Homogeneous and inhomogeneous isoparametric hypersurfaces in symmetric spaces of noncompact type

Alberto Rodríguez-Vázquez

Universidade de Santiago de Compostela

Symmetry and Shape Celebrating the 60th birthday of Prof. J. Berndt, Santiago de Compostela

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main new results

Joint work with J. Carlos Díaz-Ramos and Miguel Domíguez-Vázquez

Joint work with J. Carlos Díaz-Ramos and Miguel Domíguez-Vázquez

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Classification of cohomogeneity one actions on $\mathbb{H}H^n$

Joint work with J. Carlos Díaz-Ramos and Miguel Domíguez-Vázquez

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Classification of cohomogeneity one actions on $\mathbb{H}H^n$
 - ⇒ Classification of cohomogeneity one actions on symmetric spaces of rank one

Joint work with J. Carlos Díaz-Ramos and Miguel Domíguez-Vázquez

- Classification of cohomogeneity one actions on $\mathbb{H}H^n$
 - ⇒ Classification of cohomogeneity one actions on symmetric spaces of rank one
- Uncountably many **inhomogeneous isoparametric** families of hypersurfaces with **constant principal curvatures**

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Contents

- O Cohomogeneity one actions
- Ø Symmetric spaces of rank one
- O Hyperbolic spaces
- **4** Homogeneous and inhomogeneous hypersurfaces in $\mathbb{H}H^n$

Contents

- O Cohomogeneity one actions
- Ø Symmetric spaces of rank one
- O Hyperbolic spaces
- **4** Homogeneous and inhomogeneous hypersurfaces in $\mathbb{H}H^n$

<ロト <四ト <注入 <注下 <注下 <

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 \overline{M} complete connected Riemannian manifold

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

M complete connected Riemannian manifold

A cohomogeneity one action on \overline{M} is a (proper) isometric action with codimension one maximal orbits.

M complete connected Riemannian manifold

A cohomogeneity one action on \overline{M} is a (proper) isometric action with codimension one maximal orbits.

<ロト <四ト <注入 <注下 <注下 <

Properties

- The orbit space is homeomorphic to \mathbb{S}^1 , [0,1], \mathbb{R} or [0,1).
- All the orbits, except at most two, are hypersurfaces.

 \overline{M} complete connected Riemannian manifold

A cohomogeneity one action on \overline{M} is a (proper) isometric action with codimension one maximal orbits.

Properties

- The orbit space is homeomorphic to \mathbb{S}^1 , [0, 1], \mathbb{R} or [0, 1).
- All the orbits, except at most two, are hypersurfaces.

 \overline{M} complete connected Riemannian manifold

A cohomogeneity one action on \overline{M} is a (proper) isometric action with codimension one maximal orbits.

Properties

- The orbit space is homeomorphic to \mathbb{S}^1 , [0,1], \mathbb{R} or [0,1).
- All the orbits, except at most two, are hypersurfaces.

Two isometric actions of groups G_1 , G_2 on \overline{M} are **orbit equivalent** if there exists $\varphi \in \text{Isom}(\overline{M})$ that maps each G_1 -orbit to a G_2 -orbit.

<ロト <四ト <注入 <注下 <注下 <

M complete connected Riemannian manifold

A cohomogeneity one action on \overline{M} is a (proper) isometric action with codimension one maximal orbits.

Properties

- The orbit space is homeomorphic to \mathbb{S}^1 , [0,1], \mathbb{R} or [0,1).
- All the orbits, except at most two, are hypersurfaces.

Two isometric actions of groups G_1 , G_2 on \overline{M} are **orbit equivalent** if there exists $\varphi \in \text{Isom}(\overline{M})$ that maps each G_1 -orbit to a G_2 -orbit.

Problem

Classify cohomogeneity one actions on \overline{M} up to orbit equivalence.

M complete connected Riemannian manifold

A cohomogeneity one action on \overline{M} is a (proper) isometric action with codimension one maximal orbits.

Properties

- The orbit space is homeomorphic to \mathbb{S}^1 , [0,1], \mathbb{R} or [0,1).
- All the orbits, except at most two, are hypersurfaces.

Two isometric actions of groups G_1 , G_2 on \overline{M} are **orbit equivalent** if there exists $\varphi \in \text{Isom}(\overline{M})$ that maps each G_1 -orbit to a G_2 -orbit.

Problem

Classify cohomogeneity one actions on \overline{M} up to orbit equivalence.

A **homogeneous hypersurface** is a codimension one orbit of some subgroup of $Isom(\overline{M})$.

M complete connected Riemannian manifold

A cohomogeneity one action on \overline{M} is a (proper) isometric action with codimension one maximal orbits.

Properties

- The orbit space is homeomorphic to \mathbb{S}^1 , [0,1], \mathbb{R} or [0,1).
- All the orbits, except at most two, are hypersurfaces.

Two isometric actions of groups G_1 , G_2 on \overline{M} are **orbit equivalent** if there exists $\varphi \in \text{Isom}(\overline{M})$ that maps each G_1 -orbit to a G_2 -orbit.

Equivalent problem

Classify homogeneous hypersurfaces in \overline{M} up to congruence.

A **homogeneous hypersurface** is a codimension one orbit of the action of some subgroup of $Isom(\overline{M})$.

Homogeneous hypersurfaces have been classified, up to congruence, in

Homogeneous hypersurfaces have been classified, up to congruence, in

- Euclidean spaces \mathbb{R}^n [Somigliana (1918), Segre (1938)]
- Real hyperbolic spaces $\mathbb{R}H^n$ [Cartan (1939)]
- Round spheres \mathbb{S}^n [Hsiang, Lawson (1971), Takagi, Takahashi (1972)]

Homogeneous hypersurfaces have been classified, up to congruence, in

- Euclidean spaces \mathbb{R}^n [Somigliana (1918), Segre (1938)]
- Real hyperbolic spaces $\mathbb{R}H^n$ [Cartan (1939)]
- Round spheres \mathbb{S}^n [Hsiang, Lawson (1971), Takagi, Takahashi (1972)]

- Complex projective spaces $\mathbb{C}P^n$ [Takagi (1973)]
- Quaternionic projective spaces $\mathbb{H}P^n$ [D'Atri (1979), Iwata (1978)]
- Cayley projective plane $\mathbb{O}P^2$ [lwata (1981)]

Homogeneous hypersurfaces have been classified, up to congruence, in

- Euclidean spaces \mathbb{R}^n [Somigliana (1918), Segre (1938)]
- Real hyperbolic spaces $\mathbb{R}H^n$ [Cartan (1939)]
- Round spheres \mathbb{S}^n [Hsiang, Lawson (1971), Takagi, Takahashi (1972)]

- Complex projective spaces $\mathbb{C}P^n$ [Takagi (1973)]
- Quaternionic projective spaces $\mathbb{H}P^n$ [D'Atri (1979), Iwata (1978)]
- Cayley projective plane $\mathbb{O}P^2$ [lwata (1981)]
- Irreducible compact symmetric spaces [Kollross (2002)]

Homogeneous hypersurfaces have been classified, up to congruence, in

- Euclidean spaces \mathbb{R}^n [Somigliana (1918), Segre (1938)]
- Real hyperbolic spaces $\mathbb{R}H^n$ [Cartan (1939)]
- Round spheres \mathbb{S}^n [Hsiang, Lawson (1971), Takagi, Takahashi (1972)]

- Complex projective spaces $\mathbb{C}P^n$ [Takagi (1973)]
- Quaternionic projective spaces $\mathbb{H}P^n$ [D'Atri (1979), Iwata (1978)]
- Cayley projective plane $\mathbb{O}P^2$ [lwata (1981)]
- Irreducible compact symmetric spaces [Kollross (2002)]
- Hyperbolic spaces $\mathbb{C}H^n$, $\mathbb{H}H^2$, $\mathbb{O}H^2$ [Berndt, Tamaru (2007)]

Homogeneous hypersurfaces have been classified, up to congruence, in

- Euclidean spaces \mathbb{R}^n [Somigliana (1918), Segre (1938)]
- Real hyperbolic spaces $\mathbb{R}H^n$ [Cartan (1939)]
- Round spheres \mathbb{S}^n [Hsiang, Lawson (1971), Takagi, Takahashi (1972)]
- Complex projective spaces $\mathbb{C}P^n$ [Takagi (1973)]
- Quaternionic projective spaces $\mathbb{H}P^n$ [D'Atri (1979), Iwata (1978)]
- Cayley projective plane $\mathbb{O}P^2$ [lwata (1981)]
- Irreducible compact symmetric spaces [Kollross (2002)]
- Hyperbolic spaces $\mathbb{C}H^n$, $\mathbb{H}H^2$, $\mathbb{O}H^2$ [Berndt, Tamaru (2007)]

Question

What happens with homogeneous hypersurfaces in $\mathbb{H}H^n$, $n \geq 3$?

Cohomogeneity one actions on hyperbolic spaces $\mathbb{F}H^n \cong G/K \stackrel{\text{isom.}}{\cong} AN$ symmetric space of noncompact type and rank one

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_{4}^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K ₀	SO(n-1)	U(n-1)	Sp(1)Sp(n-1)	Spin(7)

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_{4}^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K ₀	SO(n-1)	U(n-1)	$\operatorname{Sp}(1)\operatorname{Sp}(n-1)$	Spin(7)

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F}H^n$, one of the following holds:

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_4^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K_0	SO(n-1)	U(n-1)	$\operatorname{Sp}(1)\operatorname{Sp}(n-1)$	Spin(7)

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F}H^n$, one of the following holds:

(日) (國) (필) (필) (필) 표

• There is a totally geodesic singular orbit.

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_4^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K_0	SO(n-1)	U(n-1)	$\operatorname{Sp}(1)\operatorname{Sp}(n-1)$	Spin(7)

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F}H^n$, one of the following holds:

◆□> <@> < E> < E> < E</p>

- There is a totally geodesic singular orbit.
- Its orbit foliation is regular.

\overline{M}	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_4^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K_0	SO(n-1)	U(n-1)	$\operatorname{Sp}(1)\operatorname{Sp}(n-1)$	Spin(7)

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F}H^n$, one of the following holds:

- There is a totally geodesic singular orbit.
- Its orbit foliation is regular.
- There is a non-totally geodesic singular orbit S_w, where w ⊊ v is such that N_{K0}(w) acts transitively on the unit sphere of w[⊥].

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_4^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
dim 3	0	1	3	7
K ₀	SO(n-1)	U(n-1)	Sp(1)Sp(n-1)	Spin(7)

One totally geodesic singular orbit [Berndt, Brück (2001)]

Tubes around tot. geodesic submanifolds P in $\mathbb{F}H^n$ are homogeneous iff

\overline{M}	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_4^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K_0	SO(n-1)	U(n-1)	$\operatorname{Sp}(1)\operatorname{Sp}(n-1)$	Spin(7)

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F}H^n$, one of the following holds:

- There is a totally geodesic singular orbit. 🗸
- Its orbit foliation is regular.
- There is a non-totally geodesic singular orbit S_w, where w ⊊ v is such that N_{K0}(w) acts transitively on the unit sphere of w[⊥].

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_4^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K ₀	SO(n-1)	U(n-1)	$\operatorname{Sp}(1)\operatorname{Sp}(n-1)$	Spin(7)

No singular orbits [Berndt, Tamaru (2003)]

Orbit equivalent to the action of:

- $N \rightsquigarrow$ horosphere foliation
- The connected subgroup of G with Lie algebra a ⊕ w ⊕ z, where w is a (real) hyperplane in v

\overline{M}	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_4^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K_0	SO(n-1)	U(n-1)	$\operatorname{Sp}(1)\operatorname{Sp}(n-1)$	Spin(7)

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F}H^n$, one of the following holds:

- There is a totally geodesic singular orbit. \checkmark
- Its orbit foliation is regular. \checkmark
- There is a non-totally geodesic singular orbit S_w, where w ⊊ v is such that N_{K0}(w) acts transitively on the unit sphere of w[⊥].

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$ \mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_4^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K ₀	SO(n-1)	U(n-1)	$\operatorname{Sp}(1)\operatorname{Sp}(n-1)$	Spin(7)

A non-totally geodesic singular orbit [Berndt, Tamaru (2007)]

 $\mathfrak{w}\subsetneq\mathfrak{v}$ subspace $\Longrightarrow\mathfrak{s}_\mathfrak{w}=\mathfrak{a}\oplus\mathfrak{w}\oplus\mathfrak{z}$ is a Lie algebra

 $S_{\mathfrak{w}}$ connected subgroup of AN with Lie algebra $\mathfrak{s}_{\mathfrak{w}}$

The tubes around $S_{\mathfrak{w}}$ are homogeneous if and only if $N_{\mathcal{K}_0}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp} (the orthogonal complement of \mathfrak{w} in \mathfrak{v})

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_{4}^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K ₀	SO(n-1)	U(n-1)	$\operatorname{Sp}(1)\operatorname{Sp}(n-1)$	Spin(7)

A non-totally geodesic singular orbit [Berndt, Tamaru (2007)]

 $\mathfrak{w} \subsetneq \mathfrak{v}$ subspace $\Longrightarrow \mathfrak{s}_{\mathfrak{w}} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{z}$ is a Lie algebra

 $S_{\mathfrak{w}}$ connected subgroup of AN with Lie algebra $\mathfrak{s}_{\mathfrak{w}}$ The tubes around $S_{\mathfrak{w}}$ are homogeneous if and only if $N_{\mathcal{K}_0}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp} (the orthogonal complement of \mathfrak{w} in \mathfrak{v})

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_{4}^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K ₀	SO(n-1)	U(n-1)	$\operatorname{Sp}(1)\operatorname{Sp}(n-1)$	Spin(7)

A non-totally geodesic singular orbit [Berndt, Tamaru (2007)]

 $\mathfrak{w} \subsetneq \mathfrak{v}$ subspace $\Longrightarrow \mathfrak{s}_{\mathfrak{w}} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{z}$ is a Lie algebra

 $S_{\mathfrak{w}}$ connected subgroup of AN with Lie algebra $\mathfrak{s}_{\mathfrak{w}}$ The tubes around $S_{\mathfrak{w}}$ are homogeneous if and only if $N_{\mathcal{K}_0}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp} (the orthogonal complement of \mathfrak{w} in \mathfrak{v})

Cohomogeneity one actions on hyperbolic spaces $\mathbb{F}H^n \cong G/K \stackrel{\text{isom.}}{\cong} AN$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}$, $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$ and $K_0 := N_K(\mathfrak{a})$.

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_{4}^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K_0	SO(n-1)	U(n-1)	Sp(1)Sp(n-1)	Spin(7)

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F}H^n$, one of the following holds:

- There is a totally geodesic singular orbit. 🗸
- Its orbit foliation is regular. \checkmark
- There is a non-totally geodesic singular orbit S_w, where w ⊊ v is such that N_{K0}(w) acts transitively on the unit sphere of w[⊥].

The study of the last case was carried out for $\mathbb{R}H^n$, $\mathbb{C}H^n$, $\mathbb{H}H^2$ and $\mathbb{O}H^2$

Cohomogeneity one actions on hyperbolic spaces $\mathbb{F}H^n \cong G/K \stackrel{\text{isom.}}{\cong} AN$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}$, $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$ and $K_0 := N_K(\mathfrak{a})$.

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_{4}^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K_0	SO(n-1)	U(n-1)	Sp(1)Sp(n-1)	Spin(7)

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F}H^n$, one of the following holds:

- There is a totally geodesic singular orbit. 🗸
- Its orbit foliation is regular. \checkmark
- There is a non-totally geodesic singular orbit S_w, where w ⊊ v is such that N_{K0}(w) acts transitively on the unit sphere of w[⊥].

Analyze the last case for $\mathbb{H}H^n$, $n \geq 3$, to conclude the classification.

Cohomogeneity one actions on hyperbolic spaces $\mathbb{F}H^n \cong G/K \stackrel{\text{isom.}}{\cong} AN$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}$, $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$ and $K_0 := N_K(\mathfrak{a})$.

M	$\mathbb{R}H^n$	$\mathbb{C}H^n$	$\mathbb{H}H^n$	$\mathbb{O}H^2$
	$\frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}$	$\frac{SU(1,n)}{S(U(1)\timesU(n))}$	$\frac{Sp(1,n)}{Sp(1)Sp(n)}$	$\frac{F_{4}^{-20}}{Spin(9)}$
v	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	0
dim 3	0	1	3	7
K_0	SO(n-1)	U(n-1)	Sp(1)Sp(n-1)	Spin(7)

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F}H^n$, one of the following holds:

- There is a totally geodesic singular orbit. 🗸
- Its orbit foliation is regular. \checkmark
- There is a non-totally geodesic singular orbit S_w, where w ⊊ v is such that N_{K0}(w) acts transitively on the unit sphere of w[⊥].

Analyze the last case for $\mathbb{H}H^n$, $n \geq 3$, to conclude the classification.

Problem

Classify cohomogeneity one actions on $\mathbb{H}H^{n+1}$, $n \geq 2$.

Problem

Classify cohomogeneity one actions on $\mathbb{H}H^{n+1}$, $n \geq 2$.

Equivalent problem [Berndt, Tamaru (2007)]

Classify real subspaces $\mathfrak{w} \subset \mathfrak{v} \cong \mathbb{H}^n$ such that $N_{K_0}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp} , up to conjugation by $k \in K_0$.

Problem

Classify cohomogeneity one actions on $\mathbb{H}H^{n+1}$, $n \geq 2$.

Equivalent problem [Berndt, Tamaru (2007)]

Classify real subspaces $\mathfrak{w} \subset \mathfrak{v} \cong \mathbb{H}^n$ such that $N_{\mathcal{K}_0}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp} , up to conjugation by $k \in \mathcal{K}_0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathcal{K}_0 \cong \operatorname{Sp}(n)\operatorname{Sp}(1)$ acts on $\mathfrak{v} \cong \mathbb{H}^n$ via $(A,q) \cdot v = Avq^{-1}$

Problem

Classify cohomogeneity one actions on $\mathbb{H}H^{n+1}$, $n \geq 2$.

Equivalent problem [Berndt, Tamaru (2007)]

Classify real subspaces $\mathfrak{w} \subset \mathfrak{v} \cong \mathbb{H}^n$ such that $N_{K_0}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp} , up to conjugation by $k \in K_0$.

$${\mathcal K}_0\cong {\operatorname{\mathsf{Sp}}}(n){\operatorname{\mathsf{Sp}}}(1)$$
 acts on $\mathfrak v\cong \mathbb H^n$ via $(A,q)\cdot v=Avq^{-1}$

Definition

A real subspace V of \mathbb{H}^n is **protohomogeneous** if there is a subgroup of Sp(n)Sp(1) that acts transitively on the unit sphere of V.

(日) (四) (문) (문) (문)

Problem

Classify cohomogeneity one actions on $\mathbb{H}H^{n+1}$, $n \geq 2$.

Equivalent problem [Berndt, Tamaru (2007)]

Classify real subspaces $\mathfrak{w} \subset \mathfrak{v} \cong \mathbb{H}^n$ such that $N_{K_0}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp} , up to conjugation by $k \in K_0$.

$${\mathcal K}_0\cong {\operatorname{\mathsf{Sp}}}(n){\operatorname{\mathsf{Sp}}}(1)$$
 acts on $\mathfrak v\cong \mathbb H^n$ via $({\mathcal A},q)\cdot v={\mathcal A}vq^{-1}$

Definition

A real subspace V of \mathbb{H}^n is **protohomogeneous** if there is a subgroup of Sp(n)Sp(1) that acts transitively on the unit sphere of V.

Equivalent problem

Classify protohomogeneous subspaces of \mathbb{H}^n , up to some $T \in Sp(n)Sp(1)$.

 $\mathfrak{J} \subset \operatorname{End}_{\mathbb{R}}(\mathbb{H}^n)$ quaternionic structure of \mathbb{H}^n $\{J_1, J_2, J_3\}$ canonical basis of $\mathfrak{J}: J_i^2 = -\operatorname{Id}, J_i J_i^\top = \operatorname{Id}, J_i J_{i+1} = J_{i+2}$

 $\mathfrak{J} \subset \operatorname{End}_{\mathbb{R}}(\mathbb{H}^n)$ quaternionic structure of \mathbb{H}^n $\{J_1, J_2, J_3\}$ canonical basis of $\mathfrak{J}: J_i^2 = -\operatorname{Id}, J_i J_i^\top = \operatorname{Id}, J_i J_{i+1} = J_{i+2}$ V real subspace of $\mathbb{H}^n, v \in V \setminus \{0\}, \pi: \mathbb{H}^n \to V$ orthogonal projection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $\mathfrak{J} \subset \operatorname{End}_{\mathbb{R}}(\mathbb{H}^n)$ quaternionic structure of \mathbb{H}^n $\{J_1, J_2, J_3\}$ canonical basis of $\mathfrak{J}: J_i^2 = -\operatorname{Id}, J_i J_i^\top = \operatorname{Id}, J_i J_{i+1} = J_{i+2}$ V real subspace of $\mathbb{H}^n, v \in V \setminus \{0\}, \pi: \mathbb{H}^n \to V$ orthogonal projection

Definition

Consider the symmetric bilinear form

$$L_{\mathbf{v}} \colon \mathfrak{J} \times \mathfrak{J} \to \mathbb{R}, \quad L_{\mathbf{v}}(J, J') := \langle \pi J \mathbf{v}, \pi J' \mathbf{v} \rangle.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

The quaternionic Kähler angle of v with respect to V is the triple $(\varphi_1, \varphi_2, \varphi_3)$, with $\varphi_1 \leq \varphi_2 \leq \varphi_3$, such that the eigenvalues of L_v are $\cos^2(\varphi_i)||v||^2$, i = 1, 2, 3.

 $\mathfrak{J} \subset \operatorname{End}_{\mathbb{R}}(\mathbb{H}^n)$ quaternionic structure of \mathbb{H}^n $\{J_1, J_2, J_3\}$ canonical basis of $\mathfrak{J}: J_i^2 = -\operatorname{Id}, J_i J_i^\top = \operatorname{Id}, J_i J_{i+1} = J_{i+2}$ V real subspace of $\mathbb{H}^n, v \in V \setminus \{0\}, \pi: \mathbb{H}^n \to V$ orthogonal projection

Definition

Consider the symmetric bilinear form

$$L_{\mathbf{v}} \colon \mathfrak{J} \times \mathfrak{J} \to \mathbb{R}, \quad L_{\mathbf{v}}(J, J') := \langle \pi J \mathbf{v}, \pi J' \mathbf{v} \rangle.$$

The quaternionic Kähler angle of v with respect to V is the triple $(\varphi_1, \varphi_2, \varphi_3)$, with $\varphi_1 \leq \varphi_2 \leq \varphi_3$, such that the eigenvalues of L_v are $\cos^2(\varphi_i)||v||^2$, i = 1, 2, 3.

There is a canonical basis $\{J_1, J_2, J_3\}$ of \mathfrak{J} made of eigenvectors of L_v .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

 $\mathfrak{J} \subset \operatorname{End}_{\mathbb{R}}(\mathbb{H}^n)$ quaternionic structure of \mathbb{H}^n $\{J_1, J_2, J_3\}$ canonical basis of $\mathfrak{J}: J_i^2 = -\operatorname{Id}, J_i J_i^\top = \operatorname{Id}, J_i J_{i+1} = J_{i+2}$ V real subspace of $\mathbb{H}^n, v \in V \setminus \{0\}, \pi: \mathbb{H}^n \to V$ orthogonal projection

Definition

Consider the symmetric bilinear form

$$L_{\mathbf{v}} \colon \mathfrak{J} \times \mathfrak{J} \to \mathbb{R}, \quad L_{\mathbf{v}}(J, J') := \langle \pi J \mathbf{v}, \pi J' \mathbf{v} \rangle.$$

The quaternionic Kähler angle of v with respect to V is the triple $(\varphi_1, \varphi_2, \varphi_3)$, with $\varphi_1 \leq \varphi_2 \leq \varphi_3$, such that the eigenvalues of L_v are $\cos^2(\varphi_i)||v||^2$, i = 1, 2, 3.

There is a canonical basis $\{J_1, J_2, J_3\}$ of \mathfrak{J} made of eigenvectors of L_v .

Proposition [Berndt, Brück (2001)]

 $V \subset \mathbb{H}^n$ protohomogeneous $\Rightarrow V$ has constant quaternionic Kähler angle.

There are subspaces V with constant quaternionic Kähler angle (0, 0, 0), $(0, 0, \pi/2)$, $(0, \pi/2, \pi/2)$, $(\pi/2, \pi/2, \pi/2)$, $(\varphi, \pi/2, \pi/2)$, $(0, \varphi, \varphi)$...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

There are subspaces V with constant quaternionic Kähler angle (0, 0, 0), $(0, 0, \pi/2)$, $(0, \pi/2, \pi/2)$, $(\pi/2, \pi/2, \pi/2)$, $(\varphi, \pi/2, \pi/2)$, $(0, \varphi, \varphi)$...

Remark

Not every triple arises as the constant quaternionic Kähler angle of a subspace V, e.g. $(0, 0, \varphi)$, $\varphi \in (0, \pi/2)$

There are subspaces V with constant quaternionic Kähler angle (0, 0, 0), $(0, 0, \pi/2)$, $(0, \pi/2, \pi/2)$, $(\pi/2, \pi/2, \pi/2)$, $(\varphi, \pi/2, \pi/2)$, $(0, \varphi, \varphi)$...

Remark

Not every triple arises as the constant quaternionic Kähler angle of a subspace V, e.g. $(0, 0, \varphi)$, $\varphi \in (0, \pi/2)$

There are subspaces V with constant quaternionic Kähler angle (0, 0, 0), $(0, 0, \pi/2)$, $(0, \pi/2, \pi/2)$, $(\pi/2, \pi/2, \pi/2)$, $(\varphi, \pi/2, \pi/2)$, $(0, \varphi, \varphi)$...

Remark

Not every triple arises as the constant quaternionic Kähler angle of a subspace V, e.g. $(0, 0, \varphi)$, $\varphi \in (0, \pi/2)$

Question

Does constant quaternionic Kähler angle imply protohomogeneous?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There are subspaces V with constant quaternionic Kähler angle (0, 0, 0), $(0, 0, \pi/2)$, $(0, \pi/2, \pi/2)$, $(\pi/2, \pi/2, \pi/2)$, $(\varphi, \pi/2, \pi/2)$, $(0, \varphi, \varphi)$...

Remark

Not every triple arises as the constant quaternionic Kähler angle of a subspace V, e.g. $(0, 0, \varphi)$, $\varphi \in (0, \pi/2)$

Question

Does constant quaternionic Kähler angle imply protohomogeneous?

Theorem [Díaz-Ramos, Domínguez-Vázquez (2013)]

The tubes around $S_{\mathfrak{w}}$ have constant principal curvatures if and only if $\mathfrak{w}^{\perp} \subset \mathfrak{v}$ has constant quaternionic Kähler angle.

V protohomogeneous real subspace of \mathbb{H}^n , dim V = k

V protohomogeneous real subspace of \mathbb{H}^n , dim V = k

 \Rightarrow V constant quaternionic Kähler angle $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$

V protohomogeneous real subspace of \mathbb{H}^n , dim V = k $\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ \mathbb{S}^{k-1} unit sphere of V,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

V protohomogeneous real subspace of \mathbb{H}^n , dim V = k $\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ \mathbb{S}^{k-1} unit sphere of V, $\pi \colon \mathbb{H}^n \to V$ orthogonal projection onto V

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $\begin{array}{l} V \text{ protohomogeneous real subspace of } \mathbb{H}^n \text{, dim } V = k \\ \Rightarrow V \text{ constant quaternionic Kähler angle } \Phi(V) = (\varphi_1, \varphi_2, \varphi_3) \\ \mathbb{S}^{k-1} \text{ unit sphere of } V, \quad \pi \colon \mathbb{H}^n \to V \text{ orthogonal projection onto } V \\ \Delta_v := \{\pi J v : J \in \mathfrak{J}\} \text{ smooth distribution on } \mathbb{S}^{k-1}, \quad \text{rank } \Delta \in \{0, 1, 2, 3\} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

V protohomogeneous real subspace of \mathbb{H}^n , dim V = k

 $\Rightarrow V \text{ constant quaternionic K\"ahler angle } \Phi(V) = (\varphi_1, \varphi_2, \varphi_3) \\ \mathbb{S}^{k-1} \text{ unit sphere of } V, \quad \pi \colon \mathbb{H}^n \to V \text{ orthogonal projection onto } V \\ \Delta_v := \{\pi J v : J \in \mathfrak{J}\} \text{ smooth distribution on } \mathbb{S}^{k-1}, \quad \text{rank } \Delta \in \{0, 1, 2, 3\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Applying the generalized hairy ball theorem [Adams (1963)]

• If
$$k \ge 5$$
 is odd, then $\Phi(V) = (\pi/2, \pi/2, \pi/2)$.

V protohomogeneous real subspace of \mathbb{H}^n , dim V = k

 $\Rightarrow V \text{ constant quaternionic Kähler angle } \Phi(V) = (\varphi_1, \varphi_2, \varphi_3) \\ \mathbb{S}^{k-1} \text{ unit sphere of } V, \quad \pi \colon \mathbb{H}^n \to V \text{ orthogonal projection onto } V \\ \Delta_{v} := \{\pi J v : J \in \mathfrak{J}\} \text{ smooth distribution on } \mathbb{S}^{k-1}, \quad \text{rank } \Delta \in \{0, 1, 2, 3\}$

Applying the generalized hairy ball theorem [Adams (1963)]

- If $k \ge 5$ is odd, then $\Phi(V) = (\pi/2, \pi/2, \pi/2)$.
- If $k \equiv 2 \pmod{4}$, then $\Phi(V) = (\varphi, \pi/2, \pi/2)$, for some $\varphi \in [0, \pi/2]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

V protohomogeneous real subspace of \mathbb{H}^n , dim V = k

 $\Rightarrow V \text{ constant quaternionic K\"ahler angle } \Phi(V) = (\varphi_1, \varphi_2, \varphi_3) \\ \mathbb{S}^{k-1} \text{ unit sphere of } V, \quad \pi \colon \mathbb{H}^n \to V \text{ orthogonal projection onto } V \\ \Delta_v := \{\pi J v : J \in \mathfrak{J}\} \text{ smooth distribution on } \mathbb{S}^{k-1}, \quad \text{rank } \Delta \in \{0, 1, 2, 3\}$

Applying the generalized hairy ball theorem [Adams (1963)]

• If
$$k \ge 5$$
 is odd, then $\Phi(V) = (\pi/2, \pi/2, \pi/2)$.

• If
$$k \equiv 2 \pmod{4}$$
, then $\Phi(V) = (\varphi, \pi/2, \pi/2)$, for some $\varphi \in [0, \pi/2]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• If
$$k=$$
 3, then $\Phi(V)=(arphi,arphi,\pi/2)$, for some $arphi\in[0,\pi/2].$

V protohomogeneous real subspace of \mathbb{H}^n , dim V = k

 $\Rightarrow V \text{ constant quaternionic K\"ahler angle } \Phi(V) = (\varphi_1, \varphi_2, \varphi_3) \\ \mathbb{S}^{k-1} \text{ unit sphere of } V, \quad \pi \colon \mathbb{H}^n \to V \text{ orthogonal projection onto } V \\ \Delta_v := \{\pi J v : J \in \mathfrak{J}\} \text{ smooth distribution on } \mathbb{S}^{k-1}, \quad \text{rank } \Delta \in \{0, 1, 2, 3\}$

Applying the generalized hairy ball theorem [Adams (1963)]

• If
$$k \ge 5$$
 is odd, then $\Phi(V) = (\pi/2, \pi/2, \pi/2)$.

• If
$$k \equiv 2 \pmod{4}$$
, then $\Phi(V) = (\varphi, \pi/2, \pi/2)$, for some $\varphi \in [0, \pi/2]$.

• If
$$k=$$
 3, then $\Phi(V)=(arphi,arphi,\pi/2)$, for some $arphi\in[0,\pi/2].$

- Classify subspaces V with k = 3 and $\Phi(V) = (\varphi, \varphi, \pi/2)$.
- Case $k \equiv 0 \pmod{4}$.

V protohomogeneous real subspace of \mathbb{H}^n , dim V = k

 $\Rightarrow V \text{ constant quaternionic K\"ahler angle } \Phi(V) = (\varphi_1, \varphi_2, \varphi_3) \\ \mathbb{S}^{k-1} \text{ unit sphere of } V, \quad \pi \colon \mathbb{H}^n \to V \text{ orthogonal projection onto } V \\ \Delta_v := \{\pi J v : J \in \mathfrak{J}\} \text{ smooth distribution on } \mathbb{S}^{k-1}, \quad \text{rank } \Delta \in \{0, 1, 2, 3\}$

Applying the generalized hairy ball theorem [Adams (1963)]

• If
$$k \ge 5$$
 is odd, then $\Phi(V) = (\pi/2, \pi/2, \pi/2)$.

• If
$$k \equiv 2 \pmod{4}$$
, then $\Phi(V) = (\varphi, \pi/2, \pi/2)$, for some $\varphi \in [0, \pi/2]$.

• If
$$k=$$
 3, then $\Phi(V)=(arphi,arphi,\pi/2)$, for some $arphi\in[0,\pi/2].$

- Classify subspaces V with k = 3 and $\Phi(V) = (\varphi, \varphi, \pi/2)$.
- Case $k \equiv 0 \pmod{4}$.

V protohomogeneous real subspace of \mathbb{H}^n , dim V = k

 $\Rightarrow V \text{ constant quaternionic K\"ahler angle } \Phi(V) = (\varphi_1, \varphi_2, \varphi_3) \\ \mathbb{S}^{k-1} \text{ unit sphere of } V, \quad \pi \colon \mathbb{H}^n \to V \text{ orthogonal projection onto } V \\ \Delta_v := \{\pi J v : J \in \mathfrak{J}\} \text{ smooth distribution on } \mathbb{S}^{k-1}, \quad \text{rank } \Delta \in \{0, 1, 2, 3\}$

Applying the generalized hairy ball theorem [Adams (1963)]

• If
$$k \ge 5$$
 is odd, then $\Phi(V) = (\pi/2, \pi/2, \pi/2)$.

• If
$$k \equiv 2 \pmod{4}$$
, then $\Phi(V) = (\varphi, \pi/2, \pi/2)$, for some $\varphi \in [0, \pi/2]$.

• If
$$k=$$
 3, then $\Phi(V)=(arphi,arphi,\pi/2)$, for some $arphi\in[0,\pi/2].$

- Classify subspaces V with k = 3 and $\Phi(V) = (\varphi, \varphi, \pi/2)$.
- Case $k \equiv 0 \pmod{4}$.

V protohomogeneous real subspace of \mathbb{H}^n , dim V = k

 $\Rightarrow V \text{ constant quaternionic K\"ahler angle } \Phi(V) = (\varphi_1, \varphi_2, \varphi_3) \\ \mathbb{S}^{k-1} \text{ unit sphere of } V, \quad \pi \colon \mathbb{H}^n \to V \text{ orthogonal projection onto } V \\ \Delta_v := \{\pi J v : J \in \mathfrak{J}\} \text{ smooth distribution on } \mathbb{S}^{k-1}, \quad \text{rank } \Delta \in \{0, 1, 2, 3\}$

Applying the generalized hairy ball theorem [Adams (1963)]

• If
$$k \ge 5$$
 is odd, then $\Phi(V) = (\pi/2, \pi/2, \pi/2)$.

• If
$$k \equiv 2 \pmod{4}$$
, then $\Phi(V) = (\varphi, \pi/2, \pi/2)$, for some $\varphi \in [0, \pi/2]$.

• If
$$k=$$
 3, then $\Phi(V)=(arphi,arphi,\pi/2)$, for some $arphi\in[0,\pi/2].$

- Classify subspaces V with k = 3 and $\Phi(V) = (\varphi, \varphi, \pi/2)$.
- Case $k \equiv 0 \pmod{4}$.

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^n$ with dim V = k = 4r

<ロト <四ト <注入 <注下 <注下 <

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^n$ with dim V = k = 4r

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^n$ with dim V = k = 4r

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ Assume $k \ge 5$.

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^n$ with dim V = k = 4r

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ Assume $k \ge 5$. For simplicity, assume $\varphi_3 \neq \pi/2$.

(日) (四) (문) (문) (문)

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^n$ with dim V = k = 4r

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ Assume $k \ge 5$. For simplicity, assume $\varphi_3 \ne \pi/2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

① There exists a canonical basis $\{J_1, J_2, J_3\}$ of \mathfrak{J}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^n$ with dim V = k = 4r

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ Assume $k \ge 5$. For simplicity, assume $\varphi_3 \ne \pi/2$.

• There exists a canonical basis $\{J_1, J_2, J_3\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_i is φ_i .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで
Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^n$ with dim V = k = 4r

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ Assume $k \ge 5$. For simplicity, assume $\varphi_3 \ne \pi/2$.

• There exists a canonical basis $\{J_1, J_2, J_3\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_i is φ_i .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

2 Define $P_i = \frac{1}{\cos \varphi_i} \pi J_i \colon V \to V$.

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^n$ with dim V = k = 4r

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ Assume $k \ge 5$. For simplicity, assume $\varphi_3 \ne \pi/2$.

• There exists a canonical basis $\{J_1, J_2, J_3\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_i is φ_i .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

2 Define $P_i = \frac{1}{\cos \varphi_i} \pi J_i$: $V \to V$. Then $P_i P_j + P_j P_i = -2\delta_{ij}$ Id.

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^n$ with dim V = k = 4r

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ Assume $k \ge 5$. For simplicity, assume $\varphi_3 \ne \pi/2$.

• There exists a canonical basis $\{J_1, J_2, J_3\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_i is φ_i .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- **2** Define $P_i = \frac{1}{\cos \varphi_i} \pi J_i$: $V \to V$. Then $P_i P_j + P_j P_i = -2\delta_{ij}$ Id.
- $\{P_1, P_2, P_3\}$ induces a structure of CI(3)-module on V.

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^n$ with dim V = k = 4r

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ Assume $k \ge 5$. For simplicity, assume $\varphi_3 \ne \pi/2$.

• There exists a canonical basis $\{J_1, J_2, J_3\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_i is φ_i .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- **2** Define $P_i = \frac{1}{\cos \varphi_i} \pi J_i$: $V \to V$. Then $P_i P_j + P_j P_i = -2\delta_{ij}$ Id.
- $\{P_1, P_2, P_3\}$ induces a structure of Cl(3)-module on V.
- $V = (\bigoplus V_+) \oplus (\bigoplus V_-)$, where V_+ and V_- are the two inequivalent irreducible CI(3)-modules, dim $V_{\pm} = 4$.

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^n$ with dim V = k = 4r

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ Assume $k \ge 5$. For simplicity, assume $\varphi_3 \ne \pi/2$.

- There exists a canonical basis $\{J_1, J_2, J_3\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_i is φ_i .
- **2** Define $P_i = \frac{1}{\cos \varphi_i} \pi J_i$: $V \to V$. Then $P_i P_j + P_j P_i = -2\delta_{ij}$ Id.
- $\{P_1, P_2, P_3\}$ induces a structure of Cl(3)-module on V.
- $V = (\bigoplus V_+) \oplus (\bigoplus V_-)$, where V_+ and V_- are the two inequivalent irreducible Cl(3)-modules, dim $V_{\pm} = 4$.
- Solution Each factor has constant quaternionic Kähler angle $(\varphi_1, \varphi_2, \varphi_3)$.

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ $V = (\bigoplus_{l} V_{+}) \oplus (\bigoplus_{l} V_{-})$ V_{+} and V_{-} two inequivalent irreducible CI(3)-modules dim $V_{\pm} = 4$, $\Phi(V_{\pm}) = (\varphi_1, \varphi_2, \varphi_3)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ $V = (\bigoplus_{l} V_l) \oplus (\bigoplus_{l} V_l)$ V_+ and V_- two inequivalent irreducible Cl(3)-modules dim $V_+ = 4$, $\Phi(V_+) = (\varphi_1, \varphi_2, \varphi_3)$

• There are two types of subspaces V of dimension 4:

- V_+ , which exists if and only if $\cos \varphi_1 + \cos \varphi_2 + \cos \varphi_3 \le 1$.
- V_{-} , which exists if and only if $\cos \varphi_1 + \cos \varphi_2 \cos \varphi_3 \le 1$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ $V = (\bigoplus_{l} V_{l+}) \oplus (\bigoplus_{l} V_{l-})$ V_{+} and V_{-} two inequivalent irreducible *Cl*(3)-modules dim $V_{+} = 4$, $\Phi(V_{+}) = (\varphi_1, \varphi_2, \varphi_3)$

• There are two types of subspaces V of dimension 4:

- V_+ , which exists if and only if $\cos \varphi_1 + \cos \varphi_2 + \cos \varphi_3 \le 1$.
- V_{-} , which exists if and only if $\cos \varphi_1 + \cos \varphi_2 \cos \varphi_3 \le 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $\not \exists T \in Sp(n)Sp(1)$ such that $TV_+ = V_-$.

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ $V = (\bigoplus_{l} V_{l+}) \oplus (\bigoplus_{l} V_{l-})$ V_{+} and V_{-} two inequivalent irreducible *Cl*(3)-modules dim $V_{+} = 4$, $\Phi(V_{+}) = (\varphi_1, \varphi_2, \varphi_3)$

• There are two types of subspaces V of dimension 4:

- V_+ , which exists if and only if $\cos \varphi_1 + \cos \varphi_2 + \cos \varphi_3 \le 1$.
- V_{-} , which exists if and only if $\cos \varphi_1 + \cos \varphi_2 \cos \varphi_3 \le 1$.
- $\exists T \in Sp(n)Sp(1)$ such that $TV_+ = V_-$.

3 If V, with dim V = 4r, then either $V = \bigoplus V_+$ or $V = \bigoplus V_-$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ $V = (\bigoplus_{l} V_{+}) \oplus (\bigoplus_{l} V_{-})$ V_{+} and V_{-} two inequivalent irreducible *Cl*(3)-modules dim $V_{\pm} = 4$, $\Phi(V_{\pm}) = (\varphi_1, \varphi_2, \varphi_3)$

• There are two types of subspaces V of dimension 4:

- V_+ , which exists if and only if $\cos \varphi_1 + \cos \varphi_2 + \cos \varphi_3 \le 1$.
- V_{-} , which exists if and only if $\cos \varphi_1 + \cos \varphi_2 \cos \varphi_3 \le 1$.
- $\exists T \in Sp(n)Sp(1)$ such that $TV_+ = V_-$.

3 If V, with dim V = 4r, then either $V = \bigoplus V_+$ or $V = \bigoplus V_-$. From this, one can obtain the classification of protohomogeneous subspaces of \mathbb{H}^n , and hence of cohomogeneity one actions on $\mathbb{H}H^{n+1}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

V protohomogeneous subspace of \mathbb{H}^n , dim V = 4r, $\Phi(V) = (\varphi_1, \varphi_2, \varphi_3)$ $V = (\bigoplus_{l} V_{+}) \oplus (\bigoplus_{l} V_{-})$ V_{+} and V_{-} two inequivalent irreducible *Cl*(3)-modules dim $V_{\pm} = 4$, $\Phi(V_{\pm}) = (\varphi_1, \varphi_2, \varphi_3)$

• There are two types of subspaces V of dimension 4:

- V_+ , which exists if and only if $\cos \varphi_1 + \cos \varphi_2 + \cos \varphi_3 \le 1$.
- V_{-} , which exists if and only if $\cos \varphi_1 + \cos \varphi_2 \cos \varphi_3 \le 1$.
- $\exists T \in Sp(n)Sp(1)$ such that $TV_+ = V_-$.

If V, with dim V = 4r, then either $V = \bigoplus V_+$ or $V = \bigoplus V_-$. From this, one can obtain the classification of protohomogeneous

subspaces of \mathbb{H}^n , and hence of cohomogeneity one actions on $\mathbb{H}H^{n+1}$.

Question

What if we mix both types of 4-dimensional subspaces, V_+ and V_- ?

$$V = \left(\bigoplus^{r_+} V_+ \right) \oplus \left(\bigoplus^{r_-} V_- \right)$$

 V_+ and V_- two inequivalent irreducible Cl(3)-modules, dim $V_\pm=4$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$V = \left(\bigoplus^{r_+} V_+\right) \oplus \left(\bigoplus^{r_-} V_-\right)$$

 V_+ and V_- two inequivalent irreducible CI(3)-modules, dim $V_{\pm} = 4$ $\Phi(V_{\pm}) = (\varphi_1, \varphi_2, \varphi_3)$ with $\cos \varphi_1 + \cos \varphi_2 + \cos \varphi_3 \le 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

 $V = \left(\bigoplus_{l=1}^{l_{+}} V_{l_{+}} \right) \oplus \left(\bigoplus_{l=1}^{l_{-}} V_{l_{+}} \right)$ $V_{+} \text{ and } V_{-} \text{ two inequivalent irreducible } CI(3)\text{-modules, dim } V_{\pm} = 4$ $\Phi(V_{\pm}) = (\varphi_{1}, \varphi_{2}, \varphi_{3}) \text{ with } \cos \varphi_{1} + \cos \varphi_{2} + \cos \varphi_{3} \leq 1$

Theorem [Díaz-Ramos, Domínguez-Vázquez, RV (2019)]

If $r_+, r_- \ge 1$, then V is a non-protohomogeneous subspace of \mathbb{H}^n with constant quaternionic Kähler angle.

▲□▶ ▲圖▶ ▲理▶ ▲理▶ _ 理 _ .

 $V = \left(\bigoplus_{l=1}^{l_{+}} V_{l_{+}} \right) \oplus \left(\bigoplus_{l=1}^{l_{-}} V_{l_{+}} \right)$ $V_{+} \text{ and } V_{-} \text{ two inequivalent irreducible } CI(3)\text{-modules, dim } V_{\pm} = 4$ $\Phi(V_{\pm}) = (\varphi_{1}, \varphi_{2}, \varphi_{3}) \text{ with } \cos \varphi_{1} + \cos \varphi_{2} + \cos \varphi_{3} \leq 1$

Theorem [Díaz-Ramos, Domínguez-Vázquez, RV (2019)] If $r_+, r_- \ge 1$, then V is a non-protohomogeneous subspace of \mathbb{H}^n with

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

constant quaternionic Kähler angle.

 $\mathbb{H}H^{n+1} \stackrel{\text{isom.}}{\cong} AN, \qquad \mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{v} \oplus \mathfrak{z}, \qquad \mathfrak{v} \cong \mathbb{H}^n$

 $V = \left(\bigoplus_{l=1}^{l_{+}} V_{l_{+}} \right) \oplus \left(\bigoplus_{l=1}^{l_{-}} V_{l_{+}} \right)$ $V_{+} \text{ and } V_{-} \text{ two inequivalent irreducible } CI(3)\text{-modules, dim } V_{\pm} = 4$ $\Phi(V_{\pm}) = (\varphi_{1}, \varphi_{2}, \varphi_{3}) \text{ with } \cos \varphi_{1} + \cos \varphi_{2} + \cos \varphi_{3} \leq 1$

Theorem [Díaz-Ramos, Domínguez-Vázquez, RV (2019)]

If $r_+, r_- \ge 1$, then V is a non-protohomogeneous subspace of \mathbb{H}^n with constant quaternionic Kähler angle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\mathbb{H}H^{n+1} \stackrel{\text{isom.}}{\cong} AN, \qquad \mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{v} \oplus \mathfrak{z}, \qquad \mathfrak{v} \cong \mathbb{H}^n$ $\mathfrak{w} := \text{orthogonal complement of } V \text{ in } \mathfrak{v}$ $\mathfrak{s}_{\mathfrak{w}} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{z} \rightsquigarrow S_{\mathfrak{w}} \text{ connected subgroup of } AN$

 $V = \left(\bigoplus_{l=1}^{l_{+}} V_{l_{+}} \right) \oplus \left(\bigoplus_{l=1}^{l_{-}} V_{l_{+}} \right)$ $V_{+} \text{ and } V_{-} \text{ two inequivalent irreducible } CI(3)\text{-modules, dim } V_{\pm} = 4$ $\Phi(V_{\pm}) = (\varphi_{1}, \varphi_{2}, \varphi_{3}) \text{ with } \cos \varphi_{1} + \cos \varphi_{2} + \cos \varphi_{3} \leq 1$

Theorem [Díaz-Ramos, Domínguez-Vázquez, RV (2019)]

If $r_+, r_- \ge 1$, then V is a non-protohomogeneous subspace of \mathbb{H}^n with constant quaternionic Kähler angle.

 $\mathbb{H}H^{n+1} \stackrel{\text{isom.}}{\cong} AN, \qquad \mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{v} \oplus \mathfrak{z}, \qquad \mathfrak{v} \cong \mathbb{H}^n$ $\mathfrak{w} := \text{orthogonal complement of } V \text{ in } \mathfrak{v}$ $\mathfrak{s}_{\mathfrak{w}} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{z} \rightsquigarrow S_{\mathfrak{w}} \text{ connected subgroup of } AN$

Theorem [Díaz-Ramos, Domínguez-Vázquez, RV (2019)]

 $S_{\mathfrak{w}}$ and the tubes around it define an **inhomogeneous isoparametric** family of hypersurfaces with **constant principal curvatures** in $\mathbb{H}H^{n+1}$.