be a partition of n. Then, there is a complex totally
geodesic submanifold homothetic to CPn1 × · · · × CPnk in Gk(Cn+k).

Proof. Let Σ = CPn1 ×· · ·×CPnk and (n1, . . . , nk) a partition of n. This means that

n1 ≥ . . . ≥ nk and
∑k
i=1 ni = n. Now, for each i ∈ {1, . . . , k}, we define the subspace

pi := spanC{ei ⊗ e1+
∑i−1

j=1 nj
, . . . , ei ⊗ e∑i

j=1 nj
},

where {el ⊗ em}k,nl,m=1 is the canonical basis of Ck ⊗ Cn.
Let us define pΣ :=

⊕k
i=1 pi. We will see that pΣ is a Lie triple system correspond-

ing to Σ. Using the Lie bracket of sun+k and the description of p in Equation (6.3),
it can be checked that ki := [pi, pi] ≃ s(u1 × uni) and that pi is a ki-module. Further-
more, it can be seen that gi = ki ⊕ pi is isomorphic to suni+1. This implies that pi is
a Lie triple system corresponding to CPni . Moreover, it is clear that [pi, pj ] = 0 for
i ̸= j. Observe that pi is invariant under adZ , where Z ∈ Z(k), and hence every pi is
invariant under the complex structure of Gk(Cn+k). Furthermore, it is easy to check
that there is some k ∈ K such that Ad(k) interchanges the rows of p, see Equation
(6.3). Consequently, pΣ is also a Lie triple system whose associated totally geodesic
submanifold of Gk(Cn+k) is homothetic to CPn1 ×· · ·×CPnk and invariant under the
complex structure of Gk(Cn+k).

We are now ready to prove the second main theorem of this chapter.
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Proof of Theorem B. Using Lemma 6.3.2 and Theorem 6.3.1, given any q ∈ [0, 1]∩Q
and m ∈ N, there exist k, n ∈ N such that there is a totally geodesic submanifold
homothetic to CPm with constant Kähler angle arccos(q) ∈ [0, π/2] in Gk(Cn+k).
This implies our result.



Chapter 7

Totally geodesic submanifolds in
exceptional symmetric spaces

In the present chapter, we classify maximal totally geodesic submanifolds in excep-
tional symmetric spaces. The contents of this chapter have given rise to the pa-
per [116].

A complete, totally geodesic, proper submanifold is said to be maximal if it is
maximal with respect to the inclusion among complete, totally geodesic, proper sub-
manifolds. Recall that every totally geodesic submanifold in a symmetric space can be
extended to a complete totally geodesic submanifold. Since duality preserves totally
geodesic submanifolds, it suffices to obtain the classification in the non-compact set-
ting. According to the classification by Cartan [90], the irreducible symmetric spaces
of non-compact type consist of several infinite families and the 17 exceptional spaces
given in Table 7.1.

G2-type G2
2/SO4 G2(C)/G2

F4-type F4
4/Sp3Sp1 F−20

4 /Spin9 F4(C)/F4

E6-type E6
6/Sp4 E2

6/SU6Sp1 E−14
6 /Spin10U1 E−26

6 /F4 E6(C)/E6

E7-type E−5
7 /SO12Sp1 E−25

7 /E6U1 E7
7/SU8 E7(C)/E7

E8-type E−24
8 /E7Sp1 E8

8/SO16 E8(C)/E8

Table 7.1: Exceptional symmetric spaces of non-compact type.

Theorem A. Let M = G/K be an irreducible exceptional symmetric space of non-
compact type. Let Σ be a maximal totally geodesic submanifold of M . Then Σ is
isometric to one of the spaces listed in Tables 7.5, 7.6, 7.7, 7.8, 7.9 at the end of this
chapter. Conversely, every space listed in these tables can be isometrically embedded
as a maximal totally geodesic submanifold of M .

Since non-semisimple maximal totally geodesic submanifolds of irreducible sym-
metric spaces have been classified by Berndt, Olmos [20], it suffices to study semisim-
ple maximal totally geodesic submanifolds. The proof of Theorem A uses a cor-
respondence between maximal semisimple totally geodesic submanifolds and certain
subalgebras of the Lie algebra of the isometry group. Note that a maximal semisimple
totally geodesic submanifold needs not be maximal, since it might be contained in a
non-semisimple maximal totally geodesic submanifold. While there is no classification

121
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of the relevant subalgebras, we construct a set which contains all of them. Then it
remains to decide which of these subalgebras give rise to maximal totally geodesic
submanifolds. In order to do so, we develop some criteria for maximality.

We would like to remark that our methods can be used to classify maximal totally
geodesic submanifolds in symmetric spaces whose isometry group has rank less or
equal than eight. Therefore, one could list all maximal totally geodesic submanifolds
up to isometry in symmetric spaces with isometry group of rank less or equal than
eight. However, in this thesis, we content ourselves with listing the classification in
the exceptional symmetric spaces.

Onishchik [148] introduced an invariant of symmetric spaces concerning totally
geodesic submanifolds called index, which is defined as the minimal codimension of a
totally geodesic proper submanifold. Berndt, Olmos and Rodŕıguez [20, 21, 22, 23, 24]
have computed the index i(M) of every irreducible symmetric spaceM . In particular,
they proved what they called the Index Conjecture [20]. This conjecture states that
in an irreducible symmetric space of non-compact type M ̸= G2

2/SO4, there is some
reflective submanifold Σ of M whose codimension equals the index of M .

Generalizing a notion introduced by Dynkin [74], in this chapter we define the
Dynkin index of certain semisimple subalgebras of simple real Lie algebras, see Def-
inition 7.4.2. We use this to characterize the isometry types of totally geodesic em-
beddings of semisimple symmetric spaces into irreducible symmetric spaces. This
characterization allows us to derive a result analogous to the Index Conjecture:

Theorem B. Let M be an irreducible symmetric space of non-compact type. Then,
there is some totally geodesic submanifold Σ in M with i(M) = codim(Σ) such that
the Dynkin index of the semisimple part of the Lie algebra of the isometry group of Σ
equals (1, 1, . . . , 1).

This chapter is organized as follows. We revisit different formulations of the
Karpelevich-Mostow theorem in Section §7.1. Some useful facts about the complex-
ification of Lie subalgebras of a real Lie algebra are recalled in Section §7.2. In Sec-
tion §7.3, we prove a correspondence between maximal semisimple totally geodesic
submanifolds in symmetric spaces of non-compact type and certain subalgebras of
the isometry algebra of the ambient space. Then we specialize our study of totally
geodesic submanifolds of symmetric spaces to the setting of exceptional symmetric
spaces. In Section §7.4, we introduce an invariant for certain semisimple totally
geodesic submanifolds in symmetric spaces of non-compact type that we call Dynkin
index, which characterizes these submanifolds up to isometries. In Section §7.5, we
classify maximal totally geodesic submanifolds in exceptional symmetric spaces whose
isometry group is absolutely simple, and in Section §7.6 we deal with the case when
the isometry group is not absolutely simple. Section §7.7 contains the proofs of the
two main results (Theorem A and B above).
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7.1 Karpelevich-Mostow Theorem

A fundamental result in the study of totally geodesic submanifolds in symmetric
spaces of non-compact type is known as the Karpelevich Theorem [103], see also [138]
and [66].

Theorem 7.1.1. Let M = G/K be a symmetric space of non-compact type. Then
any connected semisimple subgroup H ⊂ G acts on M with a totally geodesic orbit.

An equivalent, more algebraic formulation, see [150, Corollary 1, p. 46], is the
following.

Theorem 7.1.2. Let f : h → g be a homomorphism of real semisimple Lie algebras
and let a Cartan decomposition h = k′ ⊕ p′ be given. Then there exists a Cartan
decomposition g = k⊕ p such that f(k′) ⊂ k and f(p′) ⊂ p.

A subalgebra h of a real semisimple Lie algebra g is called canonically embedded
in g with respect to some Cartan decomposition g = k⊕p if h = (h∩ k)⊕ (h∩p). This
is equivalent to h being θ-invariant, where θ is the Cartan involution associated with
the decomposition g = k⊕ p.

An algebraic group over K ∈ {R,C} is an affine algebraic variety G over K endowed
with a group structure for which the map G×G → G, (x, y) 7→ xy−1 is polynomial. It
turns out that an algebraic group over K ∈ {R,C} is a Lie group over K ∈ {R,C}. An
algebraic subgroup of an algebraic group G is a closed subgroup of G (in the Zariski
topology). An algebraic subgroup is itself an algebraic group. A Lie algebra g is
algebraic if it is the Lie algebra of some irreducible algebraic subgroup G of GLn(K),
with K ∈ {R,C}. In particular, semisimple Lie algebras are algebraic, see [151,
p. 138]. Let G be an algebraic group over K ∈ {R,C} with Lie algebra g. A Lie
subalgebra h of g is called algebraic if there exists an algebraic subgroup H of G with
Lie algebra h. For any Lie subalgebra h of g there is a smallest algebraic subalgebra ha

of g containing h, called the algebraic closure of h in g. An algebraic subalgebra h of a
complex semisimple Lie algebra g is said to be reductive if it is a reductive Lie algebra
and its center consists of semisimple elements, i.e. of elements X ∈ h for which the
linear map adX is a diagonalizable endomorphism of the vector space h.

Remark 7.1.3. Let g be a semisimple Lie algebra. By [152, Chapter 1, §6.2, Theo-
rem 6.2], if h is a subalgebra of g, then [h, h] = [ha, ha]. Let l be a maximal proper Lie
subalgebra of g. Then [la, la] = [l, l] ̸= g. Hence la ̸= g, and thus by maximality la = l.
Hence a maximal proper Lie subalgebra of a semisimple Lie algebra is algebraic.

A more general version of Theorem 7.1.2 can be formulated as follows, see [152,
Theorem 3.6, Chapter 6].

Theorem 7.1.4 (Karpelevich-Mostow). An algebraic subalgebra of a real semisimple
Lie algebra g is reductive if and only if it is canonically embedded in g with respect to
some Cartan decomposition of g.
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7.2 Complexification of subalgebras

Let g be a real Lie algebra. Recall that its complexification is defined by gC := g⊗RC.
Conversely, the realification hR of a complex Lie algebra h is defined as the real Lie
algebra obtained from h by restricting the scalars to the reals. Furthermore, if g
is a complex Lie algebra, then a subalgebra g0 of gR is called a real form of g if
g = g0 + ig0 and g0 ∩ ig0 = 0, where i is the imaginary unit. We say that a Lie
algebra is of non-compact type if it is semisimple and all of its simple ideals are non-
compact Lie algebras. We say that a subalgebra of a Lie algebra g is maximal of
non-compact type if it is maximal among all proper subalgebras of non-compact type
of g.

A real Lie algebra g is called absolutely simple if it is simple and its complexification
gC is a simple complex Lie algebra. In case g is an absolutely simple real Lie algebra,
g is a real form of the simple complex Lie algebra gC. In case g is a simple, but
not absolutely simple, real Lie algebra, g is the realification of a simple complex Lie
algebra.

Remark 7.2.1. In later sections of this chapter, we do not sometimes distinguish in
our notation between a complex Lie algebra and its realification when it is clear from
the context which Lie algebra structure we consider.

Remark 7.2.2. Recall from the classification of Riemannian symmetric spaces that
there are two classes of irreducible Riemannian symmetric spaces of non-compact
type. If G is the connected component of the isometry group of such a M = G/K, we
distinguish between the following two cases:

� Symmetric spaces of type III : g is absolutely simple.

� Symmetric spaces of type IV : g is simple, but not absolutely simple.

Lemma 7.2.3. Let g be a simple real Lie algebra and let h ⊂ g be a subalgebra. Then
the following statements hold:

i) If hC ⊂ gC is a maximal reductive algebraic subalgebra, then h ⊂ g is a maximal
reductive algebraic subalgebra.

ii) If hC ⊂ gC is a maximal semisimple subalgebra, then h ⊂ g is a maximal semisim-
ple subalgebra.

Proof. By [150, §2, Proposition 2(i)], hC is a semisimple Lie algebra if and only if h is
a semisimple Lie algebra. Thus, [h, h] is semisimple if and only if [h, h]C is semisimple.
Since [h, h]C ⊕Z(h)C = [hC, hC]⊕Z(hC), h is a reductive Lie algebra if and only if hC
is a reductive Lie algebra. Moreover, adZ(h) consists of semisimple elements if and
only if adZ(hC) does. Consequently, we have proved that h ⊂ g is a reductive algebraic
subalgebra if and only if hC ⊂ gC is a reductive algebraic subalgebra.

Let us assume that hC is a maximal reductive algebraic (resp. semisimple) subal-
gebra of gC, and that there is some reductive algebraic (resp. semisimple) subalgebra
l ⊊ g such that h ⊂ l ⊂ g. Then hC ⊂ lC ⊂ gC and lC is reductive (resp. semisimple).
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Since hC is a maximal reductive algebraic (resp. maximal semisimple) subalgebra, we
have that hC = lC. Therefore, h and l have the same dimension and we conclude that
h = l.

We say that a subalgebra h ⊂ g of a complex semisimple Lie algebra g is a
regular subalgebra if h is normalized by some Cartan subalgebra a ⊂ g. Following
Dynkin [74], we say that a subalgebra h ⊂ g is an R-subalgebra if it is contained in a
regular proper subalgebra, and we say that it is an S-subalgebra if it is not contained
in a regular proper subalgebra. If g is not absolutely simple, its maximal subalgebras
of non-compact type are described by Lemma 7.2.4, which is similar to [73, Appendix
to Chapter 1, Theorem 1.6].

Lemma 7.2.4. Let g be a simple complex Lie algebra and h ⊂ gR be a subalgebra that
is maximal among the subalgebras of non-compact type. Then h coincides with one of
the following:

i) a maximal semisimple regular subalgebra of g,

ii) a maximal S-subalgebra of g,

iii) a non-compact real form of g.

Conversely, all of the above are maximal subalgebras of non-compact type of gR.

Proof. Let h be a subalgebra that is maximal among the subalgebras of non-compact
type of gR. For all subalgebras of gR we have that h + ih is a complex subalgebra
of g and h0 := {X ∈ h : λX ∈ h for all λ ∈ C} = h ∩ ih is an ideal of h + ih, see [73,
Appendix to Chapter 1]. If h+ ih = g, then it follows that h0 is an ideal of g. Since
g is simple, it follows that h0 = 0 and hence that h is a real form of g. Obviously, h
is not a compact real form.

Now we may assume that h+ ih ̸= g. Then h+ ih is contained in some maximal
subalgebra h̃ of g. Consider first the case where there is a maximal regular reductive
subalgebra h̃ containing h + ih. If the subalgebra h̃ of the complex Lie algebra g is
semisimple, then it is automatically a subalgebra of non-compact type of gR. Hence,
in this case we have h = h̃ and h is one of the subalgebras given in [74, Table 12]. On

the other hand, if the subalgebra h̃ of g is non-semisimple, then h + ih is contained
in one of the subalgebras in [74, Table 12a] and since these are maximal semisimple
regular subalgebras and also subalgebras of non-compact type in gR, by maximality,
h is conjugate to one of them.

It remains the case when h+ ih is not contained in a regular subalgebra of g. Then
it is contained in a maximal S-subalgebra of g. It follows from [74, Theorem 7.3],
that every non-semisimple subalgebra of a complex semisimple Lie algebra is an R-
subalgebra. Therefore we know that S-subalgebras of g are semisimple and hence
they are also subalgebras of non-compact type in gR. By maximality, it follows now
that h is a maximal S-subalgebra of g in this case.

Let us now show that the converse holds. Since the real forms of g are simple,
they are either compact or of non-compact type. The subalgebras in i) and, by [74,
No. 24, Theorem 7.3], in ii) are maximal semisimple subalgebras of g and they are of
non-compact type, hence maximal subalgebras of non-compact type.
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7.3 Maximal semisimple totally geodesic submani-
folds

We prove below a theorem that establishes a one-to-one correspondence between max-
imal semisimple totally geodesic submanifolds in symmetric spaces of non-compact
type and certain subalgebras of the Lie algebra of the isometry group of the ambient
space.

A result of Alekseevsky and Di Scala [4, Proposition 5.5] states that in a symmetric
space of non-compact type M = G/K, if the action of a subgroup of G has two totally
geodesic orbits, they are isomorphic as homogeneous spaces. Improving on this result,
we prove the following statement which provides uniqueness up to congruence for the
existence statement in Theorem 7.1.1. However, we note that, in this result, the group
acting upon is not assumed to be semisimple.

Proposition 7.3.1. Let M = G/K be a symmetric space of non-compact type and
H ⊂ G be a connected Lie subgroup. Then all totally geodesic H-orbits are congruent
in M .

Proof. Let H ·p and H ·q be two totally geodesic orbits of the action of H onM . By [4,
Proposition 5.5], we have that H · p and H · q have the same dimension.

Let us suppose that H · p is a point. Then, by the homogeneity of M , we have
that H · p and H · q are congruent.

Now, let us assume that dim(H · p) > 0. By [4, Proposition 5.5] there exists an
H-invariant totally geodesic submanifold N of M isometric to a Riemannian product
N = H · p×R such that H · p,H · q ⊂ N . Moreover, let γ be the geodesic of N starting
at p ∈ H · p whose initial velocity γ̇(0) lies in the orthogonal complement of Tp(H · p)
in TpN . This is also a geodesic in M since N is totally geodesic. Furthermore,
γ hits H · q at some point q′ ∈ M , since exp: ν(H · p) → M is a diffeomorphism,
see [115, Proposition 3.5 i)]. We may assume q′ = γ(1). Let x = γ( 12 ) ∈ N . Then
sx, the geodesic reflection of M at x, maps p ∈ N to q′ ∈ H · q and preserves N
since N is a totally geodesic submanifold in M containing x. Also, its differential
sends v ∈ Tp(H · p) to sx∗v ∈ Tq′N and

0 = ⟨v, γ̇(0)⟩ = ⟨sx∗v, sx∗γ̇(0)⟩ = −⟨sx∗v, γ̇(1)⟩.

This implies that sx(H · p) is a totally geodesic submanifold of N passing through
q′ ∈ N and orthogonal to γ. The tangent space to any orbit of H is generated by
Killing vector fields induced by H. LetX be a Killing vector field induced by the action
of H. Then ∇X is skew-symmetric, where ∇ stands for the Levi-Civita connection
of N (recall that N is H-invariant). Thus ⟨∇γ̇X, γ̇⟩ = 0, which implies that ⟨X, γ̇⟩ is
constant. Since γ is orthogonal to H · p at p, it follows that γ is also orthogonal to
H · q at q′. Now we have shown that sx(H · p) and H · q, which both have codimension
one in N , are totally geodesic submanifolds of N passing through q′ with the same
tangent space. This shows that H · p and H · q are congruent in M via sx.
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Remark 7.3.2. Notice that the above result works only for symmetric spaces of non-
compact type. For instance, the standard action of SO2 on S2 has two different
isometry classes of totally geodesic orbits, namely, the equator and the poles.

Let M = G/K be an irreducible symmetric space of non-compact type, where G
is the connected component of the identity of the isometry group of M and K is the
isotropy subgroup Go at o ∈ M . Let Σ be a (complete) totally geodesic submanifold
of M passing through o ∈M .

As it can be deduced from the discussion in [22, §2], if Σ is semisimple, then the
Lie algebra gΣ := [pΣ, pΣ] ⊕ pΣ, where pΣ = ToΣ, is isomorphic to the Lie algebra
of the isometry group of Σ, and gΣ is a semisimple Lie algebra in this case. Recall
that we say that a semisimple Lie algebra is of non-compact type if each of its simple
ideals is non-compact. If h is a Lie algebra of non-compact type, then there is some
symmetric space Σh of non-compact type such that the Lie algebra of its isometry
group is h. In particular, if we consider a Cartan decomposition h = kh ⊕ ph, we have
kh = [ph, ph].

Our ultimate aim would be to to classify maximal totally geodesic submanifolds
in M . Note that Berndt and Olmos classified in [20] the maximal totally geodesic
submanifolds of M that are non-semisimple. So it remains to find those maximal
totally geodesic submanifolds of M that are semisimple.

Our approach will consist in classifying first maximal semisimple totally geodesic
submanifolds (i.e. the totally geodesic submanifolds that are maximal among the
semisimple ones) and then discarding those that are contained in a non-semisimple
totally geodesic submanifold. As announced, we will be able to carry out these tasks
for the exceptional symmetric spaces, although many of the results in this chapter
hold in more generality.

We now prove a theorem that establishes a correspondence between maximal
semisimple totally geodesic submanifolds of M and subalgebras that are maximal
among subalgebras of non-compact type of g.

Theorem 7.3.3 (Correspondence Theorem). Let M = G/K be an irreducible sym-
metric space of non-compact type and h ⊂ g a subalgebra that is maximal among the
subalgebras of non-compact type of g. Then there is some p ∈M such that Σ = H · p
is a maximal semisimple totally geodesic submanifold of M , where H ⊂ G is the
connected subgroup of G with Lie algebra h.

Conversely, if Σ is a maximal semisimple totally geodesic submanifold of M , then
there is a subalgebra gΣ of g that is maximal among subalgebras of non-compact type
of g such that GΣ · p = Σ for some p ∈ M , where GΣ is the connected subgroup of G
with Lie algebra gΣ.

Proof. Let h be a maximal subalgebra of non-compact type of g and H be the con-
nected Lie subgroup of G with Lie algebra h. By Theorem 7.1.2, we may assume that h
is canonically embedded with respect to the Cartan decomposition g = k⊕p. Clearly,
Σ := H ·o is then a semisimple totally geodesic submanifold ofM and we claim that it
is maximal among semisimple totally geodesic submanifolds. Let us assume that there
is a semisimple totally geodesic submanifold Σ̃ such that Σ ⊂ Σ̃ ⊂M . We may assume



128 7 Totally geodesic submanifolds in exceptional symmetric spaces

o ∈ Σ̃. Then Σ̃ is of non-compact type. Let h = kh ⊕ ph be the Cartan decomposition
of h, where kh = k ∩ h and ph = p ∩ h. It follows from our assumption that there is a
Lie triple system pΣ̃ such that ph ⊂ pΣ̃ ⊂ p. Thus, kh = [ph, ph] ⊂ [pΣ̃, pΣ̃] =: kΣ̃ and

h ⊂ gΣ̃ := kΣ̃ ⊕ pΣ̃. However, gΣ̃ is of non-compact type, since Σ̃ is of non-compact
type, and h is maximal among subalgebras of g of non-compact type. It follows that
h = gΣ̃ and Σ̃ = Σ.

Let Σ be a maximal semisimple totally geodesic submanifold passing through
o ∈M and let pΣ be the tangent space to Σ at o. Consider gΣ := [pΣ, pΣ]⊕pΣ. Clearly,
gΣ is of non-compact type since it is isomorphic to the Lie algebra of the isometry
group of Σ. We will prove that gΣ is maximal among subalgebras of non-compact
type of g. Let h be a subalgebra of g of non-compact type such that gΣ ⊂ h ⊂ g. We
prove that gΣ = h. We apply Theorem 7.1.2 to gΣ ⊂ h to find a Cartan decomposition
for h such that

h = kh ⊕ ph satisfying kΣ := [pΣ, pΣ] ⊂ kh, pΣ ⊂ ph.

Applying Theorem 7.1.2 once more to h ⊂ g, we find a Cartan decomposition for g
such that

g = k′ ⊕ p′ satisfying kΣ ⊂ kh ⊂ k′, pΣ ⊂ ph ⊂ p′.

Now since any two Cartan involutions in a real semisimple Lie algebra differ by an
inner automorphism, there is some g ∈ G such that p′ = Ad(g)p. Thus Ad(g−1)pΣ
and Ad(g−1)ph are Lie triple systems in p since Ad(g) ∈ Aut(g) and Ad(g−1)pΣ ⊂
Ad(g−1)ph ⊂ p. Let H and GΣ be the Lie subgroups of G with Lie algebras h and
gΣ, respectively. If we consider p := g · o ∈ M , we have that GΣ · p and H · p are
totally geodesic submanifolds inM , since g−1GΣg ·o and g−1Hg ·o are totally geodesic
(as Ad(g−1)pΣ and Ad(g−1)ph are Lie triple systems in p). Furthermore, GΣ · p is
contained in H · p. However, Σ = GΣ · o is maximal among the semisimple totally
geodesic submanifolds passing through o ∈M . Hence, by Proposition 7.3.1, GΣ · p is
maximal among the semisimple totally geodesic submanifolds passing through p ∈M .
Then GΣ · p = H · p. Therefore, ph = pΣ and consequently gΣ = h, since gΣ and h are
of non-compact type.

7.4 Dynkin index and totally geodesic submanifolds

In this section, we extend the definition of the Dynkin index of a simple subalgebra
of a simple complex Lie algebra to certain classes of semisimple subalgebras of simple
real Lie algebras, and we use it to characterize isometry classes of totally geodesic
submanifolds.

Recall that we denote by Bg the Killing form of a Lie algebra g. Let g be a simple
complex Lie algebra and let a be a Cartan subalgebra of g. Let ∆ be the set of roots
with respect to a. It is shown in [90, Chapter III, Theorem 4.2] that the restriction
of Bg to a is non-degenerate, and that we hence may identify each root α ∈ ∆ with
a vector Hα ∈ g such that α(H) = Bg(H,Hα) for all H ∈ a. It follows from [90,
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Chapter III, Theorem 4.4(i)] that the numbers qα := Bg(Hα, Hα) are positive for
all α ∈ ∆. Let q := max{qα : α ∈ ∆} and define the bilinear form Qg on g by

Qg :=
2

q
Bg,

i.e. Qg is the multiple of the Killing form normalized so that the square of the length
of the longest root equals 2. Let us recall from [74, §2] Dynkin’s definition of the
index of a simple subalgebra of a simple complex Lie algebra. Let h and g be simple
complex Lie algebras and let f : h → g be a Lie algebra monomorphism. By Schur’s
Lemma, the number indD(f), given by

indD(f) ·Qh(X,Y ) = Qg(f(X), f(Y )) for all X,Y ∈ h, (7.1)

is well defined. It is called the Dynkin index of the subalgebra f(h) in g. Dynkin
proved in [74, Theorem 2.2] that it is a positive integer. If h ⊂ g is a complex
subalgebra of the complex Lie algebra g, we will write indD(h, g), or indD(h) when
the embedding is clear from the context, for the Dynkin index of the inclusion map.

Now let us mention the multiplicative property of the Dynkin index, see [74, §2,
No. 7]. Observe that given the inclusions h1 ⊂ h2 ⊂ g of complex simple Lie algebras,
then

indD(h1, g) = indD(h1, h2) · indD(h2, g).
We would like to extend the definition of the Dynkin index to (semi)simple sub-

algebras of simple real Lie algebras.
Let h = h1 ⊕ · · · ⊕ hn be a semisimple complex subalgebra of the simple complex

Lie algebra g, where hs is a simple complex ideal for every s ∈ {1, . . . , n}. We define

indD(h) := (indD(h1), . . . , indD(hn)).

For an absolutely simple real Lie algebra g, we define the Dynkin index of a
semisimple subalgebra h as the Dynkin index of hC in gC. This is well defined since
hC is semisimple, see the proof of Lemma 7.2.3. In order to define also the Dynkin
index for a semisimple subalgebra of a simple real Lie algebra that is not absolutely
simple, i.e. whose complexification is not simple, we prove the following.

Lemma 7.4.1. Let g be a simple complex Lie algebra and let h be a semisimple
subalgebra of the realification gR of g. Then h+ ih is a semisimple subalgebra of g.

Proof. Notice that h+ ih is a subalgebra of g and h ∩ ih is an ideal of h+ ih, see [73,
Appendix to Chapter 1, Lemma 1.1]. Hence h ∩ ih is also an ideal of the subalgebra
h of gR. Let h = h1 ⊕ · · · ⊕ hn, where the hj are the simple ideals of h. Since hj is
simple, we have either hj ∩ ihj = hj , and then hj+ ihj = hj is simple, or h∩ ih = 0, in
which case hj is a simple real form of the complex Lie algebra hj+ ihj . Note also that
ihj ∩ hk = 0 for j ̸= k. Indeed, we have [ihj ∩ hk, hk] ⊂ i[hj , hk] = 0 for j ̸= k. Thus
we may assume, by renumbering the hj , if necessary, that there is a k ∈ {0, . . . , n}
such that multiplication by i maps hj to itself if and only if j < k. It follows that

h+ ih = h1 ⊕ · · · ⊕ hk−1 ⊕ (hk + ihk)⊕ · · · ⊕ (hn + ihn).

Hence h+ ih is semisimple.
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Definition 7.4.2. Let g be a simple real Lie algebra and let h be a semisimple sub-
algebra of g.

i) If g is absolutely simple, then we define

indD(h, g) := indD(hC, gC).

ii) If g = lR is the realification of a simple complex Lie algebra l and h is a complex
subalgebra or a real form of l, then we define

indD(h, g) := indD(h+ ih, l).

Furthermore, let h and h′ be two semisimple subalgebras of g for which the Dynkin
index is defined. We say that h and h′ are isometric if there is a Lie algebra isomor-
phism φ : h → h′ such that each simple ideal of h is mapped onto a simple ideal of h′

of the same Dynkin index.

Remark 7.4.3. Note that, with this definition, for a simple subalgebra h of an abso-
lutely simple real Lie algebra g the Dynkin index of the subalgebra hC of gC is either
a natural number (in case h is absolutely simple) or, by the following lemma, a pair
of natural numbers (in case h is not absolutely simple).

Lemma 7.4.4. Let g be an absolutely simple real Lie algebra and let h be a simple,
but not absolutely simple subalgebra of g. Then hC = h1 ⊕ h2, where h1 and h2 are
two isomorphic simple subalgebras of gC of equal Dynkin index.

Proof. We may assume that h is canonically embedded with respect to a Cartan
decomposition g = k⊕p by Theorem 7.1.2. Let θ be the corresponding Cartan involu-
tion. Since h is simple, but not absolutely simple, it is isomorphic to the realification
of a simple complex Lie algebra and since h is canonically embedded with respect to
the above Cartan decomposition, it follows that h ∩ k is a compact real form of this
simple complex Lie algebra. In particular, θ, restricted to h, is a non-trivial involutive
automorphism of h.

It is well known that the complexification of fR, where f is a complex Lie algebra,
is isomorphic to f ⊕ f̄, where f̄ denotes the complex conjugate Lie algebra of f, see
e.g. [150, §2, Proposition 3]. Note that the complex Lie algebras that have a real form
are isomorphic to their complex conjugates via an antilinear map. This shows that
hC = h1 ⊕ h2, where h1 and h2 are isomorphic.

Let τ : gC → gC be the map defined by τ(X + iY ) = X − iY for X,Y ∈ g. It
is straightforward to check that τ is an automorphism of gR. The map τ obviously
leaves hC invariant and it acts on hC as an automorphism of the real Lie algebra (hC)R.
Since h1 and h2 are isomorphic simple ideals of (hC)R, we have either τ(h1) = h1 or
τ(h1) = h2. Assume we are in the former case. Then we also have τ(h2) = h2. The
fixed point set of the involution τ on hC is the direct sum k1⊕ k2, where kj is a proper
subalgebra of hj for j = 1, 2. However, the fixed point set of the action of τ on hC
coincides with the simple Lie algebra h and we have arrived at a contradiction.
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We have shown that τ(h1) = h2. Since h1 is simple, there are vectors X,Y ∈ h1
such that Bh1(X,Y ) ̸= 0 and we have by [150, § 2, Proposition 2(ii)]

indD(h1, g) =
Qg(X,Y )

Qh1
(X,Y )

=
Qg(τ(X), τ(Y ))

Qh2
(τ(X), τ(Y ))

= indD(h2, g).

Since indD(h2, g) is a natural number, it follows that the subalgebras h1 and h2 have
the same Dynkin index.

Hence, we have defined the Dynkin index for every semisimple subalgebra h of an
absolutely simple real Lie algebra g. Also, we have defined the Dynkin index for every
semisimple complex subalgebra h of the realification of a complex simple Lie algebra
g and for its real forms. In both cases we denote it by indD(h, g), or indD(h), when
the embedding is clear from the context. It immediately follows from this definition
that the Dynkin index is one if h is a real form of the simple complex Lie algebra g.
Indeed, the following result shows that isometric real forms of g induce congruent,
and hence isometric, totally geodesic submanifolds of M .

Lemma 7.4.5. Let M = G/K be a symmetric space, where G is a simple complex
Lie group. Let h and h′ be isomorphic real forms of a complex simple Lie algebra g.
Then, the totally geodesic orbits of H and H′ in M are all congruent in M , where H
and H′ are the connected subgroups of G with Lie algebras h and h′, respectively.

Proof. Let h and h′ be isomorphic real forms in g. Then, there is a Lie algebra isomor-
phism f : h → h′. By complexifying, this map extends to a Lie algebra automorphism
f̃ of g. Let us fix some Cartan decomposition g = k⊕ p. We can assume without loss
of generality that H ·o is a totally geodesic submanifold inM . This implies that there
is a Cartan decomposition h = ph⊕kh such that ph ⊂ p and kh ⊂ k. By Theorem 7.1.2,

there is a Cartan decomposition ph′ ⊕ kh′ = h′ such that f̃(ph) = ph′ and f̃(kh) = kh′ .
Furthermore, two Cartan decompositions of g are conjugate in Int(g). Hence there

is some g ∈ G such that φ := Ad(g) ◦ f̃ ∈ Aut(g), φ(p) = p and φ(h) ⊂ g is a real
form of g conjugate to h′ in g. Furthermore, φ preserves the curvature tensor of
M at o since this is given by Lie brackets. Hence, φ is a linear isometry of p that
preserves sectional curvature at o. Thus, by [189, Corollary 2.3.14], φ extends to an
isometry k ∈ Isom(M) that fixes o ∈ M , since it leaves p invariant. Thus, we have
that k(H · o) = gH′g−1 · q, for certain q ∈ M , which implies that there is a totally
geodesic orbit of H which is congruent to a totally geodesic orbit of H′. Consequently,
by Proposition 7.3.1, the totally geodesic orbits of H and H′ are all congruent in
M .

We have defined the Dynkin indices of certain semisimple subalgebras of simple
real Lie algebras in such a way that isometry classes of subalgebras of the isometry
algebra of an irreducible symmetric space of non-compact type correspond to isometry
classes of totally geodesic submanifolds. This is the content of the following theorem.

Theorem 7.4.6. Let M = G/K be an irreducible symmetric space of non-compact
type. Let Σ1,Σ2 be two semisimple totally geodesic submanifolds containing o ∈ M .
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For j = 1, 2 let pj = ToΣj and let gΣj = [pj , pj ] ⊕ pj ⊂ g. Assume that one of the
following holds:

i) g is absolutely simple.

ii) g is complex and gΣj
is a complex subalgebra or a real form of g for each j ∈

{1, 2}.

Then Σ1 and Σ2 are isometric if and only if gΣ1 and gΣ2 are isometric subalgebras
of g.

Proof. It suffices to prove the statement in the case when the gΣj
, j = 1, 2, are

simple. Let us consider the Cartan decomposition g = k ⊕ p. Since any two Cartan
involutions of g differ by an inner automorphism of g, we may assume by Theorem 7.1.2
that gΣ1

and gΣ2
are both canonically embedded into g with respect to the Cartan

decomposition g = k⊕ p. Then we have Σj = expo(gΣj ∩ p), where expo denotes the
Riemannian exponential map of M at the point o.

If we assume that Σ1 and Σ2 are isometric, it follows that there is an isomorphism
φ : gΣ1

→ gΣ2
. Conversely, if gΣ1

and gΣ2
are isometric subalgebras of g, they are

isomorphic by definition.
Since M , Σ1 and Σ2 are irreducible symmetric spaces, their invariant Riemannian

metrics are unique up to scaling by a constant factor. Therefore, we may assume that
M is endowed with the G-invariant metric induced by the Killing form of g and we
know that the invariant Riemannian metrics induced on Σj are obtained from the
metrics induced by the Killing form of gΣj by applying a constant scaling factor cj to
this metric. Thus it remains to show that c1 = c2 if and only if the Dynkin indices of
the subalgebras gΣ1

and gΣ2
of g are equal. To prove this, we consider separately the

two cases where the Lie algebra g is absolutely simple and where it is not absolutely
simple, since the Dynkin indices of subalgebras are defined differently in these two
cases. Note that the Killing form of a real form of a complex Lie algebra is given by
restricting the Killing form of its complexification, see [150, §2, Proposition 2]. On
the other hand, the Killing form of the realification hR of a complex Lie algebra h is
given by

BhR(X,Y ) = 2 Re(Bh(X,Y )).

First assume that g is absolutely simple; then the Dynkin index of gΣj is defined as the
Dynkin index of the subalgebra (gΣj

)C in gC. In this case, the Lie algebras g, gΣ1
, gΣ2

are real forms of the Lie algebras gC, (gΣ1
)C, (gΣ2

)C and hence their Killing forms are
given by restricting the Killing forms of their complexifications. When gΣ1

and gΣ2

have simple complexifications, it is immediately clear that indD(gΣ1
) = indD(gΣ2

)
if and only if c1 = c2. In case the complexifications are not simple, we know by
Lemma 7.4.4 that they both are a direct sum of two isometric subalgebras of gC, and
it follows that c1 = c2 if and only if their Dynkin indices agree.

Now assume that g is not absolutely simple, i.e. it is the realification of a simple
complex Lie algebra. In this case, the Dynkin index of gΣj is defined as the Dynkin
index of the subalgebra gΣj + igΣj of g, viewed as a complex Lie algebra. Now, by
hypothesis, the Lie algebra gΣ1

≃ gΣ2
is either a complex subalgebra or a real form.
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In the first case, gΣj is a simple subalgebra of g, viewed as a complex Lie algebra and
we conclude again that c1 = c2 if and only the indD(gΣ1) = indD(gΣ2). In the second
case, the result follows from Lemma 7.4.5.

Definition 7.4.7. Let g be the Lie algebra of the isometry group of an irreducible
symmetric space of non-compact type. We define L(g) as the set of isometry classes
of maximal subalgebras of non-compact type of g.

Notice that this set is well defined since maximal subalgebras of non-compact
type of g, when g is complex, are either complex subalgebras or real forms of g by
Lemma 7.2.4. We denote the isometry classes of subalgebras by the pairs (h, indD(h)),
where the first entry denotes the isomorphism class of the subalgebra and the second
entry is its Dynkin index.

Corollary 7.4.8. Let g be the Lie algebra of the isometry group of an irreducible sym-
metric space of non-compact type M . The set L(g) is in one-to-one correspondence
with the set of isometry classes of maximal semisimple totally geodesic submanifolds
in M .

Proof. This follows by combining the Correspondence Theorem 7.3.3 and Proposi-
tion 7.4.6.

7.5 Totally geodesic submanifolds in
exceptional symmetric spaces of type III

In this section we achieve the classification of maximal totally geodesic submanifolds
in M = G/K when g is the Lie algebra of the isometry group of an exceptional
symmetric space M of type III.

To the best of our knowledge, no complete classification of maximal subalgebras of
non-compact type is available in the literature so far. The articles of Komrakov [117]
and de Graaf and Marrani [57] give lists that, when combined, provide all maximal
subalgebras of non-compact type of a real semisimple exceptional Lie algebra g. On
the one hand, the more recent paper of de Graaf and Marrani [57] gives complete lists
of maximal reductive subalgebras h whose complexification hC is a maximal reductive
subalgebra of gC for absolutely simple real Lie algebras g of rank less or equal than 8.
On the other hand, in the article of Komrakov [117], all maximal subalgebras h of
non-compact simple real Lie algebras whose complexification hC is not a maximal
subalgebra of gC are given.

We consider L̃(g), the result of joining these two lists, deleting the compact ideals
of each subalgebra in the union of these lists, and adding the Dynkin index of the
resulting subalgebras, which we take from [74, Tables 16, 17, 18, 19, 20, 25]. For the

absolutely simple exceptional real Lie algebras, the set L̃(g) is given by Table 7.2.

Proposition 7.5.1. Let g be the Lie algebra of the isometry group of an irreducible
exceptional symmetric space of non-compact type. Then, if g is absolutely simple,
L(g) ⊂ L̃(g).
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Proof. Let h ⊂ g be a maximal subalgebra of non-compact type. Then, since h is
semisimple, h is a reductive algebraic subalgebra by Theorem 7.1.2 and Theorem 7.1.4.
Hence, there exists a maximal reductive algebraic subalgebra h̃ ⊂ g such that h ⊂ h̃.
Observe that h̃ = h̃1 ⊕ h̃2, where h̃1 is a subalgebra of non-compact type and h̃2 is a
compact subalgebra.

Let us show that h ⊂ h̃1. Let ĥ be a simple ideal of h and consider f : h̃ → h̃2,
the natural projection of h̃ on h̃2. Then, f restricted to ĥ is injective or zero. If it
is injective, h̃2 has a subalgebra of non-compact type, which leads to a contradiction.
Hence, h ⊂ h̃1.

By definition, (h̃)C ⊂ gC is a reductive algebraic subalgebra. On the one hand,

if (h̃)C ⊂ gC is not a maximal reductive subalgebra, in particular it is not maximal

and it is given in [117, Theorem 1]. On the other hand, if (h̃)C ⊂ gC is a maximal

reductive subalgebra, it is given in [57]. This shows L(g) ⊂ L̃(g).

We prove a criterion that ensures the non-maximality of certain totally geodesic
orbits.

Lemma 7.5.2. Let M = G/K be an irreducible symmetric space of non-compact
type. Let h = k1 ⊕ g1 be a semisimple subalgebra of g, which is the direct sum of the
ideals k1 and g1, where k1 is compact and g1 is of non-compact type. Assume h is
canonically embedded into g with respect to the Cartan decomposition g = k⊕p. Then
the following holds:

i) The linear subspace ℓ := h ∩ p of p is a Lie triple system and L := expo(ℓ) is a
totally geodesic orbit of the H-action on M , where expo denotes the Riemannian
exponential map of M at the point o.

ii) The connected Lie subgroup K1 of K corresponding to k1 acts effectively on the
normal space No(H · o) to the H-orbit at o and trivially on ℓ.

iii) If K1 contains a subgroup Q and there are vectors v, w ∈ No(H · o) such that
K1 · v ̸= v, Q · v = v, Q · w ̸= w, then L is not a maximal totally geodesic
submanifold of M .

iv) If K1 is of rank greater than one or if the action of K1 on No(H · o) is effectively
an SO3-representation, then L is not a maximal totally geodesic submanifold of
M .

Proof. Since h is canonically embedded into g, we have that h = (h ∩ k) ⊕ ℓ is a
Cartan decomposition of h. This shows that ℓ is a Lie triple system in p and hence
its exponential image is a totally geodesic submanifold of M . This proves i).

Observe that K acts effectively on M since it is a subgroup of the isometry group
of M . Every isometry f of M is uniquely defined by the image f(p) and the differen-
tial f∗p for one arbitrary point p ∈M . In particular, the action of an element in the
isotropy group K = Go on M is uniquely determined by the action of its differential
on p = ToM . Therefore, if k ∈ K acts trivially on p, then k = e. Since h is canonically
embedded, it is invariant under θ. Thus the restriction of θ to h is a Lie algebra
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automorphism and it follows that θ leaves invariant k1 and g1, since k1 is compact
and g1 is of non-compact type. Hence k1 and g1 are canonically embedded in g with
respect to the Cartan decomposition g = k⊕ p and it follows that h∩ k = k1 ⊕ (g1 ∩ k)
and h ∩ p = g1 ∩ p = ℓ. In particular, the subspaces k1 and ℓ of g commute. Hence,
the connected subgroup K1 acts trivially on ℓ and effectively on No(H · o), since K1 is
a subgroup of the isometry group of M . This proves ii).

Assume there is a subgroup Q ⊂ K1 as described in part iii) of the assertion. Let
N be the connected component of the fixed point set of the Q-action onM containing
o. Then N is a totally geodesic submanifold of M containing o and N = expo(F ),
where F is the set of fixed points under the action of Q on p. It follows that F is a
Lie triple system in p, which contains ℓ, since K1 acts trivially on ℓ by ii). Since there
are vectors v, w ∈ No(H · o) such that K1 · v ̸= v, Q · v = v, Q · w ̸= w, it follows that
the dimension of F is strictly greater than the dimension of ℓ and that F ̸= p. Hence
N is a proper totally geodesic submanifold containing L and N ̸= M . This proves
iii).

If the action of K1 onNo(H·o) is effectively an SO3-representation then it is a direct
sum of odd-dimensional irreducible real representations of K1 and a trivial module.
Since non-trivial real representations of the abelian group SO2 are even-dimensional,
it follows that if we choose Q = SO2, then there are vectors v, w ∈ No(H · o) as in
item iii) of the statement.

Let us now assume that the rank of K1 is greater than one. First note that for the
existence of a subgroup Q as described in iii), it suffices that the action of K1 on p
has a singular orbit that is not a fixed point of the K1-action on p. Indeed, let v ∈ p
be contained in such a singular orbit and let Q be the isotropy subgroup (K1)v. Then
K1 · v ̸= v and Q · v = v. If there is no vector w ∈ No(H · o) such that Q ·w ̸= w, then
all isotropy groups contain Q, which implies that Q is a principal isotropy group, a
contradiction.

We may now assume that all singular orbits of the action of K1 on p are fixed
points. This implies that, as a K1-module, p = V0 ⊕ V1 is a direct sum of a trivial
module V0 and a module V1 on which K1 acts in such a fashion that each non-zero
vector lies in a principal orbit. Then K1 acts on the unit sphere in V1 in such a way
that all orbits are of the same dimension. In particular, the orbits comprise a regular
homogeneous foliation of the unit sphere in V1. It follows from [130, Theorem 1.1]
that if this foliation is non-trivial (i.e. the action is not transitive on the unit sphere),
the orbits are either one-dimensional or three-dimensional and that K1, which acts
effectively on p, is isomorphic to U1 or SU2. Since we have excluded these cases by
our hypotheses, we may from now on assume that the action is transitive on the unit
sphere.

Hence K1 is a connected Lie group acting effectively and transitively on a unit
sphere. The corresponding presentations of spheres are, by [136],

Sn = SOn+1/SOn, S2n+1 = Un+1/Un = SUn+1/SUn,

S4n+3 = Spn+1Sp1/SpnSp1 = Spn+1U1/SpnU1 = Spn+1/Spn,

S6 = G2/SU3, S7 = Spin7/G2, S15 = Spin9/Spin7.
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By inspection of this list, we see that if the rank of K1 is two or greater, we may
choose Q as the isotropy subgroup of any non-zero vector v ∈ p; then K1 · v ̸= v and
Q · v = v and Q acts non-trivially on the orthogonal complement of v in p, showing
there is a vector w ∈ p such that Q ·w ̸= w. We have completed the proof of iv).

Observe that while many subalgebras of L̃(g) are obtained by removing a compact
ideal k1 of rank greater than one, hence satisfying the hypotheses of Lemma 7.5.2 iv),

there are still some subalgebras of L̃(g) that cannot be directly treated using this
lemma. In order to deal with these cases, we prove the next results.

Lemma 7.5.3. Let g be an exceptional absolutely simple non-compact real Lie algebra.
We consider the following maximal subalgebras h of real Lie algebras g which are the
non-compact parts of some subalgebras of g with a rank one simple compact factor
appearing in L̃(g):

g22 ⊂ f44; sl2(R), g22, f44, f
−20
4 ⊂ e−5

7 ; g2(C), sl3(R) ⊂ e−24
8 ; su1,2 ⊂ e88.

Let G be the simply connected Lie group with Lie algebra g and let K be a maximal
compact subgroup of G. Assume the Lie algebra h is canonically embedded into g with
respect to the Cartan decomposition g = k⊕p. Let H be the connected closed subgroup
of G with Lie algebra h. Then a totally geodesic orbit of the H-action on the symmetric
space M = G/K is not maximal.

Proof. The complexifications of all the subalgebras h in the statement of the lemma
can be found in [74, Table 39, p. 233], where we can also read off the Dynkin in-
dices (given as superscripts in the table) of (the complexifications of) their compact
ideals (which are all isomorphic to su2). The so-called characteristic representations
of the su2-summands, i.e. the representations adg ⊖ adsu2 are given in [74, Table 21,
p. 186-187]. It follows from this table that they all are direct sums of odd-dimensional
irreducible su2-representations and a trivial module. Hence, on the level of Lie groups,
the corresponding representations are effectively SO3-representations. Thus the sub-
group K1 as described in Lemma 7.5.2 effectively acts as SO3 on p and it follows from
Lemma 7.5.2 iv) that a totally geodesic orbit of the H-action onM is not maximal.

Lemma 7.5.4. Consider the following subalgebras h of real Lie algebras g which are
the semisimple parts of some subalgebras of g with one dimensional center appearing
in L̃(g):

so5,5 ⊂ e66, so9,1 ⊂ e−26
6 ,

e66 ⊂ e77, e−26
6 ⊂ e−25

7 .

Let G be the simply connected Lie group with Lie algebra g and let K be a maximal
compact subgroup of G. Assume the Lie algebra h is canonically embedded into g with
respect to the Cartan decomposition g = k⊕p. Let H be the connected closed subgroup
of G with Lie algebra h. Then a totally geodesic orbit of the H-action on the symmetric
space M = G/K is not maximal.
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g22 (sl3(R), 1), (su1,2, 1), (sl2(R)⊕ sl2(R), (3, 1)), (sl2(R), 28)

f44

(sl3(R)⊕ sl3(R), (1, 2)), (su1,2 ⊕ su1,2, (1, 2)), (su1,2 ⊕��su3, 2),
(sl2(R)⊕ sp3(R), (1, 1)), (sp1,2 ⊕��su2, 1), (so4,5, 1), (sl2(R), 156),
(sl2(R)⊕ g22, (8, 1)), (g

2
2 ⊕��su2, 1)

f−20
4 (su1,2 ⊕��su3, 2), (sp1,2 ⊕��su2, 1), (so1,8, 1), (sl2(R)⊕��g2, 8)

e66

(so5,5 ⊕�R, 1), (sl3(R)⊕ sl3(R)⊕ sl3(R), (1, 1, 1)), (su1,2 ⊕ sl3(C), (1, 1, 1)),
(sl2(R)⊕ sl6(R), (1, 1)), (su∗6 ⊕��su2, 1), (sl3(R)⊕ g22, (2, 1)), (sp2,2, 1),
(sp4(R), 1), (f44, 1)

e26

(so4,6 ⊕�R, 1), (so∗10 ⊕�R, 1), (sl3(C)⊕ sl3(R), (1, 1, 1)), (su1,2 ⊕��su3 ⊕��su3, 1),
(su1,2 ⊕ su1,2 ⊕ su1,2, (1, 1, 1)), (sl2(R)⊕ su3,3, (1, 1)), (su2,4 ⊕��su2, 1), (su1,2, 9),
(sl3(R), 9), (g22 ⊕��su3, 1), (g

2
2, 3), (su1,2 ⊕ g22, (2, 1)), (sp1,3, 1), (sp4(R), 1), (f44, 1)

e−14
6

(so∗10 ⊕�R, 1), (so2,8 ⊕�R, 1), (su1,2 ⊕ su1,2 ⊕��su3, (1, 1)), (sl2(R)⊕ su1,5, (1, 1)),
(su2,4 ⊕��su2, 1), (su1,2 ⊕��g2, 2), (sp2,2, 1), (f

−20
4 , 1)

e−26
6

(so1,9 ⊕�R, 1), (sl3(C)⊕��su3, (1, 1)), (su
∗
6 ⊕��su2, 1), (sl3(R)⊕��g2, 2),

(sp1,3, 1), (f
−20
4 , 1)

e77

(e66 ⊕�R, 1), (e26 ⊕�R, 1), (sl2(R)⊕ so6,6, (1, 1)), (so
∗
12 ⊕��su2, 1), (sl8(R), 1),

(su4,4, 1), (su
∗
8, 1), (sl3(R)⊕ sl6(R), (1, 1)), (su1,2 ⊕ su3,3, (1, 1)), (su1,5 ⊕��su3, 1),

(sl2(R), 231), (sl2(R), 399), (sl3(R), 21), (sl2(R)⊕ sl2(R), (15, 24))
(sl2(R)⊕��g2, 7), (sl2(R)⊕ g22, (7, 2)), (sp3(R)⊕ g22, (1, 1)), (sl2(R)⊕ f44, (3, 1))

e−25
7

(e−26
6 ⊕�R, 1), (e−14

6 ⊕�R, 1), (sl2(R)⊕ so2,10, (1, 1)), (so
∗
12 ⊕��su2, 1), (su

∗
8, 1),

(su2,6, 1), (su3,3 ⊕��su3, 1), (su1,2 ⊕ su1,5, (1, 1)), (sp3(R)⊕��g2, 1), (sl2(R)⊕�f4, 3),
(sl2(R)⊕ f−20

4 , (3, 1))

e−5
7

(e26 ⊕�R, 1), (e−14
6 ⊕�R, 1), (sl2(R)⊕ so∗12, (1, 1)), (so4,8 ⊕��su2, 1), (su4,4, 1),

(su2,6, 1), (sl3(R)⊕ su∗6, (1, 1)), (su1,2 ⊕ su2,4, (1, 1)), (su2,4 ⊕��su3, 1),
(su1,2 ⊕��su6, 1), (su1,2, 21), (sl2(R)⊕��su2, 24), (g

2
2 ⊕��su2, 2), (g

2
2 ⊕��sp3, 1),

(sp1,2 ⊕��g2, 1), (sp1,2 ⊕ g22, (1, 1)), (f
4
4 ⊕��su2, 1), (f

−20
4 ⊕��su2, 1)

e88

(su1,4 ⊕��su5, 1), (su1,4 ⊕ su1,4, (1, 1)), (su2,3 ⊕ su2,3, (1, 1)), (sl3(R)⊕ e66, (1, 1)),
(sl5(R)⊕ sl5(R), (1, 1)), (so8,8, 1), (so∗16, 1), (su1,8, 1), (su4,5, 1), (sl9(R), 1),
(e−14

6 ⊕��su3, 1), (su1,2 ⊕ e26, (1, 1)), (e
−5
7 ⊕��su2, 1), (sl2(R)⊕ e77, (1, 1)), (so2,3, 12),

(so1,4, 12), (su1,2 ⊕��su2, 6), (sl2(R)⊕��su3, 16), (sl2(R)⊕ su1,2, (16, 6)),
(sl2(R)⊕ sl3(R), (16, 6)), (f−20

4 ⊕��g2, 1), (f
4
4 ⊕ g22, (1, 1)),

(sl2(R), 520), (sl2(R), 760), (sl2(R), 1240), (g2(C)⊕ sl2(R), (1, 1, 8))

e−24
8

(su1,4 ⊕ su2,3, (1, 1)), (su2,3 ⊕��su5, 1), (so4,12, 1), (so
∗
16, 1), (su3,6, 1), (su2,7, 1),

(e26 ⊕��su3, 1), (su1,2 ⊕ e−14
6 , (1, 1)), (su1,2 ⊕�e6, 1), (sl3(R)⊕ e−26

6 , (1, 1)),
(e−5

7 ⊕��su2, 1), (sl2(R)⊕ e−25
7 , (1, 1)), (sl3(R)⊕��su2, 6), (f

4
4 ⊕��g2, 1),

(g22 ⊕�f4, 1), (f
−20
4 ⊕ g22, (1, 1)), (g2(C)⊕��su2, (1, 1))

Table 7.2: L̃(g) for each exceptional absolutely simple real Lie algebra g. We include
the deleted compact ideals for the convenience of the reader.
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Proof. First note that any subalgebra of the form h ⊕ s, where s is an abelian 1-
dimensional subalgebra of g is a reductive algebraic subalgebra. This is because their
complexifications are maximal subalgebras of maximal rank of gC. Hence, they are
algebraic by Remark 7.1.3. By observing that the root spaces of a simple complex
Lie algebra are equal to the complexification of the root spaces of certain compact
real form, and by using the Borel-de Siebenthal theorem, see [37], we deduce that
they are regular subalgebras of gC. However, regular subalgebras are clearly canoni-
cally embedded with respect to some Cartan decomposition of gC and then these are
reductive algebraic by Theorem 7.1.4.

Now, notice that s is either contained in p or in k. Indeed, θ, the Cartan involution
of g, when restricted to h⊕s, is a Lie algebra automorphism. Hence, it maps s onto s,
since s is the center of h⊕ s. However, a one-dimensional subspace invariant under θ
must be contained either in p or in k. Let us prove that s is contained in p in all four
cases. We will argue by contradiction, so we assume that s ⊂ k.

Let g = e66, then k ≃ sp4. If h ≃ so5,5, then h ∩ k ≃ sp2 ⊕ sp2. However, sp4 does
not contain a subalgebra isomorphic to sp2 ⊕ sp2 ⊕ R, contradicting the assumption
s ⊂ k.

Let g = e−26
6 , then k ≃ f4. If h ≃ so9,1, then h ∩ k ≃ so9. However, f4 does not

contain a subalgebra isomorphic to so9 ⊕R, which contradicts the assumption s ⊂ k.
Let g = e77, then k ≃ su8. If h ≃ e66, then h ∩ k ≃ sp4. However, su8 does not

contain a subalgebra isomorphic to sp4 ⊕ R, again contradicting s ⊂ k.
Finally, let g = e−25

7 , then k ≃ e6 ⊕ R. Now, if h ≃ e−26
6 , then h ∩ k ≃ f4. In

addition to that, observe that f4 is maximal in e6, therefore we have that s is equal to
the abelian factor of k. Moreover, the abelian ideal s of h ⊕ s acts trivially on h ∩ p.
However, s corresponds to the abelian factor of the isotropy of a Hermitian symmetric
space. Therefore it cannot act trivially on any non-trivial subspace of p.

In all these cases we obtain a contradiction with our assumption s ⊂ k. Thus,
s ⊂ p. Therefore, by Proposition 7.3.1, we have that every totally geodesic orbit
induced by h is properly contained in a totally geodesic orbit induced by h⊕ s.

Theorem 7.5.5. Let M = G/K be a symmetric space of non-compact type where G
is an exceptional Lie group whose Lie algebra is absolutely simple. Let Σ ⊂ M be a
maximal totally geodesic submanifold. Then Σ is isometric to one of the spaces listed
in Tables 7.5, 7.6, 7.7, 7.8, 7.9. Conversely, every space Σ listed in these tables can
be isometrically embedded as a maximal totally geodesic submanifold of M .

Proof. Let Σ ⊂ M be a maximal totally geodesic submanifold. If Σ is a non-
semisimple totally geodesic submanifold, it is one of the examples found by Berndt
and Olmos [20], which we include in our tables.

Now assume that Σ is semisimple. Then, by Corollary 7.4.8, there is a correspond-
ing Lie subalgebra gΣ given by L(g) and, by Proposition 7.5.1, gΣ is isometric to some

subalgebra appearing in L̃(g).
We have to decide which elements in L̃(g) actually give rise to maximal totally

geodesic submanifolds. Let us define

L̂(g) := {(h, indD(h)) ∈ L̃(g) : hC is a maximal reductive subalgebra of gC}.
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By Lemma 7.2.3 and the definition of L̃(g), the subalgebras given by L̂(g) are ex-
actly those of non-compact type in [57] and [117], i.e. not containing compact ideals.

Note that since subalgebras in L̂(g) are semisimple, it follows that they are maximal
semisimple subalgebras by Lemma 7.2.3 ii). By Corollary 7.4.8, every subalgebra

given by L̂(g) induces a maximal semisimple totally geodesic submanifold of M . Let

us assume that (gΣ, indD(gΣ)) ∈ L̂(g) does not induce a maximal totally geodesic
submanifold. Then gΣ must be contained in a reductive non-semisimple subalgebra.
However, gΣ is a maximal reductive subalgebra by Lemma 7.2.3 i), contradicting our

assumption. We have shown that every subalgebra in L̂(g) induces a maximal totally
geodesic submanifold and we include those submanifolds in our tables.

As a consequence, it now remains to deal with the subalgebras in the complement

C(g) := L̃(g) \ L̂(g).

We consider each case separately. Note that every subalgebra in C(g) is obtained from
a larger subalgebra of g that contains a compact ideal, see Table 7.2.

Let g = g22 and M = G2
2/SO4. In this case we are done since C(g) = ∅.

Let g = f44 and M = F4
4/Sp3Sp1. In this case C(g) = {(g22, 1), (su1,2, 2), (sp1,2, 1)}.

Moreover, observe that every subalgebra isomorphic to sp1,2 is a maximal non-compact
type subalgebra of f44. Indeed, if h ≃ sp1,2, then hC ≃ sp3(C). We can deduce by [74,
Table 25, p. 199] that sl2(C) ⊕ sp3(C) is the only proper semisimple subalgebra of
f4(C) where hC is properly contained. However, according to Table 7.2, the only
real forms in g for the embedding sl2(C) ⊕ sp3(C) ⊂ f4(C) are sl2(R) ⊕ sp3(R) and
su2 ⊕ sp1,2. Thus, sp1,2 is a maximal non-compact type subalgebra of f44. Then, the
corresponding totally geodesic orbit is a maximal semisimple totally geodesic sub-
manifold, which is maximal, since M does not have non-semisimple maximal totally
geodesic submanifolds by [20]. Furthermore, by Table 7.2, a subalgebra isometric
to (su1,2, 2) is contained in su3 ⊕ su1,2 or su1,2 ⊕ su1,2. Then in the former case,
by Lemma 7.5.2 iv), the corresponding totally geodesic orbit is not maximal, since
rank(su3) = 2, and in the latter case it is obviously not maximal. The totally geodesic
orbit corresponding to (g22, 1) is not maximal by Lemma 7.5.3.

Let g = f−20
4 and M = F−20

4 /Spin9. In this case

C(g) = {(sp1,2, 1), (su1,2, 2), (sl2(R), 8)}.

Consider a subalgebra isometric to (sp1,2, 1). Now, since its complexification cannot

be embedded as a subalgebra of the complexification of any other subalgebra in L̃(g),
we have that (sp1,2, 1) ∈ L(g). Furthermore, by [20], there are no non-semisimple
maximal totally geodesic submanifolds in M , so (sp1,2, 1) induces a maximal totally
geodesic submanifold. On the other hand, by Table 7.2, every subalgebra isometric to
(su1,2, 2) or (sl2(R), 8) is such that it can be embedded in the following subalgebras
of g:

su1,2 ⊂ su3 ⊕ su1,2, sl2(R) ⊂ sl2(R)⊕ g2.

Thus, by Lemma 7.5.2 iv), the corresponding totally geodesic orbits to these subal-
gebras are not maximal totally geodesic submanifolds.
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Let g = e66 and M = E6
6/Sp4. In this case C(g) := {(so5,5, 1), (su∗6, 1)}. Every

subalgebra isometric to (su∗6, 1) is a maximal non-compact type subalgebra of g since
its complexification is not contained in the complexification of any other subalgebra
of L̃(g) except for sl6(R), which clearly does not contain su∗6. Thus, (su

∗
6, 1) induces a

maximal totally geodesic submanifold since the corresponding totally geodesic orbit
is not contained in a non-semisimple totally geodesic submanifold in the list given
by [20]. By Lemma 7.5.4, the totally geodesic orbits corresponding to so5,5 are not
maximal totally geodesic submanifolds in M .

Let g = e26 and M = E2
6/SU6Sp1. In this case

C(g) := {(so4,6, 1), (so∗10, 1), (su1,2, 1), (su2,4, 1), (g22, 1)}.

By Table 7.2, we have the following embeddings into subalgebras of g:

su1,2 ⊂ su3 ⊕ su3 ⊕ su1,2, g22 ⊂ su3 ⊕ g22.

Thus, by Lemma 7.5.2 iv), we have that (su1,2, 1), (g
2
2, 1) do not induce maximal

totally geodesic submanifolds. Moreover, the complexification of su2,4 cannot be con-

tained in the complexification of any other subalgebra in L̃(g) except for (sl2(R) ⊕
su3,3, (1, 1)), which clearly does not contain su2,4. Therefore, it induces a maxi-
mal totally geodesic submanifold since there are no non-semisimple maximal totally
geodesic submanifolds inM according to [20]. It follows from Table 7.2 that (so4,6, 1)
and (so∗10, 1) can be properly contained in just one proper reductive subalgebra of g.
Namely,

so4,6 ⊂ so4,6 ⊕ R so∗10 ⊂ so∗10 ⊕ R.

Thus, both subalgebras induce maximal totally geodesic submanifolds since there are
no non-semisimple maximal totally geodesic submanifolds in M .

Let g = e−14
6 and M = E−14

6 /Spin10U1. In this case

C(g) = {(so∗10, 1), (so2,8, 1), (su1,2 ⊕ su1,2, (1, 1)), (su2,4, 1), (su1,2, 2)}.

Moreover, (su2,4, 1) is such that its complexification cannot be embedded as a subal-

gebra of the complexification of any other subalgebra in L̃(g). Thus, (su2,4, 1) induces
a maximal totally geodesic submanifold, since there are no non-semisimple maximal
totally geodesic submanifolds in M according to [20]. Furthermore, by Lemma 7.5.2
iv), we have that (su1,2 ⊕ su1,2, (1, 1)) and (su1,2, 2) do not induce maximal totally
geodesic submanifolds since by Table 7.2, we have the following inclusions into sub-
algebras of g:

su1,2 ⊕ su1,2 ⊂ su3 ⊕ su1,2 ⊕ su1,2 su1,2 ⊂ su1,2 ⊕ g2.

Furthermore, by Table 7.2, (so2,8, 1) and (so∗10, 1) can be properly contained in just
one proper reductive subalgebra of g. Namely,

so2,8 ⊂ so2,8 ⊕ R so∗10 ⊂ so∗10 ⊕ R.
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However, according to [20], there are no non-semisimple maximal totally geodesic
submanifolds in M . Thus, both subalgebras induce maximal totally geodesic sub-
manifolds.

Let g = e−26
6 and M = E−26

6 /F4. In this case

C(g) = {(so1,9, 1), (sl3(C), (1, 1)), (su∗6, 1), (sl3(R), 2)}.

Note that (su∗6, 1) is such that its complexification cannot be embedded as a subalgebra

of the complexification of any other subalgebra in L̃(g). Thus, (su∗6, 1) induces a
maximal totally geodesic submanifold, since there is just one non-semisimple maximal
totally geodesic submanifold in the list given by [20], which is R× SO0

1,9/SO9, and it
clearly does not contain a totally geodesic SU∗

6/Sp3. Furthermore, by Lemma 7.5.2
iv), we have that (sl3(C), (1, 1)) and (sl3(R), 2) do not induce maximal totally geodesic
submanifolds, since by Table 7.2, we have the following inclusions into subalgebras
of g:

sl3(C) ⊂ sl3(C)⊕ su3, sl3(R) ⊂ sl3(R)⊕ g2.

Now by Lemma 7.5.4, (so1,9, 1) does not induce maximal totally geodesic submani-
folds.

Let g = e77 and M = E7
7/SU8. In this case

C(g) = {(e66, 1), (e26, 1), (so∗12, 1), (su1,5, 1), (sl2(R), 7)}.

By Table 7.2, we have the following inclusions into subalgebras of g:

su1,5 ⊂ su3 ⊕ su1,5, sl2(R) ⊂ sl2(R)⊕ g2.

Thus, by Lemma 7.5.2 iv), we have that (su1,5, 1) and (sl2(R), 7) do not induce max-
imal totally geodesic submanifolds. Furthermore, (e26, 1) is such that its complexifica-

tion is not contained in the complexification of any other subalgebra in L̃(g) except for
e66, which clearly does not contain e26. Thus, (e26, 1) gives a maximal totally geodesic
submanifold, since by [20], the only non-semisimple maximal totally geodesic subman-
ifold is R× E6

6/Sp4, which cannot contain a totally geodesic E2
6/SU6Sp1. In addition

to that, (so∗12, 1) is such that its complexification is not contained in the complexifica-

tion of any other subalgebra in L̃(g) except for sl2(R)⊕ so6,6, which clearly does not
contain so∗12. Consequently, (so

∗
12, 1) induces a maximal totally geodesic submanifold

in M , since its corresponding totally geodesic submanifold cannot be totally geodesi-
cally embedded in R × E6

6/Sp4. Finally, by Lemma 7.5.4, we have that e66 does not
induce a maximal totally geodesic submanifold.

Let g = e−25
7 and M = E−25

7 /E6U1. In this case, we have that

C(g) := {(e−26
6 , 1), (e−14

6 , 1), (so∗12, 1), (su3,3, 1), (sp3(R), 1), (sl2(R), 3)}.

Notice that e−14
6 is such that its complexification is not contained in the complexifi-

cation of any other subalgebra in L̃(g) but e−26
6 and it is clearly not contained in this

one. Moreover, by [20], the only non-semisimple maximal totally geodesic submani-
fold inM is R×E−26

6 /F4, which cannot contain a totally geodesic E−14
6 /Spin10U1. This
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implies that (e−14
6 , 1) induces a maximal totally geodesic submanifold of M . Further-

more, by Lemma 7.5.4, (e−26
6 , 1) cannot induce a maximal totally geodesic submanifold

of M . In addition to that, (so∗12, 1) is such that its complexification is not contained

in the complexification of any other subalgebra in L̃(g) except for sl2(R) ⊕ so2,10,
which clearly does not contain (so∗12, 1). Thus, (so∗12, 1) induces a maximal totally
geodesic submanifold, since it is not totally geodesic embedded in R×E−26

6 /F4. Now,
we have by Lemma 7.5.2 iv) that (su3,3, 1), (sp3(R), 1) and (sl2(R), 3) cannot give
totally geodesic submanifolds since by Table 7.2 they are contained in the following
subalgebras of g:

sl2(R) ⊂ sl2(R)⊕ f4, su3,3 ⊂ su3 ⊕ su3,3, sp3(R) ⊂ sp3(R)⊕ g2.

Let g = e−5
7 and M = E−5

7 /SO12Sp1. In this case we have

C(g) = {(e26, 1), (e−14
6 , 1), (so4,8, 1), (su2,4, 1), (su1,2, 1), (sl2(R), 24), (g22, 2), (g22, 1),

(sp1,2, 1), (f
4
4, 1), (f

−20
4 , 1)}.

Note that (e26, 1) and (e−14
6 , 1) are such that their complexifications are not contained

in the complexification of any other subalgebra in L̃(g) except for each other. However,
e26 cannot be contained in e−14

6 and viceversa. By [20], there are no non-semisimple
maximal totally geodesic submanifolds in M . Then (e26, 1) and (e−14

6 , 1) induce max-
imal totally geodesic submanifolds in M . In addition to that, (so4,8, 1) is such that
its complexification is not contained in the complexification of any other subalgebra
in L̃(g) except for sl2(R) ⊕ so∗12, which clearly cannot contain so4,8. Thus, (so4,8, 1)
induces a maximal totally geodesic submanifold in M . Furthermore, by Table 7.2, we
have the following inclusions into subalgebras of g:

su2,4 ⊂ su3 ⊕ su2,4, su1,2 ⊂ su1,2 ⊕ su6, g22 ⊂ sp3 ⊕ g22, sp1,2 ⊂ sp1,2 ⊕ g2.

Therefore, by Lemma 7.5.2 iv), we have that (su2,4, 1), (su1,2, 1), (g
2
2, 1) and (sp1,2, 1)

do not induce maximal totally geodesic submanifolds. Now by Lemma 7.5.3, we have
that (sl2(R), 24), (g22, 2), (f44, 1) and (f−20

4 , 1) do not induce maximal totally geodesic
submanifolds.

Let g = e88 and M = E8
8/SO16. In this case

C(g) = {(su1,4, 1), (e−14
6 , 1), (e−5

7 , 1), (su1,2, 6), (f
−20
4 , 1), (sl2(R), 16)}.

Notice that e−5
7 cannot be contained in any other subalgebra in L̃(g). However, by [20],

there is no non-semisimple maximal totally geodesic submanifold inM , which implies
that (e−5

7 , 1) induces a maximal totally geodesic submanifold. Now, by Lemma 7.5.3,
we have that (su1,2, 6) does not induce a maximal totally geodesic submanifold in M .
Furthermore, by Table 7.2, we have the following inclusions into subalgebras of g:

su1,4 ⊂ su1,4 ⊕ su5, e−14
6 ⊂ e−14

6 ⊕ su3, f−20
4 ⊂ f−20

4 ⊕ g2, sl2(R) ⊂ sl2(R)⊕ su3.

Thus, by Lemma 7.5.2 iv), we have that (su1,4, 1), (e
−14
6 , 1), (f−20

4 , 1) and (sl2(R), 16)
do not induce maximal totally geodesic submanifolds in M .
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Let g = e−24
8 and M = E−24

8 /E7Sp1. In this case

C(g) = {(su2,3, 1), (e26, 1), (su1,2, 1), (e−5
7 , 1), (sl3(R), 6), (f44, 1), (g22, 1), (g2(C), (1, 1))}.

Notice that e−5
7 cannot be contained in any other subalgebra in L̃(g). However, by [20],

there is no non-semisimple maximal totally geodesic submanifold inM , which implies
that (e−5

7 , 1) induces a maximal totally geodesic submanifold. Now by Lemma 7.5.3,
we have that (sl3(R), 6) and (g2(C), (1, 1)) do not induce maximal totally geodesic
submanifolds. Furthermore, by Table 7.2, we have the following embeddings into
subalgebras of g

su2,3 ⊂ su5 ⊕ su2,3, e26 ⊂ su3 ⊕ e26, su1,2 ⊂ su1,2 ⊕ e6, f44 ⊂ f44 ⊕ g2, g22 ⊂ f4 ⊕ g22.

Thus, by Lemma 7.5.2 iv), we have that (su2,3, 1), (e
2
6, 1), (su1,2, 1), (f

4
4, 1) and (g22, 1)

do not induce maximal totally geodesic submanifolds. This concludes the proof.

7.6 Totally geodesic submanifolds in
exceptional symmetric spaces of type IV

In this section we classify maximal totally geodesic submanifolds in exceptional sym-
metric spaces with complex isometry group. By duality this is equivalent to classifying
maximal totally geodesic submanifolds in exceptional compact Lie groups.

Let G/K be a symmetric space of compact type and σ ∈ Aut(G) be an involutive
automorphism of G such that Fix0(σ) ⊂ K ⊂ Fix(σ), where Fix(σ) is the subset of G
that is fixed by σ and Fix0(σ) is its identity component. The Cartan embedding
of G/K into G is the smooth map f given by

f : G/K → G, gK 7→ σ(g)g.

It was shown in [96] that a totally geodesic submanifold in a compact Lie group
is maximal if and only if it is a maximal subgroup or a Cartan embedding. However,
in this section we give an explicit list of all maximal totally geodesic submanifolds in
exceptional symmetric spaces with complex isometry group.

Maximal semisimple regular subalgebras of g and maximal S-subalgebras can be
found in [74] as mentioned above. Real forms are well known, see e.g. [90]. Therefore,
by Lemma 7.2.4, one can obtain the set L(g) for g a realification of a exceptional
simple complex Lie algebra (see Table 7.3 for the explicit list and Definition 7.4.7).

Lemma 7.6.1. Let g be equal to e6(C) or e7(C) and let h be one of the following two
subalgebras of g:

so10(C) ⊂ e6(C), e6(C) ⊂ e7(C).

Let G be the simply connected Lie group with Lie algebra g and let K be a maximal
compact subgroup of G. Assume the Lie algebra h is canonically embedded into g with
respect to the Cartan decomposition g = k⊕p. Let H be the connected closed subgroup
of G with Lie algebra h. Then a totally geodesic orbit of the H-action on the symmetric
space M = G/K is not maximal.
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Proof. By [74], there is a reductive subalgebra isomorphic to h ⊕ s, where s is a 1-
dimensional complex subalgebra of g, that is canonically embedded with respect to
the Cartan decomposition of g = k ⊕ p by the same kind of argument as in the first
paragraph of the proof of Lemma 7.5.4. Let Σ be the totally geodesic orbit H · o,
where H is the connected subgroup of G with Lie algebra h. Moreover, θ leaves h⊕ s
invariant and maps s onto itself, since it is the center of h⊕ s and θ is a Lie algebra
automorphism. Thus s is canonically embedded in g with respect to g = k ⊕ p,
implying that s = (k ∩ s)⊕ (p ∩ s).

If dimR(p ∩ s) ̸= 0, then Σ is properly contained in a proper totally geodesic
submanifold of M . If dimR(p ∩ s) = 0, then s has dimension two and the rank of
(s⊕ h) ∩ k is bigger than the rank of k, which leads to a contradiction in both cases.
Indeed, if h ≃ so10(C), then h∩ k ≃ so10 and k ≃ e6. If h ≃ e6(C), then h∩ k ≃ e6 and
k ≃ e7.

g2(C) (sl2(C)⊕ sl2(C), (3, 1)), (sl2(C), 28), (sl3(C), 1), (g22, 1)

f4(C)
(sl2(C)⊕ sp3(C), (1, 1)), (sl3(C)⊕ sl3(C), (1, 2)), (sl2(C), 156), (so9(C), 1),
(sl2(C)⊕ g2(C), (8, 1)), (f−20

4 , 1), (f44, 1)

e6(C)
(sl3(C), 9), (g2(C), 3), (sl3(C)⊕ g2(C), (2, 1)), (sp4(C), 1), (f4(C), 1),
(so10(C), 1), (sl3(C)⊕ sl3(C)⊕ sl3(C), (1, 1, 1)), (sl2(C)⊕ sl6(C), (1, 1)),
(e66, 1), (e

2
6, 1), (e

−26
6 , 1), (e−14

6 , 1)

e7(C)

(sl2(C), 231, 399), (sl3(C), 21), (sl2(C)⊕ sl2(C), (15, 24)),
(sl2(C)⊕ g2(C), (7, 2)), (sp3(C)⊕ g2(C), (1, 1)), (e6(C), 1),
(sl2(C)⊕ so12(C), (1, 1)), (sl8(C), 1), (sl3(C)⊕ sl6(C), (1, 1)),
(sl2(C)⊕ f4(C), (3, 1)), (e−5

7 , 1), (e77, 1), (e
−25
7 , 1)

e8(C)
(sl2(C), 520, 760, 1240), (so5(C), 12), (sl2(C)⊕ sl3(C), (16, 6)),
(f4(C)⊕ g2(C), (1, 1)), (so16(C), 1), (sl9(C), 1), (sl5(C)⊕ sl5(C), (1, 1)),
(sl3(C)⊕ e6(C), (1, 1)), (sl2(C)⊕ e7(C), (1, 1)), (e88, 1), (e

−24
8 , 1)

Table 7.3: L(g) for each exceptional simple complex Lie algebra g. Notice that we
indicate the different isometry classes for a given isomorphism class of a subalgebra
by writing all their possible Dynkin indices separated by commas.

Theorem 7.6.2. Let M = G/K be a symmetric space with G an exceptional simple
complex Lie group. Let Σ be a maximal totally geodesic submanifold of M . Then Σ
is isometric to one of the spaces listed in Tables 7.5, 7.6, 7.7, 7.8, 7.9. Conversely,
every space listed in these tables can be isometrically embedded as a maximal totally
geodesic submanifold of M .

Proof. Let Σ be a maximal totally geodesic submanifold in M . If Σ is a non-
semisimple totally geodesic submanifold, it is one of the examples found by Berndt
and Olmos [20], which we include in our tables. Let us now assume that Σ is semisim-
ple. Then, by Corollary 7.4.8, there is some Lie subalgebra gΣ of g that is isometric
to some subalgebra in L(g).

Let M be equal to G2(C)/G2, F2(C)/F4 or E8(C)/E8. By [20, Corollary 4.3],
we have that every maximal totally geodesic submanifold of M is semisimple and
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therefore L(g) is in one-to-one correspondence with the isometry classes of maximal
totally geodesic submanifolds of M by Corollary 7.4.8.

Now letM = E6(C)/E6 and g = e6(C). Let (gΣ, indD(gΣ)) ∈ L(g)\{(so10(C), 1)}.
Let Σ be the corresponding maximal semisimple totally geodesic submanifold. If Σ
is not maximal, then it must be contained in R × SO10(C)/SO10, which is the only
non-semisimple maximal totally geodesic submanifold in M according to Berndt and
Olmos [20]. However, if this is the case, since gΣ is semisimple, gΣ is contained
in so10(C), contradicting the fact that gΣ is a maximal non-compact type subalgebra
in g. Hence Σ is a maximal totally geodesic submanifold. By Lemma 7.6.1, we have
that (so10(C), 1) does not induce a maximal totally geodesic orbit.

Finally, let M = E7(C)/E7 and g = e7(C). By a similar argument as above every
subalgebra in L(g) \ {(e6(C), 1)} induces a maximal totally geodesic submanifold. By
Lemma 7.6.1, we have that (e6(C), 1) does not induce a maximal totally geodesic
orbit.

7.7 Proofs of the main theorems

The aim of this section is to provide the proofs for the main theorems.

Proof of Theorem A. It follows by combining Theorems 7.5.5 and 7.6.2.

Remark 7.7.1. Notice that in Tables 7.5-7.9 we indicate the different isometry classes
for a given homothety class of a totally geodesic embedding by writing all the possible
Dynkin indices separated by commas.

Lemma 7.7.2. Consider the following subalgebras h ⊂ g, k ≥ 1, given by the embed-
dings h ↪→ g, A 7→ (A 0 ): i) son(C) ⊂ son+k(C), n ≥ 5; ii) sln(C) ⊂ sln+k(C), n ≥ 2;
iii) spn(C) ⊂ spn+k(C), n ≥ 1. Then, the Dynkin index of these subalgebras is 1.
Moreover, the Dynkin index of the subalgebra so4(C) ⊂ so5(C) is (1, 1).

Proof. Assume h is a regular subalgebra of g. Then a root system of h is a subset of a
root system of g and we can apply the following simple observation. If h contains a root
space of g corresponding to a longest root with respect to some Cartan subalgebra a
of g, then the length of the longest root of h and the length of the longest root of g
agree, and the Dynkin index of h in g is one. This holds in particular if the root
systems of both h and g contain roots of different lengths, which shows that the
subalgebras iii) and son(C) ⊂ son+2(C), for n ≥ 5 odd, have Dynkin index one.
Using the multiplicative property of the Dynkin index and the chain of inclusions
son(C) ⊂ son+1(C) ⊂ son+2(C), it now follows inductively that all the subalgebras i)
have Dynkin index one. The above observation also applies if g is of type An or Dn,
n ≥ 4, and h is a maximal semisimple regular subalgebra, since then all roots of the
extended Dynkin diagram are of the same length, see [149, Ch. 1, §3, Table 4]. Using
induction and the multiplicative property of the Dynkin index this shows that the
subalgebras ii) all have Dynkin index one.
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Proof of Theorem B. Examples of totally geodesic submanifolds Σ in irreducible sym-
metric spacesM with i(M) = codim(Σ) are given in [24, Table 1]. For the exceptional
symmetric spaces M , these pairs (M,Σ) are the following:

� (G2
2/SO4,SL3(R)/SO3), (G2(C)/G2,G

2
2/SO4), (G2(C)/G2,SL3(C)/SU3),

� (F4
4/Sp3Sp1,SO

0
4,5/SO4 × SO5), (F

−20
4 /Spin9,SO

0
1,8/SO8),

(F−20
4 /Spin9,Sp1,2/Sp1 × Sp2), (F4(C)/F4,SO9(C)/SO9),

� (E6
6/Sp4,F

4
4/Sp3Sp1), (E

2
6/SU6Sp1,F

4
4/Sp3Sp1), (E

−14
6 /Spin10U1,SO

∗
10/U5),

(E−26
6 /F4,F

−20
4 /Spin9), (E6(C)/E6,F4(C)/F4),

� (E−5
7 /SO12Sp1,E

2
6/SU6Sp1), (E

−25
7 /E6U1,E

−14
6 /Spin10U1), (E

7
7/SU8,R×E6

6/Sp4),
(E7(C)/E7,R× E6(C)/E6),

� (E−24
8 /E7Sp1,E

−5
7 /SO12Sp1), (E

8
8/SO16,SL2(R)/SO2 × E7

7/SU8),
(E8(C)/E8,SL2(C)/SU2 × E7(C)/E7).

Hence, the theorem can be proved in these cases by looking up the Dynkin indices in
our Tables 7.5, 7.6, 7.7, 7.8, 7.9.

It remains to show the assertion of the theorem for the classical spaces. We have
to consider the pairs of spaces (M,Σ), where i(M) = codim(Σ), given in Table 7.4,
where we have partially reproduced the contents of [24, Table 1].

Among the pairs of spaces given in the table, there are some infinite series and
also some isolated examples in low dimensions. For the infinite series, the assertion
of the theorem follows in all cases from Lemma 7.7.2 and the multiplicative property
of the Dynkin index.

We will treat the remaining isolated examples individually. First note that the
Dynkin index of sp2(C) in sp2,2 is (1, 1), as follows from Lemma 7.7.2 since the cor-
responding complexifications are sp2(C) ⊕ sp2(C) and sp4(C). The Dynkin index
of sl3(C) in su∗6 is (1, 1), as the complexifications are sl3(C)⊕ sl3(C) and sl6(C). The
subalgebra sl3(R) is a real form of sl3(C) and therefore has Dynkin index one. The
subalgebra sp2(C) of sl4(C) has Dynkin index one by Lemma 7.7.2, since it corre-
sponds to the subalgebra so5(C) ⊂ so6(C) under the isomorphism so6(C) ≃ sl4(C).
Finally, it remains to determine the Dynkin index of the subalgebra sp2,2 in su∗8. Since
the Dynkin indices of sp2(C) ⊂ sp4(C) and sl4(C) ⊂ sl8(C) are one by Lemma 7.7.2,
and we know from the previous case that the Dynkin index of sp2(C) ⊂ sl4(C) is one,
using the multiplicative property of the Dynkin index, we conclude from the following
diagram

sp2(C)
1−→ sl4(C)

1 ↓ 1 ↓
sp4(C) −→ sl8(C)

that the Dynkin index of sp4(C) in sl8(C) is also one.



M Σ i(M) Conditions
SUr,r+k/S(Ur × Ur+k) SUr,r+k−1/S(Ur × Ur+k−1) 2r r ≥ 1, k ≥ 1
SUr,r/S(Ur × Ur) SUr−1,r/S(Ur−1 × Ur) 2r r ≥ 3

SO0
r,r+k/SOr × SOr+k SO0

r,r+k−1/SOr × SOr+k−1 r r ≥ 1, k ≥ 1

SO0
r,r/SOr × SOr SO0

r−1,r/SOr−1 × SOr r r ≥ 4

Sp2,2/Sp2 × Sp2 Sp2(C)/Sp2 6
Spr,r+k/Spr × Spr+k Spr,r+k−1/Spr × Spr+k−1 4r r ≥ 1, k ≥ 1
Spr,r/Spr × Spr Spr−1,r/Spr−1Spr 4r r ≥ 3

SLr+1(R)/SOr+1 R× SLr(R)/SOr r r ≥ 2
SU∗

6/Sp3 SL3(C)/SU3 6
SU∗

8/Sp4 Sp2,2/Sp2Sp2 11
SU∗

2r+2/Spr+1 R× SU∗
2r/Spr 4r r ≥ 4

Spr(R)/Ur Sp1(R)/U1 × Spr−1(R)/Ur−1 2r − 2 r ≥ 3
SO∗

4r/U2r SO∗
4r−2/U2r−1 4r − 2 r ≥ 3

SO∗
4r+2/U2r+1 SO∗

4r/U2r 4r r ≥ 2
SL3(C)/SU3 SL3(R)/SO3 3
SL4(C)/SU4 Sp2(C)/Sp2 5
SLr+1(C)/SUr+1 R× SLr(C)/SUr 2r r ≥ 4
SO2r+1(C)/SO2r+1 SO2r(C)/SO2r 2r r ≥ 2
Spr(C)/Spr Sp1(C)/Sp1 × Spr−1(C)/Spr−1 4r − 4 r ≥ 3
SO2r(C)/SO2r SO2r−1(C)/SO2r−1 2r − 1 r ≥ 4

Table 7.4: Examples of totally geodesic submanifolds Σ in classical symmetric
spaces M with codim(Σ) = i(M).
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Table 7.5: Maximal totally geodesic submanifolds of symmetric spaces of G2-type.

M Σ Dynkin index Reflective? dimΣ

G2
2/SO4

SL2(R)/SO2 × SL2(R)/SO2 (3, 1) Yes 4

SL3(R)/SO3 1 No 5

SU1,2/S(U1 × U2) 1 No 4

SL2(R)/SO2 28 No 2

G2(C)/G2
SL2(C)/SU2 × SL2(C)/SU2 (3, 1) Yes 6

SL2(C)/SU2 28 No 3

SL3(C)/SU3 1 No 8

G2
2/SO4 1 Yes 8

Table 7.6: Maximal totally geodesic submanifolds of symmetric spaces of F4-type.

M Σ Dynkin index Reflective? dimΣ

F4
4/Sp3Sp1

SL3(R)/SO3 × SL3(R)/SO3 (1, 2) No 10

SU1,2/S(U1×U2)×SU1,2/S(U1×U2) (1, 2) No 8

SL2(R)/SO2 × Sp3(R)/U3 (1, 1) Yes 14

Sp1,2/Sp1 × Sp2 1 Yes 8

SO0
4,5/SO4 × SO5 1 Yes 20

SL2(R)/SO2 156 No 2

SL2(R)/SO2 × G2
2/SO4 (8, 1) No 10

F−20
4 /Spin9

SO0
1,8/SO8 1 Yes 8

Sp1,2/Sp1 × Sp2 1 Yes 8

F4(C)/F4
SL2(C)/SU2 × Sp3(C)/Sp3 (1, 1) Yes 24

SL3(C)/SU3 × SL3(C)/SU3 (1, 2) No 16

SL2(C)/SU2 156 No 3

SO9(C)/SO9 1 Yes 36

SL2(C)/SU2 × G2(C)/G2 (8, 1) No 17

F4
4/Sp3Sp1 1 Yes 28

F−20
4 /Spin9 1 Yes 16
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Table 7.7: Maximal totally geodesic submanifolds of symmetric spaces of E6-type.

M Σ Dynkin index Reflective? dimΣ

E6
6/Sp4

(SL3(R)/SO3)3 (1, 1, 1) No 15

SU1,2/S(U1 × U2)× SL3(C)/SU3 (1, 1, 1) No 12

SL2(R)/SO2 × SL6(R)/SO6 (1, 1) Yes 22

SU∗
6/Sp3 1 Yes 14

SL3(R)/SO3 × G2
2/SO4 (2, 1) No 13

Sp2,2/Sp2 × Sp2 1 Yes 16

Sp4(R)/U4 1 Yes 20

F4
4/Sp3Sp1 1 Yes 28

R× SO0
5,5/SO5 × SO5 1 Yes 26

E2
6/SU6Sp1

SO0
4,6/SO4 × SO6 1 Yes 24

SO∗
10/U5 1 Yes 20

SL3(C)/SU3 × SL3(R)/SO3 (1, 1, 1) No 13

(SU1,2/S(U1 × U2))
3 (1, 1, 1) No 12

SL2(R)/SO2 × SU3,3/S(U3 × U3) (1, 1) Yes 20

SU2,4/S(U2 × U4) 1 Yes 16

SU1,2/S(U1 × U2) 9 No 4

SL3(R)/SO3 9 No 5

G2
2/SO4 3 No 8

SU1,2/S(U1 × U2)× G2
2/SO4 (2, 1) No 12

Sp1,3/Sp1 × Sp3 1 Yes 12

Sp4(R)/U4 1 Yes 20

F4
4/Sp3Sp1 1 Yes 28

E−14
6 /Spin10U1

SO∗
10/U5 1 Yes 20

SO0
2,8/SO2 × SO8 1 Yes 16

SL2(R)/SO2 × SU1,5/S(U1 × U5) (1, 1) Yes 12

Sp2,2/Sp2 × Sp2 1 Yes 16

F−20
4 /Spin9 1 Yes 16

SU2,4/S(U2 × U4) 1 Yes 16

E−26
6 /F4

R× SO0
1,9/SO9 1 Yes 10

SU∗
6/Sp3 1 Yes 14

Sp1,3/Sp1 × Sp3 1 Yes 12

F−20
4 /Spin9 1 Yes 16

E6(C)/E6
SL3(C)/SU3 9 No 8

G2(C)/G2 3 No 14

SL3(C)/SU3 × G2(C)/G2 (2, 1) No 22

Sp4(C)/Sp4 1 Yes 36

F4(C)/F4 1 Yes 52

R× SO10(C)/SO10 1 Yes 46

(SL3(C)/SU3)3 (1, 1, 1) No 24

SL2(C)/SU2 × SL6(C)/SU6 (1, 1) Yes 38

E6
6/Sp4 1 Yes 42

E2
6/SU6Sp1 1 Yes 40

E−26
6 /F4 1 Yes 26

E−14
6 /Spin10U1 1 Yes 32
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Table 7.8: Maximal totally geodesic submanifolds of symmetric spaces of E7-type.

M Σ Dynkin index Reflective? dimΣ

E−5
7 /SO12Sp1

E2
6/SU6Sp1 1 Yes 40

E−14
6 /Spin10U1 1 Yes 32

SL2(R)/SO2 × SO∗
12/U6 (1, 1) Yes 32

SO0
4,8/SO4 × SO8 1 Yes 32

SU4,4/S(U4 × U4) 1 Yes 32

SU2,6/S(U2 × U6) 1 Yes 24

SL3(R)/SO3 × SU∗
6/Sp3 (1, 1) No 19

SU1,2/S(U1 × U2)× SU2,4/S(U2 × U4) (1, 1) No 20

SU1,2/S(U1 × U2) 21 No 4

Sp1,2/Sp1 × Sp2 × G2
2/SO4 (1, 1) No 16

E−25
7 /E6U1

R× E−26
6 /F4 1 Yes 27

E−14
6 /Spin10U1 1 Yes 32

SU∗
8/Sp4 1 Yes 27

SU2,6/S(U2 × U6) 1 Yes 24

SU1,2/S(U1 × U2)× SU1,5/S(U1 × U5) (1, 1) No 14

SL2(R)/SO2 × F−20
4 /Spin9 (3, 1) No 18

SL2(R)/SO2 × SO0
2,10/SO2 × SO10 (1, 1) Yes 22

SO∗
12/U6 1 Yes 30

E7
7/SU8

R× E6
6/Sp4 1 Yes 43

E2
6/SU6Sp1 1 Yes 40

SL2(R)/SO2 × SO0
6,6/SO6 × SO6 (1, 1) Yes 38

SO∗
12/U6 1 Yes 30

SL8(R)/SO8 1 Yes 35

SU4,4/S(U4 × U4) 1 Yes 32

SU∗
8/Sp4 1 Yes 27

SL3(R)/SO3 × SL6(R)/SO6 (1, 1) No 25

SU1,2/S(U1 × U2)× SU3,3/S(U3 × U3) (1, 1) No 22

SL2(R)/SO2 231, 399 No 2

SL3(R)/SO3 21 No 5

SL2(R)/SO2 × SL2(R)/SO2 (15, 24) No 4

SL2(R)/SO2 × G2
2/SO4 (7, 2) No 10

Sp3(R)/U3 × G2
2/SO4 (1, 1) No 20

SL2(R)/SO2 × F4
4/Sp3Sp1 (3, 1) No 30

E7(C)/E7
SL2(C)/SU2 231, 399 No 3

SL3(C)/SU3 21 No 8

SL2(C)/SU2 × SL2(C)/SU2 (15, 24) No 6

SL2(C)/SU2 × G2(C)/G2 (7, 2) No 17

Sp3(C)/Sp3 × G2(C)/G2 (1, 1) No 35

R× E6(C)/E6 1 Yes 79

SL2(C)/SU2 × SO12(C)/SO12 (1, 1) Yes 69

SL8(C)/SU8 1 Yes 63

SL3(C)/SU3 × SL6(C)/SU6 (1, 1) No 43

SL2(C)/SU2 × F4(C)/F4 (3, 1) No 55

E−5
7 /SO12Sp1 1 Yes 64

E7
7/SU8 1 Yes 70

E−25
7 /E6U1 1 Yes 54
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Table 7.9: Maximal totally geodesic submanifolds of symmetric spaces of E8-type.

M Σ Dynkin index Reflective? dimΣ

E8
8/SO16

(SU1,4/S(U1 × U4))
2 (1, 1) No 16

(SU2,3/S(U2 × U3))
2 (1, 1) No 24

SL5(R)/SO5 × SL5(R)/SO5 (1, 1) No 28

SO0
8,8/SO8 × SO8 1 Yes 64

SO∗
16/U8 1 Yes 56

SU1,8/S(U1 × U8) 1 No 16

SU4,5/S(U4 × U5) 1 No 40

SL9(R)/SO9 1 No 44

SL3(R)/SO3 × E6
6/Sp4 (1, 1) No 47

SU1,2/S(U1 × U2)× E2
6/SU6Sp1 (1, 1) No 44

E−5
7 /SO12Sp1 1 Yes 64

SL2(R)/SO2 × E7
7/SU8 (1, 1) Yes 72

SO0
2,3/SO2 × SO3 12 No 6

SO0
1,4/SO4 12 No 4

SL2(R)/SO2 520, 760, 1240 No 2

SL2(R)/SO2 × SU1,2/S(U1 × U2) (16, 6) No 6

SL2(R)/SO2 × SL3(R)/SO3 (16, 6) No 7

F4
4/Sp3Sp1 × G2

2/SO4 (1, 1) No 36

G2(C)/G2 × SL2(R)/SO2 (1, 1, 8) No 16

E−24
8 /E7Sp1

SU1,4/S(U1 × U4)× SU2,3/S(U2 × U3) (1, 1) No 20

SO0
4,12/SO4 × SO12 1 Yes 48

SO∗
16/U8 1 Yes 56

SU3,6/S(U3 × U6) 1 No 36

SU2,7/S(U2 × U7) 1 No 28

SU1,2/S(U1 × U2)× E−14
6 /Spin10U1 (1, 1) No 36

SL3(R)/SO3 × E−26
6 /F4 (1, 1) No 31

E−5
7 /SO12Sp1 1 Yes 64

E−25
7 /E6U1 × SL2(R)/SO2 (1, 1) Yes 56

F−20
4 /Spin9 × G2

2/SO4 (1, 1) No 24

E8(C)/E8
SL2(C)/SU2 520, 760, 1240 No 3

SO5(C)/SO5 12 No 10

SL2(C)/SU2 × SL3(C)/SU3 (16, 6) No 11

F4(C)/F4 × G2(C)/G2 (1, 1) No 66

SO16(C)/SO16 1 Yes 120

SL9(C)/SU9 1 No 80

SL5(C)/SU5 × SL5(C)/SU5 (1, 1) No 48

SL3(C)/SU3 × E6(C)/E6 (1, 1) No 86

SL2(C)/SU2 × E7(C)/E7 (1, 1) Yes 136

E8
8/SO16 1 Yes 128

E8
8/E7Sp1 1 Yes 112





Chapter 8

Hopf fibrations and totally geodesic
submanifolds

In this chapter, we give a classification of totally geodesic submanifolds in Hopf-Berger
spheres, which constitute a special family of homogeneous spaces diffeomorphic to
spheres.

It is well-known that any homogeneous metric on the even-dimensional sphere
S2n is isometric to a round metric, while homogeneous metrics on odd-dimensional
spheres S2n+1 of dimension bigger than three are homothetic to a metric lying in one
of the following families, see [192]:

(1) a 1-parameter family of Un-invariant metrics on S2n+1,

(2) a 1-parameter family of Sp1Spn-invariant metrics on S4n+3,

(3) a 1-parameter family of Spin9-invariant metrics on S15,

(4) a 3-parameter family of Spn-invariant metrics on S4n+3.

It turns out that metrics in (2) lie in (4). Moreover, metrics in (1), (2) and (3) can
be obtained by rescaling the round metric of the total space of a Hopf fibration in the
direction of the fibers. We recall that Hopf fibrations are as follows:

S1 → S2n+1 → CPn,
S3 → S4n+3 → HPn,

S7 → S15 → S8,

where n ≥ 1. We will refer to these fibrations as the complex, quaternionic, or
octonionic Hopf fibrations, respectively.

Let us equip the base and the total spaces of these fibrations with the correspond-
ing symmetric metric of minimal sectional curvature equal to 1 and the round metric
of constant sectional curvature equal to 1, respectively. Under these conditions Hopf
fibrations become Riemannian submersions with totally geodesic fibers. These fibra-
tions constitute the fundamental examples of Riemannian submersions with a round
sphere as the total space, as the following theorem implies. Let π : Sn →M be a Rie-
mannian submersion from a round sphere with connected fibers of positive dimension.
Then, Gromoll, Grove and Wilking [87, 183] proved that π : Sn → M is metrically
congruent to a Hopf fibration.

153
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Let us consider, for each τ > 0, the total space of the complex, quaternionic,
or octonionic Hopf fibration endowed with the Riemannian metric obtained from
rescaling the metric tensor of the round sphere by a factor τ in the vertical direc-
tions. Such homogeneous spaces are denoted by S2n+1

C,τ , S4n+3
H,τ , and S15O,τ , depending

on whether the Hopf fibration considered is the complex, the quaternionic, or the
octonionic one, respectively. We refer to such spaces as the Hopf-Berger spheres. Ev-
ery Hopf-Berger sphere with τ ̸= 1 is homothetic to a geodesic sphere of a rank one
symmetric space M̄ , see [192]. The simply connected symmetric spaces of rank one
are: Sn, CPn,HPn,OP2; and their non-compact duals: RHn,CHn,HHn,OH2. We
consider the metrics of these symmetric spaces rescaled in such a way that the mini-
mal absolute value of their sectional curvatures is equal to 1. Notice that two geodesic
spheres of M̄ of the same radius are congruent. Furthermore, it can be proved that
every geodesic sphere S(r) of radius r in a symmetric space of rank one M̄ can be
obtained by performing a homothety (cf. [33]) of ratio α to SnF,τ , with F ∈ {C,H,O}
and τ ∈ (0,+∞), where the values of r, α and τ are related by:{

r = arccos(
√
τ), α =

√
1− τ , for 0 < τ < 1,when M̄ is compact,

r = arccosh(
√
τ), α =

√
τ − 1, for 1 < τ < +∞,when M̄ is not compact.

(8.1)
As we pointed out in Chapter 5, the problem of classifying totally geodesic sub-

manifolds in a given Riemannian manifold is a classical topic in the field of sub-
manifold geometry. In the setting of Riemannian symmetric spaces, we recall that
this problem has been extensively studied. However, despite all the efforts toward a
general classification of totally geodesic submanifolds in symmetric spaces, we only
have classifications for symmetric spaces of rank one [187], symmetric spaces of rank
two [48, 49, 107, 108, 109], and special classes of totally geodesic submanifolds such
as reflective ones [123, 124, 125] or non-semisimple maximal ones [20], apart from the
classifications derived in Chapters 6 and 7 of this thesis.

In the context of symmetric spaces, since the curvature tensor of a symmetric
space is parallel under the Levi-Civita connection and can be expressed by means of
an easy formula in terms of Lie brackets, the problem of classifying totally geodesic
submanifolds turns out to be equivalent to classifying subspaces of the tangent spaces
that satisfy the harmless-looking but extremely complicated condition of being a Lie
triple system, see Section §5.3.

In the more general setting of Riemannian homogeneous spaces, the classification
of totally geodesic submanifolds is a harder problem for a number of reasons. Firstly,
in the setting of symmetric spaces, in order to classify totally geodesic submanifolds,
we have to characterize those subspaces of the tangent space that are invariant under
the curvature tensor, or equivalently, that satisfy the “simple” property of being Lie
triple systems. However, in the setting of homogeneous spaces, we need to look for
subspaces of the tangent space that are not only invariant by the curvature tensor,
which has a much more involved expression, see Equation (1.4), but also by all its
covariant derivatives, see Theorem 5.2.5.

Secondly, although complete totally geodesic submanifolds are intrinsically homo-
geneous (see Proposition 5.1.6), they are not necessarily extrinsically homogeneous,
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i.e. orbits of a subgroup of the isometry group of the ambient space, see for in-
stance [105]. This suggests the necessity of developing new tools to study totally
geodesic submanifolds in homogeneous spaces.

Moreover, the utilization of totally geodesic submanifolds has been of capital im-
portance when studying homogeneous spaces. For example, in the investigation of
pinching constants for homogeneous spaces of positive curvature, see [157], they have
played a crucial role since every critical point for the sectional curvature of a totally
geodesic submanifold is a critical point for the sectional curvature of the ambient
space. Indeed, the setting of homogeneous spaces of positive curvature turns out to
be an interesting context where to study totally geodesic submanifolds since every
totally geodesic submanifold of dimension d ≥ 2 is again a homogeneous space of
positive curvature.

In this chapter, we classify totally geodesic submanifolds in Hopf-Berger spheres
with τ ≥ 1/2. Hopf-Berger spheres provide some of the easiest examples of non-
symmetric homogeneous metrics with positive sectional curvature. Indeed, they have
positive sectional curvature if and only if τ ∈ (0, 4/3), see [180].

Recall that, on the one hand, the round sphere Sn can be seen as a geodesic sphere
of Rn+1 of radius 1. On the other hand, every complete totally geodesic submanifold
of Sn is the intersection of a complete totally geodesic submanifold of Rn+1 passing
through the origin (a linear subspace) with Sn. The following theorem generalizes this
well-known geometric fact to the setting of 2-point homogeneous spaces and provides
the classification of totally geodesic submanifolds in Hopf-Berger spheres.

Theorem A. Let SnF,τ , with τ ̸= 1 and F ∈ {C,H,O}, be a Hopf-Berger sphere, and

M̄ the symmetric space of rank one where SnF,τ is realized as a geodesic sphere. Then,
if τ ≥ 1/2, the following statements are equivalent:

i) Σ is a complete totally geodesic submanifold of SnF,τ of dimension d ≥ 2.

ii) Σ is the intersection of SnF,τ (regarded as a geodesic sphere of M̄) with a complete

totally geodesic submanifold M of M̄ of dimension d′ ≥ 3 and containing the
center of the geodesic sphere.

Every pair (Σ,SnF,τ ) satisfying the above equivalent conditions is listed in Table 8.1.
Conversely, each pair listed in Table 8.1 corresponds to a congruence class of totally
geodesic submanifolds of SnF,τ .

Remark 8.0.1. Notice that for τ = 1 the sphere SnF,τ is round. If τ ̸= 1, we have
to assume that Σ has dimension d ≥ 2, since there always are non-closed geodesics
in SnF,τ , see Lemma 8.4.10, and a non-closed geodesic in SnF,τ cannot arise as the

intersection with a totally geodesic submanifold of M̄ .

Let us denote by Snκ the round sphere with constant sectional curvature equal to
κ > 0. As a consequence of Theorem A and Remark 8.3.4, maximal totally geodesic
submanifolds of S3C,τ are geodesics, and for the other Hopf-Berger spheres with τ ≥ 1/2
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S2n+1
C,τ

S2k+1
C,τ 1 ≤ k ≤ n− 1

Sk1 2 ≤ k ≤ n

S4n+3
H,τ

S4k+3
H,τ 1 ≤ k ≤ n− 1

S2k+1
C,τ 1 ≤ k ≤ n

Sk1 2 ≤ k ≤ n

Sk1/τ 2 ≤ k ≤ 3

S15O,τ
S7H,τ
S3C,τ
Sk1/τ 2 ≤ k ≤ 7

Table 8.1: Totally geodesic submanifolds of dimension d ≥ 2 in Hopf-Berger spheres
with τ ≥ 1/2, up to congruence.

they are:

S2n+1
C,τ : S2n−1

C,τ , Sn1 , where n ≥ 2,

S4n+3
H,τ : S4n−1

H,τ , S2n+1
C,τ , where n ≥ 2,

S7H,τ : S3C,τ , S31/τ ,

S15O,τ : S7H,τ , S71/τ .

Furthermore, every totally geodesic submanifold of a Hopf-Berger sphere with τ ≥ 1/2
is extrinsically homogeneous, see Remark 8.3.3.

As we have already seen, Hopf-Berger spheres maintain a close relationship with
symmetric spaces of rank one, but they fail to be symmetric. A way to measure
the extend to which a homogeneous space fails to be symmetric is by employing the
index of symmetry, see [25] or [146]. Recall that a homogeneous space M = G/K is
symmetric if and only if for every point p ∈M and every v ∈ TpM , there is a Killing
vector field X on M with Xp = v and (∇X)p = 0. For every p ∈ M , the symmetric
subspace of TpM is defined as

sp := {Xp ∈ TpM : X ∈ K(M) and (∇X)p = 0},

where K(M) denotes the set of Killing vector fields on M . It turns out that the
symmetric subspaces of M = G/K form a G-invariant distribution on M called the
distribution of symmetry of M . This distribution is integrable and its leaves are sym-
metric spaces that are totally geodesically embedded inM . The index of symmetry of
a homogeneous manifold M is the rank of its distribution of symmetry. We denote it
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by indS(M). In this chapter, we also compute the index of symmetry of Hopf-Berger
spheres.

Theorem B. Let SnF,τ , τ ̸= 1, be a Hopf-Berger sphere. Then, its index of symmetry
is given by

indS(S
n
F,τ ) =


0 if F = H or O and τ ̸= 1/2,

1 if F = C,
3 if F = H and τ = 1/2,

7 if F = O and τ = 1/2.

This chapter is organized as follows. In Section §8.1, some tools that will be used
in later sections are developed. Of particular relevance for the chapter is Lemma 8.1.3,
which states that the totally geodesic property is preserved under rescalings in the
direction of the fibers of the metric of the total space of a Riemannian submersion
for a certain class of totally geodesic submanifolds (these submanifolds will be called
well-positioned in Subsection §8.4.1). The purpose of Section §8.2 is to recall some
well-known facts about totally geodesic submanifolds in rank one symmetric spaces.

In Section §8.3 we introduce the reductive decomposition of Hopf-Berger spheres
that we use in this chapter. This allows us to compute the curvature tensor and to
provide examples of totally geodesic submanifolds in Subsections §8.3.1 and §8.3.2.

Section §8.4 is devoted to the classification of totally geodesic submanifolds of
Hopf-Berger spheres. In Subsection §8.4.1 we define and study well-positioned totally
geodesic submanifolds of SnF,τ . It is important to highlight Proposition 8.4.2, which as-
serts that every complete well-positioned totally geodesic submanifold is characterized
as the intersection of SnF,τ regarded as a geodesic sphere of M̄ with a totally geodesic

submanifold M of a rank one symmetric space M̄ , with M containing the center of
the geodesic sphere SnF,τ . Moreover, by performing certain involved computations, we
prove that every totally geodesic surface of SnF,τ , τ ≥ 1/2, is well-positioned. In Sub-
section §8.4.3, we prove that every totally geodesic submanifold of dimension d ≥ 2 in
a Hopf-Berger sphere with τ ≥ 1/2 is well-positioned, thus obtaining Theorem A. The
idea is to show that every not well-positioned totally geodesic submanifold contains a
not well-positioned totally geodesic surface, see Proposition 8.4.11, which gives a con-
tradiction with the fact that every totally geodesic surface in SnF,τ is well-positioned.
Some ingredients used in this section are: the polarity of the isotropy representation
of SnF,τ , certain algebraic properties of bounded Killing vector fields, and the fact
that a homogeneous space all whose geodesics are closed and of the same length is a
symmetric space of rank one and compact type.

Finally, in Section §8.5, we compute the index of Hopf-Berger spheres by noticing
that every symmetry of a Hopf-Berger sphere (see the beginning of Section §8.5 for
the definition) is an isometry, and by using the techniques to compute this invariant
developed in [146].
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8.1 Totally geodesic submanifolds, geodesic spheres
and Riemannian submersions

Let (M̄, ⟨·, ·⟩) be a complete Riemannian manifold. We recall that we denote by
∇̄ its Levi-Civita connection, by R̄ its curvature tensor defined by the convention
R̄(X,Y ) = [∇̄X , ∇̄Y ]− ∇̄[X,Y ], and by inj(p) its injectivity radius at p ∈ M̄ .

Let M be an immersed submanifold of M̄ . We denote its induced Levi-Civita
connection by ∇ and its second fundamental form by II. Recall that a connected
submanifold M is totally geodesic if every geodesic of M is also a geodesic of M̄ .
Equivalently, a connected submanifold M of M̄ is totally geodesic if and only if
II = 0. Moreover, every totally geodesic submanifold M of M̄ can be extended to
a complete totally geodesic submanifold of M̄ , see Theorem 5.2.5. Given a complete
totally geodesic submanifold M of M̄ passing through p ∈ M̄ , we have expp(V ) =M ,

for some linear subspace V of TpM̄ , where expp denotes the Riemannian exponential

map of M̄ at p ∈ M̄ .
In what follows, we give an overview of some well-known facts about the extrinsic

geometry of geodesic spheres in Riemannian manifolds. Let v(s), s ∈ (−ε, ε), be a
smooth curve in the unit tangent sphere S(TpM̄) and let us consider the geodesic
variation Γ(s, t) := γv(s)(t) = expp(tv(s)). Let us denote by D

∂t and D
∂s the par-

tial covariant derivatives. Then, if 0 < t < inj(p), the field along γv(s)(t) given by

γ̇v(s)(t) =
∂
∂tγv(s)(t) is the outer unit normal at γv(s)(t) to the geodesic sphere St(p) :=

expp(tS(TpM)) of radius t > 0. Since ∥γ̇v(s)(t)∥ = 1, we have that D
∂s |s=0

γ̇v(s)(t) and

γ̇v(s)(t) are orthogonal. Thus,

D
∂s |s=0

γ̇v(s)(t) = −StJ(t),

where St denotes the shape operator of the geodesic sphere St(p) in the outer direction
and J(t) = ∂

∂s |s=0
Γ(s, t) is a Jacobi field along γv(0)(t) with initial conditions J(0) =

0 and D
∂t |t=0

J(t) = v̇(0). Now using that D
∂s |s=0

γ̇v(s)(t) = D
∂tJ(t), we obtain the

following expression for the shape operator of the geodesic sphere

StJ(t) = −D
∂tJ(t).

Lemma 8.1.1. Let M̄ be a Riemannian manifold and let Σ be an embedded totally
geodesic submanifold of M̄ . Let M be an embedded submanifold of M̄ satisfying the
following conditions:

i) Σ ∩M is non-empty.

ii) TqΣ contains the normal space νqM of M for every q ∈ Σ ∩M .

Then, any connected component of Σ∩M is an embedded totally geodesic submanifold
ofM and Tq(Σ∩M) is invariant under the shape operator Sξ ofM , for every ξ ∈ νqM
and q ∈ Σ ∩M .
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Proof. By i) and ii), Σ and M are transverse at every q ∈ Σ ∩M . Then, it follows
that Σ∩M is an embedded submanifold of M̄ . Moreover, Tq(Σ∩M) = (TqΣ)∩(TqM)
and TqΣ = Tq(Σ ∩M)⊕ νqM , for every q ∈ Σ ∩M .

We may assume that dim(Σ ∩ M) > 0. Let X,Y be tangent fields of Σ ∩ M
defined around q. Thus (∇̄XY )q ∈ TqΣ = Tq(Σ ∩M) ⊕ νqM . Hence, the tangent
projection of (∇̄XY )q toM belongs to Tq(Σ∩M). This shows that Σ∩M is a totally
geodesic submanifold of M . Let ξ be a unit normal vector field of M defined around
q ∈ Σ ∩M and v ∈ Tq(Σ ∩M). Since Σ is a totally geodesic submanifold of M̄ ,
(∇̄vξ)q ∈ TqΣ = Tq(Σ ∩M) ⊕ νqM . Consequently, the projection of (∇̄vξ)q to TqM
belongs to Tq(Σ ∩M) and this shows that SξqTq(Σ ∩M) ⊂ Tq(Σ ∩M).

As a consequence of Lemma 8.1.1 and the previous discussion, we obtain the
following result.

Corollary 8.1.2. Let M̄ be a Riemannian manifold, p ∈ M̄ and St(p) the geodesic
sphere of radius t ∈ (0, inj(p)). Let V ⊂ TpM̄ be a vector subspace and consider the
set Vr := {v ∈ V : ∥v∥ < r}, where r ∈ (t, inj(p)). Assume that Σ = expp(Vr) is a

totally geodesic submanifold of M̄ . Then, St(p) ∩ Σ is a totally geodesic submanifold
of St(p) whose tangent space is invariant under the shape operator St of St(p).

The following lemma shows that there is a certain class of totally geodesic sub-
manifolds of the total space of a given Riemannian submersion that remain totally
geodesic when we rescale the metric on the vertical distribution.

Lemma 8.1.3. Let π : M → B be a Riemannian submersion with totally geodesic
fibers and denote by H and V the horizontal and vertical distributions, respectively.
Consider the family of Riemannian metrics ⟨·, ·⟩τ of M obtained by rescaling the
metric tensor ⟨·, ·⟩ of M by a factor τ > 0 in the vertical distribution. Moreover, let
Σ be a totally geodesic submanifold of M , with respect to the original metric, such
that

TqΣ =W1(q)⊕W2(q), for all q ∈ Σ,

where W1(q) ⊂ Hq and W2(q) ⊂ Vq. Then, Σ is a totally geodesic submanifold of M
with respect to any metric ⟨·, ·⟩τ .

Proof. Let us assume that B has dimension m and M has dimension m + n. By
the continuity of the vertical and horizontal projections, we have that q ∈ Σ 7→
dim(Wi(q)) is an upper semicontinuous function for each i ∈ {1, 2}. Thus, since
TqΣ =W1(q)⊕W2(q) for every q ∈ Σ, we deduce that dim(Wi(q)) is constant for every
i ∈ {1, 2}. From now on, we will assume that r = dim(W1(q)) and s = dim(W2(q))
for every q ∈ Σ.

We work locally, since the property of being totally geodesic is local. From the
assumptions, it follows that π(Σ) is a submanifold of B of dimension r, since π has
constant rank m. Moreover, π(Σ) is totally geodesic in B. Indeed, let γ be a geodesic
of B with initial velocity tangent to π(Σ). Observe that horizontal geodesics do not
depend on τ . Then, γ lifts to a horizontal geodesic γ̃ in M . Now, since Σ is totally
geodesic in (M, ⟨·, ·⟩), the geodesic γ̃ is contained in Σ and γ is contained in π(Σ),
thus proving that π(Σ) is totally geodesic in B.



160 8 Hopf fibrations and totally geodesic submanifolds

Let (Ě1, · · · , Ěr, · · · , Ěm) be an orthonormal frame around π(q) where the first r
fields are tangent to π(Σ) when restricted to π(Σ). Since the fibers of π are totally
geodesic, we have that Σ∩ π−1(π(q)) is a totally geodesic submanifold around q. Let
(E1, · · · , Em) be the horizontal lift of this frame around q. Notice that E1, . . . , Er
restricted to Σ around q are tangent to Σ. Let (ξ1, · · · , ξn) be an orthonormal vertical
frame, with respect to ⟨·, ·⟩ = ⟨·, ·⟩1, such that the first s fields are tangent to Σ ∩
π−1(π(q)) when restricted to Σ ∩ π−1(π(q)).

Notice that ⟨H1+U1, H2+U2⟩τ = ⟨H1, H2⟩1+ τ⟨U1, U2⟩1 = ⟨H1, H2⟩+ τ⟨U1, U2⟩,
where Hi is a horizontal vector field and Ui is a vertical vector field, i ∈ {1, 2}. Then,
the frame (E1, · · ·Em, ξ1, · · · , ξn) is orthogonal with respect to any ⟨·, ·⟩τ and each one
of its elements has constant length. Let ∇τ be the Levi-Civita connection associated
with ⟨·, ·⟩τ and denote by ∇ the Levi-Civita connection of M when τ = 1. By the
Koszul formula, we get

2⟨∇τ
XY,Z⟩τ = ⟨[X,Y ], Z⟩τ − ⟨[X,Z], Y ⟩τ − ⟨[Y,Z], X⟩τ

for all X,Y, Z ∈ {E1, · · · , Em, ξ1, · · · , ξn}.
Let X,Y ∈ {E1, · · · , Er, ξ1, · · · , ξs} and Z ∈ {Er+1, · · · , Em, ξs+1, · · · , ξn}. Since

Σ is totally geodesic when τ = 1, we have ⟨∇XY,Z⟩q = 0. This combined with the
fact that the vertical distribution is integrable, and the bracket of a projectable vector
field with a vertical vector field is vertical, implies that ⟨∇τ

XY,Z⟩τq = 0. This proves
that Σ is a totally geodesic submanifold of (M, ⟨·, ·⟩τ ) for every τ > 0.

Notice that homogeneous spaces are real analytic, see [35, Lemma 1.1]. Let
M = G/K be a Riemannian homogeneous space. See Subsection §1.3.1 for a quick
introduction to homogeneous spaces. Since every G-invariant tensor is parallel under
the canonical connection ∇c, we have ∇cR = 0 and ∇cD = 0, where R and D denote
the curvature tensor and the difference tensor of M = G/K, respectively. Thus, by
Equations (1.2) and (1.3), the covariant derivatives of the curvature tensor can be
expressed in terms of D and R (see Remark 1.3.1). Hence, every subspace pΣ of p
invariant under D and R is invariant under every covariant derivative of R, which
implies by Theorem 5.2.5 that pΣ is the tangent space of some totally geodesic sub-
manifold of M and Σ = expo pΣ is a complete totally geodesic submanifold of M ,
where expo denotes the Riemannian exponential map of M at o. Hence, we obtain
the following result.

Lemma 8.1.4. Let M = G/K be a Riemannian homogeneous space with base point
o ∈ M and reductive decomposition g = k ⊕ p. Let pΣ be a subspace of p invariant
under D and R. Then, there is a complete totally geodesic submanifold Σ of M such
that ToΣ = pΣ.

We remark that Lemma 8.1.4 provides a sufficient condition to obtain totally
geodesic submanifolds in homogeneous spaces in terms of a linear algebraic property.
However, this condition does not need to be necessary.
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CPn
CPk 2 ≤ k ≤ n− 1
RPk 2 ≤ k ≤ n
Sk4 1 ≤ k ≤ 2

HPn

HPk 2 ≤ k ≤ n− 1
CPk 2 ≤ k ≤ n
RPk 2 ≤ k ≤ n
Sk4 1 ≤ k ≤ 4

OP2

HP2

CP2

RP2

Sk4 1 ≤ k ≤ 8

CHn
CHk 2 ≤ k ≤ n− 1
RHk 2 ≤ k ≤ n
RHk(4) 1 ≤ k ≤ 2

HHn

HHk 2 ≤ k ≤ n− 1
CHk 2 ≤ k ≤ n
RHk 2 ≤ k ≤ n
RHk(4) 1 ≤ k ≤ 4

OH2

HH2

CH2

RH2

RHk(4) 1 ≤ k ≤ 8

Figure 8.1: Totally geodesic submanifolds in symmetric spaces of rank one and non-
constant sectional curvature, up to congruence.

8.2 Rank one symmetric spaces and their totally
geodesic submanifolds

In this section we discuss some facts that will be useful later about totally geodesic
submanifolds in symmetric spaces of rank one.

Let M̄ = Ḡ/K̄ be a connected Riemannian symmetric space, where Ḡ is up to
some finite quotient equal to Isom0(M̄), the connected component of the identity of
the isometry group of M̄ , and K̄ is the isotropy at some fixed point p ∈ M̄ . Let sq be
the geodesic reflection of M̄ at q ∈ M̄ . It turns out that a submanifold Σ of M̄ is a
complete totally geodesic submanifold of M̄ if and only if sqΣ = Σ for every q ∈ Σ.
Recall that the rank of a symmetric space is defined as the dimension of a maximal
flat totally geodesic submanifold.

The complete Riemannian manifolds with non-zero constant sectional curvature
are: real hyperbolic spaces, round spheres and real projective spaces. These are
symmetric spaces of rank one. Furthermore, the remaining symmetric spaces of rank
one are hyperbolic and projective spaces over C, H and O. The totally geodesic
submanifolds in symmetric spaces of rank one were classified by Wolf in [187], see
Figure 8.1.

Let κ ∈ (0,∞). We denote by Snκ, RPn(κ) and RHn(κ) the round sphere of
sectional curvature κ, the real projective space of sectional curvature κ and the real
hyperbolic space with sectional curvature −κ, respectively. In the case that κ = 1 or
κ = −1, we write Sn, RPn, or RHn, respectively.

Now we assume that M̄ = Ḡ/K̄ has rank one and that the minimal absolute value
of its sectional curvature is equal to 1. One has that K̄, via the isotropy representation,
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acts transitively on S(TpM̄), the unit sphere of TpM̄ . Moreover, K̄ acts transitively
on the geodesic sphere St(p) of radius t centered at p ∈ M̄ , for each t ∈ (0, inj(p)).
This implies that geodesic spheres are K̄-homogeneous spaces. Recall that the Jacobi
operator R̄v associated with v ∈ TpM̄ is defined by R̄v(X) = R̄(X, v, v) for every
X ∈ TpM̄ . In this case, the Jacobi operators {R̄v : v ∈ TpM̄, ∥v∥ = t} are all
conjugate by elements of K̄.

Let us assume that M̄ does not have constant sectional curvature. It is well known
that, for any non-zero v ∈ TpM̄ , the Jacobi operator R̄v restricted to TpM̄ ⊖ Rv has
only two different eigenvalues λ1 and λ2. Let v ∈ TpM̄ be of unit length. Then, λ1 =
±4, λ2 = ±1, where the signs are positive if M̄ is of the compact type, and negative
if M̄ is of non-compact type. Observe that R̄v has exactly one more eigenvalue that
is equal to zero and has associated eigenspace Rv. Let Vi(v) be the eigenspace of R̄v
associated with λi for each i ∈ {1, 2}. When M̄ is of compact type, inj(M̄) = π/2.
However, if M̄ is of non-compact type, then it follows by the Cartan-Hadamard
Theorem that inj(M̄) = +∞.

Fix p ∈ M̄ . For each i ∈ {1, 2} we define Vti(v) to be the parallel transport of Vi(v)
along the unit speed geodesic γv : [0, inj(M̄)) → M̄ with initial conditions p ∈ M̄ and
v ∈ TpM̄ . The equation ∇̄R̄ = 0 implies that Vti(v) is the eigenspace of R̄ ·,γ̇v(t)γ̇v(t)
associated with λi, for each i ∈ {1, 2}. Moreover, Vti(v) ⊥ γ̇v(t) and then we have the
following orthogonal decomposition

Tγv(t)St(p) = Vt1(v)⊕ Vt2(v).

Let K̄v be the isotropy of K̄ at v. Since K̄ preserves the curvature tensor R̄ of M̄ at
p, then K̄v commutes with the Jacobi operator R̄v and therefore leaves Vi(v) invariant.
Notice that K̄v coincides with the isotropy K̄γv(t) of the action of K̄ on the geodesic
sphere St(p) at γv(t) for every t ∈ (0, inj(M̄)). Moreover, K̄γv(t) leaves invariant Vti(v)
since K̄γv(t) and R̄ ·,γ̇v(t)γ̇v(t) commute. Hence, for any fixed t ∈ (0, inj(M̄)), the
subspace Vti(v) extends to a K̄-invariant distribution Dt

i on the geodesic sphere St(p).
Thus,

TSt(p) = Dt
1 ⊕Dt

2.

The distributions D1 and D2 coincide with the vertical and horizontal distributions,
respectively, defined by the Hopf fibrations.

Remark 8.2.1. Using Jacobi field theory, one can prove that Vt1(v) and Vt2(v) are the
eigenspaces of the shape operator St of St(p) in M̄ with corresponding eigenvalues
βt1 and βt2, respectively. These eigenvalues are given by the following expressions (see
e.g. [33, p. 16]).

βt1 =

{
−2 cot(2t) if M̄ is of the compact type,
−2 coth(2t) if M̄ is of the non-compact type.

(8.2)

βt2 =

{
− cot(t) if M̄ is of the compact type,
− coth(t) if M̄ is of the non-compact type.

(8.3)

Notice that βt1 ̸= βt2 for every t ∈ (0, inj(M̄)). Moreover, since the connected group K̄
acts isometrically on St(p), the shape operator St is a K̄-invariant tensor. Then, Dt

i

is an St-invariant distribution of St(p) and St|Dt
i
= βti Id|Dt

i
, for each i ∈ {1, 2}.
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Remark 8.2.2. If M̄ is of compact type, it is well known that V1(v) ⊕ Rv ⊂ TpM̄
is the tangent space of a totally geodesic sphere of M̄ isometric to Sm+1

4 , which we
denote by Sm+1(v), where m = rk(Dt

1). This is a so-called Helgason sphere, see [89]
and [144].

This implies that Dt
1 is an integrable distribution of St(p) whose integral subman-

ifold through γw(t) = exp(tw), where w ∈ TpM̄ is of unit length, is the intersection
of Sm+1(w) with St(p). Moreover, by Corollary 8.1.2, Dt

1 is an autoparallel distribu-
tion of St(p). The same is true when M̄ is of non-compact type. But in this case
V1(v)⊕Rv is the tangent space at p of a totally geodesic hyperbolic space of M̄ that
is isometric to RHm+1(4).

We finish this section with a remark that will be useful in Section §8.4.

Remark 8.2.3. Let M̄ = Ḡ/K̄ be a simply connected compact symmetric space with
non-constant sectional curvature and minimal sectional curvature 1. Recall that
inj(M̄) is π/2. Let p ∈ M̄ and let M be a complete totally geodesic submanifold
of M̄ that contains p. Then, M is a rank one symmetric space of compact type with
inj(M) = π/2 or a closed geodesic of length π.

Let BEπ/2(0) be the Euclidean open ball of TpM̄ of radius π/2 centered at the

origin. Hence, expp : B
E
π/2(0) → Bπ/2(p) is a diffeomorphism, where Bπ/2(p) is the

open ball of M̄ with center p and radius π/2. Now, since inj(M) = π/2, the points x
ofM that are in the complement of expp(B

E
π/2(0)∩TpM) must be at a distance of π/2

from p in M̄ . Indeed, if γ : [0, π/2] → M is a minimizing unit speed geodesic in M
from p to x, we have that γ restricted to [0, π/2) is a minimizing geodesic of M̄ , since
M is totally geodesic. Thus, the distance in M̄ from p to x is π/2. This implies that
M∩Bπ/2(p) = expp(B

E
π/2(0)∩TpM) and thenM∩St(p) = expp(B

E
π/2(0)∩TpM)∩St(p),

where t ∈ (0, π/2).

8.3 Reductive decomposition of Hopf-Berger
spheres

In this section we describe a reductive decomposition for each Hopf-Berger sphere.

Recall that {SnF,τ}τ>0 denotes the family of complex, quaternionic or octonionic
Hopf-Berger spheres of dimension n, according to the value of F ∈ {C,H,O}. These
are geodesic orbit spaces, see [175]. This means that every geodesic of SnF,τ is the
orbit of a 1-parameter subgroup of Isom(SnF,τ ). Furthermore, according to [191],
SnF,τ admits, for each τ > 0, a naturally reductive decomposition when F ∈ {C,H}.
However, S15O,τ does not admit a naturally reductive decomposition for most τ ∈
(0,+∞), see [192].

The complex and quaternionic Hopf fibrations are invariant under the action of
Un+1 and Spn+1Sp1, respectively. The complex and quaternionic Hopf-Berger spheres

can be expressed as S2n+1
C,τ = Un+1/Un and S4n+3

H,τ = Spn+1/Spn. Now we will describe
the reductive decomposition for SnF,τ = G/K, for F ∈ {C,H}, where the Lie groups
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G and K are as above. We refer the reader to Section §1.3 for more details on ho-
mogeneous spaces and reductive decompositions. Let g be the Lie algebra of G for
F ∈ {C,H}. We denote by Im(x) the imaginary part of an element x ∈ F and by A∗

the conjugate transpose of a matrix A with entries in F ∈ {C,H}. Then, we consider
the following subspaces of g:

k =

(
Z 0
0 0

)
, p1 =

(
0 0
0 Im(x)

)
, p2 =

(
0 v

−v∗ 0

)
,

where x ∈ F, v ∈ Fn and Z belongs to un or spn, when F = C or F = H, respectively.
Observe that k is the Lie algebra of K and [k, p1] = 0. On the one hand, p1 is spanned
by {Xl}dimR F−1

l=1 , where each Xl is the matrix filled with zeroes except the last entry,
which is equal to one of the imaginary units i, j or k, for X1, X2 or X3, respectively.
On the other hand, p2 is identified with Fn, and thus, we can consider the set {Yj}nj=1

of p2 where Yj is identified with the j-th element of the canonical basis of Fn for
F ∈ {C,H}. Furthermore, the adjoint representation of G restricted to K acts on p2
as the standard representation of Un or Spn, depending on whether F is equal to C
or H.

Now let F = O. The octonionic Hopf fibration is invariant under the action of Spin9
and S15O,τ = Spin9/Spin7. For positive integers i, j, such that i < j < 9, let Eij ∈ spin9
be the matrix filled with zeroes except for the entries (i, j) and (j, i) which are equal
to 1 and −1, respectively. We define the following elements in g = spin9.

X1 = (E15 + E26 + E37 + E48) , X2 = (E17 + E28 − E35 − E46) ,

X3 = (E13 − E24 − E57 + E68) , X4 = (E16 − E25 − E38 + E47) ,

X5 = (E18 − E27 + E36 − E45) , X6 = (E12 + E34 − E56 − E78) ,

X7 = (E14 + E23 − E58 − E67) , Y1 = 2E19,

Y2 = 2E29, Y3 = 2E39,

Y4 = 2E49, Y5 = 2E59,

Y6 = 2E69, Y7 = 2E79,

Y8 = 2E89.

Then, we consider p1 and p2 as the subspaces of g spanned by {Xi}7i=1 and {Yi}8i=1,
respectively. We define k as the orthogonal complement of p1 ⊕ p2 with respect to
the Killing form of g = spin9. It turns out that k ∼= spin7 is the Lie algebra of the
isotropy K = Spin7 for the action of G = Spin9 in S15O,τ (cf. [180, p. 476]). Moreover, k
acts on p1 as the standard representation of so7 = spin7 and on p2 as the irreducible
spin representation of dimension eight.

To sum up, for each Hopf-Berger sphere SnF,τ , it can be checked that [k, p1 ⊕ p2] ⊂
p1 ⊕ p2. Thus, g = k ⊕ p, with p := p1 ⊕ p2, defines a reductive decomposition for
SnF,τ = G/K.

Notice that for each Xi ∈ p1, the map J : p2 → p2 given by JXi
Y := [Y,Xi]

defines a complex structure in p2. In the following, we simply write Ji to denote
JXi , for each i ∈ {1, . . . ,dimF − 1}. Let m := dim p2/ dimF. We consider the
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unique K-invariant inner product ⟨·, ·⟩ in p such that {Xi/
√
τ , Yj , JiYj}dim F−1,m

i,j and

{Xi/(2
√
τ), Yj}dim F−1,8

i,j are orthonormal bases for p when F ∈ {C,H} and F = O,
respectively. Thus, the tangent space of SnF,τ at a base point o is identified with p as
inner product spaces. Furthermore, p1 and p2 can be identified with the vertical and
horizontal spaces at o ∈ SnF,τ defined by the corresponding Hopf fibration, respectively.

It can be checked that Ji is a skew-symmetric endomorphism of p2 with respect to
the inner product ⟨·, ·⟩, hence Ji is an orthogonal complex structure for each subindex
i ∈ {1, . . . ,dimF − 1}. On the one hand, if F = H, we have the relations JjJi = Jk,
where (i, j, k) is a cyclic permutation of (1, 2, 3). On the other hand, if F = O, the
relations among the complex structures {Ji}7i=1 are given by the labeling of the Fano
plane indicated in Figure 8.2. The Fano plane has 7 points and 7 lines. Each line I
contains exactly three points, and each of these triples has a cyclic ordering shown
by the arrows in such a way that if (i, j, k) are cyclically ordered, and in this case we
have JjJi|HIY1

= Jk|HIY1
, where HIY1 := span{Y1, JlY1}3l=1.

Remark 8.3.1. Let v1 ∈ p1 and v2 ∈ p2 be non-zero elements of lengths r and s,
respectively. Moreover, denote by S1(r) the sphere of radius r of p1, and by S2(s) the
sphere of radius s of p2. If F = O, then K acts polarly on p and its orbits are given
by

K · (v1 + v2) = S1(r)× S2(s).

When F = H, we can extend the group G = Spn+1 acting transitively on S4n+3
H,τ to the

Lie group Ǧ = Spn+1Sp1 which also acts transitively and isometrically on S4n+3
H,τ . The

isotropy of the action of Ǧ at o ∈ S4n+3
H,τ is Ǩ = SpnSp1. Then Ǩ acts polarly on p and

its orbits are given by

Ǩ · (v1 + v2) = S1(r)× S2(s).

Now, let F = C and consider Ǩ, the disconnected Lie group generated by K and
σ, where σ is the isometry lying in the isotropy of S2n−1

C,τ induced by the standard

conjugation in Cn. Then, Ǩ and K act polarly in p and their orbits are given by

K · (v1 + v2) = {v1} × S2(s), Ǩ · (v1 + v2) = S1(r)× S2(s).

8.3.1 The curvature tensor of Hopf-Berger spheres

Now we compute the curvature tensor R and the difference tensor D of SnF,τ when
F ∈ {C,H}. Notice that D restricted to p1 is zero and satisfies DXY = −DYX for
every X,Y ∈ p2. Let Y, Z,W ∈ p2 spanning a totally real subspace of p2 and let
(i, j, k) be a cyclic permutation of (1, 2, 3). Then, we have

DYXi = τJiY, DXi
Y = (τ − 1)JiY, DY JiY = −Xi, DJiY JjY = Xk,

DY Z = 0.
(8.4)

By using Equation (1.4), we have for a cyclic permutation (i, j, k) of (1, 2, 3),
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Figure 8.2: Fano plane with the appropiate labeling.

R(Xi, Xj)Y = 2τ(1− τ)JkY, R(Xi, Xj)Xi = −Xj

R(Xi, Y )Xi = −τ2Y, R(Xi, Y )JjY = (1− τ)Xk,

R(Xi, Y )Xj = τ(1− τ)JkY, R(Xi, Y )Y = τXi,

R(Y, JiY )Y = (−4 + 3τ)JiY, R(Y, JiY )Z = 2(−1 + τ)JiZ,

R(Y, JiY )Xj = 2(1− τ)Xk, R(Y, JiY )JiY = (4− 3τ)Y,

R(Y,Z)Y = −Z, R(Y, Z)JiY = (−1 + τ)JiZ

(8.5)

R(Xi, Xj)Xk = R(Xi, Y )JiY = R(Xi, Y )Z = R(Y, JiY )Xi = R(Y, JiY )JjY

= R(Y, Z)Xi = R(Y, Z)W = 0.
(8.6)

Let us consider RX : p → p, the Jacobi operator associated with a vector X ∈ p,
which is given by RX(Y ) = R(Y,X)X.

Let X ∈ p1 be of unit length. By Equations (8.5) and (8.6), we deduce that
RX leaves p1 and p2 invariant. Moreover, RX|p2

= τ Idp2
, and the eigenvalues of

RX|p1
are 1/τ and 0, with multiplicity dimF − 2 and 1, respectively. Let Y ∈ p2 be

a unit vector. By Equations (8.5) and (8.6), we deduce that RY leaves p1 and p2
invariant. Moreover, RY |p1

= τ Idp1
, and the eigenvalues of RY |p2

are 4 − 3τ , 1 and
0 of multiplicities dimF− 1, n− 2 dimF+ 1 and 1, respectively.

Now we compute the curvature tensor R and the difference tensor D of S15O,τ . We
have again that D restricted to p1 is zero and satisfies DXY = −DYX for every
X,Y ∈ p2. Let (i, j, k) be an ordered triple contained in a line of the Fano plane, see
Figure 8.2. Then, we have

DY1Xi = 2τJiY1, DXiY1 = (2τ − 1)JiY1, DY1JiY1 = −Xi/2,

DJiY1JjY1 = −Xk/2.
(8.7)
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Moreover, by using Equation (1.4), we get

R(Xi, Xj)Xi = −4Xj , R(Xi, Xj)Y1 = 8τ(1− τ)JkY1,

R(Xi, Y1)Y1 = τXi, R(Xi, Y1)Xj = 4τ(1− τ)JkY1,

R(Xi, Y1)Xi = −4τ2Y1, R(Xi, Y1)JjY1 = (1− τ)Xk,

R(Y1, JiY1)Xj = 2(1− τ)Xk, R(Y1, JiY1)Y1 = (−4 + 3τ)JiY1,

R(Y1, JiY1)JiY1 = (4− 3τ)Y1.

(8.8)

R(Xi, Xj)Xk = R(Xi, Y1)JiY1 = R(Y1, JiY1)Xi = R(Y1, JiY1)JjY1 = 0. (8.9)

Let X ∈ p1 be of unit length. By Equations (8.8) and (8.9), we deduce that RX
leaves p1 and p2 invariant. Moreover, RX|p2

= τ Idp2
and the eigenvalues of RX|p1

are 1/τ and 0, with multiplicity 6 and 1, respectively. Let Y ∈ p2 be a unit vector.
By Equations (8.8) and (8.9), we have that, RY leaves p1 and p2 invariant. Moreover,
RY |p1

= τ Idp1
and the eigenvalues of RY |p2

are 4−3τ and 0 with multiplicities 7 and
1, respectively.

In Table 8.2 we summarize the pairs (λ,mλ) of eigenvalues and multiplicities for
the Jacobi operator.

RX RY

p1
(0, 1) (τ,dim(F)− 1)

(1/τ,dim(F)− 2)

p2

(τ, n− dim(F) + 1) (0, 1)

(4− 3τ,dim(F)− 1)
(1, n− 2 dim(F) + 1)

Table 8.2: Eigenvalues and multiplicities of the Jacobi operator of SnF,τ associated
with unit vectors X and Y in p1 and p2, respectively.

8.3.2 Examples of totally geodesic submanifolds in Hopf-Berger
spheres

In what follows, we provide examples of totally geodesic submanifolds in Hopf-Berger
spheres.

Lemma 8.3.2. Let Σ be a totally geodesic submanifold of SnF,τ , with τ ̸= 1. Let
pΣ ⊂ p be identified with the tangent space of Σ at o ∈ SnF,τ . Then, if pΣ ∩ pi ̸= 0 for
some i ∈ {1, 2}, we have pΣ = (pΣ ∩ p1)⊕ (pΣ ∩ p2).

Proof. Let us identify pΣ ⊂ p with the tangent space at o ∈ SnF,τ of a totally geodesic
submanifold Σ in SnF,τ . If X ∈ pΣ ∩ p1 is a non-zero vector, we have RXpΣ ⊂ pΣ.
The sets of eigenvalues of RX|p1

and RX|p2
have non-trivial intersection if and only

if τ = 1, see Table 8.2. If Y ∈ pΣ ∩ p2 is a non-zero vector, we have RY pΣ ⊂ pΣ.
The sets of eigenvalues of RY |p1

and RY |p2
have non-trivial intersection if and only if
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τ = 1, see Table 8.2. Hence, if there is some non-zero vector X ∈ pΣ ∩ pi, for some
i ∈ {1, 2}, we have pΣ = (pΣ ∩ p1)⊕ (pΣ ∩ p2) when τ ̸= 1.

Remark 8.3.3. Now we will discuss some examples of totally geodesic submanifolds
of SnF,τ . Consider the following subspaces (1)F and (2)F of p, where F ∈ {C,H,O}.

(1)C pΣ = V , where V is a totally real subspace of p2.

(2)C pΣ = p1 ⊕ V , where V ⊂ p2 is totally complex.

(1)H pΣ = RX ⊕ V , where X ∈ p1 and V is a totally complex subspace of p2 with
respect to JX , see Section §4.1.

(2)H pΣ = p1 ⊕ V , where V is invariant under JX for every X ∈ p1.

(1)O pΣ = span{Xi}i∈I ⊕HIY1, where I is a line of the Fano plane (see Figure 8.2).

(2)O pΣ = p1.

It is clear from Equations (8.4-8.9) that these subspaces are invariant under the dif-
ference and curvature tensors. Hence, by Lemma 8.1.4, they induce totally geodesic
submanifolds in SnF,τ . Additionally, it can be checked that these subspaces are invari-
ant under U , see Subsection §1.3.1 for the definition of U .

On the one hand, if we consider Example (1)F, for each F ∈ {C,H,O}, we have that
kΣ := [pΣ, pΣ]k is isomorphic to sok, uk, or sp1 ⊕ sp1, where k is the real or complex
dimension of V , respectively. The Lie algebra generated by pΣ is gΣ = kΣ ⊕ pΣ,
which is isomorphic to sok+1, uk+1 or sp2 ⊕ sp1, respectively. On the other hand, if
we consider Example (2)F, we have that kΣ is isomorphic to uk, spk, or so7, where
k is the complex or quaternionic dimension of V , respectively, and the Lie algebra
generated by pΣ is gΣ = kΣ⊕pΣ, which is isomorphic to uk+1, spk+1, or so8. Let GΣ be
the connected subgroup of G with Lie algebra gΣ. Observe that pΣ is identified with
To(GΣ ·o), and the connected component of the isotropy of GΣ at o ∈ SnF,τ is KΣ, which
is the connected Lie subgroup of G with Lie algebra kΣ. Now, using Equations (1.2)
and (1.3) and the fact that pΣ is invariant under D and U , we have that the second
fundamental form of Σ = GΣ · o vanishes at o. Thus, since Σ is an orbit, Σ is a totally
geodesic submanifold of SnF,τ , and Σ = expo(pΣ) by the uniqueness of complete totally
geodesic submanifolds. Hence, these totally geodesic submanifolds are extrinsically
homogeneous submanifolds.

Moreover, by using the Gauss equation, one can compute the curvature of these
examples using Equations (8.4), (8.5), (8.6) and (8.7), (8.8), (8.9), and it turns out
that Example (1)F is isometric, for each F ∈ {C,H,O}, to Sk1 , S

2k+1
C,τ , or S7H,τ , re-

spectively. Furthermore, Example (2)F is isometric, for each F ∈ {C,H,O}, to S2k+1
C,τ ,

S4k+3
H,τ , or S71/τ , respectively.
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Remark 8.3.4. Notice that for τ ̸= 1 and n ≥ 1, we have the totally geodesic inclusions

Sn1 ⊂ S2n+1
C,τ ⊂ S4n+3

H,τ ,

S3C,τ ⊂ S7H,τ ⊂ S15O,τ ,

for the totally geodesic submanifolds constructed in Remark 8.3.3.

8.4 Totally geodesic submanifolds of Hopf-Berger
spheres

In this section, we will carry out the main efforts toward the classification of totally
geodesic submanifolds of Hopf-Berger spheres.

8.4.1 Well-positioned totally geodesic submanifolds of Hopf-
Berger spheres

The goal of this subsection is to give a characterization of well-positioned totally
geodesic submanifolds in Hopf-Berger spheres.

Motivated by Lemma 8.1.3, we say that a totally geodesic submanifold Σ of a
Hopf-Berger sphere SnF,τ is well-positioned if TpΣ = (TpΣ ∩ Hp) ⊕ (TpΣ ∩ Vp) for
every p ∈ M , where H and V denote the horizontal and vertical distributions of the
corresponding Hopf fibration, respectively.

Remark 8.4.1. Let M̄ be a symmetric space of rank one with minimal absolute value
of its sectional curvature equal to one, and consider for each t ∈ (0, inj(p)) the natural
map ht : S(TpM̄) → St(p) given by ht(q) := expp(tq) = γq(t), where St(p) is endowed

with the Riemannian metric induced by M̄ . We compute the pull-back metric ⟨·, ·⟩t
induced by ht on S(TpM̄) at a point q ∈ S(TpM̄).

Let w ∈ TqS(TpM̄) and let c(s) be a curve in S(TpM̄) with initial conditions
c(0) = q and ċ(0) = w. Then ht(c(s)) = γc(s)(t) is a variation of radial geodesics
starting at p. Then

ht∗(ċ(0)) =
∂

∂s |s=0
γc(s)(t) = Jw(t),

where Jw(t) is the Jacobi field along γq(t) with initial conditions J(0) = 0 and J ′
w(0) =

w. Hence,

⟨w,w⟩t = ⟨Jw(t), Jw(t)⟩.

There are two complementary distributions F1 and F2 = F⊥
1 (with respect to ⟨·, ·⟩1)

on S(TpM̄) defined by the eigenspaces associated with the eigenvalues λ1 = ±4 and
λ2 = ±1 of the Jacobi operator R̄·,qq of M̄ at p (the plus sign is for the compact
case and the minus sign for the non-compact case). One has that (ht)∗(Fi) = Dt

i ,
for each i ∈ {1, 2} (see Section §8.2 for the definition of Dt

i). Let w̃i be the parallel
vector field along γq with initial condition w̃i(0) = wi. If wi ∈ Fi(q), then Jwi(t) =
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1√
λi

sin(
√
λi t)w̃i(t) if M̄ is of compact type, or Jwi(t) =

1√
−λi

sinh(
√
−λi t)w̃i(t) if M̄

is of non-compact type. In addition to that, ⟨F1,F2⟩t = 0 and{
⟨w1, w1⟩t = 1

4 sin
2(2t)∥w1∥2,

⟨w2, w2⟩t = sin2(t)∥w2∥2,

if M̄ is of compact type, or{
⟨w1, w1⟩t = 1

4 sinh
2(2t)∥w1∥2,

⟨w2, w2⟩t = sinh2(t)∥w2∥2,

if M̄ is of non-compact type. Recall that SnF,1 is a round sphere of constant sectional
curvature equal to 1. Thus, SnF,τ is homothetic to the geodesic sphere St(p) via a

homothety of ratio α = sin(t) or α = sinh(t), depending on whether M̄ is of compact
or non-compact type, respectively. Notice that this proves that the radius t of the
geodesic sphere and τ are related by t = arccos(

√
τ) in the compact setting, as

we pointed out in Equation (8.1), since τ = sin2(2t)
4 sin2(t)

= cos2(t); the relation t =

arccosh(
√
τ) in the non-compact setting is obtained analogously.

Proposition 8.4.2. Let Σ be a totally geodesic submanifold of SnF,τ , τ ̸= 1, and let

M̄ be the corresponding rank one symmetric space such that SnF,τ arises as a geodesic

sphere of M̄ centered at p ∈ M̄ . Then, the following statements are equivalent:

i) Σ is a well-positioned totally geodesic submanifold of SnF,τ .

ii) TqΣ has a vertical or a horizontal non-zero vector for every q ∈ Σ.

iii) TqΣ is invariant under the shape operator of SnF,τ in M̄ for every q ∈ Σ.

iv) Σ is the intersection of a totally geodesic submanifold M of M̄ containing p ∈ M̄
with SnF,τ regarded as a geodesic sphere of M̄ .

Proof. First of all, let us identify SnF,τ with the geodesic sphere St(p) of the appropiate

symmetric space M̄ of rank one centered at p ∈ M̄ and t = arccos(
√
τ), in the compact

case; or t = arccosh(
√
τ), in the non-compact case, see Equation (8.1).

Now, observe that i) and ii) are equivalent by Lemma 8.3.2. Moreover, let us
recall that i) and iii) are equivalent since the only eigenvalue of the shape operator
St of St(p) restricted to the horizontal distribution is different to the only eigenvalue
of the shape operator restricted to the vertical distribution, for every t ∈ (0, inj(p)),
see Equations (8.2), (8.3) and the paragraph below them.

Now, by Corollary 8.1.2 and Remark 8.2.3 the intersection of a totally geodesic
submanifold of M̄ that contains p with St(p) is totally geodesic in St(p) and its tangent
space is invariant under St. Hence, iv) implies iii).

Let us prove that iii) implies iv). Let 0 < s, t < inj(p) and consider the map
fs : St(p) → Ss(p) given by fs(expp(tv)) = expp(sv), for all v ∈ TpM of unit length.
Then the pull-back by fs of the Riemannian metric of Ss(p), if M is of the compact
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type, is given by modifying the metric on St(p) by the factor sin2(2s)
sin2(2t)

on the distribu-

tion Dt
1 and by the factor sin2(s)

sin2(t)
on the distribution Dt

2 (in the non-compact case the

trigonometric functions have to be replaced by the corresponding hyperbolic func-

tions). By Remark 8.2.1, if we rescale this pull-back metric by a factor of sin2(t)
sin2(s)

, we

are under the assumptions of Lemma 8.1.3. This shows that Σ is also totally geodesic
with respect to the pull-back metric for every s ∈ (0, inj(p)). Or equivalently, fs(Σ)
is a totally geodesic submanifold of Ss(p). Furthermore, using that TqΣ is invariant
under the shape operator for every q and that the integral curves of the outer unit
normal vector field to the geodesic spheres are geodesics, it is standard to show that
Σ̂ :=

⋃
0<s<inj(p) fs(Σ) is a totally geodesic submanifold of the open ball Binj(p)(p)

which contains a piece of the radial geodesic γv(t) = expp(tv). Since a totally geodesic
submanifold of a symmetric space extends to a complete totally geodesic submanifold,
the complete extension Σ̃ of Σ̂ contains p. By making use of Remark 8.2.3, we have
Σ = Σ̃ ∩ St(p), and it follows that iii) implies iv).

Notice that if dim(Σ) ≥ dimF, then TpΣ has a horizontal non-zero vector for every
p ∈ Σ. Thus, Proposition 8.4.2 implies the following:

Corollary 8.4.3. Let Σ be a totally geodesic submanifold of SnF,τ . If dimΣ ≥ dimF,
then Σ is well-positioned.

Remark 8.4.4. Notice that the intersection of a complete totally geodesic submanifold
M of M̄ passing through p with a geodesic sphere St(p) of M̄ is a geodesic sphere of
M of radius t > 0. Indeed, let us denote by S′t(p) the geodesic sphere of M of radius
t > 0 centered at p. Let us denote by dM and dM̄ the distances on M and M̄ induced
by the respective Riemannian metrics. Then,

St(p) ∩M = {q ∈M : dM̄ (p, q) = t} = {q ∈M : dM (p, q) = t} = S′t(p),

where we have used that M is a complete totally geodesic submanifold of M̄ .
Thus, as a consequence of Proposition 8.4.2 and Corollary 8.4.3, we obtain the

classification of totally geodesic submanifolds of SnC,τ , for every τ ∈ (0,∞). The
classification when τ < 1 and F = C was already obtained in [177].

8.4.2 Totally geodesic surfaces of Hopf-Berger spheres

The aim of this subsection is to prove that every totally geodesic surface of a Hopf-
Berger sphere is well-positioned when τ ≥ 1/2.

Lemma 8.4.5. Let V be a curvature invariant 2-plane in S15O,τ with τ ̸= 1. Then, V

is contained in the tangent space of a totally geodesic S7H,τ in S15O,τ .

Proof. First of all, using the isotropy of S15O,τ (see [180]), we can assume that the
2-plane V is spanned by X,Y ∈ p, where

X = a1X1/(2
√
τ) + a2X2/(2

√
τ) + a3X3/(2

√
τ) + a4Y1,

Y = b1X1/(2
√
τ) + b2X2/(2

√
τ) + b3X3/(2

√
τ) + b4X4/(2

√
τ) + b5Y1 + b6J1Y1,
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where we are using the notation of Section §8.3. Let us proceed by contradiction.
Then, we can assume that b4 ̸= 0, since otherwise, V is contained in the tangent
space of some totally geodesic submanifold S7H,τ of S15O,τ , see Remark 8.3.3. Now,

0 =
1

2
√
τ
⟨R(X,Y )Y,X6⟩ = −3a4b4b6(−1 + τ),

0 = ⟨R(X,Y )Y, Y6⟩ = 3a1b4b6(−1 + τ),

(8.10)

since V is curvature invariant. Thus we either have that b6 = 0 or a1 = a4 = 0.
Let us assume that b6 = 0. Thus,

0 = ⟨R(X,Y )Y, Y8⟩ = 3a3b4b5(−1 + τ),

0 = ⟨R(X,Y )Y, Y4⟩ = 3a2b4b5(−1 + τ),

0 = ⟨R(X,Y )Y, Y2⟩ = −3a1b4b5(−1 + τ),

since V is curvature invariant. Hence, a1 = a2 = a3 = 0 or b5 = 0. However, in the
first case, V is contained in the tangent space of some totally geodesic submanifold
S7H,τ of S15O,τ . Thus, b5 = 0. Observe that we can assume that a4 ̸= 0, since otherwise

V is contained in the tangent space of some totally geodesic submanifold S7H,τ of S15O,τ .
Then,

0 = ⟨R(Y,X)X,Y8⟩ = −3a3a4b4(−1 + τ),

0 = ⟨R(Y,X)X,Y4⟩ = −3a2a4b4(−1 + τ),

0 = ⟨R(Y,X)X,Y2⟩ = 3a1a4b4(−1 + τ),

since V is curvature invariant. Hence, a1 = a2 = a3 = 0 and V is contained in the
tangent space of some totally geodesic submanifold S7H,τ of S15O,τ .

Let us assume that b6 ̸= 0. Then, by Equation (8.10), a1 = a4 = 0. Moreover,

0 = ⟨R(X,Y )Y, Y8⟩ = 3b4(a3b5 + a2b6)(−1 + τ),

0 = ⟨R(X,Y )Y, Y4⟩ = 3b4(a2b5 − a3b6)(−1 + τ),

since V is curvature invariant. Hence, a2 = a3 = 0, implying that V is contained in
the tangent space of some totally geodesic submanifold S7H,τ of S15O,τ .

Remark 8.4.6. Let V be a 2-plane that is a minimum or a maximum for the sectional
curvature of S15O,τ at o ∈ S15O,τ . Hence, by [178, Theorem 4.1], V is curvature invariant.

Thus, by Lemma 8.4.5, V is contained in the tangent space of a totally geodesic S7H,τ
in S15O,τ . Consequently, S

15
O,τ has the same pinching as S7H,τ .

Lemma 8.4.7. Let Σ be a totally geodesic surface in S4n+3
H,τ with τ ̸= 1. Then, if

τ ≥ 1/2, we have that Σ is well-positioned.

Proof. Let Σ be a totally geodesic submanifold of dimension two in S4n+3
H,τ and pΣ its

tangent space at o ∈ Σ identified with a subspace of p. Using the isotropy of S4n+3
H,τ

(see [180]), we can assume that pΣ is spanned by the basis {X,Y } given by

X = a1X1/
√
τ + a2X2/

√
τ + a3X3/

√
τ + a4Y1,

Y = b1X1/
√
τ + b2X2/

√
τ + b3X3/

√
τ + b4Y1 + b5J1Y1 + b6Y2,
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where ai, bj ∈ R for i ∈ {1, . . . , 4} and j ∈ {1, . . . , 6}.
Let us suppose that pΣ does not contain horizontal or vertical vectors and let

us derive a contradiction. Then, a4 ̸= 0. Moreover, we can assume without loss of
generality that b4 = 0. If not, {X,Y −b4/a4X} is also a basis for pΣ where the second
vector projects trivially over Y1.

Since pΣ is curvature invariant, and assuming n ≥ 2, we have:

0 = ⟨R(X,Y )Y, J1Y2⟩ = 3(a3b2 − a2b3 + a4b5)(−1 + τ)b6,

0 = ⟨R(X,Y )Y, J2Y2⟩ = 3(a3b1 − a1b3)(1− τ)b6,

0 = ⟨R(X,Y )Y, J3Y2⟩ = 3(a2b1 − a1b2)(−1 + τ)b6.

(8.11)

By Proposition 5.1.6 every totally geodesic submanifold of a homogeneous space is
intrinsically homogeneous and every homogeneous space of dimension two has con-
stant sectional curvature. Then, every covariant derivative of the curvature tensor R
restricted to pΣ vanishes. Thus,

0 = ⟨(∇XR)(Y,X)X,Y1⟩ = −4a1a
2
4b5

√
τ(−1 + τ).

This implies that a1 = 0 or b5 = 0. In the latter case, b6 ̸= 0, since otherwise there
would be a vertical vector in pΣ. Thus, n ≥ 2 and by Equation (8.11)

a3b2 − a2b3 = a3b1 − a1b3 = a2b1 − a1b2 = 0.

Hence, (a1, a2, a3) and (b1, b2, b3) are proportional and there would be a horizontal
vector in pΣ.

Now assume that b5 ̸= 0 and thus a1 = 0. Then,

0 = ⟨R(X,Y )Y, J2Y1⟩ = 3a2b1b5(1− τ),

0 = ⟨R(X,Y )Y, J3Y1⟩ = 3a3b1b5(1− τ).

Thus, b1 = 0 or a2 = a3 = 0, but the latter cannot happen because it would imply
the existence of a horizontal vector. Hence, b1 = 0. Moreover, we have

0 = ⟨(∇XR)(Y,X)Y,X1⟩ = 4a4(a2b2 + a3b3)b5(−1 + τ)(−1 + 2τ).

This yields τ = 1/2 or a2b2 + a3b3 = 0. Let us assume that τ = 1/2. Then,

0 = ⟨(∇XR)(Y,X)X,J2Y1⟩ = −
√
2a34b2,

0 = ⟨(∇XR)(Y,X)X, J3Y1⟩ = −
√
2a34b3.

Hence, b2 = b3 = 0 and we obtain a contradiction due to the existence of a horizontal
vector in pΣ. Now, let us assume that a2b2+ a3b3 = 0. Then, there exist r, s ∈ R and
φ ∈ [0, 2π] such that

a2 = r cos(φ), a3 = r sin(φ), b2 = −s sin(φ), b3 = s cos(φ).

Thus, we have

0 = ⟨(∇XR)(Y,X)X,X1⟩ = 4a4b5(−1 + τ)(a24τ + r2(−1 + 2τ)).

Hence, since b5 ̸= 0 and τ ≥ 1/2, we get a contradiction.



174 8 Hopf fibrations and totally geodesic submanifolds

Proposition 8.4.8. Let Σ be a totally geodesic surface in SnF,τ with τ ̸= 1. Then,
if F = C, Σ is well-positioned. Moreover, if τ ≥ 1/2 and F ∈ {H,O}, Σ is well-
positioned.

Proof. Let us assume that F = C. Then, for dimensional reasons, pΣ has a vertical
or horizontal vector. Hence, the conclusion follows from Proposition 8.4.2.

Let F = H. Then, the result follows from Lemma 8.4.7.
Finally, let F = O. By Lemma 8.4.5, every totally geodesic surface of S15O,τ

can be totally geodesic embedded in a totally geodesic S7H,τ of S15O,τ , which again
by Lemma 8.4.7 proves our result.

8.4.3 Totally geodesic submanifolds of Hopf-Berger spheres

The purpose of this section is to provide the proof of Theorem A.

Lemma 8.4.9. Let τ ̸= 1 and γ be a geodesic in SnF,τ = G/K. Then, there exists a
totally geodesic submanifold Σ of SnF,τ satisfying that:

i) Σ is well-positioned.

ii) Σ is isometric to S3C,τ .

iii) Σ = GΣ/KΣ, where GΣ ⊂ G and KΣ ⊂ K are connected subgroups.

iv) KΣ acts non-trivially on Σ and thus K̃Σ
∼= U1 and G̃Σ

∼= U2, where K̃Σ and G̃Σ

denote the quotients of the groups GΣ and KΣ by the kernel of their corresponding
actions on Σ, respectively.

v) γ is contained in Σ.

Proof. Let us consider the presentation of the Hopf-Berger sphere SnF,τ = G/K given

in Section §8.3 for F ∈ {C,H}. If F = H, we consider the presentation S4n+3
F,τ = Ǧ/Ǩ

given in Remark 8.3.1. For the sake of simplicity, we write K instead of Ǩ along this
proof.

Recall that K·(v0+v1) is a principal orbit if v0 ∈ p1 and v1 ∈ p2 are both non-zero,
see Section §8.3. Hence, Kv0+v1 fixes the normal space νv0+v1(K · (v0+v1)). Thus, the
set of vectors fixed by Kv0+v1 in ToS

n
F,τ has dimension 3. Namely, it is generated by

v0, v1 and a vector, let us say w1, in p2. Then, the connected component Σ containing
o of the set of points fixed by Kv0+v1 in SnF,τ is a three-dimensional totally geodesic
submanifold of SnF,τ such that v0 ∈ p1 ∩ ToΣ. Thus, by Lemma 8.3.2, we have that
ToΣ = (ToΣ ∩ p1)⊕ (ToΣ ∩ p2).

Since Σ is a set of fixed points of a set of isometries, by [14, Lemma 9.1.1],
Σ = GΣ/KΣ, where GΣ ⊂ G is connected and KΣ ⊂ K. Then, TqΣ = s1 ⊕ s2,
where s1 has dimension 1 and is tangent to the vertical subspace Vq of the Hopf fibra-
tion, and s2 has dimension 2 and is perpendicular to Vq. This proves i). Hence, by
Proposition 8.4.2, Σ is the intersection of a 4-dimensional totally geodesic subman-
ifold M of the appropriate rank one symmetric space M̄ in which SnF,τ is identified
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with a geodesic sphere of M̄ of radius r ∈ (0, inj(M̄)). Then, Σ is isometric to S3C,τ
since it can be identified with a geodesic sphere of M of radius r, and then KΣ must
be connected since Σ is simply connected and GΣ is connected. This proves ii) and
iii).

Now we prove that KΣ acts non-trivially. Let Y ∗ be a Killing field induced by an
element Y in the Lie algebra k of the isotropy K of SnF,τ at o. Since the projection
of Y ∗

|Σ coincides with the restriction to Σ of another Killing field induced by G which

is always tangent to Σ (see the proof of [14, Lemma 9.1.1]), we have that KΣ acts
trivially on ToΣ if and only if Y ∗

|Σ is orthogonal to Σ for every Y ∈ k. Assume that KΣ

acts trivially and let v ∈ ToΣ. Then the Jacobi field given by J(t) = Y ∗
γv(t)

must be
always perpendicular to Tγv(t)Σ, where γv denotes the geodesic with initial conditions
γv(0) = o ∈ SnF,τ and γ̇v(0) = v ∈ ToS

n
F,τ . Since J(0) = 0, we have that J ′(0) = ∇vY

∗

must be perpendicular to ToΣ, where ∇ denotes the Levi-Civita connection of SnF,τ .
Let ρ be the isotropy representation of K at o. Since Y ∈ k, we have ρ(Y )v = ∇vY

∗,
(see for instance [67, §2.1]). Thus, ρ(Y )v is perpendicular to ToΣ, for every v ∈ ToΣ
and Y ∈ k. Since K acts polarly on ToS

n
F,τ , we have that ToΣ must be contained in

the tangent space of a section. However, the sections of the isotropy representation of
SnF,τ have dimension two, yielding a contradiction. Then, KΣ acts non-trivially, and

since Σ is isometric to S3C,τ , it follows that iv) holds.

Since K acts polarly on ToS
n
F,τ , for any w ∈ ToS

n
F,τ there exists k ∈ K such that

k∗ow ∈ νv0+v1(K · (v0+ v1)) ⊂ ToΣ. Then k ◦γw = γk∗ow is a geodesic contained in Σ.
Equivalently, γw is contained in a totally geodesic S3C,τ in SnF,τ . This proves v).

We define the slope of a geodesic γ in SnF,τ to be the quotient between the lengths
of the vertical and horizontal projections of the velocity of γ. This quantity is well de-
fined for every geodesic since Hopf-Berger spheres are geodesic orbit spaces, see [175].
Moreover, using the full isotropy representation of SnF,τ described in Remark 8.3.1, it
is easy to see that two geodesics are congruent in SnF,τ if and only if they have the
same slope.

Lemma 8.4.10. Let SnF,τ , with τ ̸= 1, and let γ be a closed geodesic in SnF,τ . Then,
the set of possible slopes for γ is countable.

Proof. First of all, by Lemma 8.4.9, we can assume that γ is a closed geodesic of
S3C,τ with τ ̸= 1. Let us define a naturally reductive decomposition for S3C,τ =

U2/U1. Keeping the notation in Section §8.3 applied to S3F,τ , we define pτ1 as the
one-dimensional subspace of g = u2 spanned by the unit vector

Xτ :=
1√
τ
(X1 + (1− 2τ)Z) , where Z =

(
i 0
0 0

)
∈ u1 ⊂ u2.

Hence, it can be checked that g = k⊕pτ , where pτ := pτ1 ⊕p2, is a naturally reductive
decomposition of S3C,τ , for each τ ∈ (0,∞). In particular, every geodesic of S3C,τ is
of the form Exp(sX) · o, for some X ∈ pτ . For our purposes, we can assume that
o = (0, 1) ∈ S3C,τ ⊂ C2. Let X := α1Y1 + α2J1Y1 + α3X

τ , where αi ∈ R for every
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i ∈ {1, 2, 3} satisfy
∑3
i=1 α

2
i = 1, and consider the geodesic γX(s) = Exp(sX) · o. We

define the quantities

P :=
√
α2
1 + α2

2 + τα2
3, Q :=

e
− is√

τ (P
√
τ+(τ−1)α3)

2P
.

A direct computation shows that

γX(s) = Q((−1 + e2iPs)(−iα1 + α2), (1 + e2iPs)P + (−1 + e2iPs)
√
τα3).

If X is vertical, α3 = ±1, α1 = α2 = 0, and we have γX(s) = (0, e
± is√

τ ). If X is
horizontal, α3 = 0, α2

1 + α2
2 = 1 and we have

γX(s) =
e−is

2
((−1 + e2is)(α2 − iα1), 1 + e2is).

Now, let us assume that X has non-trivial projection onto pτ1 and p2. Then, if γX
is closed,

−1 + e2iPs = 0, and 2PQ = 1, for some s ∈ R, s ̸= 0.

Hence, α3 = P
√
τ(j+2k)
j(1−τ) =

√
(1−α2

3)+τα
2
3

√
τ(j+2k)

j(1−τ) , where j ∈ Z \ {0} and k ∈ Z.

Since the slope of γX is given by

√
α2

3

1−α2
3
, we deduce that the set of possible slopes

for γX is countable.

Proposition 8.4.11. Let SnF,τ , with τ ̸= 1, and let Σ be a not well-positioned totally
geodesic submanifold of SnF,τ with dimension greater or equal than 2. Then there exists
a 2-dimensional totally geodesic submanifold Σ′ of SnF,τ contained in Σ that is also not
well-positioned.

Proof. Let us assume that Σ is a totally geodesic submanifold of SnF,τ that is not well-
positioned. We may assume without loss of generality that Σ is complete, see Theo-
rem 5.2.5. Then, there is some q ∈ Σ such that TqΣ ̸= (TqΣ∩Vq)⊕ (TqΣ∩Hq). This
is equivalent, by Lemma 8.3.2, to the fact that TqΣ ∩ Vq = {0} = TqΣ ∩Hq.

Let us assume that Σ is compact. We prove that every geodesic of Σ is closed.
Let w ∈ TqΣ and let γw be a geodesic in SnF,τ that is not closed. Then, by Propo-
sition 8.4.9, there exists a totally geodesic submanifold N of SnF,τ , which is the orbit

of a subroup GN of G, isometric to S3C,τ such that γw ⊂ Σ ∩ N . Since N is a g.o.
space (see [175]), one has that γw(t) = Exp(tz) · q for some z in the Lie algebra of

GN ⊂ G. Since the rank of the (compact) effectivized presentation group G̃N is two
and the orbit Exp(tz) · q = γw(t) is not compact, the closure of the one-parameter

group Exp(tz) in G̃N is a 2-dimensional torus T2. Observe that T2 · q must be 2-
dimensional. Otherwise the 1-dimensional compact submanifold T2 · q would coincide
with the image of γw and it would be compact. Since Σ ∩ N must contain T2 · q,
we conclude that this intersection is at least 2-dimensional. But N , by construction,
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contains a two-dimensional horizontal subspace, that must therefore intersect non-
trivially with Tq(T

2 ·q). Then, TqΣ contains a non-trivial horizontal vector. However,
by Lemma 8.3.2, this contradicts our assumptions. Then every geodesic of Σ is closed
since Σ is intrinsically homogeneous by Proposition 5.1.6. Moreover, every geodesic
of Σ has the same length. Otherwise, there would be two closed geodesics of Σ with
different slopes. Notice that these geodesics cannot be vertical, as this would contra-
dict our assumptions by Lemma 8.3.2. However, by using the continuity of the map
that assigns to every non-vertical geodesic its slope, and Lemma 8.4.10, we deduce
the existence of a non-closed geodesic in Σ. This yields a contradiction. Thus, all the
geodesics of Σ have the same length. Since Σ is intrinsically homogeneous, by [31,
Theorem 7.55, p. 196], Σ is a symmetric space of compact type and rank one. Hence,
Σ admits a totally geodesic surface Σ′ that cannot be well-positioned, as follows from
the assumption that Σ is not well-positioned and Lemma 8.3.2. This concludes the
proof when Σ is compact.

Let us assume that Σ is not compact. Then, the projection of a Killing field of
SnF,τ to Σ is a Killing field of Σ (see the proof of Proposition 5.1.6), which is bounded
as SnF,τ is compact. Since there is a projected Killing field in any direction tangent
to Σ, we conclude that b · q = TqΣ, where b denotes the ideal of bounded intrinsic
Killing fields of Σ. Let B be the (transitive) Lie subgroup of isometries of Σ associated
with b. By making use of [133, Theorem 1.3], one has that B = HA (almost direct
product) where H, if non-trivial, is compact semisimple and A is abelian.

Let us prove that A is closed in Isom(Σ). Let ā be the Lie algebra of the closure
of A in Isom(Σ) and q ∈ Σ. Then, since [b, a] = 0, we have

||X∗
q || = ||g∗X∗

q || = ||(Ad(g)X)∗g(q)|| = ||X∗
g(q)||

for every g ∈ B and X ∈ ā. Hence, X∗ is a Killing vector field of constant length and
thus bounded since B acts transitively on Σ.

If the normal subgroup H is non-trivial, then the orbits of H in Σ define a B-
invariant foliation. Since SnF,τ is a g.o. space, then Σ is a g.o. space with respect to
the presentation B/Bq, where Bq is the isotropy of B at q.

Let us prove that H · q is a totally geodesic submanifold of Σ. Notice that X ∈ b
induces a Killing vector field of Σ that projects to a vector field X̄ in the quotient
H \ Σ given by the orbits of the action of H on Σ. Then, if Xq ∈ Tq(H · q), we have

π∗h(q)Xh(q) = X̄π(h(q)) = X̄π(q) = π∗qXq = 0 for every h ∈ H,

where π : Σ → H \ Σ denotes the quotient map. Then the restriction of X to H · q
is always tangent to H · q. Hence, Exp(tX · q) ∈ H · q for every t ∈ R. This implies
that H · q is a totally geodesic submanifold of Σ since Σ is g.o. with respect to the
presentation B/Bq.

We claim that H ·q is a totally geodesic compact submanifold of Σ of dimension at
least 2. Indeed, H ·q cannot have dimension zero since a normal subgroup of B cannot
be contained in Bq because . If H · q has dimension one, then Hq has codimension one
in H, and then it is a normal subgroup of H since Hq is compact semisimple. This
yields a contradiction with the fact that H is semisimple since then H would have



178 8 Hopf fibrations and totally geodesic submanifolds

a 1-dimensional abelian normal subgroup. Then, since we have already tackled the
compact case, we are done. So we may assume that H is trivial. Then A · q = Σ, and
Σ is flat with dimension at least 2. Then Σ has a totally geodesic flat submanifold
Σ′ of dimension 2 passing through q that is not well-positioned. This completes the
proof.

We are now in a position to prove Theorem A.

Proof of Theorem A. First of all, notice that every totally geodesic submanifold Σ
of dimension d ≥ 2 of a Hopf-Berger sphere SnF,τ , where τ ≥ 1/2, is well-positioned.
Otherwise, by Proposition 8.4.11, Σ would contain a totally geodesic surface that is
not well-positioned, and this cannot happen by Proposition 8.4.8. Let us identify SnF,τ
with a geodesic sphere S(p) centered at some point p of a rank one symmetric space
M̄ . The intersection of a geodesic sphere S(p) of a symmetric space of rank one M̄
with a complete totally geodesic submanifold M passing through p ∈ M̄ is a geodesic
sphere of M (see Remark 8.4.4). Hence, the intersection of S(p) with a complete
totally geodesic submanifold M of M̄ of dimension d′ ≥ 3 containing p has dimension
d′ − 1. Thus, it follows by Proposition 8.4.2 that i) and ii) are equivalent.

Furthermore, two totally geodesic submanifolds Σ1 and Σ2 of S(p) of dimension
d ≥ 2 are congruent if and only if they are the intersection of S(p) with congruent
totally geodesic submanifolds M1 and M2 of M̄ , since the isotropy of M̄ at p is equal
to Isom(SnF,τ ) (see Corollary 8.5.2 and the paragraph just above it). Hence, by using
the classification of totally geodesic submanifolds (up to congruence) in symmetric
spaces of rank one (see Figure 1) we obtain the classification in Table 8.1.

8.5 The index of symmetry of Hopf-Berger spheres

In this section we compute the index of symmetry of Hopf-Berger spheres. In [84], a
symmetry of SnF,τ was defined as an isometry of SnF,1 that maps fibers to fibers of the
Hopf fibration corresponding to SnF,τ . According to [84] the groups of symmetries for

S2n+1
C,τ , S4n+3

H,τ and S15O,τ are

Un+1 ⋊ Z2, Spn+1 ×Z2
Sp1, and Spin9, (8.12)

respectively.
Notice that every symmetry of SnF,τ is an isometry of SnF,τ . The next lemma proves

the converse.

Lemma 8.5.1. Every isometry of SnF,τ , where τ ̸= 1, is a symmetry.

Proof. Since the group G of symmetries of SnF,τ acts transitively on SnF,τ , it suffices to
show that the full isotropy group Isom(SnF,τ )p, at certain p ∈ SnF,τ , leaves the leaf F (p)
of the Hopf foliation at p invariant.

Let (·)0 denote the connected component containing the identity of a Lie group.
Since SnF,τ is simply connected, the stabilizers of G0 and Isom(SnF,τ )

0 at p ∈ SnF,τ
are connected. Assume that (G0)p is properly contained in (Isom(SnF,τ )

0)p. Then,
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either (Isom(SnF,τ )
0)p has the same orbits as (G0)p, or it is transitive on the unit

sphere of TpS
n
F,τ , since (G0)p acts with codimension 2 on TpS

n
F,τ . In the first case,

(Isom(SnF,τ )
0)p leaves invariant Vp = TpF (p), and hence also the totally geodesic fiber

F (p) of the Hopf fibration. In the second case, SnF,τ is a two-point homogeneous space
and therefore SnF,τ is a rank-one symmetric space, yielding a contradiction with the
fact that there are non-closed geodesics in SnF,τ (see Lemma 8.4.10). This proves that

(Isom(SnF,τ )
0)p leaves invariant the leaf F (p) of the Hopf foliation at p.

Now let us prove that the same happens for Isom(SnF,τ )p. The isotropy repre-

sentation of (Isom(SnF,τ )
0)p, which is equal to (G0)p, has two inequivalent irreducible

modules (see Remark 8.3.1), any of which must be preserved by Isom(SnF,τ )p, since

(Isom(SnF,τ )
0)p is a normal subgroup of Isom(SnF,τ )p. Then, TpF (p) is invariant under

the action Isom(SnF,τ )p, and thus F (p) is invariant by Isom(SnF,τ )p.

As a consequence of Lemma 8.5.1, since the symmetry group of SnF,τ is isomorphic
to the isotropy of the symmetric space of rank one where SnF,τ is embedded as a
geodesic sphere (see Equation (8.12)), we obtain the following:

Corollary 8.5.2. The isometry groups for the Hopf-Berger spheres SnF,τ , when τ ̸= 1,
are:

Isom(S2n+1
C,τ ) ∼= Un+1 ⋊ Z2, Isom(S4n+3

C,τ ) ∼= Spn+1 ×Z2
Sp1, Isom(S15O,τ )

∼= Spin9.

Proof Theorem B. Let S2n+1
C,τ = Un+1/Un, which is a naturally reductive space for

every τ > 0, see [191]. The group G of transvections with respect to the canonical
connection ∇c is a transitive normal connected subgroup of Un+1, see [119, Theorem
I.25]. Then, it must be either G = Un+1 or G = SUn+1. In any case, the dimension
of the subspace of vectors fixed by the isotropy group is one-dimensional. Then, by
[146, Theorem B], indS(S

2n+1
C,τ ) = 1.

Let S4n+3
H,τ = Spn+1Sp1/SpnSp1, which is a naturally reductive space, see [191].

The group G of transvections with respect to ∇c, being a transitive normal connected
subgroup of Spn+1Sp1, must be either G = Spn+1Sp1 or G = Spn+1. In the first case,

the isotropy does not fix any non-zero vector, and thus indS(S
4n+3
H,τ ) = 0. In the latter

case, the space is also naturally reductive with respect to the presentation Spn+1/Spn.
But in this case, the only naturally reductive metric is the normal homogeneous
metric, up to rescaling, since Spn is simple and there are no isotypical components in
the isotropy representation. This normal homogeneous metric corresponds to τ = 1/2
since the tensor U associated with this presentation vanishes if and only if τ = 1/2,
see Section §1.3 and Section §8.3. Observe that, in this case, the dimension of the
space of vectors fixed by the isotropy Spn is 3. Thus, by [146, Theorem B], we have
indS(S

4n+3
H,τ ) = 3 if τ = 1/2; and indS(S

4n+3
H,τ ) = 0, otherwise.

Let S15O,τ = Spin9/Spin7. By Corollary 8.5.2, the isometry group of this space is
Spin9. The symmetry subspace so at the base point o is a Spin7-invariant subspace.
So, if non-trivial, it must be either p1 or p2. Since the symmetry distribution is
integrable, one has that so = p1 if so ̸= {0}. Then the leaf of symmetry at o must be
Spin8 · o = Spin8/Spin7. Observe that spin8 = spin7 ⊕ p1 is the Cartan decomposition



180 8 Hopf fibrations and totally geodesic submanifolds

of a leaf of symmetry at o. Let X ∈ spin9
∼= K(S15O,τ ) be a non-zero transvection with

respect to the Levi-Civita connection ∇ of S15O,τ at o. Then, X restricted to the leaf
of symmetry Spin8 · o must be an intrinsic transvection of Spin8 · o at o. This implies
that X ∈ p1. But, using Equation (1.2), we have (∇X)o = 0 if and only if τ = 1/2.
Hence, so = {0} if τ ̸= 1/2, and so = p1 when τ = 1/2. Consequently, indS(S

15
O,τ ) = 0

for every τ ̸= 1/2, and indS(S
15
O,1/2) = 7.



Resumo

A simetŕıa, independemente da amplitude ou limitacións da definición que considere-
mos, é unha idea a través da cal o home, ao longo dos séculos, tentou comprender e
crear orde, beleza e perfección.

Este comentario débese a Hermann Weyl. As súas palabras revelan que a simetŕıa
reside no núcleo do coñecemento humano. De feito, se cadra, o campo máis natural
para estudar a simetŕıa sexa a xeometŕıa. Felix Klein describiu a xeometŕıa como
o estudo das propiedades dun espazo que son invariantes baixo un grupo de trans-
formacións. Dende o punto de vista da xeometŕıa riemanniana, o grupo natural a
estudar é o grupo de isometŕıas. Ademais, a maioŕıa dos obxectos xeométricos que
podemos percibir mediante os nosos sentidos pódense describir en termos de curvas e
superficies. As subvariedades proporcionan a xeneralización natural destes obxectos
a dimensións superiores.

Esta tese de doutoramento trata sobre o estudo de certas clases de subvariedades
en presenza de simetŕıa. En concreto, obt́ıveronse resultados relativos á teoŕıa de
subvariedades en espazos homoxéneos riemannianos con especial énfase nos espa-
zos simétricos. Nesta disertación centrarémonos en dúas das clases máis naturais
de subvariedades que poden ser estudadas nas variedades de Riemann. Trátase das
hipersuperficies homoxéneas e das subvariedades totalmente xeodésicas. Respecto
das primeiras, concluirase a clasificación das hipersuperficies homoxéneas en espa-
zos hiperbólicos cuaterniónicos completando a clasificación das hipersuperficies ho-
moxéneas en espazos simétricos de rango un. En canto ás subvariedades totalmente
xeodésicas, derivaremos diferentes clasificacións. En particular, clasificaremos as
subvariedades totalmente xeodésicas nos seguintes espazos: en produtos de espazos
simétricos de rango un, en espazos simétricos excepcionais e en esferas de Hopf-Berger.

En liñas xerais, un espazo homoxéneo é aquel que presenta o mesmo aspecto en
cada punto. Por este motivo, os espazos homoxéneos serven como modelos para moitos
tipos diferentes de estruturas xeométricas. En concreto, interésannos aqueles espazos
homoxéneos que resultan de considerar accións isométricas, é dicir, accións dun grupo
de Lie que preserva a métrica do espazo. Os espazos simétricos constitúen unha clase
especial de espazos homoxéneos. Estes aparecen nunha ampla variedade de situacións
tanto en Matemáticas como na F́ısica. Un espazo simétrico é unha variedade de
Riemann cuxo grupo de isometŕıas contén unha simetŕıa involutiva en cada punto.
Isto implica que estes espazos admiten unha boa descrición en termos de grupos de
Lie, e que podemos utilizar ferramentas alxébricas para comprender máis a fondo a
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súa xeometŕıa. Os espazos simétricos foron clasificados por Élie Cartan na década
de 1920 e algúns exemplos son: os espazos euclidianos, a esfera redonda, o espazo
hiperbólico, as Grassmannianas, o conxunto de estruturas complexas ortogonais dun
espazo vectorial, o conxunto dos produtos escalares dun espazo vectorial, o conxunto
de subespazos lagrangianos dun espazo vectorial simpléctico ou os grupos de Lie
compactos.

Probablemente, o invariante máis importante nun espazo simétrico é o rango. O
rango é a maior dimensión dunha subvariedade propia, chá e totalmente xeodésica. Os
espazos simétricos de rango un, xunto cos espazos euclidianos forman, agás cocientes,
unha familia privilexiada dentro da xeometŕıa riemanniana, os chamados espazos 2-
punto homoxéneos, véxase [168]. Estes def́ınense como aquelas variedades de Riemann
M tales que para cada dous pares de puntos (p1, p2) e (q1, q2) que satisfán d(p1, p2) =
d(q1, q2), existe unha isometŕıa φ de M tal que φ(pi) = qi para cada i ∈ {1, 2}. Nesta
tese, os espazos simétricos de rango un xogarán un papel fundamental.

A continuación, resumimos as contribucións orixinais desta tese, xunto co estado
da cuestión dos problemas matemáticos que motivaron as nosas investigacións.

Unha hipersuperficie non isoparamétrica con curvaturas principais
constantes

Dúas clases interesantes de hipersuperficies que podemos considerar nunha varie-
dade de Riemann son as hipersuperficies isoparamétricas e as hipersuperficies con
curvaturas principais constantes. É ben coñecido [44] que unha hipersuperficie nun
espazo forma real é isoparamétrica se e só se ten curvaturas principais constantes.
Porén, isto non é certo noutros espazos simétricos. Por exemplo, hai hipersuperficies
nos espazo hiperbólicos complexos que son isoparamétricas pero non teñen curvaturas
principais constantes [60]. Non obstante, descoñecemos se existe unha hipersuperficie
nun espazo simétrico que teña curvaturas principais constantes pero que non sexa
isoparamétrica. De feito, un exemplo destas caracteŕısticas nin sequera era coñecido
no caso xeral das variedades de Riemann. Ademais, a construción dunha hipersuperfi-
cie minimal, non isoparamétrica e con curvaturas principais constantes no espazo pro-
xectivo complexo, serviŕıa para constrúır un contraexemplo (véxase [83]) para a con-
xectura de Chern, que leva moitos anos aberta, sobre hipersuperficies isoparamétricas
en esferas redondas. Esta afirma que unha hipersuperficie pechada minimal e con
curvatura escalar constante nunha esfera redonda é isoparamétrica. Nesta tese cons-
trúımos un exemplo expĺıcito dunha métrica conformemente chá en Rn que admite
unha hipersuperficie totalmente xeodésica (en particular minimal e con curvaturas
principais constantes) que non é isoparamétrica. Isto proporciona o primeiro exemplo
dunha hipersuperficie non isoparamétrica con curvaturas principais constantes nunha
variedade de Riemann. Ademais, amosa que a equivalencia entre isoparametricidade
e constancia das curvaturas principais en espazos de curvatura constante non é certa
no contexto máis xeral dos espazos conformemente cháns. A idea principal para esta
construción foi definir unha métrica conformemente chá en Rn que admita un hiper-
plano totalmente xeodésico, pero cun grupo de isometŕıas suficientemente pequeno
para estragar o bo comportamento das hipersuperficies paralelas a tal hiperplano.
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Accións de cohomoxeneidade un en espazos simétricos de rango un

Unha acción de cohomoxeneidade un nunha variedade de Riemann M é unha acción
isométrica con órbitas principais de codimensión un. As órbitas principais de tal
acción chámanse hipersuperficies homoxéneas. O problema de clasificar as accións
de cohomoxeneidade un nun espazo dado é un problema clásico na xeometŕıa de
subvariedades que se remonta aos tempos de Beniamino Segre [161] e Élie Cartan [44],
que clasificaron as accións de cohomoxeneidade un nos espazos euclidianos e nos
espazos hiperbólicos reais. Un tempo máis tarde, Kollross clasificou as accións de co-
homoxeneidade un en espazos simétricos irreducibles de tipo compacto [113]. Despois
deste traballo, Berndt e Tamaru iniciaron un programa para estudar as accións de
cohomoxeneidade un en espazos simétricos de tipo non compacto [26, 28, 29]. Usando
as ideas desenvolvidas nestes artigos, Berndt e Tamaru [28] foron capaces de clasificar
as accións de cohomoxeneidade un nos espazos simétricos de tipo non compacto agás
nos espazos hiperbólicos cuaterniónicos.

Vinte anos despois de que Berndt e Brück anunciasen os primeiros exemplos non-
triviais de accións de cohomoxeneidade un en espazos hiperbólicos cuaterniónicos en
[13], obtivemos a clasificación completa das accións de cohomoxeneidade un nos es-
pazos hiperbólicos cuaterniónicos salvo equivalencia de órbitas. Ademais, como froito
do noso estudo, atopamos unha cantidade non numerable de familias isoparamétricas
inhomoxéneas de hipersuperficies con curvaturas principais constantes. Estas familias
isoparamétricas constitúen as únicas coñecidas en variedades riemannianas, ademais
dos famosos exemplos dados por Ferus, Karcher e Münzner en esferas redondas [78]
e un exemplo no plano hiperbólico de Cayley [60]. A clasificación de accións de co-
homoxeneidade un en espazos hiperbólicos cuaterniónicos redúcese a un problema de
álxebra lineal cuaterniónica moi complicado. Este consiste en clasificar subespazos
reais dun espazo vectorial euclidiano cuaterniónico Hn para os que existe un subgrupo
de Sp1Spn que actúa transitivamente sobre as súas esferas unitarias. Chamamos a
estes subespazos protohomoxéneos. En particular, os subespazos protohomoxéneos
están intimamente relacionados coa noción de ángulo de Kähler cuaterniónico, que é
a xeneralización do concepto de ángulo de Kähler estudado nalgúns traballos recentes
(véxase por exemplo [60]).

A idea principal para resolver o problema mencionado anteriormente é clasificar
os subespazos con ángulo de Kähler cuaterniónico constante de dimensión menor ou
igual a catro e despois constrúır cada subespazo protohomoxéneo a partir destes.
Os ingredientes fundamentais para demostrar isto son certas ferramentas topolóxicas
e argumentos usando a teoŕıa de grupos de Lie. Ademais, en cada subespazo pro-
tohomoxéneo de dimensión maior que catro, podemos constrúır unha estrutura de
Clifford. Hai dúas clases inequivalentes de Cl3-módulos irreducibles, e mesturándoas
podemos producir subespazos non protohomoxéneos con ángulo de Kähler constante
cuxa dimensión é un múltiplo de catro. Estes inducen hipersuperficies inhomoxéneas,
isoparamétricas e con curvaturas principales constantes nos espazos hiperbólicos sobre
os cuaternios.
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Subvariedades totalmente xeodésicas en produtos de espazos simétricos de
rango un

O problema de clasificar subvariedades totalmente xeodésicas en espazos simétricos
ten sido un tema destacado de investigación en xeometŕıa de subvariedades durante
as últimas décadas. Este foi iniciado por Wolf [187] nos anos sesenta, cando clasifi-
cou estes obxectos en espazos simétricos de rango un. No caso de rango dous, este
problema foi abordado por Chen, Nagano [48, 49] e Klein [107, 108, 109]. De feito, a
d́ıa de hoxe só temos clasificacións completas en espazos simétricos de rango inferior
ou igual a dous. Calquera subvariedade totalmente xeodésica dun espazo simétrico
é en si mesma un espazo simétrico. Mesmo nun espazo simétrico irreducible po-
den existir subvariedades totalmente xeodésicas reducibles. Aśı, para obter unha
clasificación completa das subvariedades totalmente xeodésicas nun espazo simétrico
irreducible dado, é necesario dispoñer dunha boa comprensión das subvariedades to-
talmente xeodésicas dos espazos simétricos reducibles. Nesta tese estendemos o re-
sultado de Wolf aos produtos de espazos simétricos de rango un. Veremos que as
subvariedades totalmente xeodésicas de produtos de espazos simétricos de rango un
admiten unha boa descrición de natureza combinatoria. En primeiro lugar, introduci-
mos unha pequena modificación dos taboleiros de Young, que chamamos taboleiros
de Young adaptados (consúltese a sección §6.2 para a definición), que serán útiles
para clasificar as subvariedades totalmente xeodésicas en produtos arbitrarios de es-
pazos simétricos de rango un e para determinar o seu tipo de isometŕıa. En parti-
cular, probamos un resultado que dá unha correspondencia entre estes taboleiros de
Young adaptados e as subvariedades totalmente xeodésicas semisimples en produtos
de espazos simétricos de rango un. Ademais disto, constrúımos infinitos exemplos de
subvariedades totalmente xeodésicas irreducibles en espazos simétricos hermitianos
que non son nin totalmente reais nin complexas. Este fenómeno, que se diferencia do
que ocorre no caso de rango un, xa fora observado por Klein, quen atopou dúas sub-
variedades totalmente xeodésicas irreducibles que non eran nin totalmente reais nin
complexas en espazos simétricos hermitianos de rango dous. Ambos os dous exem-
plos atopados por Klein teñen ángulo de Kähler constante igual a arccos(1/5). Neste
aspecto, podemos demostrar que todo número racional en [0, 1] pode ser realizado
como o coseno do ángulo de Kähler dalgunha subvariedade totalmente xeodésica en
certo espazo simétrico hermitiano.

Subvariedades totalmente xeodésicas en espazos simétricos excepcionais

O seguinte obxectivo desta tese é establecer unha nova estratexia para clasificar as
subvariedades totalmente xeodésicas maximais en espazos simétricos irreducibles de
rango superior a dous. Para espazos simétricos excepcionais, presentamos unha idea
que reduce o problema a algunhas clasificacións coñecidas de subálxebras redutivas de
álxebras de Lie simples reais, aśı como a considerar un pequeno número de casos nos
que este método non dá unha resposta completa sobre a maximalidade. Este é pre-
cisamente o contido do Teorema da Correspondencia, véxase o Teorema 7.3.3. Grazas
a este novo enfoque podemos clasificar as subvariedades totalmente xeodésicas en es-
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pazos simétricos excepcionais. Ademais, inspirados polos traballos de Dynkin [74, 73],
introducimos un novo invariante para subvariedades totalmente xeodésicas en es-
pazos simétricos, que chamamos ı́ndice de Dynkin. Demostramos que o ı́ndice de
Dynkin determina se dous mergullos totalmente xeodésicos son isométricos. Ade-
mais, demostramos un resultado relacionado coa conxectura do ı́ndice establecida e
demostrada por Berndt e Olmos (véxase [20, 21, 22, 23, 24]). O ı́ndice i(M) dun
espazo simétrico irreducible M é a codimensión máis pequena dunha subvariedade
totalmente xeodésica propia. A conxectura do ı́ndice pódese enunciar do seguinte
xeito: todo espazo simétrico irreducible M ̸= G2

2/SO4,G2/SO4 ten unha subvariedade
Σ reflectiva totalmente xeodésica tal que i(M) = codim(Σ). Demostramos unha afir-
mación análoga que nos permite inclúır os casos M = G2

2/SO4 e M = G2/SO4. O
noso resultado afirma que todo espazo simétrico irreducibleM ten unha subvariedade
totalmente xeodésica Σ con i(M) = codim(Σ) tal que cada factor irreducible de Σ
ten ı́ndice de Dynkin un.

Subvariedades totalmente xeodésicas en esferas de Hopf-Berger

Motivados polos nosos resultados en espazos simétricos, iniciamos o estudo das sub-
variedades totalmente xeodésicas na clase dos espazos homoxéneos con curvatura po-
sitiva. É un feito recorrente que, cando se intenta clasificar unha determinada clase de
subvariedades, o problema adoita ser máis factible cando se ten asegurada a homoxe-
neidade extŕınseca de tal clase de subvariedades. Ademais, moitos resultados que de-
mostran a homoxeneidade dunha clase de subvariedades teñen sido de gran relevancia,
véxase [88, 176]. É ben sabido que as subvariedades totalmente xeodésicas nun espazo
homoxéneo son intrinsecamente homoxéneas. Non obstante, non son necesariamente
órbitas de subgrupos do grupo de isometŕıas do espazo homoxéneo ambiente. A familia
de espazos homoxéneos de curvatura positiva consta de varios espazos difeomorfos a
esferas e espazos proxectivos complexos, outros espazos simétricos de tipo compacto
de rango un equipados coas súas métricas simétricas estándar, e algúns outros exem-
plos esporádicos, véxase [186]. Aı́nda que as subvariedades totalmente xeodésicas
nestes espazos foron amplamente utilizadas para derivar certas propiedades sobre a
curvatura destes espazos, véxase [157], carecemos dunha clasificación completa das
mesmas. O interese deste problema reside no feito de que unha subvariedade total-
mente xeodésica (de dimensión d ≥ 2) dun espazo homoxéneo de curvatura positiva
volve ser un espazo homoxéneo de curvatura positiva.

Nesta tese clasificamos as subvariedades totalmente xeodésicas nunha clase im-
portante de espazos homoxéneos difeomorfos a esferas, en concreto, en boa parte das
esferas de Hopf-Berger, que constitúen a familia de esferas homoxéneas obtida reesca-
lando a métrica redonda da espazo total dunha fibración de Hopf na dirección das
fibras. Como se mencionou anteriormente, non podemos facer uso da homoxeneidade
extŕınseca das subvariedades totalmente xeodésicas en espazos homoxéneos, como si
ocorre no caso simétrico. Aśı, o noso estudo precisa dun enfoque moi xeométrico
que combina ideas procedentes da teoŕıa xeral de espazos homoxéneos riemannianos,
campos de Killing ou xeodésicas pechadas.
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Estrutura da tese

Esta tese orgańızase en dúas partes, ademais dun primeiro caṕıtulo de prelimi-
nares. Neste primeiro caṕıtulo introducimos os feitos básicos e a terminolox́ıa que
será utilizada ao longo da tese. Máis precisamente, lembramos algúns feitos coñecidos
sobre xeometŕıa de Riemann, sobre a teoŕıa de subvariedades na sección §1.1 e sobre
accións isométricas na sección §1.2. A sección §1.3 está dedicada a introducir os
espazos ambiente dos problemas que abordaremos nesta tese, a saber, os espazos
simétricos e espazos homoxéneos. Finalmente, a sección §1.4 trata dous conceptos
básicos que teñen grande relevancia para esta tese: as álxebras de Clifford e as álxebras
de Heisenberg xeneralizadas.

A primeira parte desta tese versa sobre o estudo das hipersuperficies homoxéneas,
as hipersuperficies isoparamétricas e as hipersuperficies con curvaturas principais con-
stantes.

No caṕıtulo 2, lembramos as nocións de hipersuperficie homoxénea, hipersuperfi-
cie isoparamétrica e hipersuperficie con curvaturas principais constantes. Na sección
§2.1 explicamos a relación entre estes tipos de hipersuperficies en espazos simétricos de
rango un. En particular, nas Figuras 2.2 a 2.6 explicitamos as relacións coñecidas en-
tre estes tres conceptos en espazos simétricos de rango un. Ademais, nas Táboas 2.1
e 2.2 resumimos o estado do actual do problema de clasificación de hipersuperfi-
cies homoxéneas, con curvaturas principais constantes ou isoparamétricas en espazos
simétricos de rango un. Máis tarde, na sección §2.3 constrúımos un exemplo de
hipersuperficie non isoparamétrica con curvaturas principais constantes nun espazo
conformemente chan.

No caṕıtulo 3 ofrecemos un resumo dos principais resultados coñecidos relativos á
clasificación de hipersuperficies homoxéneas en espazos simétricos de rango un. Este
caṕıtulo comeza motivando o estudo das accións de cohomoxeneidade un en variedades
de Riemann. Este tipo de accións está intimamente ligado co estudo das hipersuper-
ficies homoxéneas en variedades de Riemann xa que unha hipersuperficie homoxénea
dunha variedade de RiemannM é precisamente unha órbita principal dunha acción de
cohomoxeneidade un en M . Seguidamente na sección §3.2 repasamos a clasificación
de hipersuperficies homoxéneas en espazos simétricos de tipo compacto, dedicando es-
pecial atención ao caso de rango un. Na sección §3.3 introducimos a noción de ángulo
de Kähler e outras xeneralizacións desta. A sección §3.4 está consagrada a explicar
a teoŕıa das accións de cohomoxeneidade un en espazos simétricos de tipo non com-
pacto de rango un, mentres que na sección §3.5 explicamos brevemente o programa
desenvolvido por Berndt e Tamaru para clasificar as accións de cohomoxeneidade un
en espazos simétricos de tipo non compacto e rango arbitrario.

No caṕıtulo 4 clasificamos as hipersuperficies homoxéneas en espazos hiperbólicos
cuaterniónicos HHn+1, n ≥ 1. Neste caṕıtulo hai dúas nocións fundamentais: os
subespazos protohomoxéneos e os subespazos con ángulo de Kähler cuaterniónico
constante. Estes def́ınense na sección §4.1. O obxectivo principal deste caṕıtulo é a
clasificación dos subespazos protohomoxéneos e o estudo dos subespazos con ángulo
de Kähler cuaterniónico constante (seccións §4.2,4.3,4.4,4.5). Como subproduto do
noso estudo constrúımos na sección §4.5 unha cantidade non numerable de familias de
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hipersuperficies inhomoxéneas que son isoparamétricas e teñen curvaturas principais
constantes en HHn+1, n ≥ 7.

A segunda parte desta tese versa sobre o estudo de subvariedades totalmente
xeodésicas en espazos simétricos e homoxéneos.

No caṕıtulo 5 expoñemos algúns feitos coñecidos sobre subvariedades totalmente
xeodésicas. Comezamos este caṕıtulo motivando o estudo desta clase de subvarie-
dades. Posteriormente, ofrecemos unha breve introdución á teoŕıa de subvariedades
totalmente xeodésicas en variedades de Riemann (sección §5.1) e espazos simétricos
(sección §5.3). Ademais, inclúımos unha demostración do feito de que, baixo certas
hipóteses pouco restritivas, sempre se pode estender unha subvariedade totalmente
xeodésica a unha completa (sección §5.2).

No caṕıtulo 6 clasificamos as subvariedades totalmente xeodésicas en produtos de
espazos simétricos de rango un establecendo unha correspondencia entre subvarie-
dades totalmente xeodésicas e taboleiros de Young adaptados. Estes taboleiros de
Young adaptados def́ınense na sección §6.2. Ademais, na sección §6.3, constrúımos
infinitas subvariedades totalmente xeodésicas con ángulo de Kähler constante non
trivial nas Grassmanianas complexas. Como consecuencia, demostramos que o con-
xunto de todos os posibles ángulos de Kähler de subvariedades totalmente xeodésicas
dun espazo simétrico hermitiano irreducible é un subconxunto denso do intervalo
[0, π/2].

No caṕıtulo 7 clasificamos as subvariedades totalmente xeodésicas maximais en
espazos simétricos excepcionais. Este resultado baséase fortemente na definición dun
novo invariante chamado ı́ndice de Dynkin (sección §7.4) e o teorema de Karpele-
vich sección §7.1). En particular, na sección §7.3 tamén demostramos un teorema de
correspondencia que establece unha relación un a un entre subvariedades semisim-
ples totalmente xeodésicas maximais en espazos simétricos e unha determinada clase
de subálxebras (Teorema 7.3.3). Na sección §4.6, inclúımos as demostracións dos
teoremas principais.

No caṕıtulo 8 investigamos as subvariedades totalmente xeodésicas en esferas de
Hopf-Berger. A idea é caracterizar unha certa clase de subvariedades totalmente
xeodésicas destes espazos que chamamos ben posicionadas (subsección §8.4.1). Entón,
demostramos que cada subvariedade totalmente xeodésica de dimensión maior ca un
é ben posicionada. Ademais, como subproduto do noso estudo, calculamos o ı́ndice
de simetŕıa destas esferas homoxéneas (sección §8.5).





Results

Some of the results presented in this thesis appear in the published articles and
preprints below:

� A. Rodŕıguez-Vázquez, A nonisoparametric hypersurface with constant princi-
pal curvatures, Proc. Amer. Math. Soc. 147 (2019), 5417–5420.

� J. Dı́az-Ramos, M. Domı́nguez-Vázquez, A. Rodŕıguez-Vázquez, Homogeneous
and inhomogeneous isoparametric hypersurfaces in rank one symmetric spaces,
J. Reine Angew. Math. 779 (2021), 189–222.

� A. Kollross, A. Rodŕıguez-Vázquez, Totally geodesic submanifolds in excep-
tional symmetric spaces, arXiv:2202.10775.

� A. Rodŕıguez-Vázquez, Totally geodesic submanifolds in products of rank one
symmetric spaces, arXiv:2205.14720.

This thesis also includes some other results, which will be collected in another
article that will be submitted for publication in due time.
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Conclusions

The first contribution of this thesis is the construction of an example of a non-
isoparametric hypersurface with constant principal curvatures. This is presented in
Chapter 2. In particular, we have deduced the following:

� There exist conformally flat Riemannian metrics on compact and non-compact
manifolds that admit non-isoparametric hypersurfaces with constant principal
curvatures.

The second contribution of this thesis is the classification of cohomogeneity one ac-
tions on quaternionic hyperbolic spaces. This is presented in Chapter 4. In particular,
we have obtained the following results:

� The classification of protohomogeneous subspaces of quaternionic Euclidean vec-
tor spaces Hn.

� The classification of homogeneous hypersurfaces in HHn, up to isometric con-
gruence.

� The existence of uncountable families of inhomogeneous isoparametric hyper-
surfaces with constant principal curvatures in HHn with n ≥ 8. To our knowl-
edge, these isoparametric families constitute the only such examples known in
Riemannian manifolds, apart from the celebrated Ferus, Karcher and Münzner
hypersurfaces in spheres and an example in the Cayley hyperbolic plane.

The third contribution of this thesis deals with the classification of totally geodesic
submanifolds in products of rank one symmetric spaces. This is presented in Chap-
ter 6. In particular, we have obtained the following:

� A correspondence between semisimple totally geodesic submanifolds in products
of rank one symmetric spaces and adapted Young tableaux.

The fourth contribution of this thesis is the construction of uncountably many
examples of totally geodesic submanifolds with non-trivial constant Kähler angle in
complex Grassmannians. This is presented also in Chapter 6. In particular, this
implies the following:
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� Every rational number in [0, 1] can be realized as the cosine of the Kähler angle
of a totally geodesic submanifold in an irreducible Hermitian symmetric space
for a sufficiently large rank.

The fifth contribution of this thesis deals with the classification of maximal to-
tally geodesic submanifolds in exceptional symmetric spaces. This is presented in
Chapter 7. In particular, we have achieved the following:

� The classification of maximal totally geodesic submanifolds in exceptional sym-
metric spaces.

� We have introduced the notion of Dynkin index, which allows us to distin-
guish the isometry type of totally geodesic embeddings of semisimple symmetric
spaces.

� We have proved that every irreducible semisimple symmetric space admits a
totally geodesic submanifold realizing the index and whose irreducible factors
have Dynkin index equal to one.

� We have listed 168 isometric classes of maximal totally geodesic submanifolds
in exceptional symmetric spaces. There are 80 that are reflective and 88 that
are not.

The sixth contribution of this thesis deals with the classification of totally geodesic
submanifolds in Hopf-Berger spheres. This is presented in Chapter 8. In particular,
we have proved the following:

� Every complete totally geodesic submanifold with dimension d ≥ 2 of a Hopf-
Berger sphere SnF,τ , τ ≥ 1/2, is obtained as the intersection of the Hopf-Berger
sphere regarded as a geodesic sphere of the corresponding rank one symmetric
space M̄ and a totally geodesic submanifoldM of M̄ passing through the center
of SnF,τ .

� Two totally geodesic submanifolds of dimension d ≥ 2 in SnF,τ , τ ≥ 1/2, are
congruent if and only if they are isometric.

� The index of symmetry of SnF,τ with τ ̸= 1 is given by:

indS(S
n
F,τ ) =


0 if F = H or O and τ ̸= 1/2,

1 if F = C,
3 if F = H and τ = 1/2,

7 if F = O and τ = 1/2.
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There are still many open problems and questions in view of the above conclusions.
Some of these questions are directly related to the above commented results.

Open problems:

(1) The known classification results and examples of isoparametric hypersurfaces
or hypersurfaces with constant principal curvatures occur in spaces with a lot
of symmetries. Do isoparametric hypersurfaces or hypersurfaces with constant
principal curvatures exist for generic metrics?

(2) The existence of non-isoparametric hypersurfaces with constant principal cur-
vatures in Riemannian manifolds was addressed in Chapter 2. Are there such
examples in symmetric spaces?

(3) A problem that seems to be completely out of scope of the current techniques
available in the area would be to complete Tables 2.1 and 2.2. The easiest
case seems to be the classification of isoparametric hypersurfaces with constant
principal curvatures in HPn. We conjecture that these hypersurfaces should be
open parts of homogeneous hypersurfaces.

(4) Despite all the efforts in Chapter 4, we have not achieved a complete classifica-
tion of subspaces with constant quaternionic Kähler angle. We conjecture that
there are no more examples of non-protohomogeneous subspaces with constant
quaternionic Kähler angle than the ones described in Section §4.5. In order
to show this, one should prove a version of Corollary 4.3.2 where the hypoth-
esis of protohomogeneity is substituted by the weaker assumption of constant
quaternionic Kähler angle.

(5) Continue the classification of cohomogeneity one actions in symmetric spaces
of non-compact type and higher rank. This looks like a really hard problem.
One should derive new ideas to get a better understanding of the nilpotent
construction. A more systematic approach using representation theory and
the classification of connected groups acting effectively and transitively on the
spheres (see [136]) could give new insights into this problem.

(6) In Section §6.3 it was proved that every rational number in [0, 1] can be real-
ized as the cosine of the Kähler angle of a totally geodesic submanifold in an
irreducible Hermitian symmetric space. Are there examples of totally geodesic
submanifolds with constant Kähler angle in an irreducible Hermitian symmetric
space such that the cosine of its Kähler angle is not rational?

(7) Wolf spaces are symmetric spaces that are quaternionic Kähler. It makes sense
to study the quaternionic Kähler angle of totally geodesic submanifolds in Wolf
spaces with constant quaternionic Kähler angle. It is worth noticing that totally
geodesic submanifolds in Wolf spaces with constant quaternionic Kähler angle
(0, π/2, π/2) were classified in [188]. Is there a totally geodesic submanifold with
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non-trivial constant quaternionic Kähler angle in a Wolf space? By non-trivial
here we mean different from the triples:

(0, φ, φ) or (φ, π/2, π/2), with φ ∈ [0, π/2].

(8) In Chapter 7 we introduce the Dynkin index as an invariant for totally geodesic
embeddings of semisimple symmetric spaces in irreducible symmetric spaces.
This invariant measures when two totally geodesic embeddings are isometric.
Is it possible to define an invariant that determines when two totally geodesic
submanifolds are congruent?

(9) Derive sufficient conditions for a homogeneous space to satisfy that all its totally
geodesic submanifolds are orbits of some subgroup of the isometry group.

(10) In Chapter 8 we compute the index of symmetry of Hopf-Berger spheres, which
provides nice examples of non-symmetric homogeneous spaces of positive curva-
ture. We pose the problem of computing the index of symmetry of homogeneous
spaces with positive curvature.
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[159] A. Rodŕıguez-Vázquez, A nonisoparametric hypersurface with constant prin-
cipal curvatures, Proc. Amer. Math. Soc. 147 (2019), 5417–5420.
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