Symmetry and shape
Celebrating the 60th birthday of Prof. J. Berndt

A topological lower bound for the energy of a unit vector field on a closed Euclidean hypersurface

Adriana Vietmeier Nicoli (USP - Brazil)
Joint work with Fabiano G. B. Brito and Ícaro Gonçalves

Santiago de Compostela, Spain

October 31, 2019
Let M^m be a compact oriented Riemannian manifold, $m \geq 2$, and let ∇ denote its Levi-Civita connection. The energy of a unit vector field on M is defined as the energy of the map $\vec{v} : M \to T^1M$, where T^1M denotes the unit tangent bundle equipped with the Sasaki metric,

$$E(\vec{v}) = \frac{1}{2} \int_M \|\nabla \vec{v}\|^2 + \frac{m}{2} \text{vol}(M).$$ (1)

An important question regarding these functionals is whether one can find unit vector fields Minimizing them. It is expected that these vector fields have nice properties.

An important question regarding these functionals is whether one can find unit vector fields minimizing them. It is expected that these vector fields have nice properties.

Theorem (Brito)

*Hopf vector fields are the unique vector fields on \mathbb{S}^3 to minimize E.***

Gluck and Ziller proved that Hopf flows are also the unit vector fields of minimum volume, with respect to the following definition of volume,

$$\text{vol}(\vec{v}) = \int_M \sqrt{\det(I + (\nabla \vec{v})(\nabla \vec{v})^*)},$$

where I is the identity and $(\nabla \vec{v})^*$ represents adjoint operator.

Theorem (Gluck and Ziller)

The unit vector fields of minimum volume on \mathbb{S}^3 are precisely the Hopf vector fields, and no others.

Construction of harmonic and minimal unit vector fields

Theorem (Berndt, Vanhecke and Verhóczki)

Let M be a Riemannian symmetric space of compact or non-compact type, and let F be a reflective submanifold of M such that its codimension is greater than one and the rank of F^\perp is equal to one. Then the radial unit vector field \vec{v} associated to F is harmonic and minimal.

- Harmonic = critical point of energy
- Minimal = critical point of volume

Reznikov compared the volume functional to the topology of an Euclidean hypersurface. Let M^{n+1} be a smooth closed oriented immersed hypersurface in \mathbb{R}^{n+2}, endowed with the induced metric, and let $S = \sup_{x \in M} \|S_x\| = \sup_{x \in M} |\lambda_i(x)|$, where S_x is the second fundamental operator in T_xM, and $\lambda_i(x)$ are the principal curvatures.

Theorem (Reznikov)

For any unit vector field \vec{v} on M we have

$$\text{vol}(\vec{v}) - \text{vol}(M) \geq \frac{\text{vol}(S^{n+1})}{S} |\text{deg}(\nu)|,$$

where $\text{deg}(\nu)$ is the degree of the Gauss map $\nu : M \to S^{n+1}$.

A topological lower bound for the energy of a unit vector field on a closed Euclidean hypersurface

Theorem A

For a unit vector field on a closed oriented Euclidean hypersurface M^{2n+1},

$$E(\vec{v}) \geq C(n) \frac{\text{deg}(\nu) \text{vol}(S^{2n+1})}{S^{[2n-1]}} + \frac{2n + 1}{2} \text{vol}(M^{2n+1})$$

where $S^{[2n-1]}$ and $C(n)$ are constants depending on the immersion of M and on n.

- the energy of a given vector field depends on the topology of the immersion
Definition

If \(\{u_1, \ldots, u_{2n+1}\} \) is an orthonormal basis at \(x \in M \), then, for each \(1 \leq A \leq 2n + 1 \),

\[
S[A] = \sup_{1 \leq i_1, \ldots, i_A \leq 2n+1; x \in M} \{ \| S(u_{i_1}) \wedge \cdots \wedge S(u_{i_A}) \|_{\infty} \},
\]

where \(\| \cdot \|_{\infty} \) denotes the maximum norm, naturally extended to \(\wedge^A(M) \).

\[
C(n) = \begin{cases}
\frac{n}{2n-1}, & \text{if } M^{2n+1} = \mathbb{S}^{2n+1}(r), \\
\frac{1}{2}, & \text{otherwise}.
\end{cases}
\]
Theorem (Borrelli, Brito and Gil-Medrano)

The infimum of E among all globally defined unit smooth vector fields of the sphere S^{2n+1} $(n \geq 2)$ is

$$\left(\frac{2n + 1}{2} + \frac{n}{2n - 1}\right) \text{vol}(S^{2n+1}).$$

(2)

This value is not attained by any globally defined unit smooth vector field.

Corollary

Let $S^{2n+1}(r)$ be the round sphere of radius r in \mathbb{R}^{2n+2}. Then

$$E(\vec{v}) \geq \left(\frac{2n + 1}{2} r^{2n+1} + \frac{n}{2n - 1} r^{2n-1} \right) \text{vol}(S^{2n+1}).$$
Let \(\vec{v} \) be a unit vector field on a compact oriented Riemannian manifold \(M^m \). For every \(1 \leq k \leq m - 1 \), define

\[
B_k(\vec{v}) = \int_M \left\| \nabla \vec{v} \wedge \cdots \wedge \nabla \vec{v} \right\|^2.
\] (3)

If \(\sigma_{2n} \) denotes the \(2n \)-th elementary symmetric function, and \(\mathcal{V} \) is the restriction of \(\nabla \vec{v} \) to \(V^\perp \) then our last theorem reads
Theorem B

Let M^{2n+1} be a compact oriented Riemannian manifold, and let \vec{v} be a unit vector field on M. Then

$$B_n(\vec{v}) \geq \binom{2n}{n} \int_M |\sigma_{2n}(V)|. \quad (4)$$

Furthermore, when M^{2n+1} is a closed Euclidean hypersurface,

$$B_n(\vec{v}) \geq \frac{|\deg(\nu)|}{S} \binom{2n}{n} \text{vol}(S^{2n+1}), \quad (5)$$

where S is the aforementioned constant.
Theorem B

Let M^{2n+1} be a compact oriented Riemannian manifold, and let \vec{v} be a unit vector field on M. Then

$$B_n(\vec{v}) \geq \binom{2n}{n} \int_M |\sigma_{2n}(\mathcal{V})|.$$ \hspace{1cm} (4)

Furthermore, when M^{2n+1} is a closed Euclidean hypersurface,

$$B_n(\vec{v}) \geq \frac{\left|\deg(\nu)\right|}{S} \binom{2n}{n} \text{vol}(S^{2n+1}),$$ \hspace{1cm} (5)

where S is the aforementioned constant.

Corollary

Hopf vector fields minimize B_n on S^{2n+1}.

- What about uniqueness?
Thank you!