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Motivation

Classical problem in submanifold theory: study of isometric immersions f : Mn → Rn+k of a
complete Riemannian manifold under the action of a closed Lie subgroup G ⊂ Iso(M).

Goal: To classify isometric immersions f : Mn → Rn+2 of a compact Riemannian manifold Mn of
cohomogeneity one under the action of a closed Lie subgroup G ⊂ Iso(M) such that the principal
orbits are umbilic hypersurfaces in Mn.
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The hypersurface case

Theorem (Kobayashi, Trans. Am. Math. Soc., 1958):

Let f : Mn → Rn+1 be an isometric immersion of a compact homogeneous Riemannian manifold,
i.e., Iso(M) acts transitively on M. Then f embeds Mn as a round sphere.

Extension of Kobayashi’s theorem to the noncompact case:

Theorem (Nagano-Takahashi, J. Math. Soc. Japan, 1960):

Let f : Mn → Rn+1 be an isometric immersion of a connected homogeneous Riemannian
manifold. Then f (M) is isometric to the product Sk × Rn−k .

Theorem (Ros, J. Differ. Geom., 1988):

Let f : Mn → Rn+1 be an isometric immersion of a compact Riemannian manifold. If the scalar
curvature of Mn is constant, then f (M) is isometric to a sphere.

Cohomogeneity one:

Theorem (Podestà-Spiro, Ann. Global Anal. Geom., 1995):
Let Mn be a compact Riemannian manifold under the action of a closed Lie subgroup G ⊂ Iso(M)
with cohomogeneity one, and let f : Mn → Rn+1 be an isometric immersion. Then f (M) is a
rotational hypersurface if and only if the principal orbits are umbilics.
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The hypersurface case: more general examples

cohomogeneity two compact subgroup G ⊂ SO(n + 1),

γ curve that is either contained in the interior of Rn+1/G or meets its boundary orthogonally,

Mn hypersurface of Rn+1 given by the inverse image of γ under the canonical projection onto
Rn+1/G,

Mn is a cohomogeneity one hypersurface, called the standard examples.

Theorem (Mercuri-Podestà-Seixas-Tojeiro, Comment. Math. Helv., 2006):

Let f : Mn → Rn+1 be a complete hypersurface of G-cohomogeneity one. Assume that n ≥ 3 and
Mn is compact or that n ≥ 5 and the connected components of the flat part of Mn are bounded.
Then f is either rigid or a rotational hypersurface.
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How about isometric immersions f : Mn → Rn+k , with k ≥ 2?

Theorem (Castro-Noronha, Geom. Dedicata, 1999):

Let f : Mn → Rn+2, n ≥ 5, be an isometric immersion of a compact homogeneous Riemannian
manifold. Then f is either a homogeneous isoparametric hypersurface of Sn+1, or isometric to Sn

or is isometrically covered by R× Sn−1.
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Cohomogeneity one Riemannian manifolds

Mn Riemannian manifold acted on by a connected closed subgroup G ⊂ Iso(Mn),
γ : R→ M normal geodesic on M (it crosses each orbit orthogonally),
J = (a, b) ⊂ R open interval such that π ◦ γ is a homeomorphism of J onto π(Mr ),
For each t ∈ J denote by k(t) the principal curvature of the orbit G(γ(t)) with respect to the
normal vector field

X(g · γ(t)) = g∗γ′(t).

For a fixed t0 ∈ J, define the function ρ by

ρ(t) = e
−

∫ t
t0

k(s)ds
.

Set p0 = γ(t0) and consider the action of G on J ×ρ G(p0) given by

g · (t , p) = (t , g(p)).

Theorem (Podestà-Spiro 1995; Moutinho 2006):
Suppose that the principal orbits are umbilical hypersurfaces of Mn. Then the map
ψ : J ×ρ G(p0)→ Mr given by

ψ(t , g(p0)) = g(γ(t))

is an equivariant isometry with respect to the actions of G on the spaces J ×ρ G(p0) and Mr .
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Definition:
An isometric immersion f : Ll ×ρ Mm → Qn

c is said to be a warped product of isometric
immersions determined by a warped product representation φ : V n−k ×σ Qk

c̃ → Qn
c , onto an open

dense subset of Qn
c , if there exist isometric immersions h1 : Ll → V n−k and h2 : Mm → Qk

c̃ such
that ρ = σ ◦ h1 and the following diagram commutes:

V n−k×σ Qk
c̃

Ll

h1

OO

×ρMm

h2

OO
φ

((
f =φ◦(h1×h2)

// Qn
c

Example 1:
If h2 is an isometry, then f is called a rotational submanifold with profile h1. Geometrically, this
means that V n−k is a half-space of a totally geodesic submanifold Qn−k

c ⊂ Qn
c bounded by a

totally geodesic submanifold Qn−k−1
c and f (Ll ×ρ Mm) is the submanifold of Qn

c generated by the
action on h1(L) of the subgroup of isometries of Qn

c that leave Qn−k−1
c invariant.

Example 2:

If h1 is a local isometry then, for c = 0, we have that f (Ll ×ρ Mm) is contained in the product of an
Euclidean factor Rn−k−1 with a cone in Rk+1 over h2.
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Main theorem

Theorem (–, Silva):

Let f : Mn → Rn+2, with n ≥ 4, be an isometric immersion of a compact Riemannian manifold of
cohomogeneity one under the action of a closed Lie subgroup G of Iso(M). If the principal orbits
under the action of G are umbilic hypersurfaces in Mn then one of the following possibilities holds:

(i) There exist a compact homogeneous hypersurface h : Mn−1 → Sn
c , a unit speed curve

λ : J = (a, b)→ R2
+ and an isometry ψ : J ×ρ Mn−1 → Mr such that f ◦ ψ is the warped

product of λ with h determined by a warped product representation Φ : R2
+ ×σ Sn

c → Rn+2.

R2
+ ×σ Sn

c

J

λ

OO

×ρ Mn−1

h

OO
φ

))
f◦ψ=φ◦(λ×h)

// Rn+2
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