Symmetries and non-negative curvature of vector bundles

Symmetry and shape, Santiago de Compostela

David González

(Universidad Politécnica de Madrid, Spain)
29.10.2019

Based on joint work with Manuel Amann and Marcus Zibrowius

Outline

Outline

Problem: Classify manifolds admitting a metric of $s e c \geq 0$.

Outline

Problem: Classify manifolds admitting a metric of $s e c \geq 0$.

\mathbb{R}^{n}, non-compact (open)
\mathbb{S}^{n}, compact (closed)

Outline

Problem: Classify manifolds admitting a metric of $\sec \geq 0$.

$$
\mathbb{R}^{n}, \text { non-compact (open) }
$$

$$
\mathbb{S}^{n}, \text { compact (closed) }
$$

Goal: give (new) examples of open mfds with $\sec \geq 0$.

Outline

Problem: Classify manifolds admitting a metric of $\sec \geq 0$.

$$
\mathbb{R}^{n}, \text { non-compact (open) }
$$

$$
\mathbb{S}^{n}, \text { compact (closed) }
$$

Goal: give (new) examples of open mfds with $s e c \geq 0$.
0. Motivation

Outline

Problem: Classify manifolds admitting a metric of $\sec \geq 0$.

$$
\mathbb{R}^{n}, \text { non-compact (open) }
$$

$$
\mathbb{S}^{n}, \text { compact (closed) }
$$

Goal: give (new) examples of open mfds with $\sec \geq 0$.
0. Motivation

1. Methods to construct metrics (geometrical part)

Outline

Problem: Classify manifolds admitting a metric of $\sec \geq 0$.

$$
\mathbb{R}^{n}, \text { non-compact (open) }
$$

\mathbb{S}^{n}, compact (closed)

Goal: give (new) examples of open mfds with $s e c \geq 0$.
0. Motivation

1. Methods to construct metrics (geometrical part)
2. Apply the methods (topological part)

Soul Theorem (Cheeger and Gromoll, 1972):
Let (X, g) be an open manifold with $\sec (X) \geq 0$.

Soul Theorem (Cheeger and Gromoll, 1972):

Let (X, g) be an open manifold with $\sec (X) \geq 0$. Then there exists a closed submanifold $M \subset X$ (called soul) satisfying

Soul Theorem (Cheeger and Gromoll, 1972):

Let (X, g) be an open manifold with $\sec (X) \geq 0$. Then there exists a closed submanifold $M \subset X$ (called soul) satisfying

- M is totally convex and totally geodesic

Soul Theorem (Cheeger and Gromoll, 1972):

Let (X, g) be an open manifold with $\sec (X) \geq 0$. Then there exists a closed submanifold $M \subset X$ (called soul) satisfying

- M is totally convex and totally geodesic
- X is diffeomorphic to the normal bundle of M in X.

Soul Theorem (Cheeger and Gromoll, 1972):

Let (X, g) be an open manifold with $\sec (X) \geq 0$. Then there exists a closed submanifold $M \subset X$ (called soul) satisfying

- M is totally convex and totally geodesic
- X is diffeomorphic to the normal bundle of M in X.

Soul Theorem (Cheeger and Gromoll, 1972):

Let (X, g) be an open manifold with $\sec (X) \geq 0$. Then there exists a closed submanifold $M \subset X$ (called soul) satisfying

- M is totally convex and totally geodesic
- X is diffeomorphic to the normal bundle of M in X.

- Every closed M with $\sec (M) \geq 0$ can be a soul: $M \times \mathbb{R}^{k}$.

Soul Theorem (Cheeger and Gromoll, 1972):

Let (X, g) be an open manifold with $\sec (X) \geq 0$. Then there exists a closed submanifold $M \subset X$ (called soul) satisfying

- M is totally convex and totally geodesic
- X is diffeomorphic to the normal bundle of M in X.

- Every closed M with $\sec (M) \geq 0$ can be a soul: $M \times \mathbb{R}^{k}$.

Converse to the Soul Theorem:

Soul Theorem (Cheeger and Gromoll, 1972):

Let (X, g) be an open manifold with $\sec (X) \geq 0$. Then there exists a closed submanifold $M \subset X$ (called soul) satisfying

- M is totally convex and totally geodesic
- X is diffeomorphic to the normal bundle of M in X.

- Every closed M with $\sec (M) \geq 0$ can be a soul: $M \times \mathbb{R}^{k}$.

Converse to the Soul Theorem:

M closed with $\sec (M) \geq 0$

Soul Theorem (Cheeger and Gromoll, 1972):

Let (X, g) be an open manifold with $\sec (X) \geq 0$. Then there exists a closed submanifold $M \subset X$ (called soul) satisfying

- M is totally convex and totally geodesic
- X is diffeomorphic to the normal bundle of M in X.

- Every closed M with $\sec (M) \geq 0$ can be a soul: $M \times \mathbb{R}^{k}$.

Converse to the Soul Theorem:

Converse to the Soul Theorem:

Converse to the Soul Theorem:

- (Özaydin-Walschap, 1994) If $E \rightarrow T^{2}$ is non-trivial then E does NOT admit sec ≥ 0.

Converse to the Soul Theorem:

- (Özaydin-Walschap, 1994) If $E \rightarrow T^{2}$ is non-trivial then E does NOT admit sec ≥ 0.
- Every $E \rightarrow \mathbb{S}^{n}$, for $n \leq 5$ admits sec ≥ 0 ($n=4$ by Grove-Ziller, 2000).

Converse to the Soul Theorem:

- (Özaydin-Walschap, 1994) If $E \rightarrow T^{2}$ is non-trivial then E does NOT admit sec ≥ 0.
- Every $E \rightarrow \mathbb{S}^{n}$, for $n \leq 5$ admits sec ≥ 0 ($n=4$ by Grove-Ziller, 2000).
- (Rigas, 1978) for every $E \rightarrow \mathbb{S}^{n}$, there is some k such that $E \times \mathbb{R}^{k}$ admits $\sec \geq 0$.

Converse to the Soul Theorem:

- (Özaydin-Walschap, 1994) If $E \rightarrow T^{2}$ is non-trivial then E does NOT admit sec ≥ 0.
- Every $E \rightarrow \mathbb{S}^{n}$, for $n \leq 5$ admits sec ≥ 0 ($n=4$ by Grove-Ziller, 2000).
- (Rigas, 1978) for every $E \rightarrow \mathbb{S}^{n}$, there is some k such that $E \times \mathbb{R}^{k}$ admits sec ≥ 0.

Goal: Extend Rigas' result to other base manifolds (with a lot of symmetries).

Base spaces and vector bundles with symmetries

Base spaces and vector bundles with symmetries

Let G be a compact Lie group acting on a closed manifold M.

Base spaces and vector bundles with symmetries

Let G be a compact Lie group acting on a closed manifold M.

- Homogeneous spaces: $\operatorname{dim} M / G=0$
- $M=G / H$ admits a G-invariant metric of sec ≥ 0.

Base spaces and vector bundles with symmetries

Let G be a compact Lie group acting on a closed manifold M.

- Homogeneous spaces: $\operatorname{dim} M / G=0$
- $M=G / H$ admits a G-invariant metric of $s e c \geq 0$.
- Cohomogeneity one manifolds: $\operatorname{dim} M / G=1$

Base spaces and vector bundles with symmetries

Let G be a compact Lie group acting on a closed manifold M.

- Homogeneous spaces: $\operatorname{dim} M / G=0$
- $M=G / H$ admits a G-invariant metric of $s e c \geq 0$.
- Cohomogeneity one manifolds: $\operatorname{dim} M / G=1$
- (Grove-Ziller, 2000) If $M / G=[-1,1]$ and the singular orbits have codim 2 then M admits a G-invariant metric of $\sec \geq 0$.

Base spaces and vector bundles with symmetries

Let G be a compact Lie group acting on a closed manifold M.

- Homogeneous spaces: $\operatorname{dim} M / G=0$
- $M=G / H$ admits a G-invariant metric of sec ≥ 0.
- Cohomogeneity one manifolds: $\operatorname{dim} M / G=1$
- (Grove-Ziller, 2000) If $M / G=[-1,1]$ and the singular orbits have codim 2 then M admits a G-invariant metric of $\sec \geq 0$.

A G-vector bundle over a G-manifold is a v.b. $\pi: E \rightarrow M$, where E is a G-manifold, π is G-equivariant and $g: E_{x} \rightarrow E_{g x}$ is linear.

Cohomogeneity one spaces

Let M be a G-manifold with $M / G=[-1,1]$.

Cohomogeneity one spaces

Let M be a G-manifold with $M / G=[-1,1]$.

- There are isotropy groups $H<K_{-}, K_{+}<G$.

Cohomogeneity one spaces

Let M be a G-manifold with $M / G=[-1,1]$.

- There are isotropy groups $H<K_{-}, K_{+}<G$.
- $K_{ \pm} / H$ are spheres $\mathbb{S}^{\ell \pm}$ and there is a decomposition

$$
M=G \times K_{-} \mathbb{D}^{\ell_{-}+1} \cup_{G / H} G \times_{K_{+}} \mathbb{D}^{\ell_{+}+1}
$$

Cohomogeneity one spaces

Let M be a G-manifold with $M / G=[-1,1]$.

- There are isotropy groups $H<K_{-}, K_{+}<G$.
- $K_{ \pm} / H$ are spheres \mathbb{S}^{ℓ} and there is a decomposition

$$
M=G \times_{K_{-}} \mathbb{D}^{\ell_{-}+1} \cup_{G / H} G \times_{K_{+}} \mathbb{D}^{\ell_{+}+1}
$$

- A cohomogeneity one mfd M is determined by $\left(G, H, K_{-}, K_{+}\right)$.

Cohomogeneity one spaces

Let M be a G-manifold with $M / G=[-1,1]$.

- There are isotropy groups $H<K_{-}, K_{+}<G$.
- $K_{ \pm} / H$ are spheres $\mathbb{S}^{\ell \pm}$ and there is a decomposition

$$
M=G \times_{K_{-}} \mathbb{D}^{\ell_{-}+1} \cup_{G / H} G \times_{K_{+}} \mathbb{D}^{\ell_{+}+1}
$$

- A cohomogeneity one mfd M is determined by $\left(G, H, K_{-}, K_{+}\right)$.
- Conversely, any diagram ($\left.G, H, K_{-}, K_{+}\right)$with $K_{ \pm} / H=\mathbb{S}^{\ell}$ determines a cohomogeneity one space.

Cohomogeneity one spaces

Let M be a G-manifold with $M / G=[-1,1]$.

- There are isotropy groups $H<K_{-}, K_{+}<G$.
- $K_{ \pm} / H$ are spheres \mathbb{S}^{ℓ} and there is a decomposition

$$
M=G \times_{K_{-}} \mathbb{D}^{\ell_{-}+1} \cup_{G / H} G \times_{K_{+}} \mathbb{D}^{\ell_{+}+1}
$$

- A cohomogeneity one mfd M is determined by $\left(G, H, K_{-}, K_{+}\right)$.
- Conversely, any diagram (G, H, K_{-}, K_{+}) with $K_{ \pm} / H=\mathbb{S}^{\ell \pm}$ determines a cohomogeneity one space.

Examples with codimension 2 singular orbits (i.e. $K_{ \pm} / H=S^{1}$) and hence sec ≥ 0 (by Grove-Ziller):

Cohomogeneity one spaces

Let M be a G-manifold with $M / G=[-1,1]$.

- There are isotropy groups $H<K_{-}, K_{+}<G$.
- $K_{ \pm} / H$ are spheres $\mathbb{S}^{\ell_{ \pm}}$and there is a decomposition

$$
M=G \times K_{-} \mathbb{D}^{\ell-+1} \cup_{G / H} G \times_{K_{+}} \mathbb{D}^{\ell_{+}+1}
$$

- A cohomogeneity one mfd M is determined by $\left(G, H, K_{-}, K_{+}\right)$.
- Conversely, any diagram (G, H, K_{-}, K_{+}) with $K_{ \pm} / H=\mathbb{S}^{\ell \pm}$ determines a cohomogeneity one space.

Examples with codimension 2 singular orbits (i.e. $K_{ \pm} / H=S^{1}$) and hence sec ≥ 0 (by Grove-Ziller):
$\mathbb{S}^{4}, \mathbb{C P}^{2}, \mathbb{S}^{2} \times \mathbb{S}^{2}, \mathbb{C P}^{2} \sharp \overline{\mathbb{C P}^{2}}$, every homotopy $\mathbb{R P}^{5}$, every $S O(4)$-principal bundle over \mathbb{S}^{4}, \ldots

Using known techniques (bi-invariant metrics on compact Lie groups, Riemannian submersions, special gluings by Grove-Ziller):

Using known techniques (bi-invariant metrics on compact Lie groups, Riemannian submersions, special gluings by Grove-Ziller):

Theorem 1

- Homogeneous spaces: any G-vector bundle over G / H admits
a G-invariant metric of $\sec \geq 0$.

Using known techniques (bi-invariant metrics on compact Lie groups, Riemannian submersions, special gluings by Grove-Ziller):

Theorem 1

- Homogeneous spaces: any G-vector bundle over G / H admits
a G-invariant metric of $\sec \geq 0$.
- Cohomogeneity 1: any G-vector bundle over (G, H, K_{-}, K_{+}) with $K_{ \pm} / H=S^{1}$ admits a G-invariant metric of $s e c \geq 0$.

Using known techniques (bi-invariant metrics on compact Lie groups, Riemannian submersions, special gluings by Grove-Ziller):

Theorem 1

- Homogeneous spaces: any G-vector bundle over G / H admits
a G-invariant metric of $\sec \geq 0$.
- Cohomogeneity 1: any G-vector bundle over (G, H, K_{-}, K_{+}) with $K_{ \pm} / H=S^{1}$ admits a G-invariant metric of sec ≥ 0.

We have the natural question:

Using known techniques (bi-invariant metrics on compact Lie groups, Riemannian submersions, special gluings by Grove-Ziller):

Theorem 1

- Homogeneous spaces: any G-vector bundle over G / H admits
a G-invariant metric of sec ≥ 0.
- Cohomogeneity 1: any G-vector bundle over (G, H, K_{-}, K_{+}) with $K_{ \pm} / H=S^{1}$ admits a G-invariant metric of $s e c \geq 0$.

We have the natural question:

Question:

Given a closed G-manifold M, which vector bundles over M admit a G-vector bundle structure?

Question:

Given a closed G-manifold M, which vector bundles over M admit a G-vector bundle structure?

Question:

Given a closed G-manifold M, which vector bundles over M admit a G-vector bundle structure?

- The tangent bundle $T M$ is always a G-vector bundle.

Question:

Given a closed G-manifold M, which vector bundles over M admit a G-vector bundle structure?

- The tangent bundle $T M$ is always a G-vector bundle.
- All vector bundles over \mathbb{S}^{2} are $S U(2)$-vector bundles.

Question:

Given a closed G-manifold M, which vector bundles over M admit a G-vector bundle structure?

- The tangent bundle $T M$ is always a G-vector bundle.
- All vector bundles over \mathbb{S}^{2} are $S U(2)$-vector bundles.
- All vector bundles over \mathbb{S}^{3} are trivial.

Question:

Given a closed G-manifold M, which vector bundles over M admit a G-vector bundle structure?

- The tangent bundle $T M$ is always a G-vector bundle.
- All vector bundles over \mathbb{S}^{2} are $S U(2)$-vector bundles.
- All vector bundles over \mathbb{S}^{3} are trivial.
- (Grove-Ziller, 2000) All vector bundles over \mathbb{S}^{4} are $\operatorname{SU}(2)$-vector bundles.

Question:

Given a closed G-manifold M, which vector bundles over M admit a G-vector bundle structure?

- The tangent bundle $T M$ is always a G-vector bundle.
- All vector bundles over \mathbb{S}^{2} are $S U(2)$-vector bundles.
- All vector bundles over \mathbb{S}^{3} are trivial.
- (Grove-Ziller, 2000) All vector bundles over \mathbb{S}^{4} are $\operatorname{SU}(2)$-vector bundles.
- There exist G-manifolds M satisfying the following: for every complex vector bundle $E \rightarrow M$, there is an integer k such that $E \oplus \mathbb{C}^{k}$ is a G-vector bundle.

From stabilization to K-theory (Atiyah, Hirzebruch..., 50s)

From stabilization to K-theory (Atiyah, Hirzebruch..., 50s)
Over a closed G-manifold M the following are equivalent:

From stabilization to K-theory (Atiyah, Hirzebruch..., 50s)
Over a closed G-manifold M the following are equivalent:

1. For every complex vector bundle $E \rightarrow M$, there is an integer k such that $E \oplus \mathbb{C}^{k}$ is a G-vector bundle.

From stabilization to K-theory (Atiyah, Hirzebruch..., 50s)
Over a closed G-manifold M the following are equivalent:

1. For every complex vector bundle $E \rightarrow M$, there is an integer k such that $E \oplus \mathbb{C}^{k}$ is a G-vector bundle.
2. The forgetful map $K_{G}(M) \rightarrow K(M)$ is surjective.

From stabilization to K-theory (Atiyah, Hirzebruch..., 50s)
Over a closed G-manifold M the following are equivalent:

1. For every complex vector bundle $E \rightarrow M$, there is an integer k such that $E \oplus \mathbb{C}^{k}$ is a G-vector bundle.
2. The forgetful map $K_{G}(M) \rightarrow K(M)$ is surjective.

$$
K(M):=\left\{E-F: E, F \in \operatorname{Vect}_{\mathbb{C}}(M)\right\}
$$

From stabilization to K-theory (Atiyah, Hirzebruch..., 50s)

Over a closed G-manifold M the following are equivalent:

1. For every complex vector bundle $E \rightarrow M$, there is an integer k such that $E \oplus \mathbb{C}^{k}$ is a G-vector bundle.
2. The forgetful map $K_{G}(M) \rightarrow K(M)$ is surjective.

$$
\begin{gathered}
K(M):=\left\{E-F: E, F \in \operatorname{Vect}_{\mathbb{C}}(M)\right\} \\
E_{1}-F_{1}=E_{2}-F_{2} \text { if } \exists k \text { such that } E_{1} \oplus F_{2} \oplus \mathbb{C}^{k}=E_{2} \oplus F_{1} \oplus \mathbb{C}^{k}
\end{gathered}
$$

From stabilization to K-theory (Atiyah, Hirzebruch..., 50s)

Over a closed G-manifold M the following are equivalent:

1. For every complex vector bundle $E \rightarrow M$, there is an integer k such that $E \oplus \mathbb{C}^{k}$ is a G-vector bundle.
2. The forgetful map $K_{G}(M) \rightarrow K(M)$ is surjective.

$$
\begin{gathered}
K(M):=\left\{E-F: E, F \in \operatorname{Vect}_{\mathbb{C}}(M)\right\} \\
E_{1}-F_{1}=E_{2}-F_{2} \text { if } \exists k \text { such that } E_{1} \oplus F_{2} \oplus \mathbb{C}^{k}=E_{2} \oplus F_{1} \oplus \mathbb{C}^{k}
\end{gathered}
$$

- $K(M)$ can be computed from $H^{*}(M)$ using a spectral sequence.

$$
K\left(\mathbb{S}^{2 n+1}\right)=[\mathbb{Z}] \oplus 0, \quad K\left(\mathbb{S}^{2 n}\right)=[\mathbb{Z}] \oplus \mathbb{Z}
$$

From stabilization to K-theory (Atiyah, Hirzebruch..., 50s)

Over a closed G-manifold M the following are equivalent:

1. For every complex vector bundle $E \rightarrow M$, there is an integer k such that $E \oplus \mathbb{C}^{k}$ is a G-vector bundle.
2. The forgetful map $K_{G}(M) \rightarrow K(M)$ is surjective.

$$
\begin{gathered}
K(M):=\left\{E-F: E, F \in \operatorname{Vect}_{\mathbb{C}}(M)\right\} \\
E_{1}-F_{1}=E_{2}-F_{2} \text { if } \exists k \text { such that } E_{1} \oplus F_{2} \oplus \mathbb{C}^{k}=E_{2} \oplus F_{1} \oplus \mathbb{C}^{k}
\end{gathered}
$$

- $K(M)$ can be computed from $H^{*}(M)$ using a spectral sequence.

$$
K\left(\mathbb{S}^{2 n+1}\right)=[\mathbb{Z}] \oplus 0, \quad K\left(\mathbb{S}^{2 n}\right)=[\mathbb{Z}] \oplus \mathbb{Z}
$$

- If M has a G-action one can define $K_{G}(M)$ in a similar way.

From stabilization to K-theory (Atiyah, Hirzebruch..., 50s)

Over a closed G-manifold M the following are equivalent:

1. For every complex vector bundle $E \rightarrow M$, there is an integer k such that $E \oplus \mathbb{C}^{k}$ is a G-vector bundle.
2. The forgetful map $K_{G}(M) \rightarrow K(M)$ is surjective.

$$
\begin{gathered}
K(M):=\left\{E-F: E, F \in \operatorname{Vect}_{\mathbb{C}}(M)\right\} \\
E_{1}-F_{1}=E_{2}-F_{2} \text { if } \exists k \text { such that } E_{1} \oplus F_{2} \oplus \mathbb{C}^{k}=E_{2} \oplus F_{1} \oplus \mathbb{C}^{k}
\end{gathered}
$$

- $K(M)$ can be computed from $H^{*}(M)$ using a spectral sequence.

$$
K\left(\mathbb{S}^{2 n+1}\right)=[\mathbb{Z}] \oplus 0, \quad K\left(\mathbb{S}^{2 n}\right)=[\mathbb{Z}] \oplus \mathbb{Z}
$$

- If M has a G-action one can define $K_{G}(M)$ in a similar way.
- There is a natural (FORGETFUL) map

$$
F: K_{G}(M) \rightarrow K(M)
$$

Results for homogeneous spaces $M=G / H$

(Pittie, 1972) If rk $G=\mathrm{rk} H$ then F is surjective (plus an additional conditional we do not need).

Results for homogeneous spaces $M=G / H$

(Pittie, 1972) If rk $G=\mathrm{rk} H$ then F is surjective (plus an additional conditional we do not need).
(AGZ, 2019) rk $G-r k H \leq 1$ if and only if F is surjective.

Results for homogeneous spaces $M=G / H$

(Pittie, 1972) If rk $G=\mathrm{rk} H$ then F is surjective (plus an additional conditional we do not need).
(AGZ, 2019) rk $G-r k H \leq 1$ if and only if F is surjective.

- Idea: G-vector bundles are of the form $G \times_{H} V$, for $V \in \operatorname{Rep}(H)$,

Results for homogeneous spaces $M=G / H$

(Pittie, 1972) If rk $G=\mathrm{rk} H$ then F is surjective (plus an additional conditional we do not need).
(AGZ, 2019) rk $G-r k H \leq 1$ if and only if F is surjective.

- Idea: G-vector bundles are of the form $G \times_{H} V$, for $V \in \operatorname{Rep}(H)$, \Rightarrow Hodgkin's spectral sequence (1975).

Results for homogeneous spaces $M=G / H$

(Pittie, 1972) If rk $G=\mathrm{rk} H$ then F is surjective (plus an additional conditional we do not need).
(AGZ, 2019) rk $G-r k H \leq 1$ if and only if F is surjective.

- Idea: G-vector bundles are of the form $G \times_{H} V$, for $V \in \operatorname{Rep}(H)$,
\Rightarrow Hodgkin's spectral sequence (1975).
\Leftarrow "If H is small it cannot generate many vector bundles"

Results for homogeneous spaces $M=G / H$

(Pittie, 1972) If rk $G=\mathrm{rk} H$ then F is surjective (plus an additional conditional we do not need).
(AGZ, 2019) rk $G-r k H \leq 1$ if and only if F is surjective.

- Idea: G-vector bundles are of the form $G \times_{H} V$, for $V \in \operatorname{Rep}(H)$, \Rightarrow Hodgkin's spectral sequence (1975).
\Leftarrow "If H is small it cannot generate many vector bundles"

Theorem 2

Suppose rk G - rk H ≤ 1.

Results for homogeneous spaces $M=G / H$

(Pittie, 1972) If rk $G=\mathrm{rk} H$ then F is surjective (plus an additional conditional we do not need).
(AGZ, 2019) rk $G-r k H \leq 1$ if and only if F is surjective.

- Idea: G-vector bundles are of the form $G \times_{H} V$, for $V \in \operatorname{Rep}(H)$,
\Rightarrow Hodgkin's spectral sequence (1975).
\Leftarrow "If H is small it cannot generate many vector bundles"

Theorem 2

Suppose rk $G-\mathrm{rk} H \leq 1$. Then for every complex $E \rightarrow G / H$ there is some k such that $E \times \mathbb{R}^{k}$ has sec ≥ 0.

Results for homogeneous spaces $M=G / H$

(Pittie, 1972) If rk $G=\mathrm{rk} H$ then F is surjective (plus an additional conditional we do not need).
(AGZ, 2019) rk $G-\mathrm{rkH} \leq 1$ if and only if F is surjective.

- Idea: G-vector bundles are of the form $G \times_{H} V$, for $V \in \operatorname{Rep}(H)$,
\Rightarrow Hodgkin's spectral sequence (1975).
\Leftarrow "If H is small it cannot generate many vector bundles"

Theorem 2

Suppose rk $G-\mathrm{rk} H \leq 1$. Then for every complex $E \rightarrow G / H$ there is some k such that $E \times \mathbb{R}^{k}$ has sec ≥ 0.

- Examples: all homogenous spaces with sec $>0\left(\mathbb{S}^{n}, \mathbb{C P}^{n}, \mathbb{H}^{n}, ..\right)$

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(Carlson, 18) If rk $G=\max \left\{\right.$ rk K_{-}, rk $\left.K_{+}\right\}$then F is surjective (plus an additional conditional we do not need).

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(Carlson, 18) If rk $G=\max \left\{r k K_{-}\right.$, rk $\left.K_{+}\right\}$then F is surjective (plus an additional conditional we do not need).

- Idea: use Mayer-Vietoris and results for G / H and $G / K_{ \pm}$.

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(Carlson, 18) If rk $G=\max \left\{\right.$ rk K_{-}, rk $\left.K_{+}\right\}$then F is surjective (plus an additional conditional we do not need).

- Idea: use Mayer-Vietoris and results for G / H and $G / K_{ \pm}$.

Theorem 3
Suppose $K_{ \pm} / H \cong S^{1}$

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(Carlson, 18) If rk $G=\max \left\{\right.$ rk K_{-}, rk $\left.K_{+}\right\}$then F is surjective (plus an additional conditional we do not need).

- Idea: use Mayer-Vietoris and results for G / H and $G / K_{ \pm}$.

Theorem 3
Suppose $K_{ \pm} / H \cong S^{1}$ and rk $G=r k K_{ \pm}$.

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(Carlson, 18) If rk $G=\max \left\{r k K_{-}\right.$, rk $\left.K_{+}\right\}$then F is surjective (plus an additional conditional we do not need).

- Idea: use Mayer-Vietoris and results for G / H and $G / K_{ \pm}$.

Theorem 3

Suppose $K_{ \pm} / H \cong S^{1}$ and rk $G=r k K_{ \pm}$.
Then, for every complex $E \rightarrow M$ there is some k such that $E \times \mathbb{R}^{k}$ has $\mathrm{sec} \geq 0$.

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(Carlson, 18) If rk $G=\max \left\{r k K_{-}\right.$, rk $\left.K_{+}\right\}$then F is surjective (plus an additional conditional we do not need).

- Idea: use Mayer-Vietoris and results for G / H and $G / K_{ \pm}$.

Theorem 3

Suppose $K_{ \pm} / H \cong S^{1}$ and rk $G=$ rk $K_{ \pm}$.
Then, for every complex $E \rightarrow M$ there is some k such that $E \times \mathbb{R}^{k}$ has $\mathrm{sec} \geq 0$.

- Examples: there is a cohomo 1 action by $\operatorname{SU}(2)^{n+1}$ on

$$
\left(\mathbb{C P}^{2} \sharp \overline{\mathbb{C P}^{2}}\right) \times\left(\mathbb{S}^{2}\right)^{n}, \quad n \geq 0
$$

satisfying the hypotheses in Theorem 3. This manifold is not even homotopy equivalent to a homogeneous space.

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(AGZ, 2019) The map

$$
K_{G}(M) \otimes \mathbb{Q} \rightarrow K(M) \otimes \mathbb{Q}
$$

is surjective if $\mathrm{rk} G-\mathrm{rk} K_{ \pm} \leq 1$ and $\operatorname{dim} K_{ \pm} / H$ is odd.

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(AGZ, 2019) The map

$$
K_{G}(M) \otimes \mathbb{Q} \rightarrow K(M) \otimes \mathbb{Q}
$$

is surjective if $\mathrm{rk} G-\mathrm{rk} K_{ \pm} \leq 1$ and $\operatorname{dim} K_{ \pm} / H$ is odd.

- Tools: (1) the Chern character $K(M) \xrightarrow{\sim} H^{*}(M, \mathbb{Q})$
(2) Rational Homotopy Theory

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(AGZ, 2019) The map

$$
K_{G}(M) \otimes \mathbb{Q} \rightarrow K(M) \otimes \mathbb{Q}
$$

is surjective if $\mathrm{rk} G-\mathrm{rk} K_{ \pm} \leq 1$ and $\operatorname{dim} K_{ \pm} / H$ is odd.

- Tools: (1) the Chern character $K(M) \xrightarrow{\sim} H^{*}(M, \mathbb{Q})$
(2) Rational Homotopy Theory

Theorem 4

Suppose $K_{ \pm} / H \cong S^{1}$

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(AGZ, 2019) The map

$$
K_{G}(M) \otimes \mathbb{Q} \rightarrow K(M) \otimes \mathbb{Q}
$$

is surjective if $\mathrm{rk} G-\mathrm{rk} K_{ \pm} \leq 1$ and $\operatorname{dim} K_{ \pm} / H$ is odd.

- Tools: (1) the Chern character $K(M) \xrightarrow{\sim} H^{*}(M, \mathbb{Q})$
(2) Rational Homotopy Theory

Theorem 4

Suppose $K_{ \pm} / H \cong S^{1}$ and rk $G-r k K_{ \pm} \leq 1$.

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(AGZ, 2019) The map

$$
K_{G}(M) \otimes \mathbb{Q} \rightarrow K(M) \otimes \mathbb{Q}
$$

is surjective if $\mathrm{rk} G-\mathrm{rk} K_{ \pm} \leq 1$ and $\operatorname{dim} K_{ \pm} / H$ is odd.

- Tools: (1) the Chern character $K(M) \xrightarrow{\sim} H^{*}(M, \mathbb{Q})$
(2) Rational Homotopy Theory

Theorem 4

Suppose $K_{ \pm} / H \cong S^{1}$ and $r k G-r k K_{ \pm} \leq 1$.
Then, for every complex $E \rightarrow M$ there are q, k such that
$\underbrace{(E \oplus \ldots \oplus E)}_{q \text { times }} \times \mathbb{R}^{k}$ has sec ≥ 0.

Results for cohomogeneity one $M=\left(G, H, K_{-}, K_{+}\right)$

(AGZ, 2019) The map

$$
K_{G}(M) \otimes \mathbb{Q} \rightarrow K(M) \otimes \mathbb{Q}
$$

is surjective if $\mathrm{rk} G-\mathrm{rk} K_{ \pm} \leq 1$ and $\operatorname{dim} K_{ \pm} / H$ is odd.

- Tools: (1) the Chern character $K(M) \xrightarrow{\sim} H^{*}(M, \mathbb{Q})$
(2) Rational Homotopy Theory

Theorem 4

Suppose $K_{ \pm} / H \cong S^{1}$ and $r k G-r k K_{ \pm} \leq 1$.
Then, for every complex $E \rightarrow M$ there are q, k such that
$\underbrace{(E \oplus \ldots \oplus E)}_{q \text { times }} \times \mathbb{R}^{k}$ has sec ≥ 0.

- Examples: the hypotheses now allow M 's with $\chi(M)=0$.

THANK YOU!

