

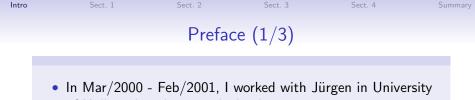
Geometry of homogeneous hypersurfaces in noncompact symmetric spaces

Hiroshi Tamaru

Osaka City University & OCAMI

Symmetry and shape - Celebrating the 60th birthday of Prof. J. Berndt (Universidade de Santiago de Compostela, Spain) 2019/10/28

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00



 In Mar/2000 - Feb/2001, I worked with Jürgen in University of Hull, and we have studied cohomogeneity one actions on noncompact symmetric spaces.

Research in Pairs, MFO, 2003

A photo taken at Prof. Ohnita's house, around 2001/2002.

[in the talk I put here a photo]

Note

- *M* : irreducible symmetric space of noncompact type.
- According to the results by Berndt-Brück and Berndt-T., homogeneous hypersurfaces in *M* can be divided into 3 types, namely, type (*K*), (*A*), (*N*).
- In this talk we summarize some recent works after that, and fill in the following table.

type	classification	extrinsic geometry	intrinsic geometry
(<i>K</i>)			
(A) (N)			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• We need to mention what are type (K), (A), (N).

Def

Let $H \curvearrowright M$ be an isometric action. Then

- a regular orbit is a maximal dimensional orbit;
- other orbits are singular;
- it is of cohomogeneity one (C1) if codim(regular orbit) = 1.

Note

• homogeneous hypersurfaces = regular orbits of C1-actions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sec. 1: Preliminaries (2/3)

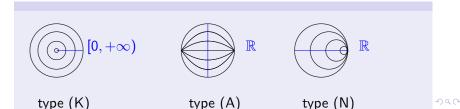
Thm. (Berndt-Brück 2001, Berndt-T. 2003)

Let

- M : irreducible symmetric space of noncompact type,
- $H \curvearrowright M$: C1-action with H being connected.

Then it satisfies one of:

- (K) $\exists 1 \text{ singular orbit};$
- (A) $\not\exists$ singular orbit, $\exists 1$ minimal orbit;
- (N) $\not\exists$ singular orbit, all orbits are congruent to each other.

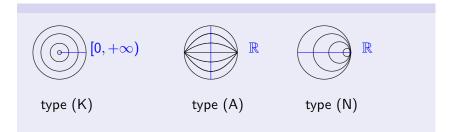


Ex.

Let us consider

- $\mathbb{R}H^2 = \mathrm{SL}(2,\mathbb{R})/\mathrm{SO}(2)$,
- $SL(2,\mathbb{R}) = KAN$: an Iwasawa decomposition.

Then $K, A, N \curvearrowright \mathbb{R}H^2$ look like as follows.



Intro Sect. 1 Sect. 2 Sect. 3 Sect. 4 Summary

Sec. 2: Type (*A*) (1/7)

Classification of type (A)-actions...

Thm. (Berndt-T. JDG 2003)

• #({type (A)-actions on M}/equiv.) = rank(M) (almost).

More Explicitly

- Take α_i (simple root) and $0 \neq \xi \in \mathfrak{g}_{\alpha_i}$.
- $\mathfrak{s}_{\xi} := \mathfrak{s} \ominus \xi = \mathfrak{a} \oplus (\mathfrak{n} \ominus \xi)$. Then $S_{\xi} \frown M$ is of type (A).
- Let ξ ∈ g_{αi}, η ∈ g_{αj}. Then S_ξ ~ S_η (orbit equivalent) iff α_i ~ α_j by Dynkin diagram auto.

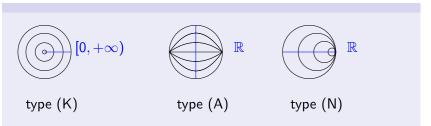
t. 1 Sect. 2 Sect. 3 Sect. 4 Summary

Note

• If rank(M) = 1, then $\exists 1$ type (A)-action.

Example

- For $M = \mathbb{R}H^n$, the minimal orbit is a tot. geod. $\mathbb{R}H^{n-1}$.
- For $M = \mathbb{C}H^n$, the minimal orbit is "ruled".



ntro

Sec. 2: Type (A) (3/7)

Extrinsic geometry of type (A)-actions...

Recall

(A) $\not\exists$ singular orbit, $\exists 1$ minimal orbit.

Note

• We know principal curvatures of all orbits (Berndt-T.).

Thm.

The unique minimal orbit of type (A)-action is

- always austere (Berndt-T.);
- always weakly reflective (Hashinaga-Kubo-T., Gondo);
- totally geodesic iff $M = \mathbb{R}H^n$ (orbit $= \mathbb{R}H^{n-1}$).

Sec. 2: Type (A) (4/7)

Def. (Ikawa-Sakai-Tasaki 2009)

A submfd M in a Riem. mfd (\overline{M}, g) is weakly reflective if

• $\forall p \in M, \forall \xi \in \nu_p(M), \exists f \in \operatorname{Isom}(\overline{M}, g) :$

$$f(p) = p, \quad f(M) = M, \quad (df)_p(\xi) = -\xi.$$

Note

• reflective \Rightarrow weakly reflective \Rightarrow austere.

Note

- We can construct a "reflection" for the unique minimal orbit of type (*A*) action, in terms of the structure of *AN*.
- This shows that they are austere, without calculating the principal curvatures.

Intrinsic geometry of type (A)-actions...

Ex

For the type (A)-action on $M = \mathbb{R}H^n$:

• all orbits are " $\mathbb{R}H^{n-1}(c)$ " (constant sectional curvature).

Thm. (Hashinaga-Kubo-T. Tohoku 2016)

For the type (A)-action on $M = \mathbb{C}H^n$:

• an orbit is Ricci soliton iff it is minimal and n = 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Open Problem

• For type (A)-actions on other M, study whether orbits are Einstein/Ricci soliton.

Note

- By a result on CHⁿ, it would relate to the "multiplicities" of roots.
- By examples of Einstein solvmanifolds [T. 2011] and some general theory, Ricci soliton orbits seem to exist.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Intro	Sect. 1	Sect. 2	Sect. 3	Sect. 4	Summary
		Sec. 2: Ty	pe (A) (7/7	7)	

Summary of this section

type	classification	extrinsic geometry	intrinsic geometry
(K)			
(<i>A</i>)	done	well-understood	many problems
(<i>N</i>)			

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

ect. 1 Sect. 2 Sect. 3 Sect. 4 Summary

Sec. 3: Type (*N*) (1/6)

Classification of type (N)-actions...

Thm. (Berndt-T. JDG 2003)

• ({type (N)-action on M}/equiv.) $\cong \mathbb{R}P^{\operatorname{rank}(M)-1}$ (almost).

More Explicitly

- Take $0 \neq \xi \in \mathfrak{a}$.
- $\mathfrak{s}_{\xi} := \mathfrak{s} \ominus \xi = (\mathfrak{a} \ominus \xi) \oplus \mathfrak{n}$. Then $S_{\xi} \frown M$ is of type (N).
- All type (N)-actions can be constructed in this way.
- $S_{\xi} \sim S_{\eta}$ (orbit eq.) iff $\mathbb{R}\xi \sim \mathbb{R}\eta$ by Dynkin diagram auto.

Intro

t. 1

ect. 2

Sect. 3

Sect. 4

Summary

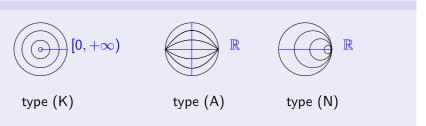
Sec. 3: Type (*N*) (2/6)

Note

- If rank(M) = 1, then $\exists 1$ type (N)-action.
- In this case, orbits are "horospheres".

Recall

(N) $\not\exists$ singular orbit, all orbits are congruent to each other.



Intro

Sec. 3: Type (N) (3/6)

Extrinsic geometry of type (N)-actions...

Note

• Since all orbits are congruent, we have only to study one orbit.

Results by Berndt-T.:

- One can calculate principal curvatures (at least theoretically).
- For some type (N)-actions, all orbits are minimal.

Recent Results by Gondo:

- For $rank(M) \leq 3$, classify austere and weakly reflective orbits.
- \exists austere orbits which are not weakly reflective.

tro Sect. 1 Sect. 2 Sect. 3 Sect. 4 Summary Sec. 3: Type (N) (4/6)

Intrinsic geometry of type (N)-actions...

Thm. (observation)

- All orbits of all type (N)-actions are Ricci soliton.
- An orbit is Einstein (& nonflat) iff it is minimal.

Note

- This follows from theories by Heber (1998), Lauret (2013).
- But existence of Einstein hypersurfaces would have interest.

Intro

Sec. 3: Type (*N*) (5/6)

Thm. (Cho-Hashinaga-Kubo-Taketomi-T. 2018)

For $M = SO_{n,2}^0 / S(O_n O_2)$,

∃ a particular action of type (N) such that the orbit is a contact (0,4)-space & Ricci soliton.

Def. (Blair-Koufogiorgos-Papantoniou 1995)

A contact metric mfd (*M*; η, ξ, φ, g) is (κ, μ)-space ($\kappa, \mu \in \mathbb{R}$) if

• $R(X, Y)\xi = (\kappa \operatorname{id} + (\mu/2)\mathcal{L}_{\xi}\varphi)(\eta(Y)X - \eta(X)Y).$

Our result solves an open problem in contact geometry (a classification of Ricci soliton (κ , μ)-spaces).

Intro	Sect. 1	Sect. 2	Sect. 3	Sect. 4	Summary
		Sec. 3: Typ	be (N) (6/	6)	

Summary of this section

type	classification	extrinsic geometry	intrinsic geometry
(<i>K</i>)			
(A)	done	well-understood	many problems
(<i>N</i>)	done	∃ results & problems	many results

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Sec. 4: Type (*K*) (1/5)

• Recall: (K) $\exists 1$ singular orbit.

Known Classification

We have a classification of type (K)-actions on

- $\mathbb{R}H^n$ (É. Cartan);
- CHⁿ, HH², OH² (Berndt-T. 2007);
- $SL_3\mathbb{R}/SO_3$, $G_2^*(\mathbb{R}^5)$, G_2^2/SO_4 (Berndt-T. 2013);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $SL_3\mathbb{C}/SU_3$, $G_2^*(\mathbb{R}^n)$, $G_2^{\mathbb{C}}/G_2$ (Berndt-DominguezVazquez 2015);
- $\mathbb{H}\mathbb{H}^n$ (cf. Alberto RodriguezVazquez).

Intro

:t. 1

ct. 2

Sect. 3

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sec. 4: Type (*K*) (2/5)

Summary for Classification

We have a classification of C1-actions on

- all rank one symmetric spaces;
- many rank two cases;
- but none of $rank(M) \ge 3$.

Open Problem

- Classify C1-actions on the remaining *M*.
- Note: it is enough to classify type (K)-actions.
- Note: it is very hard for $rank(M) \ge 3$.

Intro Sect. 1 Sect. 2 Sect. 3 Sect. 4 S

Sec. 4: Type (*K*) (3/5)

Extrinsic geometry of type (K)-actions...

Question

• \exists minimal regular orbits of type (K)-actions?

Note

• For the cases of $M = \mathbb{R}H^n$, $\mathbb{C}H^n$,

 \exists minimal regular orbits of type (K)-actions.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intro

Sec. 4: Type (*K*) (4/5)

Intrinsic geometry of type (K)-actions...

Note

- \exists several results for $\mathbb{R}H^n$, $\mathbb{C}H^n$;
- \exists some results for $SO^0(n,2)/S(O_nO_2)...$

(related to contact geometry; cf. Berndt-Suh, Hashinaga)

Question

- ∃ regular orbits of type (*K*)-actions which are Einstein or Ricci soliton?
- (I guess no; it would relate to Alekseevskii Conjecture...)

C

ct. 1

ct. 2

Sect.

Sect. 4

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

Summary

Sec. 4: Type (K) (5/5)

Summary of this section

type	classification	extrinsic geometry	intrinsic geometry	
(K)	only some	not yet	not yet	
(A)	done	well-understood	many problems	
(<i>N</i>)	done	∃ results & problems	many results	

Summary

- We are studying classification problem / extrinsic geometry / intrinsic geometry of homogeneous hypersurfaces in symmetric spaces of noncompact type.
- This would provide many interesting examples, and also gives applications to Einstein/Ricci soliton solvmanifolds, contact geometry, and so on.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We still have so many open problems...

Intro	Sect. 1	Sect. 2	Sect. 3	Sect. 4	Summary
		-	(

Summary (2/2)

Table

type	classification	extrinsic geometry	intrinsic geometry	
(K)	only some	not yet	not yet	
(A)	done	well-understood	many problems	
(<i>N</i>)	done	∃ results & problems	many results	

Thank you very much!

&

Congulatulations and many thanks to Professor Jürgen Berndt.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ