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1 � How we started research on Qn

The homogeneous nearly Kähler (S3 × S3, g)

has

an almost complex structure J

and an almost product struture P ,

which anti-commute,

and the curvature tensor is given by

R(X,Y )Z =
5

12
(g(Y,Z)X − g(X,Z)Y )

+
1

12
(g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ)

+
1

3
(g(PY,Z)PX − g(PX,Z)PY

+g(JPY,Z)JPX − g(JPX,Z)JPY ) .
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2 � The complex quadric Qn

De�nition

Qn := {[(z0, . . . , zn+1)] ∈ CPn+1(4) | z20 + . . .+ z2n+1 = 0}.

Qn is a holomorphic submanifold of CPn+1(4) and hence, equipped with
the induced metric and almost complex structure, a Kähler manifold.

What is the inverse image of Qn under the Hopf �bration

π : S2n+3(1) ⊆ Cn+2 → CPn+1(4) ?

Lemma

π−1Qn=

{
u+ iv

∣∣∣∣ u, v∈Rn+2, 〈u, u〉=〈v, v〉=1

2
, 〈u, v〉=0

}
⊆S2n+3(1),

where 〈·, ·〉 is the Euclidean metric on Rn+2.
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2 � The complex quadric Qn

Remark. Alternative descriptions:

Qn is the Grassmannian of oriented 2-planes in Rn+2

Qn =
SO(n+ 2)

SO(n)× SO(2)

Lemma

T⊥[z]Q
n = span {(dπ)z(z̄), (dπ)z(iz̄)}.

Re(z20 + . . .+ z2n+1) = 0 ⇒z̄ ⊥ z ⇒ z̄ is tangent to S2n+3(1)

Im(z20 + . . .+ z2n+1) = 0 ⇒z̄ ⊥ iz ⇒ z̄ is horizontal
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2 � The complex quadric Qn

Lemma

Any shape operator A of Qn in CPn+1(4), associated to a unit normal

vector �eld, has the following properties:

1 A2 = id,
2 g(AX,AY ) = g(X,Y ),

A is an almost product structure

that anti-commutes with J !

3 AJ = −JA.

Let A be the set of these operators. Choose A0 ∈ A, then

A = {cosϕA0 + sinϕJA0 | ϕ : Qn → R}.

Lemma

For all A ∈ A, there exists a non-zero one-form s such that

∇XA = s(X)JA.



2 � The complex quadric Qn

Lemma

Any shape operator A of Qn in CPn+1(4), associated to a unit normal

vector �eld, has the following properties:

1 A2 = id,
2 g(AX,AY ) = g(X,Y ),

A is an almost product structure

that anti-commutes with J !
3 AJ = −JA.

Let A be the set of these operators. Choose A0 ∈ A, then

A = {cosϕA0 + sinϕJA0 | ϕ : Qn → R}.

Lemma

For all A ∈ A, there exists a non-zero one-form s such that

∇XA = s(X)JA.



2 � The complex quadric Qn

Lemma

Any shape operator A of Qn in CPn+1(4), associated to a unit normal

vector �eld, has the following properties:

1 A2 = id,
2 g(AX,AY ) = g(X,Y ),

A is an almost product structure

that anti-commutes with J !
3 AJ = −JA.

Let A be the set of these operators. Choose A0 ∈ A, then

A = {cosϕA0 + sinϕJA0 | ϕ : Qn → R}.

Lemma

For all A ∈ A, there exists a non-zero one-form s such that

∇XA = s(X)JA.



2 � The complex quadric Qn

Lemma

Any shape operator A of Qn in CPn+1(4), associated to a unit normal

vector �eld, has the following properties:

1 A2 = id,
2 g(AX,AY ) = g(X,Y ),

A is an almost product structure

that anti-commutes with J !
3 AJ = −JA.

Let A be the set of these operators. Choose A0 ∈ A, then

A = {cosϕA0 + sinϕJA0 | ϕ : Qn → R}.

Lemma

For all A ∈ A, there exists a non-zero one-form s such that

∇XA = s(X)JA.



2 � The complex quadric Qn

From the equation of Gauss:

RQn
(X,Y )Z = g(Y, Z)X − g(X,Z)Y

+g(X,JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ

+g(AY,Z)AX − g(AX,Z)AY

+g(JAY,Z)JAX − g(JAX,Z)JAY

Remark. Although none of the A ∈ A are integrable, we have

Q2 ∼= S2
(
1
2

)
× S2

(
1
2

)
.

Theorem (Jensen)

A Riemannian homogeneous Einstein four-manifold is symmetric and

hence locally isometric to either a real space form R4, S4(c) or H4(c); a
complex space form CP 2(4c) or CH2(4c); or a product of surfaces

S2(c)× S2(c) or H2(c)×H2(c).
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3 � The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of Rn+1

a : Mn → Rn+1 hypersurface with unit normal b

De�nition

The map G : Mn → Sn(1) : p 7→ b(p) is the Gauss map of a.

Remark:

Any parallel hypersurface to a, given by

at : Mn → Rn+1 : p 7→ a(p) + t b(p)

for some t ∈ R, has the same Gauss map.
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3 � The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of Sn+1(1)

a : Mn → Sn+1(1) ⊆ Rn+2 hypersurface with unit normal b.

De�nition

The map G : Mn → Qn : p 7→ [a(p) + ib(p)] is the Gauss map of a.

Remark:

〈a(p)√
2
, a(p)√

2
〉=〈 b(p)√

2
, b(p)√

2
〉= 1

2 , 〈
a(p)√

2
, b(p)√

2
〉=0⇒ a(p)√

2
+ i b(p)√

2
∈ π−1Qn

A parallel hypersurface to a is now given by

at : Mn → Sn+1(1) ⊆ Rn+2 : p 7→ cos t a(p) + sin t b(p)

for some t ∈ R. Since bt=cos t b−sin t a is a unit normal to at,
at+ibt=e−it(a+ib) and at has the same Gauss map as a.
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3 � The Gauss map of a hypersurface of a sphere

Proposition

The Gauss map G : Mn → Qn of a hypersurface a : Mn → Sn+1(1) is a

Lagrangian immersion.

Proof. Diagonalize the shape operator S of a: Sej = λjej .

For the horizontal lift Ĝ : Mn → π−1Qn : p 7→ 1√
2
(a(p) + ib(p)), one has

(dĜ)ej =
1√
2

(ej − iSej) =
1√
2

(1− iλj)ej .

(dĜ)e1, . . . , (dĜ)en are linearly independent ⇒ G is an immersion.

∀j, k ∈ {1, . . . , n} : 〈(dĜ)ej , i(dĜ)ek〉 = 0 ⇒ G is Lagrangian.

�
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For the horizontal lift Ĝ : Mn → π−1Qn : p 7→ 1√
2
(a(p) + ib(p)), one has
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3 � The Gauss map of a hypersurface of a sphere

Proposition

If the principal curvatures of a hypersurface a : Mn → Sn+1(1) are

constant, then its Gauss map G : Mn → Qn is a minimal Lagrangian

immersion.

The statement follows from the following formula by Palmer:

g(JH, ·) = − 1

n
d

Im

log

n∏
j=1

(1 + iλj)

 .
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3 � The Gauss map of a hypersurface of a sphere

De�nition

An isoparametric hypersurface is a hypersurface with constant principal
curvatures.

Remark. Originally de�ned as level sets of isoparametric functions F on
the ambient space: functions for which ‖∇F‖ = φ1(F ), ∆F = φ2(F ).
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Full classi�cation of isoparametric hypersurfaces of Rn+1.

Theorem (Somigliana, Levi-Civita, Segre)

An isoparametric hypersurface of Rn+1 is an op part of a hyperplane Rn,

of a hypersphere Sn(r) or of a product immersion Sk(r)× Rn−k.
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the ambient space: functions for which ‖∇F‖ = φ1(F ), ∆F = φ2(F ).

Examples of isoparametric hypersurfaces of Sn+1(1).

A hypersphere (0 < r ≤ 1)

a1 : Sn(r)→ Sn+1(1) : p 7→ (p,
√

1− r2)
A product of spheres (0 < r1, r2 < 1 with r21 + r22 = 1)

a2 : Sk(r1)× Sn−k(r2)→ Sn+1(1) : (p1, p2) 7→ (p1, p2)

A tube around the Veronese surface in S4(1) (Cartan's example)

a3 : RP 2 × S1(ε)→ S4(1)
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3 � The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

a1 : λ1 = . . . = λn =
√
1−r2
r

a2 : λ1 = . . . = λk = r2
r1
, λk+1 = . . . = λn = − r1

r2

a3 : λ1, λ2, λ3 mutually di�erent

Theorem (Münzner, 1981)

Let g be the number of distinct constant principal curvatures of an

isoparametric hypersurface of Sn+1(1), then g ∈ {1, 2, 3, 4, 6}.

The proof uses algebraic topology.

Until today, the classi�cation of isoparametric hypersurfaces of Sn+1(1)
is still not completely understood.
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4 � Study of Lagrangian submanifolds of Qn � tools

Let f : Mn → Qn be a Lagrangian immersion. Assume A ∈ A is �xed.

If X is tangent to Mn, the decomposition

AX = BX − JCX

into a tangent and a normal part, de�nes two (1, 1)-tensor �elds on Mn.

Lemma

The (1, 1)-tensor �elds B and C on Mn satisfy

1 B and C are symmetric,

2 B2 + C2 = id,

3 [B,C] = 0.

Hence, for every p ∈Mn, there exists an ONB {e1, . . . , en} of TpMn

and θ1, . . . , θn ∈ R, determined up to an integer multiple of π, such that

Aej = cos(2θj)ej − sin(2θj)Jej .



4 � Study of Lagrangian submanifolds of Qn � tools

Let f : Mn → Qn be a Lagrangian immersion. Assume A ∈ A is �xed.

If X is tangent to Mn, the decomposition

AX = BX − JCX

into a tangent and a normal part, de�nes two (1, 1)-tensor �elds on Mn.

Lemma

The (1, 1)-tensor �elds B and C on Mn satisfy

1 B and C are symmetric,

2 B2 + C2 = id,

3 [B,C] = 0.

Hence, for every p ∈Mn, there exists an ONB {e1, . . . , en} of TpMn

and θ1, . . . , θn ∈ R, determined up to an integer multiple of π, such that

Aej = cos(2θj)ej − sin(2θj)Jej .



4 � Study of Lagrangian submanifolds of Qn � tools

Let f : Mn → Qn be a Lagrangian immersion. Assume A ∈ A is �xed.

If X is tangent to Mn, the decomposition

AX = BX − JCX

into a tangent and a normal part, de�nes two (1, 1)-tensor �elds on Mn.

Lemma

The (1, 1)-tensor �elds B and C on Mn satisfy

1 B and C are symmetric,

2 B2 + C2 = id,

3 [B,C] = 0.

Hence, for every p ∈Mn, there exists an ONB {e1, . . . , en} of TpMn

and θ1, . . . , θn ∈ R, determined up to an integer multiple of π, such that

Aej = cos(2θj)ej − sin(2θj)Jej .



4 � Study of Lagrangian submanifolds of Qn

In the neighborhood of a point, θ1, . . . , θn de�ne local angle functions,
which we can change by changing A ∈ A.

Lemma

Let f : Mn → Qn be a Lagrangian immersion and A0, A ∈ A. Then
there exists a function ϕ : Mn → R such that A = cosϕA0 + sinϕJA0

along Mn and the local angle functions θ1, . . . , θn associated to A are

related to the local angle functions θ01, . . . , θ
0
n associated to A0 by

θj = θ0j −
ϕ

2
.

Example. One can choose A ∈ A such that

θ1 + . . .+ θn = 0 mod π.
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4 � Study of Lagrangian submanifolds of Qn � tools

Equation of Gauss:

g(R(X,Y )Z,W ) = g(Y,Z)g(X,W )− g(X,Z)g(Y,W )

+ g(BY,Z)g(BX,W )− g(BX,Z)g(BY,W )

+ g(CY,Z)g(CX,W )− g(CX,Z)g(CY,W )

+ g(h(Y,Z), h(X,W ))− g(h(X,Z), h(Y,W ))

Equation of Codazzi:

(∇h)(X,Y, Z)− (∇h)(Y,X,Z) = g(CY,Z)JBX − g(CX,Z)JBY

− g(BY,Z)JCX + g(BX,Z)JCY
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4 � Study of Lagrangian submanifolds of Qn � main results

Question: Given a Lagrangian immersion f : Mn → Qn, can we see it
as the Gauss map of a hypersurface a : Mn → Sn+1(1)?

Idea:

Take a horizontal lift f̂ : Mn → π−1Qn and put

a :=
√

2 Re f̂ ,

b :=
√

2 Im f̂ .

Remark:

We have to work locally to guarantee that a is an immersion

We expect a relation between the angle functions of f and the
principal curvatures of a.
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4 � Study of Lagrangian submanifolds of Qn � main results

Theorem (VdV, Wij�els)

PART I

Let a : Mn → Sn+1(1) be a hypersurface with unit normal b and denote

by G : Mn → Qn : p 7→ [a(p) + ib(p)] its Gauss map. After a suitable

choice of A ∈ A, the relation between the principal curvatures a and the

angle functions of G is

λj = cot θj
for j = 1, . . . , n.

Remark. The choice of A comes down to choosing

Ĝ(p) =
1√
2

(a(p)− ib(p))

as a unit normal to π−1Qn in S2n+3(1) along Ĝ.
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4 � Study of Lagrangian submanifolds of Qn � main results

Theorem (VdV, Wij�els)

PART II

Conversely, if f : Mn → Qn is a Lagrangian immersion, then for every

point of Mn there exist an open neighborhood U of that point in Mn

and an immersion a : U → Sn+1(1) with Gauss map f |U . This
immersion is not unique, nor are its principal curvature functions.

However, for any choice of the hypersurface a and of the almost product

structure A ∈ A, the principal curvature functions of a are related to the

corresponding angle functions of f by

cot(θj − θk) = ±λjλk + 1

λj − λk

for j, k = 1, . . . , n in points where λj 6= λk.



4 � Study of Lagrangian submanifolds of Qn � main results

Some classi�cation theorems for minimal Lagrangian immersions into Qn

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f : Mn → Qn, n ≥ 2, be a minimal Lagrangian immersion with

constant local angle functions. If g is the number of di�erent constant

local angle functions modulo π, then g ∈ {1, 2, 3, 4, 6}. Moreover,

if g = 1, then f is the Gauss map of a part of

a1 : Sn(r)→ Sn+1(1);

if g = 2, then f is the Gauss map of a part of

a2 : Sk(r1)× Sn−k(r2)→ Sn+1(1);

if g = 3, then f is the Gauss map of a part of

a3 : RP 2 × S1(ε)→ S4(1)
or of tubes around standard embeddings CP 2 → S7(1),
HP 2 → S13(1) or OP 2 → S25(1).
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4 � Study of Lagrangian submanifolds of Qn � main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f : Mn → Qn, n ≥ 2, be a totally geodesic Lagrangian immersion.

Then f is the Gauss map of a part of a1 : Sn(r)→ Sn+1(1) or of a part

of a2 : Sk(r1)× Sn−k(r2)→ Sn+1(1).

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f : Mn → Qn, n ≥ 2, be a minimal Lagrangian immersion, such that

Mn has constant sectional curvature c. Then either

f is the Gauss map of a part of

a1 : Sn(r)→ Sn+1(1);

c = 2

n = 2 and f is the Gauss map of a part of

a2 : S1(r1)× S1(r2)→ S3(1);

c = 0

n = 3 and f is the Gauss map of a part of

a3 : RP 2 × S1(ε)→ S4(1).

c = 1
8
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4 � Study of Lagrangian submanifolds of Qn � main results

Some steps in the proof of the last theorem

Lemma

Let f : Mn → Qn, n ≥ 2, be a Lagrangian immersion, such that Mn has

constant sectional curvature c. Then

sin(θi − θj) sin(θi + θj − 2θk)(δk`h(ei, ej) + h`ijJek)

+ sin(θj − θk) sin(θj + θk − 2θi)(δi`h(ej , ek) + h`jkJei)

+ sin(θk − θi) sin(θk + θi − 2θj)(δj`h(ei, ek) + h`ikJej) = 0

for all i, j, k, `. In particular, if i, j, k are mutually di�erent, then

hkii sin(θi − θk) sin(θi + θk − 2θj) = hkjj sin(θj − θk) sin(θj + θk − 2θi),

hkij sin(θi − θj) sin(θi + θj − 2θk) = 0

and if i, j, k, ` are mutually di�erent, then

hkij sin(θi − θj) sin(θi + θj − 2θ`) = 0.
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4 � Study of Lagrangian submanifolds of Qn � main results

Proposition

Let f : Mn → Qn, n ≥ 2, be a minimal Lagrangian immersion such that

Mn has constant sectional curvature and choose A ∈ A such that

θ1 + . . .+ θn = 0 mod π. Then either

all local angle functions are the same modulo π, or

all local angle functions are mutually di�erent modulo π.

In the former case, the immersion is the Gauss map of a part of

a1 : Sn(r)→ Sn+1(1).

The conclusion follows by algebraic computations using all the obtained
relations and the equations of Gauss and Codazzi.

Remark. For M2 → Q2 ∼= S2(12)× S2(12), the classi�cation was already
obtained by Castro and Urbano.
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5 � Question

Question:

Are there other Riemannian manifolds (M, g) with anti-commuting
almost complex structure J and almost product structure P such that

R(X,Y )Z = a (g(Y,Z)X−g(X,Z)Y )

+ b (g(X, JZ)JY −g(Y, JZ)JX+2g(X,JY )JZ)

+ c (g(PY,Z)PX−g(PX,Z)PY +g(JPY,Z)JPX−g(JPX,Z)JPY ) ?

Only examples that I know of so far:

real space forms (no J , no P ), complex space forms (no P )

the homogeneous nearly Kähler S3 × S3

the complex quadric, the hyperbolic complex quadric

Remark. All such manifolds will be Einstein.
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Thank you for your attention!
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