Homogeneous and inhomogeneous isoparametric hypersurfaces in symmetric spaces of noncompact type

Alberto Rodríguez-Vázquez

Universidade de Santiago de Compostela

Symmetry and Shape
Celebrating the 60th birthday of Prof. J. Berndt, Santiago de Compostela

Main new results

Joint work with J. Carlos Díaz-Ramos and Miguel Domíguez-Vázquez

Main new results

Joint work with J. Carlos Díaz-Ramos and Miguel Domíguez-Vázquez

- Classification of cohomogeneity one actions on $\mathbb{H} H^{n}$

Main new results

Joint work with J. Carlos Díaz-Ramos and Miguel Domíguez-Vázquez

- Classification of cohomogeneity one actions on $\mathbb{H} H^{n}$
\Longrightarrow Classification of cohomogeneity one actions on symmetric spaces of rank one

Main new results

Joint work with J. Carlos Díaz-Ramos and Miguel Domíguez-Vázquez

- Classification of cohomogeneity one actions on $\mathbb{H} H^{n}$
\Longrightarrow Classification of cohomogeneity one actions on symmetric spaces of rank one
- Uncountably many inhomogeneous isoparametric families of hypersurfaces with constant principal curvatures

Contents

(1) Cohomogeneity one actions
(2) Symmetric spaces of rank one
(3) Hyperbolic spaces
(9) Homogeneous and inhomogeneous hypersurfaces in $\mathbb{H} H^{n}$

Contents

(1) Cohomogeneity one actions
(2) Symmetric spaces of rank one
(3) Hyperbolic spaces
(9) Homogeneous and inhomogeneous hypersurfaces in $\mathbb{H} H^{n}$

Cohomogeneity one actions

Cohomogeneity one actions

\bar{M} complete connected Riemannian manifold

Cohomogeneity one actions

\bar{M} complete connected Riemannian manifold
A cohomogeneity one action on \bar{M} is a（proper）isometric action with codimension one maximal orbits．

Cohomogeneity one actions

\bar{M} complete connected Riemannian manifold
A cohomogeneity one action on \bar{M} is a (proper) isometric action with codimension one maximal orbits.

Properties

- The orbit space is homeomorphic to $\mathbb{S}^{1},[0,1], \mathbb{R}$ or $[0,1)$.
- All the orbits, except at most two, are hypersurfaces.

Cohomogeneity one actions

\bar{M} complete connected Riemannian manifold
A cohomogeneity one action on \bar{M} is a (proper) isometric action with codimension one maximal orbits.

Properties

- The orbit space is homeomorphic to $\mathbb{S}^{1},[0,1], \mathbb{R}$ or $[0,1)$.
- All the orbits, except at most two, are hypersurfaces.

$\mathrm{SO}(2) \circlearrowright \mathbb{R}^{2}$
$A \cdot v=A v$

$$
\begin{gathered}
\mathbb{R} \circlearrowright \mathbb{R}^{2} \\
t \cdot v=v+t w
\end{gathered}
$$

$\mathrm{SO}(2) \times \mathbb{R} \circlearrowright \mathbb{R}^{3}$
$(A, t) \cdot v=\left(\begin{array}{ll}A & 0 \\ 0 & 1\end{array}\right) v+\binom{0}{t}$

$$
\mathrm{SO}(2) \circlearrowright \mathbb{S}^{2}
$$

$A \cdot v=\left(\begin{array}{ll}A & 0 \\ 0 & 1\end{array}\right) v$

Cohomogeneity one actions

\bar{M} complete connected Riemannian manifold
A cohomogeneity one action on \bar{M} is a (proper) isometric action with codimension one maximal orbits.

Properties

- The orbit space is homeomorphic to $\mathbb{S}^{1},[0,1], \mathbb{R}$ or $[0,1)$.
- All the orbits, except at most two, are hypersurfaces.

Two isometric actions of groups G_{1}, G_{2} on \bar{M} are orbit equivalent if there exists $\varphi \in \operatorname{Isom}(\bar{M})$ that maps each G_{1}-orbit to a G_{2}-orbit.

Cohomogeneity one actions

\bar{M} complete connected Riemannian manifold
A cohomogeneity one action on \bar{M} is a (proper) isometric action with codimension one maximal orbits.

Properties

- The orbit space is homeomorphic to $\mathbb{S}^{1},[0,1], \mathbb{R}$ or $[0,1)$.
- All the orbits, except at most two, are hypersurfaces.

Two isometric actions of groups G_{1}, G_{2} on \bar{M} are orbit equivalent if there exists $\varphi \in \operatorname{Isom}(\bar{M})$ that maps each G_{1}-orbit to a G_{2}-orbit.

Problem

Classify cohomogeneity one actions on \bar{M} up to orbit equivalence.

Cohomogeneity one actions

\bar{M} complete connected Riemannian manifold
A cohomogeneity one action on \bar{M} is a (proper) isometric action with codimension one maximal orbits.

Properties

- The orbit space is homeomorphic to $\mathbb{S}^{1},[0,1], \mathbb{R}$ or $[0,1)$.
- All the orbits, except at most two, are hypersurfaces.

Two isometric actions of groups G_{1}, G_{2} on \bar{M} are orbit equivalent if there exists $\varphi \in \operatorname{Isom}(\bar{M})$ that maps each G_{1}-orbit to a G_{2}-orbit.

Problem

Classify cohomogeneity one actions on \bar{M} up to orbit equivalence.
A homogeneous hypersurface is a codimension one orbit of some subgroup of Isom (\bar{M}).

Cohomogeneity one actions

\bar{M} complete connected Riemannian manifold
A cohomogeneity one action on \bar{M} is a (proper) isometric action with codimension one maximal orbits.

Properties

- The orbit space is homeomorphic to $\mathbb{S}^{1},[0,1], \mathbb{R}$ or $[0,1)$.
- All the orbits, except at most two, are hypersurfaces.

Two isometric actions of groups G_{1}, G_{2} on \bar{M} are orbit equivalent if there exists $\varphi \in \operatorname{Isom}(\bar{M})$ that maps each G_{1}-orbit to a G_{2}-orbit.

Equivalent problem

Classify homogeneous hypersurfaces in \bar{M} up to congruence.
A homogeneous hypersurface is a codimension one orbit of the action of some subgroup of $\operatorname{Isom}(\bar{M})$.

Homogeneous hyp. in rank one symmetric spaces

Homogeneous hypersurfaces have been classified, up to congruence, in

Homogeneous hyp. in rank one symmetric spaces

Homogeneous hypersurfaces have been classified, up to congruence, in

- Euclidean spaces \mathbb{R}^{n} [Somigliana (1918), Segre (1938)]
- Real hyperbolic spaces $\mathbb{R} H^{n}$ [Cartan (1939)]
- Round spheres \mathbb{S}^{n} [Hsiang, Lawson (1971), Takagi, Takahashi (1972)]

Homogeneous hyp. in rank one symmetric spaces

Homogeneous hypersurfaces have been classified, up to congruence, in

- Euclidean spaces \mathbb{R}^{n} [Somigliana (1918), Segre (1938)]
- Real hyperbolic spaces $\mathbb{R} H^{n}$ [Cartan (1939)]
- Round spheres \mathbb{S}^{n} [Hsiang, Lawson (1971), Takagi, Takahashi (1972)]
- Complex projective spaces $\mathbb{C} P^{n}$ [Takagi (1973)]
- Quaternionic projective spaces $\mathbb{H} P^{n}$ [D'Atri (1979), Iwata (1978)]
- Cayley projective plane $\mathbb{O} P^{2}$ [Iwata (1981)]

Homogeneous hyp. in rank one symmetric spaces

Homogeneous hypersurfaces have been classified, up to congruence, in

- Euclidean spaces \mathbb{R}^{n} [Somigliana (1918), Segre (1938)]
- Real hyperbolic spaces $\mathbb{R} H^{n}$ [Cartan (1939)]
- Round spheres \mathbb{S}^{n} [Hsiang, Lawson (1971), Takagi, Takahashi (1972)]
- Complex projective spaces $\mathbb{C} P^{n}$ [Takagi (1973)]
- Quaternionic projective spaces $\mathbb{H} P^{n}$ [D'Atri (1979), Iwata (1978)]
- Cayley projective plane $\mathbb{D} P^{2}$ [Iwata (1981)]
- Irreducible compact symmetric spaces [Kollross (2002)]

Homogeneous hyp. in rank one symmetric spaces

Homogeneous hypersurfaces have been classified, up to congruence, in

- Euclidean spaces \mathbb{R}^{n} [Somigliana (1918), Segre (1938)]
- Real hyperbolic spaces $\mathbb{R} H^{n}$ [Cartan (1939)]
- Round spheres \mathbb{S}^{n} [Hsiang, Lawson (1971), Takagi, Takahashi (1972)]
- Complex projective spaces $\mathbb{C} P^{n}$ [Takagi (1973)]
- Quaternionic projective spaces $\mathbb{H} P^{n}$ [D'Atri (1979), Iwata (1978)]
- Cayley projective plane $\mathbb{D} P^{2}$ [Iwata (1981)]
- Irreducible compact symmetric spaces [Kollross (2002)]
- Hyperbolic spaces $\mathbb{C} H^{n}, \mathbb{H} H^{2}, \mathbb{O} H^{2}$ [Berndt, Tamaru (2007)]

Homogeneous hyp. in rank one symmetric spaces

Homogeneous hypersurfaces have been classified, up to congruence, in

- Euclidean spaces \mathbb{R}^{n} [Somigliana (1918), Segre (1938)]
- Real hyperbolic spaces $\mathbb{R} H^{n}$ [Cartan (1939)]
- Round spheres \mathbb{S}^{n} [Hsiang, Lawson (1971), Takagi, Takahashi (1972)]
- Complex projective spaces $\mathbb{C} P^{n}$ [Takagi (1973)]
- Quaternionic projective spaces $\mathbb{H} P^{n}$ [D'Atri (1979), Iwata (1978)]
- Cayley projective plane $\mathbb{O} P^{2}$ [Iwata (1981)]
- Irreducible compact symmetric spaces [Kollross (2002)]
- Hyperbolic spaces $\mathbb{C} H^{n}, \mathbb{H} H^{2}, \mathbb{O} H^{2}$ [Berndt, Tamaru (2007)]

Question

What happens with homogeneous hypersurfaces in $\mathbb{H} H^{n}, n \geq 3$?

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom．}}{\cong} A N$ symmetric space of noncompact type and rank one

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{8}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \operatorname{Sp}(n-1)$	$\mathrm{Spin}(7)$

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{4}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \operatorname{Sp}(n-1)$	$\mathrm{Spin}(7)$

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F} H^{n}$, one of the following holds:

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{4}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \operatorname{Sp}(n-1)$	$\mathrm{Spin}(7)$

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F} H^{n}$, one of the following holds:

- There is a totally geodesic singular orbit.

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{8}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F} H^{n}$, one of the following holds:

- There is a totally geodesic singular orbit.
- Its orbit foliation is regular.

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}}{}=0(1, n)$			
$\mathrm{SO}(n)$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{8}^{-20}}{\mathrm{Spin}(9)}$	
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F} H^{n}$, one of the following holds:

- There is a totally geodesic singular orbit.
- Its orbit foliation is regular.
- There is a non-totally geodesic singular orbit $S_{\mathfrak{w}}$, where $\mathfrak{w} \subsetneq \mathfrak{v}$ is such that $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp}.

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{8}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

One totally geodesic singular orbit [Berndt, Brück (2001)]

Tubes around tot. geodesic submanifolds P in $\mathbb{F} H^{n}$ are homogeneous iff

- in $\mathbb{R} H^{n}: P=\{$ point $\}, \mathbb{R} H^{1}, \ldots, \mathbb{R} H^{n-1}$
- in $\mathbb{C} H^{n}: P=\{$ point $\}, \mathbb{C} H^{1}, \ldots, \mathbb{C} H^{n-1}, \mathbb{R} H^{n}$
- in $\mathbb{H} H^{n}: P=\{$ point $\}, \mathbb{H} H^{1}, \ldots, \mathbb{H} H^{n-1}, \mathbb{C} H^{n}$
- in $\mathbb{O} H^{2}: P=\{$ point $\}, \mathbb{O} H^{1}, \mathbb{H} H^{2}$

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}}{}=0(1, n)$			
$\mathrm{SO}(n)$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{8}^{-20}}{\mathrm{Spin}(9)}$	
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F} H^{n}$, one of the following holds:

- There is a totally geodesic singular orbit.
- Its orbit foliation is regular.
- There is a non-totally geodesic singular orbit $S_{\mathfrak{w}}$, where $\mathfrak{w} \subsetneq \mathfrak{v}$ is such that $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp}.

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{8}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

No singular orbits [Berndt, Tamaru (2003)]

Orbit equivalent to the action of:

- $N \sim$ horosphere foliation
- The connected subgroup of G with Lie algebra $\mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{z}$, where \mathfrak{w} is a (real) hyperplane in \mathfrak{v}

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}}{}=0(1, n)$			
$\mathrm{SO}(n)$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{8}^{-20}}{\mathrm{Spin}(9)}$	
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F} H^{n}$, one of the following holds:

- There is a totally geodesic singular orbit.
- Its orbit foliation is regular.
- There is a non-totally geodesic singular orbit $S_{\mathfrak{w}}$, where $\mathfrak{w} \subsetneq \mathfrak{v}$ is such that $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp}.

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{4}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

A non-totally geodesic singular orbit [Berndt, Tamaru (2007)]
$\mathfrak{w} \subsetneq \mathfrak{v}$ subspace $\Longrightarrow \mathfrak{s}_{\mathfrak{w}}=\mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{z}$ is a Lie algebra
$S_{\mathfrak{w}}$ connected subgroup of $A N$ with Lie algebra $\mathfrak{s}_{\mathfrak{w}}$
The tubes around $S_{\mathfrak{w}}$ are homogeneous if and only if $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp} (the orthogonal complement of \mathfrak{w} in \mathfrak{v})

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{4}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

A non-totally geodesic singular orbit [Berndt, Tamaru (2007)] $\mathfrak{w} \subsetneq \mathfrak{v}$ subspace $\Longrightarrow \mathfrak{s}_{\mathfrak{w}}=\mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{z}$ is a Lie algebra $S_{\mathfrak{w}}$ connected subgroup of $A N$ with Lie algebra $\mathfrak{s}_{\mathfrak{w}}$ The tubes around $S_{\mathfrak{w}}$ are homogeneous if and only if $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp} (the orthogonal complement of \mathfrak{w} in \mathfrak{v})

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{4}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

A non-totally geodesic singular orbit [Berndt, Tamaru (2007)] $\mathfrak{w} \subsetneq \mathfrak{v}$ subspace $\Longrightarrow \mathfrak{s}_{\mathfrak{w}}=\mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{z}$ is a Lie algebra $S_{\mathfrak{w}}$ connected subgroup of $A N$ with Lie algebra $\mathfrak{s}_{\mathfrak{w}}$ The tubes around $S_{\mathfrak{w}}$ are homogeneous if and only if $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp} (the orthogonal complement of \mathfrak{w} in \mathfrak{v})

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{8}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F} H^{n}$, one of the following holds:

- There is a totally geodesic singular orbit.
- Its orbit foliation is regular.
- There is a non-totally geodesic singular orbit $S_{\mathfrak{w}}$, where $\mathfrak{w} \subsetneq \mathfrak{v}$ is such that $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp}.

The study of the last case was carried out for $\mathbb{R} H^{n}, \mathbb{C} H^{n}, \mathbb{H} H^{2}$ and $\mathbb{O} H^{2}$

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{8}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F} H^{n}$, one of the following holds:

- There is a totally geodesic singular orbit.
- Its orbit foliation is regular.
- There is a non-totally geodesic singular orbit $S_{\mathfrak{w}}$, where $\mathfrak{w} \subsetneq \mathfrak{v}$ is such that $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp}.

Analyze the last case for $\mathbb{H} H^{n}, n \geq 3$, to conclude the classification.

Cohomogeneity one actions on hyperbolic spaces

$\mathbb{F} H^{n} \cong G / K \stackrel{\text { isom. }}{\cong} A N$ symmetric space of noncompact type and rank one In particular, $\mathfrak{a} \simeq \mathbb{R}, \mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ and $K_{0}:=N_{K}(\mathfrak{a})$.

\bar{M}	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
	$\frac{\mathrm{SO}^{0}(1, n)}{\mathrm{SO}(n)}$	$\frac{\mathrm{SU}(1, n)}{\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n))}$	$\frac{\mathrm{Sp}(1, n)}{\mathrm{Sp}(1) \mathrm{Sp}(n)}$	$\frac{\mathrm{F}_{8}^{-20}}{\mathrm{Spin}(9)}$
\mathfrak{v}	\mathbb{R}^{n-1}	\mathbb{C}^{n-1}	\mathbb{H}^{n-1}	\mathbb{O}
$\operatorname{dim} \mathfrak{z}$	0	1	3	7
K_{0}	$\mathrm{SO}(n-1)$	$\mathrm{U}(n-1)$	$\mathrm{Sp}(1) \mathrm{Sp}(n-1)$	$\mathrm{Spin}(7)$

Theorem [Berndt, Tamaru (2007)]

For a cohomogeneity one action on $\mathbb{F} H^{n}$, one of the following holds:

- There is a totally geodesic singular orbit.
- Its orbit foliation is regular.
- There is a non-totally geodesic singular orbit $S_{\mathfrak{w}}$, where $\mathfrak{w} \subsetneq \mathfrak{v}$ is such that $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp}.

Analyze the last case for $\mathbb{H} H^{n}, n \geq 3$, to conclude the classification.

Cohomogeneity one actions on $\mathbb{H} H^{n+1}$

Problem

Classify cohomogeneity one actions on $\mathbb{H} H^{n+1}, n \geq 2$.

Cohomogeneity one actions on $\mathbb{H} H^{n+1}$

Problem

Classify cohomogeneity one actions on $\mathbb{H} H^{n+1}, n \geq 2$.

Equivalent problem [Berndt, Tamaru (2007)]

Classify real subspaces $\mathfrak{w} \subset \mathfrak{v} \cong \mathbb{H}^{n}$ such that $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp}, up to conjugation by $k \in K_{0}$.

Cohomogeneity one actions on $\mathbb{H} H^{n+1}$

Problem

Classify cohomogeneity one actions on $\mathbb{H} H^{n+1}, n \geq 2$.

Equivalent problem [Berndt, Tamaru (2007)]

Classify real subspaces $\mathfrak{w} \subset \mathfrak{v} \cong \mathbb{H}^{n}$ such that $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp}, up to conjugation by $k \in K_{0}$.
$K_{0} \cong \operatorname{Sp}(n) \operatorname{Sp}(1)$ acts on $\mathfrak{v} \cong \mathbb{H}^{n} \operatorname{via}(A, q) \cdot v=A v q^{-1}$

Cohomogeneity one actions on $\mathbb{H} H^{n+1}$

Problem

Classify cohomogeneity one actions on $\mathbb{H} H^{n+1}, n \geq 2$.

Equivalent problem [Berndt, Tamaru (2007)]

Classify real subspaces $\mathfrak{w} \subset \mathfrak{v} \cong \mathbb{H}^{n}$ such that $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp}, up to conjugation by $k \in K_{0}$.
$K_{0} \cong \operatorname{Sp}(n) \operatorname{Sp}(1)$ acts on $\mathfrak{v} \cong \mathbb{H}^{n}$ via $(A, q) \cdot v=A v q^{-1}$

Definition

A real subspace V of \mathbb{H}^{n} is protohomogeneous if there is a subgroup of $\operatorname{Sp}(n) \operatorname{Sp}(1)$ that acts transitively on the unit sphere of V.

Cohomogeneity one actions on $\mathbb{H} H^{n+1}$

Problem

Classify cohomogeneity one actions on $\mathbb{H} H^{n+1}, n \geq 2$.

Equivalent problem [Berndt, Tamaru (2007)]

Classify real subspaces $\mathfrak{w} \subset \mathfrak{v} \cong \mathbb{H}^{n}$ such that $N_{K_{0}}(\mathfrak{w})$ acts transitively on the unit sphere of \mathfrak{w}^{\perp}, up to conjugation by $k \in K_{0}$.
$K_{0} \cong \operatorname{Sp}(n) \operatorname{Sp}(1)$ acts on $\mathfrak{v} \cong \mathbb{H}^{n}$ via $(A, q) \cdot v=A v q^{-1}$

Definition

A real subspace V of \mathbb{H}^{n} is protohomogeneous if there is a subgroup of $\operatorname{Sp}(n) \operatorname{Sp}(1)$ that acts transitively on the unit sphere of V.

Equivalent problem

Classify protohomogeneous subspaces of \mathbb{H}^{n}, up to some $T \in \operatorname{Sp}(n) \operatorname{Sp}(1)$.

Quaternionic Kähler angle

$\mathfrak{J} \subset \operatorname{End}_{\mathbb{R}}\left(\mathbb{H}^{n}\right)$ quaternionic structure of \mathbb{H}^{n}
$\left\{J_{1}, J_{2}, J_{3}\right\}$ canonical basis of $\mathfrak{J}: J_{i}^{2}=-\mathrm{Id}, J_{i} J_{i}^{\top}=\mathrm{Id}, J_{i} J_{i+1}=J_{i+2}$

Quaternionic Kähler angle

$\mathfrak{J} \subset \operatorname{End}_{\mathbb{R}}\left(\mathbb{H}^{n}\right)$ quaternionic structure of \mathbb{H}^{n}
$\left\{J_{1}, J_{2}, J_{3}\right\}$ canonical basis of $\mathfrak{J}: J_{i}^{2}=-\mathrm{Id}, J_{i} J_{i}^{\top}=\mathrm{Id}, J_{i} J_{i+1}=J_{i+2}$
V real subspace of $\mathbb{H}^{n}, \quad v \in V \backslash\{0\}, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection

Quaternionic Kähler angle

$\mathfrak{J} \subset \operatorname{End}_{\mathbb{R}}\left(\mathbb{H}^{n}\right)$ quaternionic structure of \mathbb{H}^{n}
$\left\{J_{1}, J_{2}, J_{3}\right\}$ canonical basis of $\mathfrak{J}: J_{i}^{2}=-\mathrm{Id}, J_{i} J_{i}^{\top}=\mathrm{Id}, J_{i} J_{i+1}=J_{i+2}$
V real subspace of $\mathbb{H}^{n}, \quad v \in V \backslash\{0\}, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection

Definition

Consider the symmetric bilinear form

$$
L_{v}: \mathfrak{J} \times \mathfrak{J} \rightarrow \mathbb{R}, \quad L_{v}\left(J, J^{\prime}\right):=\left\langle\pi J v, \pi J^{\prime} v\right\rangle
$$

The quaternionic Kähler angle of v with respect to V is the triple $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$, with $\varphi_{1} \leq \varphi_{2} \leq \varphi_{3}$, such that the eigenvalues of L_{v} are $\cos ^{2}\left(\varphi_{i}\right)\|v\|^{2}, i=1,2,3$.

Quaternionic Kähler angle

$\mathfrak{J} \subset \operatorname{End}_{\mathbb{R}}\left(\mathbb{H}^{n}\right)$ quaternionic structure of \mathbb{H}^{n}
$\left\{J_{1}, J_{2}, J_{3}\right\}$ canonical basis of $\mathfrak{J}: J_{i}^{2}=-\mathrm{Id}, J_{i} J_{i}^{\top}=\mathrm{Id}, J_{i} J_{i+1}=J_{i+2}$
V real subspace of $\mathbb{H}^{n}, \quad v \in V \backslash\{0\}, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection

Definition

Consider the symmetric bilinear form

$$
L_{v}: \mathfrak{J} \times \mathfrak{J} \rightarrow \mathbb{R}, \quad L_{v}\left(J, J^{\prime}\right):=\left\langle\pi J v, \pi J^{\prime} v\right\rangle
$$

The quaternionic Kähler angle of v with respect to V is the triple $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$, with $\varphi_{1} \leq \varphi_{2} \leq \varphi_{3}$, such that the eigenvalues of L_{v} are $\cos ^{2}\left(\varphi_{i}\right)\|v\|^{2}, i=1,2,3$.

There is a canonical basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} made of eigenvectors of L_{v}.

Quaternionic Kähler angle

$\mathfrak{J} \subset \operatorname{End}_{\mathbb{R}}\left(\mathbb{H}^{n}\right)$ quaternionic structure of \mathbb{H}^{n}
$\left\{J_{1}, J_{2}, J_{3}\right\}$ canonical basis of $\mathfrak{J}: J_{i}^{2}=-\mathrm{Id}, J_{i} J_{i}^{\top}=\mathrm{Id}, J_{i} J_{i+1}=J_{i+2}$
V real subspace of $\mathbb{H}^{n}, \quad v \in V \backslash\{0\}, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection

Definition

Consider the symmetric bilinear form

$$
L_{v}: \mathfrak{J} \times \mathfrak{J} \rightarrow \mathbb{R}, \quad L_{v}\left(J, J^{\prime}\right):=\left\langle\pi J v, \pi J^{\prime} v\right\rangle
$$

The quaternionic Kähler angle of v with respect to V is the triple $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$, with $\varphi_{1} \leq \varphi_{2} \leq \varphi_{3}$, such that the eigenvalues of L_{v} are $\cos ^{2}\left(\varphi_{i}\right)\|v\|^{2}, i=1,2,3$.

There is a canonical basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} made of eigenvectors of L_{v}.

Proposition [Berndt, Brück (2001)]

$V \subset \mathbb{H}^{n}$ protohomogeneous $\Rightarrow V$ has constant quaternionic Kähler angle.

Some known results

There are subspaces V with constant quaternionic Kähler angle ($0,0,0$), $(0,0, \pi / 2),(0, \pi / 2, \pi / 2),(\pi / 2, \pi / 2, \pi / 2),(\varphi, \pi / 2, \pi / 2),(0, \varphi, \varphi) \ldots$

Some known results

There are subspaces V with constant quaternionic Kähler angle ($0,0,0$), $(0,0, \pi / 2),(0, \pi / 2, \pi / 2),(\pi / 2, \pi / 2, \pi / 2),(\varphi, \pi / 2, \pi / 2),(0, \varphi, \varphi) \ldots$

Remark

Not every triple arises as the constant quaternionic Kähler angle of a subspace V, e.g. $(0,0, \varphi), \varphi \in(0, \pi / 2)$

Some known results

There are subspaces V with constant quaternionic Kähler angle ($0,0,0$), $(0,0, \pi / 2),(0, \pi / 2, \pi / 2),(\pi / 2, \pi / 2, \pi / 2),(\varphi, \pi / 2, \pi / 2),(0, \varphi, \varphi) \ldots$

Remark

Not every triple arises as the constant quaternionic Kähler angle of a subspace V, e.g. $(0,0, \varphi), \varphi \in(0, \pi / 2)$

Some known results

There are subspaces V with constant quaternionic Kähler angle ($0,0,0$), $(0,0, \pi / 2),(0, \pi / 2, \pi / 2),(\pi / 2, \pi / 2, \pi / 2),(\varphi, \pi / 2, \pi / 2),(0, \varphi, \varphi) \ldots$

Remark

Not every triple arises as the constant quaternionic Kähler angle of a subspace V, e.g. $(0,0, \varphi), \varphi \in(0, \pi / 2)$

Question

Does constant quaternionic Kähler angle imply protohomogeneous?

Some known results

There are subspaces V with constant quaternionic Kähler angle ($0,0,0$), $(0,0, \pi / 2),(0, \pi / 2, \pi / 2),(\pi / 2, \pi / 2, \pi / 2),(\varphi, \pi / 2, \pi / 2),(0, \varphi, \varphi) \ldots$

Remark

Not every triple arises as the constant quaternionic Kähler angle of a subspace V, e.g. $(0,0, \varphi), \varphi \in(0, \pi / 2)$

Question

Does constant quaternionic Kähler angle imply protohomogeneous?
Theorem [Díaz-Ramos, Domínguez-Vázquez (2013)]
The tubes around $S_{\mathfrak{w}}$ have constant principal curvatures if and only if $\mathfrak{w}^{\perp} \subset \mathfrak{v}$ has constant quaternionic Kähler angle.

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$
$\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$
$\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ \mathbb{S}^{k-1} unit sphere of V,

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$
$\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ \mathbb{S}^{k-1} unit sphere of $V, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection onto V

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$
$\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ \mathbb{S}^{k-1} unit sphere of $V, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection onto V $\Delta_{v}:=\left\{\pi J_{V}: J \in \mathfrak{J}\right\}$ smooth distribution on \mathbb{S}^{k-1}, \quad rank $\Delta \in\{0,1,2,3\}$

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$
$\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
\mathbb{S}^{k-1} unit sphere of $V, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection onto V
$\Delta_{v}:=\{\pi J v: J \in \mathfrak{J}\}$ smooth distribution on \mathbb{S}^{k-1}, \quad rank $\Delta \in\{0,1,2,3\}$
Applying the generalized hairy ball theorem [Adams (1963)]

- If $k \geq 5$ is odd, then $\Phi(V)=(\pi / 2, \pi / 2, \pi / 2)$.

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$
$\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
\mathbb{S}^{k-1} unit sphere of $V, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection onto V
$\Delta_{v}:=\{\pi J v: J \in \mathfrak{J}\}$ smooth distribution on \mathbb{S}^{k-1}, \quad rank $\Delta \in\{0,1,2,3\}$
Applying the generalized hairy ball theorem [Adams (1963)]

- If $k \geq 5$ is odd, then $\Phi(V)=(\pi / 2, \pi / 2, \pi / 2)$.
- If $k \equiv 2(\bmod 4)$, then $\Phi(V)=(\varphi, \pi / 2, \pi / 2)$, for some $\varphi \in[0, \pi / 2]$.

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$
$\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ \mathbb{S}^{k-1} unit sphere of $V, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection onto V $\Delta_{v}:=\left\{\pi J_{V}: J \in \mathfrak{J}\right\}$ smooth distribution on \mathbb{S}^{k-1}, \quad rank $\Delta \in\{0,1,2,3\}$

Applying the generalized hairy ball theorem [Adams (1963)]

- If $k \geq 5$ is odd, then $\Phi(V)=(\pi / 2, \pi / 2, \pi / 2)$.
- If $k \equiv 2(\bmod 4)$, then $\Phi(V)=(\varphi, \pi / 2, \pi / 2)$, for some $\varphi \in[0, \pi / 2]$.
- If $k=3$, then $\Phi(V)=(\varphi, \varphi, \pi / 2)$, for some $\varphi \in[0, \pi / 2]$.

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$
$\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
\mathbb{S}^{k-1} unit sphere of $V, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection onto V
$\Delta_{v}:=\{\pi J v: J \in \mathfrak{J}\}$ smooth distribution on \mathbb{S}^{k-1}, \quad rank $\Delta \in\{0,1,2,3\}$
Applying the generalized hairy ball theorem [Adams (1963)]

- If $k \geq 5$ is odd, then $\Phi(V)=(\pi / 2, \pi / 2, \pi / 2)$.
- If $k \equiv 2(\bmod 4)$, then $\Phi(V)=(\varphi, \pi / 2, \pi / 2)$, for some $\varphi \in[0, \pi / 2]$.
- If $k=3$, then $\Phi(V)=(\varphi, \varphi, \pi / 2)$, for some $\varphi \in[0, \pi / 2]$.

Remaining cases

- Classify subspaces V with $k=3$ and $\Phi(V)=(\varphi, \varphi, \pi / 2)$.
- Case $k \equiv 0(\bmod 4)$.

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$
$\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
\mathbb{S}^{k-1} unit sphere of $V, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection onto V
$\Delta_{v}:=\{\pi J v: J \in \mathfrak{J}\}$ smooth distribution on \mathbb{S}^{k-1}, \quad rank $\Delta \in\{0,1,2,3\}$
Applying the generalized hairy ball theorem [Adams (1963)]

- If $k \geq 5$ is odd, then $\Phi(V)=(\pi / 2, \pi / 2, \pi / 2)$.
- If $k \equiv 2(\bmod 4)$, then $\Phi(V)=(\varphi, \pi / 2, \pi / 2)$, for some $\varphi \in[0, \pi / 2]$.
- If $k=3$, then $\Phi(V)=(\varphi, \varphi, \pi / 2)$, for some $\varphi \in[0, \pi / 2]$.

Remaining cases

- Classify subspaces V with $k=3$ and $\Phi(V)=(\varphi, \varphi, \pi / 2)$.
- Case $k \equiv 0(\bmod 4)$.

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$
$\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
\mathbb{S}^{k-1} unit sphere of $V, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection onto V
$\Delta_{v}:=\{\pi J v: J \in \mathfrak{J}\}$ smooth distribution on \mathbb{S}^{k-1}, \quad rank $\Delta \in\{0,1,2,3\}$
Applying the generalized hairy ball theorem [Adams (1963)]

- If $k \geq 5$ is odd, then $\Phi(V)=(\pi / 2, \pi / 2, \pi / 2)$.
- If $k \equiv 2(\bmod 4)$, then $\Phi(V)=(\varphi, \pi / 2, \pi / 2)$, for some $\varphi \in[0, \pi / 2]$.
- If $k=3$, then $\Phi(V)=(\varphi, \varphi, \pi / 2)$, for some $\varphi \in[0, \pi / 2]$.

Remaining cases

- Classify subspaces V with $k=3$ and $\Phi(V)=(\varphi, \varphi, \pi / 2)$.
- Case $k \equiv 0(\bmod 4)$.

Hairy ball method

V protohomogeneous real subspace of $\mathbb{H}^{n}, \operatorname{dim} V=k$
$\Rightarrow V$ constant quaternionic Kähler angle $\Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
\mathbb{S}^{k-1} unit sphere of $V, \quad \pi: \mathbb{H}^{n} \rightarrow V$ orthogonal projection onto V
$\Delta_{v}:=\{\pi J v: J \in \mathfrak{J}\}$ smooth distribution on \mathbb{S}^{k-1}, \quad rank $\Delta \in\{0,1,2,3\}$
Applying the generalized hairy ball theorem [Adams (1963)]

- If $k \geq 5$ is odd, then $\Phi(V)=(\pi / 2, \pi / 2, \pi / 2)$.
- If $k \equiv 2(\bmod 4)$, then $\Phi(V)=(\varphi, \pi / 2, \pi / 2)$, for some $\varphi \in[0, \pi / 2]$.
- If $k=3$, then $\Phi(V)=(\varphi, \varphi, \pi / 2)$, for some $\varphi \in[0, \pi / 2]$.

Remaining cases

- Classify subspaces V with $k=3$ and $\Phi(V)=(\varphi, \varphi, \pi / 2)$.
- Case $k \equiv 0(\bmod 4)$. ?

Protohomogeneous subspaces in \mathbb{H}^{n}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^{n}$ with $\operatorname{dim} V=k=4 r$

Protohomogeneous subspaces in \mathbb{H}^{n}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^{n}$ with $\operatorname{dim} V=k=4 r$
V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$

Protohomogeneous subspaces in \mathbb{H}^{n}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^{n}$ with $\operatorname{dim} V=k=4 r$
V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ Assume $k \geq 5$.

Protohomogeneous subspaces in \mathbb{H}^{n}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^{n}$ with $\operatorname{dim} V=k=4 r$
V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ Assume $k \geq 5$. For simplicity, assume $\varphi_{3} \neq \pi / 2$.

Protohomogeneous subspaces in \mathbb{H}^{n}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^{n}$ with $\operatorname{dim} V=k=4 r$
V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ Assume $k \geq 5$. For simplicity, assume $\varphi_{3} \neq \pi / 2$.
(1) There exists a canonical basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J}

Protohomogeneous subspaces in \mathbb{H}^{n}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^{n}$ with $\operatorname{dim} V=k=4 r$
V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ Assume $k \geq 5$. For simplicity, assume $\varphi_{3} \neq \pi / 2$.
(1) There exists a canonical basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_{i} is φ_{i}.

Protohomogeneous subspaces in \mathbb{H}^{n}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^{n}$ with $\operatorname{dim} V=k=4 r$
V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ Assume $k \geq 5$. For simplicity, assume $\varphi_{3} \neq \pi / 2$.
(1) There exists a canonical basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_{i} is φ_{i}.
(2) Define $P_{i}=\frac{1}{\cos \varphi_{i}} \pi J_{i}: V \rightarrow V$.

Protohomogeneous subspaces in \mathbb{H}^{n}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^{n}$ with $\operatorname{dim} V=k=4 r$
V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ Assume $k \geq 5$. For simplicity, assume $\varphi_{3} \neq \pi / 2$.
(1) There exists a canonical basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_{i} is φ_{i}.
(2) Define $P_{i}=\frac{1}{\cos \varphi_{i}} \pi J_{i}: V \rightarrow V$. Then $P_{i} P_{j}+P_{j} P_{i}=-2 \delta_{i j} \mathrm{Id}$.

Protohomogeneous subspaces in \mathbb{H}^{n}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^{n}$ with $\operatorname{dim} V=k=4 r$
V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ Assume $k \geq 5$. For simplicity, assume $\varphi_{3} \neq \pi / 2$.
(1) There exists a canonical basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_{i} is φ_{i}.
(2) Define $P_{i}=\frac{1}{\cos \varphi_{i}} \pi J_{i}: V \rightarrow V$. Then $P_{i} P_{j}+P_{j} P_{i}=-2 \delta_{i j}$ Id.
(3) $\left\{P_{1}, P_{2}, P_{3}\right\}$ induces a structure of $\mathrm{Cl}(3)$-module on V.

Protohomogeneous subspaces in \mathbb{H}^{n}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^{n}$ with $\operatorname{dim} V=k=4 r$
V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ Assume $k \geq 5$. For simplicity, assume $\varphi_{3} \neq \pi / 2$.
(1) There exists a canonical basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_{i} is φ_{i}.
(2) Define $P_{i}=\frac{1}{\cos \varphi_{i}} \pi J_{i}: V \rightarrow V$. Then $P_{i} P_{j}+P_{j} P_{i}=-2 \delta_{i j} \mathrm{Id}$.
(3) $\left\{P_{1}, P_{2}, P_{3}\right\}$ induces a structure of $\mathrm{Cl}(3)$-module on V.
(9) $V=\left(\bigoplus V_{+}\right) \oplus\left(\bigoplus V_{-}\right)$, where V_{+}and V_{-}are the two inequivalent irreducible $\mathrm{Cl}(3)$-modules, $\operatorname{dim} V_{ \pm}=4$.

Protohomogeneous subspaces in \mathbb{H}^{n}

Problem

Classify protohomogeneous real subspaces $V \subset \mathbb{H}^{n}$ with $\operatorname{dim} V=k=4 r$
V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ Assume $k \geq 5$. For simplicity, assume $\varphi_{3} \neq \pi / 2$.
(1) There exists a canonical basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} such that the Kähler angle of any $v \in \mathbb{S}^{k-1}$ w.r.t. V and the complex structure J_{i} is φ_{i}.
(2) Define $P_{i}=\frac{1}{\cos \varphi_{i}} \pi J_{i}: V \rightarrow V$. Then $P_{i} P_{j}+P_{j} P_{i}=-2 \delta_{i j} \mathrm{Id}$.
(3) $\left\{P_{1}, P_{2}, P_{3}\right\}$ induces a structure of $C l(3)$-module on V.
(9) $V=\left(\bigoplus V_{+}\right) \oplus\left(\bigoplus V_{-}\right)$, where V_{+}and V_{-}are the two inequivalent irreducible $C l(3)$-modules, $\operatorname{dim} V_{ \pm}=4$.
(5) Each factor has constant quaternionic Kähler angle $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$.

Protohomogeneous subspaces in \mathbb{H}^{n}

V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
$V=\left(\bigoplus V_{+}\right) \oplus\left(\bigoplus V_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $C l(3)$-modules $\operatorname{dim} V_{ \pm}=4, \Phi\left(V_{ \pm}\right)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$

Protohomogeneous subspaces in \mathbb{H}^{n}

V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ $V=\left(\bigoplus V_{+}\right) \oplus\left(\bigoplus V_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $\mathrm{Cl}(3)$-modules
$\operatorname{dim} V_{ \pm}=4, \Phi\left(V_{ \pm}\right)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
(0) There are two types of subspaces V of dimension 4:

- V_{+}, which exists if and only if $\cos \varphi_{1}+\cos \varphi_{2}+\cos \varphi_{3} \leq 1$.
- V_{-}, which exists if and only if $\cos \varphi_{1}+\cos \varphi_{2}-\cos \varphi_{3} \leq 1$.

Protohomogeneous subspaces in \mathbb{H}^{n}

V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ $V=\left(\bigoplus V_{+}\right) \oplus\left(\bigoplus V_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $C l(3)$-modules
$\operatorname{dim} V_{ \pm}=4, \Phi\left(V_{ \pm}\right)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
(0) There are two types of subspaces V of dimension 4:

- V_{+}, which exists if and only if $\cos \varphi_{1}+\cos \varphi_{2}+\cos \varphi_{3} \leq 1$.
- V_{-}, which exists if and only if $\cos \varphi_{1}+\cos \varphi_{2}-\cos \varphi_{3} \leq 1$.
(1) $\nexists T \in \operatorname{Sp}(n) \operatorname{Sp}(1)$ such that $T V_{+}=V_{-}$.

Protohomogeneous subspaces in \mathbb{H}^{n}

V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ $V=\left(\bigoplus V_{+}\right) \oplus\left(\bigoplus V_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $C l(3)$-modules $\operatorname{dim} V_{ \pm}=4, \Phi\left(V_{ \pm}\right)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
(0) There are two types of subspaces V of dimension 4:

- V_{+}, which exists if and only if $\cos \varphi_{1}+\cos \varphi_{2}+\cos \varphi_{3} \leq 1$.
- V_{-}, which exists if and only if $\cos \varphi_{1}+\cos \varphi_{2}-\cos \varphi_{3} \leq 1$.
(1) $\nexists T \in \operatorname{Sp}(n) \operatorname{Sp}(1)$ such that $T V_{+}=V_{-}$.
(8) If V, with $\operatorname{dim} V=4 r$, then either $V=\bigoplus V_{+}$or $V=\bigoplus V_{-}$.

Protohomogeneous subspaces in \mathbb{H}^{n}

V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ $V=\left(\bigoplus V_{+}\right) \oplus\left(\bigoplus V_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $\mathrm{Cl}(3)$-modules $\operatorname{dim} V_{ \pm}=4, \Phi\left(V_{ \pm}\right)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
(0) There are two types of subspaces V of dimension 4:

- V_{+}, which exists if and only if $\cos \varphi_{1}+\cos \varphi_{2}+\cos \varphi_{3} \leq 1$.
- V_{-}, which exists if and only if $\cos \varphi_{1}+\cos \varphi_{2}-\cos \varphi_{3} \leq 1$.
(1) $\nexists T \in \operatorname{Sp}(n) \operatorname{Sp}(1)$ such that $T V_{+}=V_{-}$.
(8) If V, with $\operatorname{dim} V=4 r$, then either $V=\bigoplus V_{+}$or $V=\bigoplus V_{-}$.

From this, one can obtain the classification of protohomogeneous subspaces of \mathbb{H}^{n}, and hence of cohomogeneity one actions on $\mathbb{H} H^{n+1}$.

Protohomogeneous subspaces in \mathbb{H}^{n}

V protohomogeneous subspace of $\mathbb{H}^{n}, \operatorname{dim} V=4 r, \Phi(V)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
$V=\left(\bigoplus V_{+}\right) \oplus\left(\bigoplus V_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $C l(3)$-modules
$\operatorname{dim} V_{ \pm}=4, \Phi\left(V_{ \pm}\right)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
(0) There are two types of subspaces V of dimension 4:

- V_{+}, which exists if and only if $\cos \varphi_{1}+\cos \varphi_{2}+\cos \varphi_{3} \leq 1$.
- V_{-}, which exists if and only if $\cos \varphi_{1}+\cos \varphi_{2}-\cos \varphi_{3} \leq 1$.
(1) $\nexists T \in \operatorname{Sp}(n) \operatorname{Sp}(1)$ such that $T V_{+}=V_{-}$.
(8) If V, with $\operatorname{dim} V=4 r$, then either $V=\bigoplus V_{+}$or $V=\bigoplus V_{-}$.

From this, one can obtain the classification of protohomogeneous subspaces of \mathbb{H}^{n}, and hence of cohomogeneity one actions on $\mathbb{H} H^{n+1}$.

Question

What if we mix both types of 4-dimensional subspaces, V_{+}and V_{-}?

New isoparametric hypersurfaces
$V=\left(\stackrel{r_{+}}{\bigoplus} v_{+}\right) \oplus\left(\stackrel{r_{-}}{\bigoplus} v_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $C l(3)$-modules, $\operatorname{dim} V_{ \pm}=4$

New isoparametric hypersurfaces
$v=\left(\stackrel{r_{+}}{\bigoplus} v_{+}\right) \oplus\left(\stackrel{r_{-}}{\bigoplus} v_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $C l(3)$-modules, $\operatorname{dim} V_{ \pm}=4$ $\Phi\left(V_{ \pm}\right)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ with $\cos \varphi_{1}+\cos \varphi_{2}+\cos \varphi_{3} \leq 1$

New isoparametric hypersurfaces
$V=\left(\stackrel{r_{+}}{\bigoplus} V_{+}\right) \oplus\left(\stackrel{r_{-}}{\bigoplus} V_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $C l(3)$-modules, $\operatorname{dim} V_{ \pm}=4$ $\Phi\left(V_{ \pm}\right)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ with $\cos \varphi_{1}+\cos \varphi_{2}+\cos \varphi_{3} \leq 1$

Theorem [Díaz-Ramos, Domínguez-Vázquez, RV (2019)]
If $r_{+}, r_{-} \geq 1$, then V is a non-protohomogeneous subspace of \mathbb{H}^{n} with constant quaternionic Kähler angle.

New isoparametric hypersurfaces
$V=\left(\stackrel{r_{+}}{\bigoplus} V_{+}\right) \oplus\left(\stackrel{r_{-}}{\bigoplus} V_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $C l(3)$-modules, $\operatorname{dim} V_{ \pm}=4$ $\Phi\left(V_{ \pm}\right)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ with $\cos \varphi_{1}+\cos \varphi_{2}+\cos \varphi_{3} \leq 1$

Theorem [Díaz-Ramos, Domínguez-Vázquez, RV (2019)]
If $r_{+}, r_{-} \geq 1$, then V is a non-protohomogeneous subspace of \mathbb{H}^{n} with constant quaternionic Kähler angle.
$\mathbb{H} H^{n+1} \stackrel{\text { isom. }}{=} A N, \quad \mathfrak{a} \oplus \mathfrak{n}=\mathfrak{a} \oplus \mathfrak{v} \oplus \mathfrak{z}, \quad \mathfrak{v} \cong \mathbb{H}^{n}$

New isoparametric hypersurfaces

$V=\left(\stackrel{r}{+}_{\bigoplus} V_{+}\right) \oplus\left(\stackrel{r_{-}}{\bigoplus} v_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $C l(3)$-modules, $\operatorname{dim} V_{ \pm}=4$ $\Phi\left(V_{ \pm}\right)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ with $\cos \varphi_{1}+\cos \varphi_{2}+\cos \varphi_{3} \leq 1$

Theorem [Díaz-Ramos, Domínguez-Vázquez, RV (2019)]
If $r_{+}, r_{-} \geq 1$, then V is a non-protohomogeneous subspace of \mathbb{H}^{n} with constant quaternionic Kähler angle.
$\mathbb{H} H^{n+1} \stackrel{\text { isom. }}{\cong} A N, \quad \mathfrak{a} \oplus \mathfrak{n}=\mathfrak{a} \oplus \mathfrak{v} \oplus \mathfrak{z}, \quad \mathfrak{v} \cong \mathbb{H}^{n}$
$\mathfrak{w}:=$ orthogonal complement of V in \mathfrak{v}
$\mathfrak{s}_{\mathfrak{w}}=\mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{z} \leadsto S_{\mathfrak{w}}$ connected subgroup of $A N$

New isoparametric hypersurfaces

$V=\left(\stackrel{r}{+}_{\bigoplus} V_{+}\right) \oplus\left(\stackrel{r_{-}}{\bigoplus} v_{-}\right)$
V_{+}and V_{-}two inequivalent irreducible $C l(3)$-modules, $\operatorname{dim} V_{ \pm}=4$ $\Phi\left(V_{ \pm}\right)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ with $\cos \varphi_{1}+\cos \varphi_{2}+\cos \varphi_{3} \leq 1$

Theorem [Díaz-Ramos, Domínguez-Vázquez, RV (2019)]
If $r_{+}, r_{-} \geq 1$, then V is a non-protohomogeneous subspace of \mathbb{H}^{n} with constant quaternionic Kähler angle.
$\mathbb{H} H^{n+1} \stackrel{\text { isom. }}{\cong} A N, \quad \mathfrak{a} \oplus \mathfrak{n}=\mathfrak{a} \oplus \mathfrak{v} \oplus \mathfrak{z}, \quad \mathfrak{v} \cong \mathbb{H}^{n}$
$\mathfrak{w}:=$ orthogonal complement of V in \mathfrak{v}
$\mathfrak{s}_{\mathfrak{w}}=\mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{z} \leadsto S_{\mathfrak{w}}$ connected subgroup of $A N$
Theorem [Díaz-Ramos, Domínguez-Vázquez, RV (2019)]
$S_{\mathfrak{w}}$ and the tubes around it define an inhomogeneous isoparametric family of hypersurfaces with constant principal curvatures in $\mathbb{H} H^{n+1}$.

