Complete submanifolds of Euclidean space with codimension two

Fernando Manfio

University of São Paulo

Joint work with Cleidinaldo Silva - UFPI

Symmetry and Shape

Celebrating the 60th birthday of Prof. J. Berndt

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation

2

Motivation

Classical problem in submanifold theory: study of isometric immersions $f: M^n \to \mathbb{R}^{n+k}$ of a complete Riemannian manifold under the action of a closed Lie subgroup $G \subset \text{Iso}(M)$.

Motivation

Classical problem in submanifold theory: study of isometric immersions $f : M^n \to \mathbb{R}^{n+k}$ of a complete Riemannian manifold under the action of a closed Lie subgroup $G \subset \text{Iso}(M)$.

Goal: To classify isometric immersions $f: M^n \to \mathbb{R}^{n+2}$ of a compact Riemannian manifold M^n of cohomogeneity one under the action of a closed Lie subgroup $G \subset \text{Iso}(M)$ such that the principal orbits are umbilic hypersurfaces in M^n .

• • • • • • • • • • • •

Fernando Manfio

э

<ロ> <=> <=> <=> <=> <=>

Theorem (Kobayashi, Trans. Am. Math. Soc., 1958):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a compact homogeneous Riemannian manifold, i.e., Iso(M) acts transitively on M. Then f embeds M^n as a round sphere.

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (Kobayashi, Trans. Am. Math. Soc., 1958):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a compact homogeneous Riemannian manifold, i.e., Iso(M) acts transitively on M. Then f embeds M^n as a round sphere.

Extension of Kobayashi's theorem to the noncompact case:

Theorem (Kobayashi, Trans. Am. Math. Soc., 1958):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a compact homogeneous Riemannian manifold, i.e., Iso(M) acts transitively on M. Then f embeds M^n as a round sphere.

Extension of Kobayashi's theorem to the noncompact case:

Theorem (Nagano-Takahashi, J. Math. Soc. Japan, 1960):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a connected homogeneous Riemannian manifold. Then f(M) is isometric to the product $\mathbb{S}^k \times \mathbb{R}^{n-k}$.

• • • • • • • • • • • •

Theorem (Kobayashi, Trans. Am. Math. Soc., 1958):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a compact homogeneous Riemannian manifold, i.e., Iso(M) acts transitively on M. Then f embeds M^n as a round sphere.

Extension of Kobayashi's theorem to the noncompact case:

Theorem (Nagano-Takahashi, J. Math. Soc. Japan, 1960):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a connected homogeneous Riemannian manifold. Then f(M) is isometric to the product $\mathbb{S}^k \times \mathbb{R}^{n-k}$.

Theorem (Ros, J. Differ. Geom., 1988):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a compact Riemannian manifold. If the scalar curvature of M^n is constant, then f(M) is isometric to a sphere.

< □ > < □ > < □ > < □ > < □ >

Theorem (Kobayashi, Trans. Am. Math. Soc., 1958):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a compact homogeneous Riemannian manifold, i.e., Iso(M) acts transitively on M. Then f embeds M^n as a round sphere.

Extension of Kobayashi's theorem to the noncompact case:

Theorem (Nagano-Takahashi, J. Math. Soc. Japan, 1960):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a connected homogeneous Riemannian manifold. Then f(M) is isometric to the product $\mathbb{S}^k \times \mathbb{R}^{n-k}$.

Theorem (Ros, J. Differ. Geom., 1988):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a compact Riemannian manifold. If the scalar curvature of M^n is constant, then f(M) is isometric to a sphere.

Cohomogeneity one:

ヘロト ヘ部ト ヘヨト ヘヨト

Theorem (Kobayashi, Trans. Am. Math. Soc., 1958):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a compact homogeneous Riemannian manifold, i.e., Iso(M) acts transitively on M. Then f embeds M^n as a round sphere.

Extension of Kobayashi's theorem to the noncompact case:

Theorem (Nagano-Takahashi, J. Math. Soc. Japan, 1960):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a connected homogeneous Riemannian manifold. Then f(M) is isometric to the product $\mathbb{S}^k \times \mathbb{R}^{n-k}$.

Theorem (Ros, J. Differ. Geom., 1988):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a compact Riemannian manifold. If the scalar curvature of M^n is constant, then f(M) is isometric to a sphere.

Cohomogeneity one:

Theorem (Podestà-Spiro, Ann. Global Anal. Geom., 1995):

Let M^n be a compact Riemannian manifold under the action of a closed Lie subgroup $G \subset \text{Iso}(M)$ with cohomogeneity one, and let $f : M^n \to \mathbb{R}^{n+1}$ be an isometric immersion.

Theorem (Kobayashi, Trans. Am. Math. Soc., 1958):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a compact homogeneous Riemannian manifold, i.e., Iso(M) acts transitively on M. Then f embeds M^n as a round sphere.

Extension of Kobayashi's theorem to the noncompact case:

Theorem (Nagano-Takahashi, J. Math. Soc. Japan, 1960):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a connected homogeneous Riemannian manifold. Then f(M) is isometric to the product $\mathbb{S}^k \times \mathbb{R}^{n-k}$.

Theorem (Ros, J. Differ. Geom., 1988):

Let $f: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of a compact Riemannian manifold. If the scalar curvature of M^n is constant, then f(M) is isometric to a sphere.

Cohomogeneity one:

Theorem (Podestà-Spiro, Ann. Global Anal. Geom., 1995):

Let M^n be a compact Riemannian manifold under the action of a closed Lie subgroup $G \subset \text{Iso}(M)$ with cohomogeneity one, and let $f : M^n \to \mathbb{R}^{n+1}$ be an isometric immersion. Then f(M) is a rotational hypersurface if and only if the principal orbits are umbilics.

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• cohomogeneity two compact subgroup $G \subset SO(n+1)$,

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- cohomogeneity two compact subgroup $G \subset SO(n+1)$,
- γ curve that is either contained in the interior of \mathbb{R}^{n+1}/G or meets its boundary orthogonally,

< □ > < □

- cohomogeneity two compact subgroup $G \subset SO(n+1)$,
- γ curve that is either contained in the interior of \mathbb{R}^{n+1}/G or meets its boundary orthogonally,
- M^n hypersurface of \mathbb{R}^{n+1} given by the inverse image of γ under the canonical projection onto \mathbb{R}^{n+1}/G ,

A (□) < (□)</p>

- cohomogeneity two compact subgroup $G \subset SO(n+1)$,
- γ curve that is either contained in the interior of \mathbb{R}^{n+1}/G or meets its boundary orthogonally,
- M^n hypersurface of \mathbb{R}^{n+1} given by the inverse image of γ under the canonical projection onto \mathbb{R}^{n+1}/G ,
- *Mⁿ* is a cohomogeneity one hypersurface, called the *standard examples*.

4 6 1 1 4

- cohomogeneity two compact subgroup $G \subset SO(n+1)$,
- γ curve that is either contained in the interior of \mathbb{R}^{n+1}/G or meets its boundary orthogonally,
- M^n hypersurface of \mathbb{R}^{n+1} given by the inverse image of γ under the canonical projection onto \mathbb{R}^{n+1}/G ,
- *Mⁿ* is a cohomogeneity one hypersurface, called the *standard examples*.

```
Theorem (Mercuri-Podestà-Seixas-Tojeiro, Comment. Math. Helv., 2006):
Let f: M^n \to \mathbb{R}^{n+1} be a complete hypersurface of G-cohomogeneity one.
```

- cohomogeneity two compact subgroup $G \subset SO(n+1)$,
- γ curve that is either contained in the interior of \mathbb{R}^{n+1}/G or meets its boundary orthogonally,
- M^n hypersurface of \mathbb{R}^{n+1} given by the inverse image of γ under the canonical projection onto \mathbb{R}^{n+1}/G ,
- *Mⁿ* is a cohomogeneity one hypersurface, called the *standard examples*.

Theorem (Mercuri-Podestà-Seixas-Tojeiro, Comment. Math. Helv., 2006):

Let $f: M^n \to \mathbb{R}^{n+1}$ be a complete hypersurface of *G*-cohomogeneity one. Assume that $n \ge 3$ and M^n is compact or that $n \ge 5$ and the connected components of the flat part of M^n are bounded.

- cohomogeneity two compact subgroup $G \subset SO(n+1)$,
- γ curve that is either contained in the interior of \mathbb{R}^{n+1}/G or meets its boundary orthogonally,
- M^n hypersurface of \mathbb{R}^{n+1} given by the inverse image of γ under the canonical projection onto \mathbb{R}^{n+1}/G ,
- *Mⁿ* is a cohomogeneity one hypersurface, called the *standard examples*.

Theorem (Mercuri-Podestà-Seixas-Tojeiro, Comment. Math. Helv., 2006):

Let $f: M^n \to \mathbb{R}^{n+1}$ be a complete hypersurface of *G*-cohomogeneity one. Assume that $n \ge 3$ and M^n is compact or that $n \ge 5$ and the connected components of the flat part of M^n are bounded. Then *f* is either rigid or a rotational hypersurface.

< ロト < 同ト < ヨト < ヨト

How about isometric immersions $f : M^n \to \mathbb{R}^{n+k}$, with $k \ge 2$?

- B

• • • • • • • • • • • • •

How about isometric immersions $f : M^n \to \mathbb{R}^{n+k}$, with $k \ge 2$?

Theorem (Castro-Noronha, Geom. Dedicata, 1999):

Let $f: M^n \to \mathbb{R}^{n+2}$, $n \ge 5$, be an isometric immersion of a compact homogeneous Riemannian manifold.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

How about isometric immersions $f : M^n \to \mathbb{R}^{n+k}$, with $k \ge 2$?

Theorem (Castro-Noronha, Geom. Dedicata, 1999):

Let $f: M^n \to \mathbb{R}^{n+2}$, $n \ge 5$, be an isometric immersion of a compact homogeneous Riemannian manifold. Then f is either a homogeneous isoparametric hypersurface of \mathbb{S}^{n+1} , or isometric to \mathbb{S}^n or is isometrically covered by $\mathbb{R} \times \mathbb{S}^{n-1}$.

Fernando Manfio

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• M^n Riemannian manifold acted on by a connected closed subgroup $G \subset Iso(M^n)$,

< (17) × <

- M^n Riemannian manifold acted on by a connected closed subgroup $G \subset Iso(M^n)$,
- $\gamma : \mathbb{R} \to M$ normal geodesic on M (it crosses each orbit orthogonally),

< A → <

- M^n Riemannian manifold acted on by a connected closed subgroup $G \subset Iso(M^n)$,
- $\gamma : \mathbb{R} \to M$ normal geodesic on M (it crosses each orbit orthogonally),
- $J = (a, b) \subset \mathbb{R}$ open interval such that $\pi \circ \gamma$ is a homeomorphism of J onto $\pi(M_r)$,

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- M^n Riemannian manifold acted on by a connected closed subgroup $G \subset Iso(M^n)$,
- $\gamma : \mathbb{R} \to M$ normal geodesic on M (it crosses each orbit orthogonally),
- J = (a, b) ⊂ ℝ open interval such that π ∘ γ is a homeomorphism of J onto π(M_r),
- For each t ∈ J denote by k(t) the principal curvature of the orbit G(γ(t)) with respect to the normal vector field

 $X(g \cdot \gamma(t)) = g_* \gamma'(t).$

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- M^n Riemannian manifold acted on by a connected closed subgroup $G \subset Iso(M^n)$,
- $\gamma : \mathbb{R} \to M$ normal geodesic on M (it crosses each orbit orthogonally),
- J = (a, b) ⊂ ℝ open interval such that π ∘ γ is a homeomorphism of J onto π(M_r),
- For each t ∈ J denote by k(t) the principal curvature of the orbit G(γ(t)) with respect to the normal vector field

$$X(g \cdot \gamma(t)) = g_* \gamma'(t).$$

• For a fixed $t_0 \in J$, define the function ρ by

$$\rho(t) = e^{-\int_{t_0}^t k(s) \mathrm{d}s}.$$

- M^n Riemannian manifold acted on by a connected closed subgroup $G \subset Iso(M^n)$,
- $\gamma : \mathbb{R} \to M$ normal geodesic on M (it crosses each orbit orthogonally),
- J = (a, b) ⊂ ℝ open interval such that π ∘ γ is a homeomorphism of J onto π(M_r),
- For each t ∈ J denote by k(t) the principal curvature of the orbit G(γ(t)) with respect to the normal vector field

$$X(g \cdot \gamma(t)) = g_* \gamma'(t).$$

• For a fixed $t_0 \in J$, define the function ρ by

$$ho(t) = e^{-\int_{t_0}^t k(s) \mathrm{d}s}.$$

• Set $p_0 = \gamma(t_0)$ and consider the action of *G* on $J \times_{\rho} G(p_0)$ given by

 $g\cdot(t,p)=(t,g(p)).$

- M^n Riemannian manifold acted on by a connected closed subgroup $G \subset Iso(M^n)$,
- $\gamma : \mathbb{R} \to M$ normal geodesic on M (it crosses each orbit orthogonally),
- $J = (a, b) \subset \mathbb{R}$ open interval such that $\pi \circ \gamma$ is a homeomorphism of J onto $\pi(M_r)$,
- For each t ∈ J denote by k(t) the principal curvature of the orbit G(γ(t)) with respect to the normal vector field

$$X(g \cdot \gamma(t)) = g_* \gamma'(t).$$

• For a fixed $t_0 \in J$, define the function ρ by

$$\rho(t) = e^{-\int_{t_0}^t k(s) \mathrm{d}s}.$$

• Set $p_0 = \gamma(t_0)$ and consider the action of *G* on $J \times_{\rho} G(p_0)$ given by

 $g\cdot(t,p)=(t,g(p)).$

Theorem (Podestà-Spiro 1995; Moutinho 2006):

Suppose that the principal orbits are umbilical hypersurfaces of M^n .

- M^n Riemannian manifold acted on by a connected closed subgroup $G \subset Iso(M^n)$,
- $\gamma : \mathbb{R} \to M$ normal geodesic on M (it crosses each orbit orthogonally),
- $J = (a, b) \subset \mathbb{R}$ open interval such that $\pi \circ \gamma$ is a homeomorphism of J onto $\pi(M_r)$,
- For each t ∈ J denote by k(t) the principal curvature of the orbit G(γ(t)) with respect to the normal vector field

$$X(g \cdot \gamma(t)) = g_* \gamma'(t).$$

• For a fixed $t_0 \in J$, define the function ρ by

$$ho(t) = e^{-\int_{t_0}^t k(s) \mathrm{d}s}.$$

• Set $p_0 = \gamma(t_0)$ and consider the action of *G* on $J \times_{\rho} G(p_0)$ given by

 $g\cdot(t,p)=(t,g(p)).$

Theorem (Podestà-Spiro 1995; Moutinho 2006):

Suppose that the principal orbits are umbilical hypersurfaces of M^n . Then the map $\psi : J \times_{\rho} G(\rho_0) \to M_r$ given by

$$\psi(t,g(p_0))=g(\gamma(t))$$

is an equivariant isometry with respect to the actions of G on the spaces $J \times_{\rho} G(p_0)$ and M_r .

Fernando Manfio

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

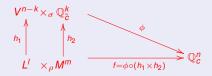
Definition:

An isometric immersion $f: L^l \times_{\rho} M^m \to \mathbb{Q}_c^n$ is said to be a warped product of isometric immersions determined by a warped product representation $\phi: V^{n-k} \times_{\sigma} \mathbb{Q}_c^k \to \mathbb{Q}_c^n$, onto an open dense subset of \mathbb{Q}_c^n , if there exist isometric immersions $h_1: L^l \to V^{n-k}$ and $h_2: M^m \to \mathbb{Q}_c^k$ such that $\rho = \sigma \circ h_1$

A D F A B F A B F A B

Definition:

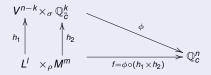
An isometric immersion $f: L^{l} \times_{\rho} M^{m} \to \mathbb{Q}_{c}^{n}$ is said to be a warped product of isometric immersions determined by a warped product representation $\phi: V^{n-k} \times_{\sigma} \mathbb{Q}_{c}^{k} \to \mathbb{Q}_{c}^{n}$, onto an open dense subset of \mathbb{Q}_{c}^{n} , if there exist isometric immersions $h_{1}: L^{l} \to V^{n-k}$ and $h_{2}: M^{m} \to \mathbb{Q}_{c}^{k}$ such that $\rho = \sigma \circ h_{1}$ and the following diagram commutes:



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition:

An isometric immersion $f: L^{l} \times_{\rho} M^{m} \to \mathbb{Q}_{c}^{n}$ is said to be a warped product of isometric immersions determined by a warped product representation $\phi: V^{n-k} \times_{\sigma} \mathbb{Q}_{c}^{k} \to \mathbb{Q}_{c}^{n}$, onto an open dense subset of \mathbb{Q}_{c}^{n} , if there exist isometric immersions $h_{1}: L^{l} \to V^{n-k}$ and $h_{2}: M^{m} \to \mathbb{Q}_{c}^{k}$ such that $\rho = \sigma \circ h_{1}$ and the following diagram commutes:



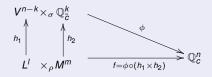
Example 1:

If h_2 is an isometry, then f is called a rotational submanifold with profile h_1 .

< □ > < □ > < □ > < □ > < □ >

Definition:

An isometric immersion $f : L^l \times_{\rho} M^m \to \mathbb{Q}_c^n$ is said to be a warped product of isometric immersions determined by a warped product representation $\phi : V^{n-k} \times_{\sigma} \mathbb{Q}_c^k \to \mathbb{Q}_c^n$, onto an open dense subset of \mathbb{Q}_c^n , if there exist isometric immersions $h_1 : L^l \to V^{n-k}$ and $h_2 : M^m \to \mathbb{Q}_c^k$ such that $\rho = \sigma \circ h_1$ and the following diagram commutes:



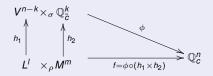
Example 1:

If h_2 is an isometry, then f is called a rotational submanifold with profile h_1 . Geometrically, this means that V^{n-k} is a half-space of a totally geodesic submanifold $\mathbb{Q}_c^{n-k} \subset \mathbb{Q}_c^n$ bounded by a totally geodesic submanifold \mathbb{Q}_c^{n-k-1}

< □ > < □ > < □ > < □ > < □ >

Definition:

An isometric immersion $f: L^{l} \times_{\rho} M^{m} \to \mathbb{Q}_{c}^{n}$ is said to be a warped product of isometric immersions determined by a warped product representation $\phi: V^{n-k} \times_{\sigma} \mathbb{Q}_{c}^{k} \to \mathbb{Q}_{c}^{n}$, onto an open dense subset of \mathbb{Q}_{c}^{n} , if there exist isometric immersions $h_{1}: L^{l} \to V^{n-k}$ and $h_{2}: M^{m} \to \mathbb{Q}_{c}^{k}$ such that $\rho = \sigma \circ h_{1}$ and the following diagram commutes:



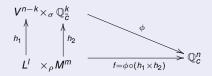
Example 1:

If h_2 is an isometry, then f is called a rotational submanifold with profile h_1 . Geometrically, this means that V^{n-k} is a half-space of a totally geodesic submanifold $\mathbb{Q}_c^{n-k} \subset \mathbb{Q}_c^n$ bounded by a totally geodesic submanifold \mathbb{Q}_c^{n-k-1} and $f(L^l \times_{\rho} M^m)$ is the submanifold of \mathbb{Q}_c^n generated by the action on $h_1(L)$ of the subgroup of isometries of \mathbb{Q}_c^n that leave \mathbb{Q}_c^{n-k-1} invariant.

(日)

Definition:

An isometric immersion $f: L^{l} \times_{\rho} M^{m} \to \mathbb{Q}_{c}^{n}$ is said to be a warped product of isometric immersions determined by a warped product representation $\phi: V^{n-k} \times_{\sigma} \mathbb{Q}_{c}^{k} \to \mathbb{Q}_{c}^{n}$, onto an open dense subset of \mathbb{Q}_{c}^{n} , if there exist isometric immersions $h_{1}: L^{l} \to V^{n-k}$ and $h_{2}: M^{m} \to \mathbb{Q}_{c}^{k}$ such that $\rho = \sigma \circ h_{1}$ and the following diagram commutes:



Example 1:

If h_2 is an isometry, then f is called a rotational submanifold with profile h_1 . Geometrically, this means that V^{n-k} is a half-space of a totally geodesic submanifold $\mathbb{Q}_c^{n-k} \subset \mathbb{Q}_c^n$ bounded by a totally geodesic submanifold \mathbb{Q}_c^{n-k-1} and $f(L' \times_{\rho} M^m)$ is the submanifold of \mathbb{Q}_c^n generated by the action on $h_1(L)$ of the subgroup of isometries of \mathbb{Q}_c^n that leave \mathbb{Q}_c^{n-k-1} invariant.

Example 2:

If h_1 is a local isometry then, for c = 0, we have that $f(L^l \times_{\rho} M^m)$ is contained in the product of an Euclidean factor \mathbb{R}^{n-k-1} with a cone in \mathbb{R}^{k+1} over h_2 .

э

Theorem (-, Silva):

Let $f: M^n \to \mathbb{R}^{n+2}$, with $n \ge 4$, be an isometric immersion of a compact Riemannian manifold of cohomogeneity one under the action of a closed Lie subgroup *G* of $I_{SO}(M)$.

< □ > < □ > < □ > < □ > < □ >

Theorem (-, Silva):

Let $f: M^n \to \mathbb{R}^{n+2}$, with $n \ge 4$, be an isometric immersion of a compact Riemannian manifold of cohomogeneity one under the action of a closed Lie subgroup *G* of Iso(*M*). If the principal orbits under the action of *G* are umbilic hypersurfaces in M^n then one of the following possibilities holds:

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (-, Silva):

Let $f: M^n \to \mathbb{R}^{n+2}$, with $n \ge 4$, be an isometric immersion of a compact Riemannian manifold of cohomogeneity one under the action of a closed Lie subgroup *G* of Iso(*M*). If the principal orbits under the action of *G* are umbilic hypersurfaces in M^n then one of the following possibilities holds:

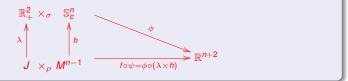
(i) There exist a compact homogeneous hypersurface h : Mⁿ⁻¹ → Sⁿ_c, a unit speed curve λ : J = (a, b) → ℝ²₊ and an isometry ψ : J ×_ρ Mⁿ⁻¹ → M_r such that f ∘ ψ is the warped product of λ with h determined by a warped product representation Φ : ℝ²₊ ×_σ Sⁿ_c → ℝⁿ⁺².

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (-, Silva):

Let $f: M^n \to \mathbb{R}^{n+2}$, with $n \ge 4$, be an isometric immersion of a compact Riemannian manifold of cohomogeneity one under the action of a closed Lie subgroup *G* of Iso(*M*). If the principal orbits under the action of *G* are umbilic hypersurfaces in M^n then one of the following possibilities holds:

(i) There exist a compact homogeneous hypersurface *h* : *Mⁿ⁻¹* → Sⁿ_c, a unit speed curve λ : *J* = (*a*, *b*) → ℝ²₊ and an isometry ψ : *J* ×_ρ *Mⁿ⁻¹* → *M_r* such that *f* ∘ ψ is the warped product of λ with *h* determined by a warped product representation Φ : ℝ²₊ ×_σ Sⁿ_c → ℝⁿ⁺².



< □ > < @ > < E >

Theorem (-, Silva):

Let $f: M^n \to \mathbb{R}^{n+2}$, with $n \ge 4$, be an isometric immersion of a compact Riemannian manifold of cohomogeneity one under the action of a closed Lie subgroup *G* of Iso(*M*). If the principal orbits under the action of *G* are umbilic hypersurfaces in M^n then one of the following possibilities holds:

(ii) There exist a compact surface h : M² → ℝ⁴ of intrinsic cohomogeneity one under the action of S¹ and an isometry ψ : M² ×_ρ Sⁿ⁻²_c → M_r such that f ∘ ψ is the warped product of h with the identity map i : Sⁿ⁻²_c → Sⁿ⁻²_c determined by a warped product representation Φ : ℝ⁴ ×_σ Sⁿ⁻²_c → ℝⁿ⁺².

Theorem (-, Silva):

Let $f: M^n \to \mathbb{R}^{n+2}$, with $n \ge 4$, be an isometric immersion of a compact Riemannian manifold of cohomogeneity one under the action of a closed Lie subgroup *G* of Iso(*M*). If the principal orbits under the action of *G* are umbilic hypersurfaces in M^n then one of the following possibilities holds:

(ii) There exist a compact surface h : M² → ℝ⁴ of intrinsic cohomogeneity one under the action of S¹ and an isometry ψ : M² ×_ρ Sⁿ⁻²_c → M_r such that f ∘ ψ is the warped product of h with the identity map i : Sⁿ⁻²_c → Sⁿ⁻²_c → Bⁿ⁻²_c determined by a warped product representation Φ : ℝ⁴ ×_σ Sⁿ⁻²_c → ℝⁿ⁺².

Theorem (-, Silva):

Let $f: M^n \to \mathbb{R}^{n+2}$, with $n \ge 4$, be an isometric immersion of a compact Riemannian manifold of cohomogeneity one under the action of a closed Lie subgroup *G* of Iso(*M*). If the principal orbits under the action of *G* are umbilic hypersurfaces in M^n then one of the following possibilities holds:

(iii) There exist a unit speed curve $\lambda : J = (a, b) \to \mathbb{R}^2_+$ and an isometry $\psi : J \times_{\rho} \mathbb{S}^{n-1}_c \to M_r$ such that $f \circ \psi = F \circ G$, where *G* is the warped product of λ with the identity map $id : \mathbb{S}^{n-1}_c \to \mathbb{S}^{n-1}_c$ determined by a warped product representation $\phi : \mathbb{R}^2_+ \times_{\sigma} \mathbb{S}^{n-1}_c \to \mathbb{R}^{n+1}$, and $F : W \to \mathbb{R}^{n+2}$ is an isometric immersion of an open subset $W \subset \mathbb{R}^{n+1}$ that contains $G(J \times_{\rho} \mathbb{S}^{n-1}_c)$.

Theorem (-, Silva):

Let $f: M^n \to \mathbb{R}^{n+2}$, with $n \ge 4$, be an isometric immersion of a compact Riemannian manifold of cohomogeneity one under the action of a closed Lie subgroup *G* of Iso(*M*). If the principal orbits under the action of *G* are umbilic hypersurfaces in M^n then one of the following possibilities holds:

(iii) There exist a unit speed curve $\lambda : J = (a, b) \to \mathbb{R}^2_+$ and an isometry $\psi : J \times_{\rho} \mathbb{S}_c^{n-1} \to M_r$ such that $f \circ \psi = F \circ G$, where *G* is the warped product of λ with the identity map $id : \mathbb{S}_c^{n-1} \to \mathbb{S}_c^{n-1}$ determined by a warped product representation $\phi : \mathbb{R}^2_+ \times_{\sigma} \mathbb{S}_c^{n-1} \to \mathbb{R}^{n+1}$, and $F : W \to \mathbb{R}^{n+2}$ is an isometric immersion of an open subset $W \subset \mathbb{R}^{n+1}$ that contains $G(J \times_{\rho} \mathbb{S}_c^{n-1})$.

