Homogeneous submanifolds in complex space forms

Symmetry and shape

Celebrating the 60th birthday of Prof. J. Berndt

José Carlos Díaz Ramos
University of Santiago de Compostela
October 31, 2019
Contents

Homogeneous hypersurfaces
- Homogeneous hypersurfaces in real space forms
- Homogeneous hypersurfaces in \mathbb{CH}^n
- Hypersurfaces with constant principal curvatures in \mathbb{CH}^n
- Isoparametric hypersurfaces in \mathbb{CH}^n

Polar actions
- Polar actions in real space forms
- Polar actions on \mathbb{CH}^n
- Isoparametric submanifolds in \mathbb{CH}^2
Homogeneous hypersurfaces

\tilde{M} Riemannian manifold, $\tilde{\nabla}$ Levi-Civita connection

$M \subset \tilde{M}$ hypersurface, ξ unit normal, ∇ Levi-Civita connection

M homogeneous

$M = G \cdot o$, with $o \in M, G \subset I(\tilde{M})$

G is said to act with cohomogeneity one

Problem.
- Classify homogeneous hypersurfaces (up to isometric congruence)
- Characterize homogeneous hypersurfaces in terms of geometric data
Complex space forms

Complex projective space

$$(\mathbb{C}^{n+1}, i) \langle v, w \rangle = \text{Re} \left(\sum_{i=0}^{n} \bar{v}_i w_i \right)$$

$S^{2n+1} = \{ z \in \mathbb{C}^{n+1} : \langle z, z \rangle = 1 \}$

$z \sim w \iff \exists \lambda \in \mathbb{C} : w = \lambda z$

$$\mathbb{C}P^n = S^{2n+1} / \sim$$

$\pi : S^{2n+1} \to \mathbb{C}P^n$ Hopf map

π Riemannian submersion

$\mathbb{C}P^n$ is a Kähler manifold with constant positive holomorphic sectional curvature

Complex hyperbolic space

$$(\mathbb{C}^{1,n}, i) \langle v, w \rangle = \text{Re} \left(-\bar{v}_0 w_0 + \sum_{i=1}^{n} \bar{v}_i w_i \right)$$

$H_{1}^{2n+1} = \{ z \in \mathbb{C}^{1,n} : \langle z, z \rangle = -1 \}$

$z \sim w \iff \exists \lambda \in \mathbb{C} : w = \lambda z$

$$\mathbb{C}H^n = H_{1}^{2n+1} / \sim$$

$\pi : H_{1}^{2n+1} \to \mathbb{C}H^n$ Hopf map

π semi-Riemannian submersion

$\mathbb{C}H^n$ is a Kähler manifold with constant negative holomorphic sectional curvature
Complex space forms

Complex projective space

\[(\mathbb{C}^{n+1}, i \cdot) \langle v, w \rangle = \text{Re} \left(\sum_{i=0}^{n} \bar{v}_i w_i \right)\]

\[S^{2n+1} = \{ z \in \mathbb{C}^{n+1} : \langle z, z \rangle = 1 \} \]

\[\mathbb{C}P^n = S^{2n+1} / \sim \]

\[SU(n+1) \text{ acts transitively on } \mathbb{C}P^n\]

\[\mathbb{C}P^n = \frac{SU(n+1)}{S(U(1)U(n))} \]

\[\mathbb{C}P^n \text{ is a symmetric space of rank one and compact type} \]

Complex hyperbolic space

\[(\mathbb{C}^{1,n}, i \cdot) \langle v, w \rangle = \text{Re} \left(-\bar{v}_0 w_0 + \sum_{i=1}^{n} \bar{v}_i w_i \right)\]

\[H^{2n+1}_1 = \{ z \in \mathbb{C}^{1,n} : \langle z, z \rangle = -1 \} \]

\[\mathbb{C}H^n = H^{2n+1}_1 / \sim \]

\[SU(1, n) \text{ acts transitively on } \mathbb{C}H^n\]

\[\mathbb{C}H^n = \frac{SU(1, n)}{S(U(1)U(n))} \]

\[\mathbb{C}H^n \text{ is a symmetric space of rank one and noncompact type} \]
The complex hyperbolic space

\[CH^n = \frac{SU(1, n)}{S(U(1)U(n))} \]

Iwasawa decomposition

\[I^0(CH^n) = KAN \]

acts simply transitively on \(CH^n \)

\[CH^n \cong AN \]

with left-invariant metric

\[n = g_\alpha \oplus g_{2\alpha} \]

Heisenberg algebra

\[[U, V] = \langle JU, V \rangle Z \]

\[[A, U] = \frac{1}{2} U \quad [A, Z] = Z \]
Homogeneous hypersurfaces in space forms

- Euclidean spaces \mathbb{R}^n [Somigliana, Levi-Civita, Segre]:

- Real hyperbolic spaces \mathbb{RH}^n [Cartan]:

- Spheres S^n [Hsiang, Lawson]:
 Isotropy representations of symmetric spaces of rank 2
Homogeneous hypersurfaces in $\mathbb{C}P^n$ and $\mathbb{C}H^n$

Theorem. [Takagi] A homogeneous hypersurface in $\mathbb{C}P^n$ is a principal orbit of the quotient of the isotropy representation of a Hermitian symmetric space of rank two.

Theorem. [Berndt, Tamaru] Homogeneous hypersurfaces in $\mathbb{C}H^n$:

- tubes around totally geodesic $\mathbb{C}H^k$, $k \in \{0, \ldots, n-1\}$
- tubes around totally geodesic $\mathbb{R}H^n$
- horospheres
- ruled homogeneous minimal Lohnherr hypersurfaces W^{2n-1}, or their equidistant hypersurfaces
- tubes around ruled homogeneous minimal Berndt-Brück submanifolds W^{2n-k}_φ, for $k \in \{2, \ldots, n-1\}$, $\varphi \in (0, \pi/2]$
 (k even if $\varphi \neq \pi/2$)
Homogeneous hypersurfaces in $\mathbb{C}H^n$

Hopf examples

- Tubes around a totally geodesic $\mathbb{C}H^k$, $k \in \{0, \ldots, n-1\}$

 Group action: $S(U(1,k) \times U(n-k))$

 $g = 2$ if $k \in \{0, n-1\}$; $g = 3$ otherwise

- Tubes around a totally geodesic $\mathbb{R}H^n$

 Group action: $SO^0(1,n)$

 $g = 2$ if $r = \log(2 + \sqrt{3})$; $g = 3$ otherwise

- Horospheres

 Group action: N

 $g = 2$
Homogeneous hypersurfaces in $\mathbb{C}H^n$

Non-Hopf examples

$V \subset \mathbb{C}^n$ has constant Kähler angle φ

$\mathfrak{w} \subset \mathfrak{g}_\alpha$ such that \mathfrak{w}^\perp is of constant Kähler angle φ, $k = \dim \mathfrak{w}^\perp$

$\mathfrak{s}_\mathfrak{w} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2\alpha}$ subalgebra of $\mathfrak{a} \oplus \mathfrak{n}$

$S_\mathfrak{w}$ subgroup of AN whose Lie algebra is $\mathfrak{s}_\mathfrak{w}$

Theorem. [Berndt, Brück] Tubes around $W^{2n-k}_\varphi := W_\mathfrak{w} = S_\mathfrak{w} \cdot o$ are homogeneous

- If \mathfrak{w} is a hyperplane, $W_\mathfrak{w}$ is the Lohnherr hypersurface ($g = 3$)
- If $\varphi = \pi/2$, then $g = 3$ if $r = \log(2 + \sqrt{3})$, otherwise $g = 4$
- If $\varphi \neq \pi/2$, then k is even; $g = 4$ if $k = 2$, otherwise $g = 5$
Characterization of homogeneous hypersurfaces

- M homogeneous hypersurface
- M has constant principal curvatures
- M is isoparametric
Characterization in real space forms

Theorem. [Cartan] Isoparametric \(\Leftrightarrow \) constant principal curvatures

- Euclidean spaces \(\mathbb{R}^n \):

- Real hyperbolic spaces \(\mathbb{R}H^n \):

- Spheres \(S^n \):

 There are inhomogeneous examples
Constant principal curvatures

\[M \text{ homogeneous hypersurface} \quad \Rightarrow \quad M \text{ has constant principal curvatures} \]

Shape operator: \[SX = -\nabla_X \xi \]

\(S \) self-adjoint
\(\Rightarrow S \) diagonalizable

principal curvatures:
eigenvalues of \(S \)

\(g \): number of principal curvatures

\(J\xi \): Hopf vector field

\(h \): # of nontrivial projections of \(J\xi \) onto principal curvature spaces

\(M \) is Hopf
\(\Leftrightarrow J\xi \) is an eigenvector of \(S \)
\(\Leftrightarrow h = 1 \)
Constant principal curvatures

M homogeneous hypersurface \rightarrow M has constant principal curvatures

The answer is **YES** if:

$g = 1$ [Tashiro, Tachibana] No umbilical hypersurfaces in $\mathbb{C}H^n$

$g = 2$ [Montiel]
- tubes around totally geodesic $\mathbb{C}H^k$, $k \in \{0, n-1\}$
- tubes of radius $r = \log(2 + \sqrt{3})$ around totally geodesic $\mathbb{R}H^n$
- horospheres

$g = 3$ [Berndt, Díaz-Ramos]
- tubes around totally geodesic $\mathbb{C}H^k$, $k \in \{1, \ldots, n-2\}$
- tubes of radii $r \neq \log(2 + \sqrt{3})$ around totally geodesic $\mathbb{R}H^n$
- ruled Lohnherr hypersurfaces $W_{\pi/2}^{2n-1}$, or their equidistant hypersurfaces
- tubes of radius $r = \log(2 + \sqrt{3})$ around Berndt-Brück submanifolds $W_{\pi/2}^{2n-k}$, for $k \in \{2, \ldots, n-1\}$
Constant principal curvatures

M homogeneous hypersurface $\xrightarrow{?} M$ has constant principal curvatures

The answer is **YES** if:

$h = 1$ [Berndt]
- tubes around totally geodesic $\mathbb{C}H^k$, $k \in \{0, \ldots, n - 1\}$
- tubes around totally geodesic $\mathbb{R}H^n$
- horospheres

$h = 2$ [Díaz-Ramos, Domínguez-Vázquez]
- ruled Lohnherr hypersurfaces $W_{\pi/2}^{2n-1}$, or their equidistant hypersurfaces
- tubes around Berndt-Brück submanifolds $W_{\pi/2}^{2n-k}$, for $k \in \{2, \ldots, n - 1\}$
Isoparametric hypersurfaces

\(M \) homogeneous hypersurface \(\rightarrow \) \(M \) is isoparametric

\(f: \bar{M} \rightarrow \mathbb{R} \)

isoparametric function

\(M \subset \bar{M} \)

isoparametric hypersurface

\(\| \nabla f \|^2 \) and \(\Delta f \) constant along the level sets of \(f \)

level set of codimension 1 of isoparametric function

[Cartan]

\(M \) isoparametric hypersurface \(\leftrightarrow \) nearby parallel hypersurfaces of constant mean curvature

In real space forms: isoparametric \(\leftrightarrow \) constant principal curvatures
Isoparametric hypersurfaces in $\mathbb{C}H^n$

M homogeneous hypersurface \implies M is isoparametric

Inhomogeneous examples

$\mathfrak{w} \subset \mathfrak{g}_\alpha \cong \mathbb{C}^{n-1}$, $k = \dim \mathfrak{w}^\perp$

$\mathfrak{s}_\mathfrak{w} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2\alpha}$ subalgebra of $\mathfrak{a} \oplus \mathfrak{n}$

$S_\mathfrak{w}$ subgroup of AN whose Lie algebra is $\mathfrak{s}_\mathfrak{w}$

Theorem. [Díaz-Ramos, Domínguez-Vázquez] Tubes around $W_\mathfrak{w} = S_\mathfrak{w} \cdot o$ are isoparametric

If $\mathfrak{w} \subset \mathfrak{g}_\alpha$, then $\mathfrak{w}^\perp = \bigoplus_{\varphi \in \Phi} \mathfrak{w}_\varphi^\perp$ is a sum of space of constant Kähler angle

[Díaz-Ramos, Domínguez-Vázquez, Kollross]

Thus, $W_\mathfrak{w}$ is homogeneous if and only if \mathfrak{w}^\perp has constant Kähler angle
Theorem. [Díaz-Ramos, Domínguez-Vázquez, Sanmartín-López] Isoparametric hypersurfaces in $\mathbb{C}H^n$:

- tubes around totally geodesic $\mathbb{C}H^k$, $k \in \{0, \ldots, n-1\}$
- tubes around totally geodesic $\mathbb{R}H^n$
- horospheres
- ruled homogeneous minimal Lohnherr hypersurfaces $W^{2n-1}_{\pi/2}$, or their equidistant hypersurfaces
- tubes around a ruled homogeneous minimal Berndt-Brück submanifolds W^{2n-k}_{φ}, for $k \in \{2, \ldots, n-1\}$, $\varphi \in (0, \pi/2]$
 (k even if $\varphi \neq \pi/2$)
- tubes around ruled homogeneous minimal submanifolds $W_\mathfrak{w}$, for some proper real subspace \mathfrak{w} of $g_\alpha \cong \mathbb{C}^{n-1}$ such that \mathfrak{w}^\perp has nonconstant Kähler angle
Characterization of homogeneous hypersurfaces

\(M \) homogeneous hypersurface \(\Rightarrow \)
- \(M \) has constant principal curvatures
- \(M \) is isoparametric

Corollary. If \(M \) is a connected complete hypersurface in \(CH^2 \) then the following statements are equivalent:
- \(M \) is homogeneous
- \(M \) has constant principal curvatures
- \(M \) is isoparametric

Corollary. If \(M \) is a connected complete hypersurface in \(CH^n \) then, \(M \) is homogeneous if and only if \(M \) is isoparametric and has constant principal curvatures
Polar actions

G acts **polarly** if and only if there is a **section**

Section: submanifold that intersects all orbits of G orthogonally.

A section is thought as a set of "canonical forms".

Example. $\mathfrak{sl}(n, \mathbb{R})/SO(n) \quad \mathfrak{sl}(n, \mathbb{R}) = \mathfrak{so}(n) \oplus \{\text{symmetric matrices}\}$

$SO(n)$ acts on symmetric matrices by conjugation

$\{\text{diagonal matrices}\}$ is a section
Polar actions

G acts polarly ⇔ there is a section

Section: submanifold that intersects all orbits of G orthogonally

Problem.
- Classify polar actions (up to isometric congruence)
- Characterize orbits of polar actions in terms of geometric data
Polar actions on real space forms

- Spheres S^n:
 [Dadok] Isotropy representations of symmetric spaces

- Euclidean spaces \mathbb{R}^n
 Isotropy representations of symmetric spaces \times translations

- Real hyperbolic spaces $\mathbb{R}H^n$
 [Wu] $SO(1, k) \times K$ or $N \times K$, where K acts polarly on \mathbb{R}^{n-k}
Polar actions on $\mathbb{C}H^n$

Theorem. [Podestà, Thorbergsson] A polar action on $\mathbb{C}P^n$ is orbit equivalent to the a quotient of an isotropy representation of a Hermitian symmetric space.

Theorem. [-, Domínguez-Vázquez, Kolbross] Polar actions on $\mathbb{C}H^n$:

- $\mathfrak{h} = \mathfrak{q} \oplus \mathfrak{so}(1, k), \ k \in \{0, \ldots, n\}$
 - \mathfrak{q} subalgebra of $\mathfrak{u}(n - k)$
 - Q acts polarly on \mathbb{C}^{n-k} with totally real section

- $\mathfrak{h} = \mathfrak{q} \oplus \mathfrak{b} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2\alpha}$
 - \mathfrak{b} linear subspace of \mathfrak{a}, \mathfrak{w} real subspace of \mathfrak{g}_α,
 - \mathfrak{q} subalgebra of $\mathfrak{k}_0 = \mathfrak{n}_K(\mathfrak{a})$, \mathfrak{q} normalizes \mathfrak{w},
 - Q acts polarly on $\mathfrak{g}_\alpha \oplus \mathfrak{w}$ with totally real section

Recall: $\mathfrak{w} = \bigoplus_{\varphi \in \Phi} \mathfrak{w}_\varphi$
Characterization of orbits of polar actions

[Heintze, Liu, Olmos]

\[M \subset \tilde{M} \]

isoparametric

- normal bundle is flat
- parallel submanifolds have constant mean curvature in radial directions
- for any \(p \in M \) there exists a section \(\Sigma_p \) through \(p \)
 (totally geodesic submanifold s.t. \(T_p \Sigma_p = \nu_p M \))

Isoparametric in \(CH^2 \)

\[CH^2 \]

principal orbit of polar action

[Terng]

\[M \subset \tilde{M} \]

isoparametric

- normal bundle is flat
- eigenvalues of the shape operator with respect to any parallel normal vector field are constant

Terng-isoparametric in \(CH^2 \)

\[CH^2 \]

- principal orbit of polar action
- Chen's surface
- circles