Lagrangian submanifolds of the complex quadric

Joeri Van der Veken

SYMMETRY AND SHAPE
celebrating the 60th birthday of Prof. J. Berndt

Santiago de Compostela – 30/10/2019
1. How we started research on Q^n

2. The complex quadric Q^n

3. The Gauss map of a hypersurface of a sphere

4. Study of Lagrangian submanifolds of Q^n

5. Question
1 – Outline

1. How we started research on Q^n

2. The complex quadric Q^n

3. The Gauss map of a hypersurface of a sphere

4. Study of Lagrangian submanifolds of Q^n

5. Question
1 – How we started research on Q^n

The homogeneous nearly Kähler $(S^3 \times S^3, g)$
The homogeneous nearly Kähler \((S^3 \times S^3, g)\) has

- an almost complex structure \(J\)
- and an almost product structure \(P\),
- which anti-commute,
- and the curvature tensor is given by

\[
R(X, Y)Z = \frac{5}{12} (g(Y, Z)X - g(X, Z)Y) \\
+ \frac{1}{12} (g(X, JZ)JY - g(Y, JZ)JX + 2g(X, JY)JZ) \\
+ \frac{1}{3} (g(PY, Z)PX - g(PX, Z)PY) \\
+ g(JPY, Z)JPX - g(JPX, Z)JPY).
\]
2 – Outline

1. How we started research on Q^n

2. The complex quadric Q^n

3. The Gauss map of a hypersurface of a sphere

4. Study of Lagrangian submanifolds of Q^n

5. Question
2 – The complex quadric Q^n

Definition

$$Q^n := \{ [(z_0, \ldots, z_{n+1})] \in \mathbb{C}P^{n+1}(4) \mid z_0^2 + \ldots + z_{n+1}^2 = 0 \}.$$
2 – The complex quadric Q^n

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^n := {(z_0, \ldots, z_{n+1})] \in \mathbb{C}P^{n+1}(4)</td>
</tr>
</tbody>
</table>

Q^n is a holomorphic submanifold of $\mathbb{C}P^{n+1}(4)$ and hence, equipped with the induced metric and almost complex structure, a Kähler manifold.
2 – The complex quadric Q^n

Definition

$$Q^n := \{ [(z_0, \ldots, z_{n+1})] \in \mathbb{C}P^{n+1}(4) \mid z_0^2 + \ldots + z_{n+1}^2 = 0 \}.$$

Q^n is a holomorphic submanifold of $\mathbb{C}P^{n+1}(4)$ and hence, equipped with the induced metric and almost complex structure, a Kähler manifold.

What is the inverse image of Q^n under the Hopf fibration

$$\pi : S^{2n+3}(1) \subseteq \mathbb{C}^{n+2} \to \mathbb{C}P^{n+1}(4) ?$$
2 – The complex quadric Q^n

Definition

$$Q^n := \{(z_0, \ldots, z_{n+1}) \in \mathbb{C}P^{n+1}(4) \mid z_0^2 + \ldots + z_{n+1}^2 = 0\}.$$

Q^n is a holomorphic submanifold of $\mathbb{C}P^{n+1}(4)$ and hence, equipped with the induced metric and almost complex structure, a Kähler manifold.

What is the inverse image of Q^n under the Hopf fibration

$$\pi : S^{2n+3}(1) \subseteq \mathbb{C}^{n+2} \to \mathbb{C}P^{n+1}(4)?$$

Lemma

$$\pi^{-1}Q^n = \left\{u + iv \mid u, v \in \mathbb{R}^{n+2}, \langle u, u \rangle = \langle v, v \rangle = \frac{1}{2}, \langle u, v \rangle = 0 \right\} \subseteq S^{2n+3}(1),$$

where $\langle \cdot, \cdot \rangle$ is the Euclidean metric on \mathbb{R}^{n+2}.

KU LEUVEN
Remark. Alternative descriptions:

- Q^n is the Grassmannian of oriented 2-planes in \mathbb{R}^{n+2}
- $Q^n = \frac{\text{SO}(n + 2)}{\text{SO}(n) \times \text{SO}(2)}$
Remark. Alternative descriptions:

- Q^n is the Grassmannian of oriented 2-planes in \mathbb{R}^{n+2}
- $Q^n = \frac{SO(n+2)}{SO(n) \times SO(2)}$

Lemma

$T^\perp_{[z]} Q^n = \text{span}\{(d\pi)_z(\bar{z}), (d\pi)_z(i\bar{z})\}$.
2 – The complex quadric Q^n

Remark. Alternative descriptions:

- Q^n is the Grassmannian of oriented 2-planes in \mathbb{R}^{n+2}
- $Q^n = \frac{SO(n+2)}{SO(n) \times SO(2)}$

Lemma

$$T_{z}^\perp Q^n = \text{span \{ } (d\pi)_{z}(\bar{z}), (d\pi)_{z}(i\bar{z}) \text{\}}.$$

\[\text{Re}(z_0^2 + \ldots + z_{n+1}^2) = 0 \implies \bar{z} \perp z \implies \bar{z} \text{ is tangent to } S^{2n+3} (1)\]
\[\text{Im}(z_0^2 + \ldots + z_{n+1}^2) = 0 \implies \bar{z} \perp iz \implies \bar{z} \text{ is horizontal}\]
Lemma

Any shape operator A of Q^n in $\mathbb{CP}^{n+1}(4)$, associated to a unit normal vector field, has the following properties:

1. $A^2 = \text{id}$,
2. $g(AX, AY) = g(X, Y)$,
3. $AJ = -JA$.
Lemma

Any shape operator A of Q^n in $\mathbb{CP}^{n+1}(4)$, associated to a unit normal vector field, has the following properties:

1. $A^2 = \text{id}$,
2. $g(AX, AY) = g(X, Y)$, \textit{A is an almost product structure that anti-commutes with J!}
3. $AJ = -JA$.

Lemma

Any shape operator A of Q^n in $\mathbb{CP}^{n+1}(4)$, associated to a unit normal vector field, has the following properties:

1. $A^2 = \text{id}$,
2. $g(AX, AY) = g(X, Y)$, \textit{A is an almost product structure that anti-commutes with J!}
3. $AJ = -JA$.

Let \mathcal{A} be the set of these operators. Choose $A_0 \in \mathcal{A}$, then

$$\mathcal{A} = \{\cos \varphi A_0 + \sin \varphi JA_0 \mid \varphi : Q^n \to \mathbb{R}\}.$$
Lemma

Any shape operator A of Q^n in $\mathbb{CP}^{n+1}(4)$, associated to a unit normal vector field, has the following properties:

1. $A^2 = \text{id}$,
2. $g(AX, AY) = g(X, Y)$, \hspace{1cm} \text{A is an almost product structure that anti-commutes with J!}
3. $AJ = -JA$.

Let \mathcal{A} be the set of these operators. Choose $A_0 \in \mathcal{A}$, then

$$\mathcal{A} = \{ \cos \varphi A_0 + \sin \varphi JA_0 \mid \varphi : Q^n \to \mathbb{R} \}.$$

Lemma

For all $A \in \mathcal{A}$, there exists a non-zero one-form s such that

$$\nabla_X A = s(X)JA.$$
2 – The complex quadric Q^n

From the equation of Gauss:

$$R^{Q^n}(X,Y)Z = g(Y, Z)X - g(X, Z)Y$$
$$+ g(X, JZ)JY - g(Y, JZ)JX + 2g(X, JY)JZ$$
$$+ g(AY, Z)AX - g(AX, Z)AY$$
$$+ g(JAY, Z)JAX - g(JAX, Z)JAY$$
2 – The complex quadric Q^n

From the equation of Gauss:

$$R^{Q^n}(X, Y)Z = g(Y, Z)X - g(X, Z)Y$$
$$+ g(X, JZ)JY - g(Y, JZ)JX + 2g(X, JY)JZ$$
$$+ g(AY, Z)AX - g(AX, Z)AY$$
$$+ g(JAY, Z)JAX - g(JAX, Z)JAY$$

Remark. Although none of the $A \in \mathcal{A}$ are integrable, we have

$$Q^2 \cong S^2 \left(\frac{1}{2} \right) \times S^2 \left(\frac{1}{2} \right).$$
2 – The complex quadric Q^n

From the equation of Gauss:

\[R^{Q^n}(X, Y)Z = g(Y, Z)X - g(X, Z)Y \]
\[+ g(X, JZ)JY - g(Y, JZ)JX + 2g(X, JY)JZ \]
\[+ g(AY, Z)AX - g(AX, Z)AY \]
\[+ g(JAY, Z)JAX - g(JAX, Z)JAY \]

Remark. Although none of the $A \in \mathcal{A}$ are integrable, we have

\[Q^2 \cong S^2 \left(\frac{1}{2} \right) \times S^2 \left(\frac{1}{2} \right). \]

Theorem (Jensen)

A Riemannian homogeneous Einstein four-manifold is symmetric and hence locally isometric to either a real space form \mathbb{R}^4, $S^4(c)$ or $H^4(c)$; a complex space form $\mathbb{C}P^2(4c)$ or $\mathbb{C}H^2(4c)$; or a product of surfaces $S^2(c) \times S^2(c)$ or $H^2(c) \times H^2(c)$.
3 – Outline

1. How we started research on Q^n
2. The complex quadric Q^n
3. The Gauss map of a hypersurface of a sphere
4. Study of Lagrangian submanifolds of Q^n
5. Question
3 – The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of \mathbb{R}^{n+1}

$a : M^n \to \mathbb{R}^{n+1}$ hypersurface with unit normal b
Gauss map of a hypersurface of \mathbb{R}^{n+1}

$a : M^n \to \mathbb{R}^{n+1}$ hypersurface with unit normal b

Definition

The map $G : M^n \to S^n(1) : p \mapsto b(p)$ is the **Gauss map** of a.
Gauss map of a hypersurface of \(\mathbb{R}^{n+1} \)

A hypersurface with unit normal \(b \):

\[
a : M^n \rightarrow \mathbb{R}^{n+1}
\]

Definition

The map \(G : M^n \rightarrow S^n(1) : p \mapsto b(p) \) is the Gauss map of \(a \).

Remark:

- Any *parallel hypersurface* to \(a \), given by

\[
a_t : M^n \rightarrow \mathbb{R}^{n+1} : p \mapsto a(p) + t b(p)
\]

for some \(t \in \mathbb{R} \), has the same Gauss map.
3 – The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of $S^{n+1}(1)$

$a : M^n \to S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.
The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of $S^{n+1}(1)$

$a : M^n \to S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.

Definition

The map $G : M^n \to Q^n : p \mapsto [a(p) + ib(p)]$ is the Gauss map of a.
Gauss map of a hypersurface of $S^{n+1}(1)$

$a : M^n \to S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.

Definition

The map $G : M^n \to Q^n : p \mapsto [a(p) + ib(p)]$ is the Gauss map of a.

Remark:

- $\langle \frac{a(p)}{\sqrt{2}}, \frac{a(p)}{\sqrt{2}} \rangle = \langle \frac{b(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}} \rangle = \frac{1}{2}, \langle \frac{a(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}} \rangle = 0 \Rightarrow \frac{a(p)}{\sqrt{2}} + i \frac{b(p)}{\sqrt{2}} \in \pi^{-1}Q^n$
Gauss map of a hypersurface of $S^{n+1}(1)$

$a : M^n \rightarrow S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.

Definition

The map $G : M^n \rightarrow Q^n : p \mapsto [a(p) + ib(p)]$ is the Gauss map of a.

Remark:

- $\langle \frac{a(p)}{\sqrt{2}}, \frac{a(p)}{\sqrt{2}} \rangle = \langle \frac{b(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}} \rangle = \frac{1}{2}, \langle \frac{a(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}} \rangle = 0 \Rightarrow \frac{a(p)}{\sqrt{2}} + i \frac{b(p)}{\sqrt{2}} \in \pi^{-1}Q^n$

- A parallel hypersurface to a is now given by

 $$a_t : M^n \rightarrow S^{n+1}(1) \subseteq \mathbb{R}^{n+2} : p \mapsto \cos t a(p) + \sin t b(p)$$

 for some $t \in \mathbb{R}$. Since $b_t = \cos t b - \sin t a$ is a unit normal to a_t, $a_t + ib_t = e^{-it}(a + ib)$ and a_t has the same Gauss map as a.
Proposition

The Gauss map $G : M^n \to Q^n$ of a hypersurface $a : M^n \to S^{n+1}(1)$ is a Lagrangian immersion.
Proposition

The Gauss map $G : M^n \to Q^n$ of a hypersurface $a : M^n \to S^{n+1}(1)$ is a Lagrangian immersion.

Proof. Diagonalize the shape operator S of a: $Se_j = \lambda_j e_j$.

For the horizontal lift $\hat{G} : M^n \to \pi^{-1}Q^n : p \mapsto \frac{1}{\sqrt{2}}(a(p) + ib(p))$, one has

$$(d\hat{G})e_j = \frac{1}{\sqrt{2}}(e_j - iSe_j) = \frac{1}{\sqrt{2}}(1 - i\lambda_j)e_j.$$

$(d\hat{G})e_1, \ldots, (d\hat{G})e_n$ are linearly independent $\Rightarrow G$ is an immersion.

$\forall j, k \in \{1, \ldots, n\} : \langle (d\hat{G})e_j, i(d\hat{G})e_k \rangle = 0$ $\Rightarrow G$ is Lagrangian.
Proposition

If the principal curvatures of a hypersurface $\alpha : M^n \to S^{n+1}(1)$ are constant, then its Gauss map $G : M^n \to Q^n$ is a minimal Lagrangian immersion.
3 – The Gauss map of a hypersurface of a sphere

Proposition

If the principal curvatures of a hypersurface \(\alpha : M^n \to S^{n+1}(1) \) are constant, then its Gauss map \(G : M^n \to Q^n \) is a minimal Lagrangian immersion.

The statement follows from the following formula by Palmer:

\[
g(JH, \cdot) = -\frac{1}{n} d \left(\text{Im} \left(\prod_{j=1}^{n} (1 + i\lambda_j) \right) \right).
\]
Definition

An *isoparametric hypersurface* is a hypersurface with constant principal curvatures.
3 – The Gauss map of a hypersurface of a sphere

Definition

An **isoparametric hypersurface** is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of *isoparametric functions* F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.
3 – The Gauss map of a hypersurface of a sphere

Definition

An **isoparametric hypersurface** is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of *isoparametric functions* F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.

Full classification of isoparametric hypersurfaces of \mathbb{R}^{n+1}.

Somigliana, Levi-Civita, Segre

An isoparametric hypersurface of \mathbb{R}^{n+1} is a part of a hyperplane \mathbb{R}^n, a hypersphere $S^n(r)$ or a product immersion $S^k(r) \times \mathbb{R}^{n-k}$.

KU LEUVEN
Definition
An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of isoparametric functions F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.

Full classification of isoparametric hypersurfaces of \mathbb{R}^{n+1}.

Theorem (Somigliana, Levi-Civita, Segre)
An isoparametric hypersurface of \mathbb{R}^{n+1} is an op part of a hyperplane \mathbb{R}^n, of a hypersphere $S^n(r)$ or of a product immersion $S^k(r) \times \mathbb{R}^{n-k}$.
Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of isoparametric functions F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.

*Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.***
Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of isoparametric functions F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.

Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.

- A hypersphere ($0 < r \leq 1$)
 \[a_1 : S^n(r) \to S^{n+1}(1) : p \mapsto (p, \sqrt{1 - r^2}) \]
Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of isoparametric functions F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F), \Delta F = \phi_2(F)$.

Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.

- A hypersphere $(0 < r \leq 1)$

 \[a_1 : S^n(r) \to S^{n+1}(1) : p \mapsto (p, \sqrt{1 - r^2}) \]

- A product of spheres $(0 < r_1, r_2 < 1$ with $r_1^2 + r_2^2 = 1)$

 \[a_2 : S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1) : (p_1, p_2) \mapsto (p_1, p_2) \]
3 – The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of *isoparametric functions* F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F), \Delta F = \phi_2(F)$.

Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.

- A hypersphere ($0 < r \leq 1$)

 $$a_1 : S^n(r) \to S^{n+1}(1) : p \mapsto (p, \sqrt{1 - r^2})$$

- A product of spheres ($0 < r_1, r_2 < 1$ with $r_1^2 + r_2^2 = 1$)

 $$a_2 : S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1) : (p_1, p_2) \mapsto (p_1, p_2)$$

- A tube around the Veronese surface in $S^4(1)$ (*Cartan’s example*)

 $$a_3 : \mathbb{RP}^2 \times S^1(\varepsilon) \to S^4(1)$$
Principal curvatures of these examples:

- a_1: $\lambda_1 = \ldots = \lambda_n = \frac{\sqrt{1-r^2}}{r}$
- a_2: $\lambda_1 = \ldots = \lambda_k = \frac{r_2}{r_1}$, $\lambda_{k+1} = \ldots = \lambda_n = -\frac{r_1}{r_2}$
- a_3: $\lambda_1, \lambda_2, \lambda_3$ mutually different
3 – The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

- \(a_1: \lambda_1 = \ldots = \lambda_n = \frac{\sqrt{1-r^2}}{r} \)
- \(a_2: \lambda_1 = \ldots = \lambda_k = \frac{r^2}{r_1}, \lambda_{k+1} = \ldots = \lambda_n = -\frac{r_1}{r_2} \)
- \(a_3: \lambda_1, \lambda_2, \lambda_3 \) mutually different

Theorem (Münzner, 1981)

Let \(g \) be the number of distinct constant principal curvatures of an isoparametric hypersurface of \(S^{n+1}(1) \), then \(g \in \{1, 2, 3, 4, 6\} \).
3 – The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

- $a_1: \lambda_1 = \ldots = \lambda_n = \frac{\sqrt{1-r^2}}{r}$
- $a_2: \lambda_1 = \ldots = \lambda_k = \frac{r_2}{r_1}, \lambda_{k+1} = \ldots = \lambda_n = -\frac{r_1}{r_2}$
- $a_3: \lambda_1, \lambda_2, \lambda_3$ mutually different

Theorem (Münzner, 1981)

Let g be the number of distinct constant principal curvatures of an isoparametric hypersurface of $S^{n+1}(1)$, then $g \in \{1, 2, 3, 4, 6\}$.

The proof uses algebraic topology.
Principal curvatures of these examples:

- a_1: $\lambda_1 = \ldots = \lambda_n = \frac{\sqrt{1-r^2}}{r}$
- a_2: $\lambda_1 = \ldots = \lambda_k = \frac{r_2}{r_1}$, $\lambda_{k+1} = \ldots = \lambda_n = -\frac{r_1}{r_2}$
- a_3: $\lambda_1, \lambda_2, \lambda_3$ mutually different

Theorem (Münzner, 1981)

Let g be the number of distinct constant principal curvatures of an isoparametric hypersurface of $S^{n+1}(1)$, then $g \in \{1, 2, 3, 4, 6\}$.

The proof uses algebraic topology.

Until today, the classification of isoparametric hypersurfaces of $S^{n+1}(1)$ is still not completely understood.
4 - Outline

1. How we started research on Q^n
2. The complex quadric Q^n
3. The Gauss map of a hypersurface of a sphere
4. Study of Lagrangian submanifolds of Q^n
5. Question
Let $f: M^n \rightarrow Q^n$ be a Lagrangian immersion. Assume $A \in A$ is fixed. If X is tangent to M^n, the decomposition $AX = BX - JCX$ into a tangent and a normal part, defines two $(1,1)$-tensors on M^n.

Lemma

The $(1,1)$-tensors B and C on M^n satisfy

1. B and C are symmetric,
2. $B^2 + C^2 = id$,
3. $[B,C] = 0$.

Hence, for every $p \in M^n$, there exists an ONB $\{e_1, \ldots, e_n\}$ of $T_p M^n$ and $\theta_1, \ldots, \theta_n \in \mathbb{R}$, determined up to an integer multiple of π, such that $A e_j = \cos(2\theta_j) e_j - \sin(2\theta_j) Je_j$.

Let $f : M^n \to Q^n$ be a Lagrangian immersion. Assume $A \in \mathcal{A}$ is fixed. If X is tangent to M^n, the decomposition

$$AX = BX - JCX$$

into a tangent and a normal part, defines two $(1, 1)$-tensor fields on M^n.
Let $f : M^n \to Q^n$ be a Lagrangian immersion. Assume $A \in \mathcal{A}$ is fixed. If X is tangent to M^n, the decomposition

$$AX = BX - JCX$$

into a tangent and a normal part, defines two $(1, 1)$-tensor fields on M^n.

Lemma

The $(1, 1)$-tensor fields B and C on M^n satisfy

1. B and C are symmetric,
2. $B^2 + C^2 = \text{id},$
3. $[B, C] = 0.$

Hence, for every $p \in M^n$, there exists an ONB $\{e_1, \ldots, e_n\}$ of T_pM^n and $\theta_1, \ldots, \theta_n \in \mathbb{R}$, determined up to an integer multiple of π, such that

$$Ae_j = \cos(2\theta_j)e_j - \sin(2\theta_j)Je_j.$$
In the neighborhood of a point, $\theta_1, \ldots, \theta_n$ define local angle functions, which we can change by changing $A \in \mathcal{A}$.
In the neighborhood of a point, $\theta_1, \ldots, \theta_n$ define local angle functions, which we can change by changing $A \in \mathcal{A}$.

Lemma

Let $f : M^n \to Q^n$ be a Lagrangian immersion and $A_0, A \in \mathcal{A}$. Then there exists a function $\varphi : M^n \to \mathbb{R}$ such that $A = \cos \varphi A_0 + \sin \varphi JA_0$ along M^n and the local angle functions $\theta_1, \ldots, \theta_n$ associated to A are related to the local angle functions $\theta_0^1, \ldots, \theta_0^n$ associated to A_0 by

$$\theta_j = \theta_j^0 - \frac{\varphi}{2}. $$
4 – Study of Lagrangian submanifolds of Q^n

In the neighborhood of a point, $\theta_1, \ldots, \theta_n$ define local angle functions, which we can change by changing $A \in A$.

Lemma

Let $f : M^n \to Q^n$ be a Lagrangian immersion and $A_0, A \in A$. Then there exists a function $\varphi : M^n \to \mathbb{R}$ such that $A = \cos \varphi A_0 + \sin \varphi J A_0$ along M^n and the local angle functions $\theta_1, \ldots, \theta_n$ associated to A are related to the local angle functions $\theta_1^0, \ldots, \theta_n^0$ associated to A_0 by

$$\theta_j = \theta_j^0 - \frac{\varphi}{2}.$$

Example. One can choose $A \in A$ such that

$$\theta_1 + \ldots + \theta_n = 0 \mod \pi.$$
Equation of Gauss:

\[g(R(X,Y)Z,W) = g(Y,Z)g(X,W) - g(X,Z)g(Y,W) \]
\[+ g(BY,Z)g(BX,W) - g(BX,Z)g(BY,W) \]
\[+ g(CY,Z)g(CX,W) - g(CX,Z)g(CY,W) \]
\[+ g(h(Y,Z),h(X,W)) - g(h(X,Z),h(Y,W)) \]
Equation of Gauss:

\[g(R(X, Y)Z, W) = g(Y, Z)g(X, W) - g(X, Z)g(Y, W) \]
\[+ g(BY, Z)g(BX, W) - g(BX, Z)g(BY, W) \]
\[+ g(CY, Z)g(CX, W) - g(CX, Z)g(CY, W) \]
\[+ g(h(Y, Z), h(X, W)) - g(h(X, Z), h(Y, W)) \]

Equation of Codazzi:

\[(\nabla h)(X, Y, Z) - (\nabla h)(Y, X, Z) = g(CY, Z)JBX - g(CX, Z)JBY \]
\[- g(BY, Z)JCX + g(BX, Z)JCY \]
Question:

Given a Lagrangian immersion \(f: M^n \to Q^n \), can we see it as the Gauss map of a hypersurface \(a: M^n \to S^n+1 \)?

Idea:

Take a horizontal lift \(\hat{f}: M^n \to \pi^{-1}Q^n \) and put

\[a := \sqrt{2\text{Re} \hat{f}}, \quad b := \sqrt{2\text{Im} \hat{f}}. \]

Remark:

We have to work locally to guarantee that \(a \) is an immersion.

We expect a relation between the angle functions of \(f \) and the principal curvatures of \(a \).
Question: Given a Lagrangian immersion $f : M^n \rightarrow Q^n$, can we see it as the Gauss map of a hypersurface $a : M^n \rightarrow S^{n+1}(1)$?
Question: Given a Lagrangian immersion \(f : M^n \rightarrow Q^n \), can we see it as the Gauss map of a hypersurface \(a : M^n \rightarrow S^{n+1}(1) \)?

Idea:

Take a horizontal lift \(\hat{f} : M^n \rightarrow \pi^{-1}Q^n \) and put

\[
\begin{align*}
a &:= \sqrt{2} \text{Re} \, \hat{f}, \\
b &:= \sqrt{2} \text{Im} \, \hat{f}.
\end{align*}
\]
Question: Given a Lagrangian immersion $f : M^n \to Q^n$, can we see it as the Gauss map of a hypersurface $a : M^n \to S^{n+1}(1)$?

Idea:
Take a horizontal lift $\hat{f} : M^n \to \pi^{-1}Q^n$ and put

$$a := \sqrt{2} \text{Re} \hat{f},$$
$$b := \sqrt{2} \text{Im} \hat{f}.$$

Remark:
- We have to work locally to guarantee that a is an immersion
4 – Study of Lagrangian submanifolds of Q^n – main results

Question: Given a Lagrangian immersion $f : M^n \to Q^n$, can we see it as the Gauss map of a hypersurface $a : M^n \to S^{n+1}(1)$?

Idea:

Take a horizontal lift $\hat{f} : M^n \to \pi^{-1}Q^n$ and put

$$a := \sqrt{2} \Re \hat{f},$$
$$b := \sqrt{2} \Im \hat{f}.$$

Remark:

- We have to work locally to guarantee that a is an immersion
- We expect a relation between the angle functions of f and the principal curvatures of a.
Theorem (VdV, Wijffels)

PART I

Let \(a : M^n \to S^{n+1}(1) \) be a hypersurface with unit normal \(b \) and denote by \(G : M^n \to Q^n : p \mapsto [a(p) + ib(p)] \) its Gauss map. After a suitable choice of \(A \in \mathcal{A} \), the relation between the principal curvatures \(a \) and the angle functions of \(G \) is

\[
\lambda_j = \cot \theta_j
\]

for \(j = 1, \ldots, n \).
Theorem (VdV, Wijffels)

PART I

Let \(\alpha : M^n \to S^{n+1}(1) \) be a hypersurface with unit normal \(b \) and denote by \(G : M^n \to Q^n : p \mapsto [\alpha(p) + ib(p)] \) its Gauss map. After a suitable choice of \(A \in A \), the relation between the principal curvatures \(\alpha \) and the angle functions of \(G \) is

\[
\lambda_j = \cot \theta_j
\]

for \(j = 1, \ldots, n \).

Remark. The choice of \(A \) comes down to choosing

\[
\hat{G}(p) = \frac{1}{\sqrt{2}}(a(p) - ib(p))
\]

as a unit normal to \(\pi^{-1}Q^n \) in \(S^{2n+3}(1) \) along \(\hat{G} \).
Conversely, if \(f : M^n \to Q^n \) is a Lagrangian immersion, then for every point of \(M^n \) there exist an open neighborhood \(U \) of that point in \(M^n \) and an immersion \(\alpha : U \to S^{n+1}(1) \) with Gauss map \(f|_U \). This immersion is not unique, nor are its principal curvature functions. However, for any choice of the hypersurface \(\alpha \) and of the almost product structure \(A \in \mathcal{A} \), the principal curvature functions of \(\alpha \) are related to the corresponding angle functions of \(f \) by

\[
\cot(\theta_j - \theta_k) = \pm \frac{\lambda_j \lambda_k + 1}{\lambda_j - \lambda_k}
\]

for \(j, k = 1, \ldots, n \) in points where \(\lambda_j \neq \lambda_k \).
4 – Study of Lagrangian submanifolds of Q^n – main results

Some classification theorems for \textit{minimal} Lagrangian immersions into Q^n
Some classification theorems for \textit{minimal} Lagrangian immersions into \(Q^n \)

\textbf{Theorem (Li, Ma, VdV, Vrancken, Wang)}

Let \(f : M^n \to Q^n, \ n \geq 2, \) be a minimal Lagrangian immersion with \textit{constant local angle functions}. If \(g \) is the number of different constant local angle functions modulo \(\pi \), then \(g \in \{1, 2, 3, 4, 6\} \). Moreover,

- if \(g = 1 \), then \(f \) is the Gauss map of a part of \(a_1 : S^n(r) \to S^{n+1}(1) \);

- if \(g = 2 \), then \(f \) is the Gauss map of a part of \(a_2 : S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1) \);

- if \(g = 3 \), then \(f \) is the Gauss map of a part of \(a_3 : \mathbb{R}P^2 \times S^1(\varepsilon) \to S^4(1) \)
 or of tubes around standard embeddings \(\mathbb{C}P^2 \to S^7(1) \), \(\mathbb{H}P^2 \to S^{13}(1) \) or \(\mathbb{O}P^2 \to S^{25}(1) \).
Theorem (Li, Ma, VdV, Vrancken, Wang)

Let \(f : M^n \to Q^n \), \(n \geq 2 \), be a **totally geodesic** Lagrangian immersion. Then \(f \) is the Gauss map of a part of \(a_1 : S^n(r) \to S^{n+1}(1) \) or of a part of \(a_2 : S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1) \).
4 – Study of Lagrangian submanifolds of Q^n – main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f : M^n \to Q^n$, $n \geq 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_1 : S^n(r) \to S^{n+1}(1)$ or of a part of $a_2 : S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f : M^n \to Q^n$, $n \geq 2$, be a minimal Lagrangian immersion, such that M^n has constant sectional curvature c. Then either
Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f : M^n \to Q^n$, $n \geq 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_1 : S^n(r) \to S^{n+1}(1)$ or of a part of $a_2 : S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f : M^n \to Q^n$, $n \geq 2$, be a minimal Lagrangian immersion, such that M^n has constant sectional curvature c. Then either

- f is the Gauss map of a part of $a_1 : S^n(r) \to S^{n+1}(1)$;
Theorem (Li, Ma, VdV, Vrancken, Wang)

Let \(f : M^n \to Q^n, \ n \geq 2, \) be a totally geodesic Lagrangian immersion. Then \(f \) is the Gauss map of a part of \(a_1 : S^n(r) \to S^{n+1}(1) \) or of a part of \(a_2 : S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1). \)

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let \(f : M^n \to Q^n, \ n \geq 2, \) be a minimal Lagrangian immersion, such that \(M^n \) has constant sectional curvature \(c. \) Then either

- \(f \) is the Gauss map of a part of
 \[a_1 : S^n(r) \to S^{n+1}(1); \]
- \(n = 2 \) and \(f \) is the Gauss map of a part of
 \[a_2 : S^1(r_1) \times S^1(r_2) \to S^3(1); \]
4 – Study of Lagrangian submanifolds of Q^n – main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f : M^n \to Q^n$, $n \geq 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_1 : S^n(r) \to S^{n+1}(1)$ or of a part of $a_2 : S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f : M^n \to Q^n$, $n \geq 2$, be a minimal Lagrangian immersion, such that M^n has constant sectional curvature c. Then either

- f is the Gauss map of a part of $a_1 : S^n(r) \to S^{n+1}(1)$;
- $n = 2$ and f is the Gauss map of a part of $a_2 : S^1(r_1) \times S^1(r_2) \to S^3(1)$;
- $n = 3$ and f is the Gauss map of a part of $a_3 : \mathbb{RP}^2 \times S^1(\varepsilon) \to S^4(1)$.
4 – Study of Lagrangian submanifolds of Q^n – main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f : M^n \to Q^n$, $n \geq 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_1 : S^n(r) \to S^{n+1}(1)$ or of a part of $a_2 : S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f : M^n \to Q^n$, $n \geq 2$, be a minimal Lagrangian immersion, such that M^n has constant sectional curvature c. Then either

- f is the Gauss map of a part of $a_1 : S^n(r) \to S^{n+1}(1)$; $c = 2$
- $n = 2$ and f is the Gauss map of a part of $a_2 : S^1(r_1) \times S^1(r_2) \to S^3(1)$; $c = 0$
- $n = 3$ and f is the Gauss map of a part of $a_3 : \mathbb{RP}^2 \times S^1(\varepsilon) \to S^4(1)$. $c = \frac{1}{8}$
Some steps in the proof of the last theorem
Some steps in the proof of the last theorem

Lemma

Let $f : M^n \to Q^n$, $n \geq 2$, be a Lagrangian immersion, such that M^n has constant sectional curvature c. Then

$$
\sin(\theta_i - \theta_j) \sin(\theta_i + \theta_j - 2\theta_k)(\delta_{k\ell} h(e_i, e_j) + h^\ell_{ij} Je_k)
+ \sin(\theta_j - \theta_k) \sin(\theta_j + \theta_k - 2\theta_i)(\delta_{i\ell} h(e_j, e_k) + h^\ell_{jk} Je_i)
+ \sin(\theta_k - \theta_i) \sin(\theta_k + \theta_i - 2\theta_j)(\delta_{j\ell} h(e_i, e_k) + h^\ell_{ik} Je_j) = 0
$$

for all i, j, k, ℓ. In particular, if i, j, k are mutually different, then

$$
h^k_{ii} \sin(\theta_i - \theta_k) \sin(\theta_i + \theta_k - 2\theta_j) = h^k_{jj} \sin(\theta_j - \theta_k) \sin(\theta_j + \theta_k - 2\theta_i),
$$

$$
h^k_{ij} \sin(\theta_i - \theta_j) \sin(\theta_i + \theta_j - 2\theta_k) = 0
$$

and if i, j, k, ℓ are mutually different, then

$$
h^k_{ij} \sin(\theta_i - \theta_j) \sin(\theta_i + \theta_j - 2\theta_\ell) = 0.
$$
Proposition

Let $f : M^n \to Q^n$, $n \geq 2$, be a minimal Lagrangian immersion such that M^n has constant sectional curvature and choose $A \in A$ such that $\theta_1 + \ldots + \theta_n = 0 \mod \pi$. Then either

- all local angle functions are the same modulo π, or
- all local angle functions are mutually different modulo π.

In the former case, the immersion is the Gauss map of a part of $a_1 : S^n(r) \to S^{n+1}(1)$.

Proposition

Let \(f : M^n \rightarrow Q^n, \ n \geq 2, \) be a minimal Lagrangian immersion such that \(M^n \) has constant sectional curvature and choose \(A \in \mathcal{A} \) such that \(\theta_1 + \ldots + \theta_n = 0 \mod \pi \). Then either

- all local angle functions are the same modulo \(\pi \), or
- all local angle functions are mutually different modulo \(\pi \).

In the former case, the immersion is the Gauss map of a part of \(a_1 : S^n(r) \rightarrow S^{n+1}(1) \).

The conclusion follows by algebraic computations using all the obtained relations and the equations of Gauss and Codazzi.
Proposition

Let $f : M^n \to Q^n$, $n \geq 2$, be a minimal Lagrangian immersion such that M^n has constant sectional curvature and choose $A \in \mathcal{A}$ such that $\theta_1 + \ldots + \theta_n = 0 \mod \pi$. Then either

- all local angle functions are the same modulo π, or
- all local angle functions are mutually different modulo π.

In the former case, the immersion is the Gauss map of a part of $a_1 : S^n(r) \to S^{n+1}(1)$.

The conclusion follows by algebraic computations using all the obtained relations and the equations of Gauss and Codazzi.

Remark. For $M^2 \to Q^2 \cong S^2(\frac{1}{2}) \times S^2(\frac{1}{2})$, the classification was already obtained by Castro and Urbano.
5 – Outline

1. How we started research on Q^n
2. The complex quadric Q^n
3. The Gauss map of a hypersurface of a sphere
4. Study of Lagrangian submanifolds of Q^n
5. Question
Question:

Are there other Riemannian manifolds \((M, g)\) with anti-commuting almost complex structure \(J\) and almost product structure \(P\) such that

\[
R(X, Y)Z = a \left(g(Y, Z)X - g(X, Z)Y \right) \\
+ b \left(g(X, JZ)JY - g(Y, JZ)JX + 2g(X, JY)JZ \right) \\
+ c \left(g(PY, Z)PX - g(PX, Z)PY + g(JPY, Z)JPX - g(JPX, Z)JPY \right)
\]?
5 – Question

Question:

Are there other Riemannian manifolds \((M, g)\) with anti-commuting almost complex structure \(J\) and almost product structure \(P\) such that

\[
R(X, Y)Z = a (g(Y, Z)X - g(X, Z)Y) \\
+ b (g(X, JZ)JY - g(Y, JZ)JX + 2g(X, JY)JZ) \\
+ c (g(PY, Z)PX - g(PX, Z)PY + g(JPY, Z)JPX - g(JPX, Z)JPY)
\]

Only examples that I know of so far:

- real space forms (no \(J\), no \(P\)), complex space forms (no \(P\))
- the homogeneous nearly Kähler \(S^3 \times S^3\)
- the complex quadric, the hyperbolic complex quadric

Remark. All such manifolds will be Einstein.
5 – References

- J. Van der Veken and A. Wijffels,

- H. Li, H. Ma, J. Van der Veken, L. Vrancken and X. Wang,

- I. Castro and F. Urbano,

- G. R. Jensen,

- H. F. Münzner,

- B. Palmer,
Thank you for your attention!