KULEUVEN

Lagrangian submanifolds of the complex quadric

Joeri Van der Veken

SYMMETRY AND SHAPE
celebrating the 60th birthday of Prof. J. Berndt
Santiago de Compostela - 30/10/2019

0 - Outline

(1) How we started research on Q^{n}
(2) The complex quadric Q^{n}
(3) The Gauss map of a hypersurface of a sphere
(4) Study of Lagrangian submanifolds of Q^{n}
(5) Question
(1) How we started research on Q^{n}
(2) The complex quadric Q^{n}
(3) The Gauss map of a hypersurface of a sphere

4 Study of Lagrangian submanifolds of Q^{n}
(5) Question

1 - How we started research on Q^{n}
The homogeneous nearly Kähler $\left(S^{3} \times S^{3}, g\right)$

1 - How we started research on Q^{n}

The homogeneous nearly Kähler $\left(S^{3} \times S^{3}, g\right)$ has

- an almost complex structure J
- and an almost product struture P,
- which anti-commute,
- and the curvature tensor is given by

$$
\begin{aligned}
R(X, Y) Z= & \frac{5}{12}(g(Y, Z) X-g(X, Z) Y) \\
& +\frac{1}{12}(g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z) \\
& +\frac{1}{3}(g(P Y, Z) P X-g(P X, Z) P Y \\
& \quad+g(J P Y, Z) J P X-g(J P X, Z) J P Y)
\end{aligned}
$$

2 - Outline

(1) How we started research on Q^{n}
(2) The complex quadric Q^{n}
(3) The Gauss map of a hypersurface of a sphere

4 Study of Lagrangian submanifolds of Q^{n}
(5) Question

2 - The complex quadric Q^{n}

> Definition
> $Q^{n}:=\left\{\left[\left(z_{0}, \ldots, z_{n+1}\right)\right] \in \mathbb{C} P^{n+1}(4) \mid z_{0}^{2}+\ldots+z_{n+1}^{2}=0\right\}$.

2 - The complex quadric Q^{n}

$$
\begin{aligned}
& \text { Definition } \\
& Q^{n}:=\left\{\left[\left(z_{0}, \ldots, z_{n+1}\right)\right] \in \mathbb{C} P^{n+1}(4) \mid z_{0}^{2}+\ldots+z_{n+1}^{2}=0\right\} .
\end{aligned}
$$

Q^{n} is a holomorphic submanifold of $\mathbb{C} P^{n+1}(4)$ and hence, equipped with the induced metric and almost complex structure, a Kähler manifold.

2 - The complex quadric Q^{n}

Definition

$Q^{n}:=\left\{\left[\left(z_{0}, \ldots, z_{n+1}\right)\right] \in \mathbb{C} P^{n+1}(4) \mid z_{0}^{2}+\ldots+z_{n+1}^{2}=0\right\}$.
Q^{n} is a holomorphic submanifold of $\mathbb{C} P^{n+1}(4)$ and hence, equipped with the induced metric and almost complex structure, a Kähler manifold.

What is the inverse image of Q^{n} under the Hopf fibration

$$
\pi: S^{2 n+3}(1) \subseteq \mathbb{C}^{n+2} \rightarrow \mathbb{C} P^{n+1}(4) ?
$$

2 - The complex quadric Q^{n}

Definition

$Q^{n}:=\left\{\left[\left(z_{0}, \ldots, z_{n+1}\right)\right] \in \mathbb{C} P^{n+1}(4) \mid z_{0}^{2}+\ldots+z_{n+1}^{2}=0\right\}$.
Q^{n} is a holomorphic submanifold of $\mathbb{C} P^{n+1}(4)$ and hence, equipped with the induced metric and almost complex structure, a Kähler manifold.

What is the inverse image of Q^{n} under the Hopf fibration

$$
\pi: S^{2 n+3}(1) \subseteq \mathbb{C}^{n+2} \rightarrow \mathbb{C} P^{n+1}(4) ?
$$

Lemma

$\pi^{-1} Q^{n}=\left\{u+i v \mid u, v \in \mathbb{R}^{n+2},\langle u, u\rangle=\langle v, v\rangle=\frac{1}{2},\langle u, v\rangle=0\right\} \subseteq S^{2 n+3}(1)$, where $\langle\cdot, \cdot\rangle$ is the Euclidean metric on \mathbb{R}^{n+2}.

2 - The complex quadric Q^{n}
Remark. Alternative descriptions:

- Q^{n} is the Grassmannian of oriented 2-planes in \mathbb{R}^{n+2}
- $Q^{n}=\frac{\mathrm{SO}(n+2)}{\mathrm{SO}(n) \times \mathrm{SO}(2)}$

2 - The complex quadric Q^{n}
Remark. Alternative descriptions:

- Q^{n} is the Grassmannian of oriented 2-planes in \mathbb{R}^{n+2}
- $Q^{n}=\frac{\mathrm{SO}(n+2)}{\mathrm{SO}(n) \times \mathrm{SO}(2)}$

$$
\begin{aligned}
& \text { Lemma } \\
& T_{[z]}^{\perp} Q^{n}=\operatorname{span}\left\{(d \pi)_{z}(\bar{z}),(d \pi)_{z}(i \bar{z})\right\} .
\end{aligned}
$$

2 - The complex quadric Q^{n}

Remark. Alternative descriptions:

- Q^{n} is the Grassmannian of oriented 2-planes in \mathbb{R}^{n+2}
- $Q^{n}=\frac{\mathrm{SO}(n+2)}{\mathrm{SO}(n) \times \mathrm{SO}(2)}$

Lemma

$$
T_{[z]}^{\perp} Q^{n}=\operatorname{span}\left\{(d \pi)_{z}(\bar{z}),(d \pi)_{z}(i \bar{z})\right\} .
$$

$$
\begin{array}{lll}
\operatorname{Re}\left(z_{0}^{2}+\ldots+z_{n+1}^{2}\right)=0 & \Rightarrow \bar{z} \perp z & \Rightarrow \bar{z} \text { is tangent to } S^{2 n+3}(1) \\
\operatorname{Im}\left(z_{0}^{2}+\ldots+z_{n+1}^{2}\right)=0 & \Rightarrow \bar{z} \perp i z & \Rightarrow \bar{z} \text { is horizontal }
\end{array}
$$

2 - The complex quadric Q^{n}

Lemma
Any shape operator A of Q^{n} in $\mathbb{C} P^{n+1}(4)$, associated to a unit normal vector field, has the following properties:
(1) $A^{2}=\mathrm{id}$,
(2) $g(A X, A Y)=g(X, Y)$,
(3) $A J=-J A$.

2 - The complex quadric Q^{n}

Lemma
Any shape operator A of Q^{n} in $\mathbb{C} P^{n+1}(4)$, associated to a unit normal vector field, has the following properties:
(1) $A^{2}=\mathrm{id}$,
(2) $g(A X, A Y)=g(X, Y), \quad A$ is an almost product structure
(3) $A J=-J A$.

2 - The complex quadric Q^{n}

Lemma

Any shape operator A of Q^{n} in $\mathbb{C} P^{n+1}(4)$, associated to a unit normal vector field, has the following properties:
(1) $A^{2}=\mathrm{id}$,
(2) $g(A X, A Y)=g(X, Y), \quad A$ is an almost product structure
(3) $A J=-J A$. that anti-commutes with J!

Let \mathcal{A} be the set of these operators. Choose $A_{0} \in \mathcal{A}$, then

$$
\mathcal{A}=\left\{\cos \varphi A_{0}+\sin \varphi J A_{0} \mid \varphi: Q^{n} \rightarrow \mathbb{R}\right\}
$$

2 - The complex quadric Q^{n}

Lemma

Any shape operator A of Q^{n} in $\mathbb{C} P^{n+1}(4)$, associated to a unit normal vector field, has the following properties:
(1) $A^{2}=\mathrm{id}$,
(2) $g(A X, A Y)=g(X, Y)$,
A is an almost product structure that anti-commutes with J!
(3) $A J=-J A$.

Let \mathcal{A} be the set of these operators. Choose $A_{0} \in \mathcal{A}$, then

$$
\mathcal{A}=\left\{\cos \varphi A_{0}+\sin \varphi J A_{0} \mid \varphi: Q^{n} \rightarrow \mathbb{R}\right\}
$$

Lemma

For all $A \in \mathcal{A}$, there exists a non-zero one-form such that
$\nabla_{X} A=s(X) J A$.

2 - The complex quadric Q^{n}
From the equation of Gauss:

$$
\begin{aligned}
R^{Q^{n}}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y \\
& +g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z \\
& +g(A Y, Z) A X-g(A X, Z) A Y \\
& +g(J A Y, Z) J A X-g(J A X, Z) J A Y
\end{aligned}
$$

2 - The complex quadric Q^{n}

From the equation of Gauss:

$$
\begin{aligned}
R^{Q^{n}}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y \\
& +g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z \\
& +g(A Y, Z) A X-g(A X, Z) A Y \\
& +g(J A Y, Z) J A X-g(J A X, Z) J A Y
\end{aligned}
$$

Remark. Although none of the $A \in \mathcal{A}$ are integrable, we have

$$
Q^{2} \cong S^{2}\left(\frac{1}{2}\right) \times S^{2}\left(\frac{1}{2}\right)
$$

2 - The complex quadric Q^{n}

From the equation of Gauss:

$$
\begin{aligned}
R^{Q^{n}}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y \\
& +g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z \\
& +g(A Y, Z) A X-g(A X, Z) A Y \\
& +g(J A Y, Z) J A X-g(J A X, Z) J A Y
\end{aligned}
$$

Remark. Although none of the $A \in \mathcal{A}$ are integrable, we have

$$
Q^{2} \cong S^{2}\left(\frac{1}{2}\right) \times S^{2}\left(\frac{1}{2}\right)
$$

Theorem (Jensen)

A Riemannian homogeneous Einstein four-manifold is symmetric and hence locally isometric to either a real space form $\mathbb{R}^{4}, S^{4}(c)$ or $H^{4}(c)$; a complex space form $\mathbb{C} P^{2}(4 c)$ or $\mathbb{C} H^{2}(4 c)$; or a product of surfaces $S^{2}(c) \times S^{2}(c)$ or $H^{2}(c) \times H^{2}(c)$.
(1) How we started research on Q^{n}
(2) The complex quadric Q^{n}
(3) The Gauss map of a hypersurface of a sphere

4 Study of Lagrangian submanifolds of Q^{n}
(5) Question

3 - The Gauss map of a hypersurface of a sphere
Gauss map of a hypersurface of \mathbb{R}^{n+1}
$a: M^{n} \rightarrow \mathbb{R}^{n+1}$ hypersurface with unit normal b

3 - The Gauss map of a hypersurface of a sphere
Gauss map of a hypersurface of \mathbb{R}^{n+1}
$a: M^{n} \rightarrow \mathbb{R}^{n+1}$ hypersurface with unit normal b

Definition

The map $G: M^{n} \rightarrow S^{n}(1): p \mapsto b(p)$ is the Gauss map of a.

3 - The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of \mathbb{R}^{n+1}
$a: M^{n} \rightarrow \mathbb{R}^{n+1}$ hypersurface with unit normal b

Definition

The map $G: M^{n} \rightarrow S^{n}(1): p \mapsto b(p)$ is the Gauss map of a.

Remark:

- Any parallel hypersurface to a, given by

$$
a_{t}: M^{n} \rightarrow \mathbb{R}^{n+1}: p \mapsto a(p)+t b(p)
$$

for some $t \in \mathbb{R}$, has the same Gauss map.

3 - The Gauss map of a hypersurface of a sphere
Gauss map of a hypersurface of $S^{n+1}(1)$
$a: M^{n} \rightarrow S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.

3 - The Gauss map of a hypersurface of a sphere
Gauss map of a hypersurface of $S^{n+1}(1)$
$a: M^{n} \rightarrow S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.

Definition

The map $G: M^{n} \rightarrow Q^{n}: p \mapsto[a(p)+i b(p)]$ is the Gauss map of a.

3 - The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of $S^{n+1}(1)$
$a: M^{n} \rightarrow S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.

Definition

The map $G: M^{n} \rightarrow Q^{n}: p \mapsto[a(p)+i b(p)]$ is the Gauss map of a.

Remark:

- $\left\langle\frac{a(p)}{\sqrt{2}}, \frac{a(p)}{\sqrt{2}}\right\rangle=\left\langle\frac{b(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}}\right\rangle=\frac{1}{2},\left\langle\frac{a(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}}\right\rangle=0 \Rightarrow \frac{a(p)}{\sqrt{2}}+i \frac{b(p)}{\sqrt{2}} \in \pi^{-1} Q^{n}$

3 - The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of $S^{n+1}(1)$
$a: M^{n} \rightarrow S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.

Definition

The map $G: M^{n} \rightarrow Q^{n}: p \mapsto[a(p)+i b(p)]$ is the Gauss map of a.

Remark:

- $\left\langle\frac{a(p)}{\sqrt{2}}, \frac{a(p)}{\sqrt{2}}\right\rangle=\left\langle\frac{b(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}}\right\rangle=\frac{1}{2},\left\langle\frac{a(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}}\right\rangle=0 \Rightarrow \frac{a(p)}{\sqrt{2}}+i \frac{b(p)}{\sqrt{2}} \in \pi^{-1} Q^{n}$
- A parallel hypersurface to a is now given by

$$
a_{t}: M^{n} \rightarrow S^{n+1}(1) \subseteq \mathbb{R}^{n+2}: p \mapsto \cos t a(p)+\sin t b(p)
$$

for some $t \in \mathbb{R}$. Since $b_{t}=\cos t b-\sin t a$ is a unit normal to a_{t}, $a_{t}+i b_{t}=e^{-i t}(a+i b)$ and a_{t} has the same Gauss map as a.

3 - The Gauss map of a hypersurface of a sphere

Proposition

The Gauss map $G: M^{n} \rightarrow Q^{n}$ of a hypersurface $a: M^{n} \rightarrow S^{n+1}(1)$ is a Lagrangian immersion.

3 - The Gauss map of a hypersurface of a sphere

Proposition

The Gauss map $G: M^{n} \rightarrow Q^{n}$ of a hypersurface $a: M^{n} \rightarrow S^{n+1}(1)$ is a Lagrangian immersion.

Proof. Diagonalize the shape operator S of $a: S e_{j}=\lambda_{j} e_{j}$.
For the horizontal lift $\hat{G}: M^{n} \rightarrow \pi^{-1} Q^{n}: p \mapsto \frac{1}{\sqrt{2}}(a(p)+i b(p))$, one has

$$
(d \hat{G}) e_{j}=\frac{1}{\sqrt{2}}\left(e_{j}-i S e_{j}\right)=\frac{1}{\sqrt{2}}\left(1-i \lambda_{j}\right) e_{j}
$$

$(d \hat{G}) e_{1}, \ldots,(d \hat{G}) e_{n}$ are linearly independent $\quad \Rightarrow G$ is an immersion. $\forall j, k \in\{1, \ldots, n\}:\left\langle(d \hat{G}) e_{j}, i(d \hat{G}) e_{k}\right\rangle=0 \quad \Rightarrow G$ is Lagrangian.

3 - The Gauss map of a hypersurface of a sphere

Proposition
 If the principal curvatures of a hypersurface $a: M^{n} \rightarrow S^{n+1}(1)$ are constant, then its Gauss map $G: M^{n} \rightarrow Q^{n}$ is a minimal Lagrangian immersion.

3 - The Gauss map of a hypersurface of a sphere

Proposition

If the principal curvatures of a hypersurface $a: M^{n} \rightarrow S^{n+1}(1)$ are constant, then its Gauss map $G: M^{n} \rightarrow Q^{n}$ is a minimal Lagrangian immersion.

The statement follows from the following formula by Palmer:

$$
g(J H, \cdot)=-\frac{1}{n} d\left(\operatorname{Im}\left(\log \prod_{j=1}^{n}\left(1+i \lambda_{j}\right)\right)\right)
$$

3 - The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

3 - The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of isoparametric functions F on the ambient space: functions for which $\|\nabla F\|=\phi_{1}(F), \Delta F=\phi_{2}(F)$.

3 - The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of isoparametric functions F on the ambient space: functions for which $\|\nabla F\|=\phi_{1}(F), \Delta F=\phi_{2}(F)$.

Full classification of isoparametric hypersurfaces of \mathbb{R}^{n+1}.

3 - The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of isoparametric functions F on the ambient space: functions for which $\|\nabla F\|=\phi_{1}(F), \Delta F=\phi_{2}(F)$.

Full classification of isoparametric hypersurfaces of \mathbb{R}^{n+1}.

Theorem (Somigliana, Levi-Civita, Segre)

An isoparametric hypersurface of \mathbb{R}^{n+1} is an op part of a hyperplane \mathbb{R}^{n}, of a hypersphere $S^{n}(r)$ or of a product immersion $S^{k}(r) \times \mathbb{R}^{n-k}$.

3 - The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of isoparametric functions F on the ambient space: functions for which $\|\nabla F\|=\phi_{1}(F), \Delta F=\phi_{2}(F)$.

Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.

3 - The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of isoparametric functions F on the ambient space: functions for which $\|\nabla F\|=\phi_{1}(F), \Delta F=\phi_{2}(F)$.

Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.

- A hypersphere $(0<r \leq 1)$

$$
a_{1}: S^{n}(r) \rightarrow S^{n+1}(1): p \mapsto\left(p, \sqrt{1-r^{2}}\right)
$$

3 - The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of isoparametric functions F on the ambient space: functions for which $\|\nabla F\|=\phi_{1}(F), \Delta F=\phi_{2}(F)$.

Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.

- A hypersphere $(0<r \leq 1)$

$$
a_{1}: S^{n}(r) \rightarrow S^{n+1}(1): p \mapsto\left(p, \sqrt{1-r^{2}}\right)
$$

- A product of spheres $\left(0<r_{1}, r_{2}<1\right.$ with $\left.r_{1}^{2}+r_{2}^{2}=1\right)$

$$
a_{2}: S^{k}\left(r_{1}\right) \times S^{n-k}\left(r_{2}\right) \rightarrow S^{n+1}(1):\left(p_{1}, p_{2}\right) \mapsto\left(p_{1}, p_{2}\right)
$$

3 - The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of isoparametric functions F on the ambient space: functions for which $\|\nabla F\|=\phi_{1}(F), \Delta F=\phi_{2}(F)$.

Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.

- A hypersphere $(0<r \leq 1)$

$$
a_{1}: S^{n}(r) \rightarrow S^{n+1}(1): p \mapsto\left(p, \sqrt{1-r^{2}}\right)
$$

- A product of spheres $\left(0<r_{1}, r_{2}<1\right.$ with $\left.r_{1}^{2}+r_{2}^{2}=1\right)$

$$
a_{2}: S^{k}\left(r_{1}\right) \times S^{n-k}\left(r_{2}\right) \rightarrow S^{n+1}(1):\left(p_{1}, p_{2}\right) \mapsto\left(p_{1}, p_{2}\right)
$$

- A tube around the Veronese surface in $S^{4}(1)$ (Cartan's example)

$$
a_{3}: \mathbb{R} P^{2} \times S^{1}(\varepsilon) \rightarrow S^{4}(1)
$$

3 - The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

- $a_{1}: \quad \lambda_{1}=\ldots=\lambda_{n}=\frac{\sqrt{1-r^{2}}}{r}$
- $a_{2}: \quad \lambda_{1}=\ldots=\lambda_{k}=\frac{r_{2}}{r_{1}}, \lambda_{k+1}=\ldots=\lambda_{n}=-\frac{r_{1}}{r_{2}}$
- a_{3} : $\lambda_{1}, \lambda_{2}, \lambda_{3}$ mutually different

3 - The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

- $a_{1}: \quad \lambda_{1}=\ldots=\lambda_{n}=\frac{\sqrt{1-r^{2}}}{r}$
- $a_{2}: \quad \lambda_{1}=\ldots=\lambda_{k}=\frac{r_{2}}{r_{1}}, \quad \lambda_{k+1}=\ldots=\lambda_{n}=-\frac{r_{1}}{r_{2}}$
- $a_{3}: \quad \lambda_{1}, \lambda_{2}, \lambda_{3}$ mutually different

Theorem (Münzner, 1981)
Let g be the number of distinct constant principal curvatures of an isoparametric hypersurface of $S^{n+1}(1)$, then $g \in\{1,2,3,4,6\}$.

3 - The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

- $a_{1}: \quad \lambda_{1}=\ldots=\lambda_{n}=\frac{\sqrt{1-r^{2}}}{r}$
- $a_{2}: \quad \lambda_{1}=\ldots=\lambda_{k}=\frac{r_{2}}{r_{1}}, \lambda_{k+1}=\ldots=\lambda_{n}=-\frac{r_{1}}{r_{2}}$
- $a_{3}: \quad \lambda_{1}, \lambda_{2}, \lambda_{3}$ mutually different

Theorem (Münzner, 1981)

Let g be the number of distinct constant principal curvatures of an isoparametric hypersurface of $S^{n+1}(1)$, then $g \in\{1,2,3,4,6\}$.

The proof uses algebraic topology.

3 - The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

- $a_{1}: \quad \lambda_{1}=\ldots=\lambda_{n}=\frac{\sqrt{1-r^{2}}}{r}$
- $a_{2}: \quad \lambda_{1}=\ldots=\lambda_{k}=\frac{r_{2}}{r_{1}}, \lambda_{k+1}=\ldots=\lambda_{n}=-\frac{r_{1}}{r_{2}}$
- $a_{3}: \quad \lambda_{1}, \lambda_{2}, \lambda_{3}$ mutually different

Theorem (Münzner, 1981)

Let g be the number of distinct constant principal curvatures of an isoparametric hypersurface of $S^{n+1}(1)$, then $g \in\{1,2,3,4,6\}$.

The proof uses algebraic topology.
Until today, the classification of isoparametric hypersurfaces of $S^{n+1}(1)$ is still not completely understood.

4 - Outline

(1) How we started research on Q^{n}
(2) The complex quadric Q^{n}
(3) The Gauss map of a hypersurface of a sphere

4 Study of Lagrangian submanifolds of Q^{n}
(5) Question

4 - Study of Lagrangian submanifolds of Q^{n} - tools

4 - Study of Lagrangian submanifolds of Q^{n} - tools

Let $f: M^{n} \rightarrow Q^{n}$ be a Lagrangian immersion. Assume $A \in \mathcal{A}$ is fixed.
If X is tangent to M^{n}, the decomposition

$$
A X=B X-J C X
$$

into a tangent and a normal part, defines two (1,1)-tensor fields on M^{n}.

4 - Study of Lagrangian submanifolds of Q^{n} - tools

Let $f: M^{n} \rightarrow Q^{n}$ be a Lagrangian immersion. Assume $A \in \mathcal{A}$ is fixed.
If X is tangent to M^{n}, the decomposition

$$
A X=B X-J C X
$$

into a tangent and a normal part, defines two (1,1)-tensor fields on M^{n}.

Lemma

The (1,1)-tensor fields B and C on M^{n} satisfy
(1) B and C are symmetric,
(2) $B^{2}+C^{2}=\mathrm{id}$,
(3) $[B, C]=0$.

Hence, for every $p \in M^{n}$, there exists an ONB $\left\{e_{1}, \ldots, e_{n}\right\}$ of $T_{p} M^{n}$ and $\theta_{1}, \ldots, \theta_{n} \in \mathbb{R}$, determined up to an integer multiple of π, such that

$$
A e_{j}=\cos \left(2 \theta_{j}\right) e_{j}-\sin \left(2 \theta_{j}\right) J e_{j} .
$$

4 - Study of Lagrangian submanifolds of Q^{n}

In the neighborhood of a point, $\theta_{1}, \ldots, \theta_{n}$ define local angle functions, which we can change by changing $A \in \mathcal{A}$.

4 - Study of Lagrangian submanifolds of Q^{n}

In the neighborhood of a point, $\theta_{1}, \ldots, \theta_{n}$ define local angle functions, which we can change by changing $A \in \mathcal{A}$.

Lemma

Let $f: M^{n} \rightarrow Q^{n}$ be a Lagrangian immersion and $A_{0}, A \in \mathcal{A}$. Then there exists a function $\varphi: M^{n} \rightarrow \mathbb{R}$ such that $A=\cos \varphi A_{0}+\sin \varphi J A_{0}$ along M^{n} and the local angle functions $\theta_{1}, \ldots, \theta_{n}$ associated to A are related to the local angle functions $\theta_{1}^{0}, \ldots, \theta_{n}^{0}$ associated to A_{0} by

$$
\theta_{j}=\theta_{j}^{0}-\frac{\varphi}{2}
$$

4 - Study of Lagrangian submanifolds of Q^{n}

In the neighborhood of a point, $\theta_{1}, \ldots, \theta_{n}$ define local angle functions, which we can change by changing $A \in \mathcal{A}$.

Lemma

Let $f: M^{n} \rightarrow Q^{n}$ be a Lagrangian immersion and $A_{0}, A \in \mathcal{A}$. Then there exists a function $\varphi: M^{n} \rightarrow \mathbb{R}$ such that $A=\cos \varphi A_{0}+\sin \varphi J A_{0}$ along M^{n} and the local angle functions $\theta_{1}, \ldots, \theta_{n}$ associated to A are related to the local angle functions $\theta_{1}^{0}, \ldots, \theta_{n}^{0}$ associated to A_{0} by

$$
\theta_{j}=\theta_{j}^{0}-\frac{\varphi}{2}
$$

Example. One can choose $A \in \mathcal{A}$ such that

$$
\theta_{1}+\ldots+\theta_{n}=0 \quad \bmod \pi
$$

4 - Study of Lagrangian submanifolds of Q^{n} - tools

Equation of Gauss:

$$
\begin{aligned}
g(R(X, Y) Z, W)= & g(Y, Z) g(X, W)-g(X, Z) g(Y, W) \\
& +g(B Y, Z) g(B X, W)-g(B X, Z) g(B Y, W) \\
& +g(C Y, Z) g(C X, W)-g(C X, Z) g(C Y, W) \\
& +g(h(Y, Z), h(X, W))-g(h(X, Z), h(Y, W))
\end{aligned}
$$

4 - Study of Lagrangian submanifolds of Q^{n} - tools

Equation of Gauss:

$$
\begin{aligned}
g(R(X, Y) Z, W)= & g(Y, Z) g(X, W)-g(X, Z) g(Y, W) \\
& +g(B Y, Z) g(B X, W)-g(B X, Z) g(B Y, W) \\
& +g(C Y, Z) g(C X, W)-g(C X, Z) g(C Y, W) \\
& +g(h(Y, Z), h(X, W))-g(h(X, Z), h(Y, W))
\end{aligned}
$$

Equation of Codazzi:

$$
\begin{aligned}
(\bar{\nabla} h)(X, Y, Z)-(\bar{\nabla} h)(Y, X, Z)= & g(C Y, Z) J B X-g(C X, Z) J B Y \\
& -g(B Y, Z) J C X+g(B X, Z) J C Y
\end{aligned}
$$

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Question: Given a Lagrangian immersion $f: M^{n} \rightarrow Q^{n}$, can we see it as the Gauss map of a hypersurface $a: M^{n} \rightarrow S^{n+1}(1)$?

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Question: Given a Lagrangian immersion $f: M^{n} \rightarrow Q^{n}$, can we see it as the Gauss map of a hypersurface $a: M^{n} \rightarrow S^{n+1}(1)$?

Idea:

Take a horizontal lift $\hat{f}: M^{n} \rightarrow \pi^{-1} Q^{n}$ and put

$$
\begin{aligned}
a & :=\sqrt{2} \operatorname{Re} \hat{f}, \\
b & :=\sqrt{2} \operatorname{Im} \hat{f}
\end{aligned}
$$

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Question: Given a Lagrangian immersion $f: M^{n} \rightarrow Q^{n}$, can we see it as the Gauss map of a hypersurface $a: M^{n} \rightarrow S^{n+1}(1)$?

Idea:

Take a horizontal lift $\hat{f}: M^{n} \rightarrow \pi^{-1} Q^{n}$ and put

$$
\begin{aligned}
a & :=\sqrt{2} \operatorname{Re} \hat{f}, \\
b & :=\sqrt{2} \operatorname{Im} \hat{f}
\end{aligned}
$$

Remark:

- We have to work locally to guarantee that a is an immersion

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Question: Given a Lagrangian immersion $f: M^{n} \rightarrow Q^{n}$, can we see it as the Gauss map of a hypersurface $a: M^{n} \rightarrow S^{n+1}(1)$?

Idea:

Take a horizontal lift $\hat{f}: M^{n} \rightarrow \pi^{-1} Q^{n}$ and put

$$
\begin{aligned}
a & :=\sqrt{2} \operatorname{Re} \hat{f} \\
b & :=\sqrt{2} \operatorname{Im} \hat{f}
\end{aligned}
$$

Remark:

- We have to work locally to guarantee that a is an immersion
- We expect a relation between the angle functions of f and the principal curvatures of a.

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Theorem (VdV, Wijffels)

PART I

Let $a: M^{n} \rightarrow S^{n+1}(1)$ be a hypersurface with unit normal b and denote by $G: M^{n} \rightarrow Q^{n}: p \mapsto[a(p)+i b(p)]$ its Gauss map. After a suitable choice of $A \in \mathcal{A}$, the relation between the principal curvatures a and the angle functions of G is

$$
\lambda_{j}=\cot \theta_{j}
$$

for $j=1, \ldots, n$.

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Theorem (VdV, Wijffels)

PART I

Let $a: M^{n} \rightarrow S^{n+1}(1)$ be a hypersurface with unit normal b and denote by $G: M^{n} \rightarrow Q^{n}: p \mapsto[a(p)+i b(p)]$ its Gauss map. After a suitable choice of $A \in \mathcal{A}$, the relation between the principal curvatures a and the angle functions of G is

$$
\lambda_{j}=\cot \theta_{j}
$$

for $j=1, \ldots, n$.
Remark. The choice of A comes down to choosing

$$
\overline{\hat{G}(p)}=\frac{1}{\sqrt{2}}(a(p)-i b(p))
$$

as a unit normal to $\pi^{-1} Q^{n}$ in $S^{2 n+3}(1)$ along \hat{G}.

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Theorem (VdV, Wijffels)

PART II

Conversely, if $f: M^{n} \rightarrow Q^{n}$ is a Lagrangian immersion, then for every point of M^{n} there exist an open neighborhood U of that point in M^{n} and an immersion $a: U \rightarrow S^{n+1}(1)$ with Gauss map $\left.f\right|_{U}$. This immersion is not unique, nor are its principal curvature functions.
However, for any choice of the hypersurface a and of the almost product structure $A \in \mathcal{A}$, the principal curvature functions of a are related to the corresponding angle functions of f by

$$
\cot \left(\theta_{j}-\theta_{k}\right)= \pm \frac{\lambda_{j} \lambda_{k}+1}{\lambda_{j}-\lambda_{k}}
$$

for $j, k=1, \ldots, n$ in points where $\lambda_{j} \neq \lambda_{k}$.

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Some classification theorems for minimal Lagrangian immersions into Q^{n}

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Some classification theorems for minimal Lagrangian immersions into Q^{n}

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a minimal Lagrangian immersion with constant local angle functions. If g is the number of different constant local angle functions modulo π, then $g \in\{1,2,3,4,6\}$. Moreover,

- if $g=1$, then f is the Gauss map of a part of $a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)$;
- if $g=2$, then f is the Gauss map of a part of $a_{2}: S^{k}\left(r_{1}\right) \times S^{n-k}\left(r_{2}\right) \rightarrow S^{n+1}(1)$;
- if $g=3$, then f is the Gauss map of a part of $a_{3}: \mathbb{R} P^{2} \times S^{1}(\varepsilon) \rightarrow S^{4}(1)$
or of tubes around standard embeddings $\mathbb{C} P^{2} \rightarrow S^{7}(1)$, $\mathbb{H} P^{2} \rightarrow S^{13}(1)$ or $\mathbb{O} P^{2} \rightarrow S^{25}(1)$.

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Theorem (Li, Ma, VdV, Vrancken, Wang)
Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)$ or of a part of $a_{2}: S^{k}\left(r_{1}\right) \times S^{n-k}\left(r_{2}\right) \rightarrow S^{n+1}(1)$.

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)$ or of a part of $a_{2}: S^{k}\left(r_{1}\right) \times S^{n-k}\left(r_{2}\right) \rightarrow S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a minimal Lagrangian immersion, such that M^{n} has constant sectional curvature c. Then either

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)$ or of a part of $a_{2}: S^{k}\left(r_{1}\right) \times S^{n-k}\left(r_{2}\right) \rightarrow S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a minimal Lagrangian immersion, such that M^{n} has constant sectional curvature c. Then either

- f is the Gauss map of a part of

$$
a_{1}: S^{n}(r) \rightarrow S^{n+1}(1) ;
$$

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)$ or of a part of $a_{2}: S^{k}\left(r_{1}\right) \times S^{n-k}\left(r_{2}\right) \rightarrow S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a minimal Lagrangian immersion, such that M^{n} has constant sectional curvature c. Then either

- f is the Gauss map of a part of

$$
a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)
$$

- $n=2$ and f is the Gauss map of a part of $a_{2}: S^{1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right) \rightarrow S^{3}(1)$;

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)$ or of a part of $a_{2}: S^{k}\left(r_{1}\right) \times S^{n-k}\left(r_{2}\right) \rightarrow S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a minimal Lagrangian immersion, such that M^{n} has constant sectional curvature c. Then either

- f is the Gauss map of a part of

$$
a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)
$$

- $n=2$ and f is the Gauss map of a part of $a_{2}: S^{1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right) \rightarrow S^{3}(1)$;
- $n=3$ and f is the Gauss map of a part of $a_{3}: \mathbb{R} P^{2} \times S^{1}(\varepsilon) \rightarrow S^{4}(1)$.

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)$ or of a part of $a_{2}: S^{k}\left(r_{1}\right) \times S^{n-k}\left(r_{2}\right) \rightarrow S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a minimal Lagrangian immersion, such that M^{n} has constant sectional curvature c. Then either

- f is the Gauss map of a part of

$$
a_{1}: S^{n}(r) \rightarrow S^{n+1}(1) ; \quad c=2
$$

- $n=2$ and f is the Gauss map of a part of

$$
a_{2}: S^{1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right) \rightarrow S^{3}(1) ; \quad c=0
$$

- $n=3$ and f is the Gauss map of a part of $a_{3}: \mathbb{R} P^{2} \times S^{1}(\varepsilon) \rightarrow S^{4}(1)$.
$c=\frac{1}{8}$

Some steps in the proof of the last theorem

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Some steps in the proof of the last theorem

Lemma

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a Lagrangian immersion, such that M^{n} has constant sectional curvature c. Then

$$
\begin{aligned}
& \sin \left(\theta_{i}-\theta_{j}\right) \sin \left(\theta_{i}+\theta_{j}-2 \theta_{k}\right)\left(\delta_{k \ell} h\left(e_{i}, e_{j}\right)+h_{i j}^{\ell} J e_{k}\right) \\
& +\sin \left(\theta_{j}-\theta_{k}\right) \sin \left(\theta_{j}+\theta_{k}-2 \theta_{i}\right)\left(\delta_{i \ell} h\left(e_{j}, e_{k}\right)+h_{j k}^{\ell} J e_{i}\right) \\
& +\sin \left(\theta_{k}-\theta_{i}\right) \sin \left(\theta_{k}+\theta_{i}-2 \theta_{j}\right)\left(\delta_{j \ell} h\left(e_{i}, e_{k}\right)+h_{i k}^{\ell} J e_{j}\right)=0
\end{aligned}
$$

for all i, j, k, ℓ. In particular, if i, j, k are mutually different, then

$$
\begin{aligned}
& h_{i i}^{k} \sin \left(\theta_{i}-\theta_{k}\right) \sin \left(\theta_{i}+\theta_{k}-2 \theta_{j}\right)=h_{j j}^{k} \sin \left(\theta_{j}-\theta_{k}\right) \sin \left(\theta_{j}+\theta_{k}-2 \theta_{i}\right), \\
& h_{i j}^{k} \sin \left(\theta_{i}-\theta_{j}\right) \sin \left(\theta_{i}+\theta_{j}-2 \theta_{k}\right)=0
\end{aligned}
$$

and if i, j, k, ℓ are mutually different, then

$$
h_{i j}^{k} \sin \left(\theta_{i}-\theta_{j}\right) \sin \left(\theta_{i}+\theta_{j}-2 \theta_{\ell}\right)=0
$$

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Proposition

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a minimal Lagrangian immersion such that M^{n} has constant sectional curvature and choose $A \in \mathcal{A}$ such that $\theta_{1}+\ldots+\theta_{n}=0 \bmod \pi$. Then either

- all local angle functions are the same modulo π, or
- all local angle functions are mutually different modulo π.

In the former case, the immersion is the Gauss map of a part of $a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)$.

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Proposition

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a minimal Lagrangian immersion such that M^{n} has constant sectional curvature and choose $A \in \mathcal{A}$ such that $\theta_{1}+\ldots+\theta_{n}=0 \bmod \pi$. Then either

- all local angle functions are the same modulo π, or
- all local angle functions are mutually different modulo π.

In the former case, the immersion is the Gauss map of a part of $a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)$.

The conclusion follows by algebraic computations using all the obtained relations and the equations of Gauss and Codazzi.

4 - Study of Lagrangian submanifolds of Q^{n} - main results

Proposition

Let $f: M^{n} \rightarrow Q^{n}, n \geq 2$, be a minimal Lagrangian immersion such that M^{n} has constant sectional curvature and choose $A \in \mathcal{A}$ such that $\theta_{1}+\ldots+\theta_{n}=0 \bmod \pi$. Then either

- all local angle functions are the same modulo π, or
- all local angle functions are mutually different modulo π.

In the former case, the immersion is the Gauss map of a part of $a_{1}: S^{n}(r) \rightarrow S^{n+1}(1)$.

The conclusion follows by algebraic computations using all the obtained relations and the equations of Gauss and Codazzi.

Remark. For $M^{2} \rightarrow Q^{2} \cong S^{2}\left(\frac{1}{2}\right) \times S^{2}\left(\frac{1}{2}\right)$, the classification was already obtained by Castro and Urbano.

5 - Outline

(1) How we started research on Q^{n}
(2) The complex quadric Q^{n}
(3) The Gauss map of a hypersurface of a sphere

4 Study of Lagrangian submanifolds of Q^{n}
(5) Question

5 - Question

Question:

Are there other Riemannian manifolds (M, g) with anti-commuting almost complex structure J and almost product structure P such that

$$
\begin{aligned}
& R(X, Y) Z=a(g(Y, Z) X-g(X, Z) Y) \\
& +b(g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z) \\
& +c(g(P Y, Z) P X-g(P X, Z) P Y+g(J P Y, Z) J P X-g(J P X, Z) J P Y) ?
\end{aligned}
$$

5 - Question

Question:

Are there other Riemannian manifolds (M, g) with anti-commuting almost complex structure J and almost product structure P such that

$$
\begin{aligned}
& R(X, Y) Z=a(g(Y, Z) X-g(X, Z) Y) \\
& +b(g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z) \\
& +c(g(P Y, Z) P X-g(P X, Z) P Y+g(J P Y, Z) J P X-g(J P X, Z) J P Y) ?
\end{aligned}
$$

Only examples that I know of so far:

- real space forms (no J, no P), complex space forms (no P)
- the homogeneous nearly Kähler $S^{3} \times S^{3}$
- the complex quadric, the hyperbolic complex quadric

Remark. All such manifolds will be Einstein.

5 - References

- J. Van der Veken and A. Wijffels, Contemporary Mathematics, AMS, to appear.
- H. Li, H. Ma, J. Van der Veken, L. Vrancken and X. Wang, Science China Mathematics, to appear.
- I. Castro and F. Urbano, Comm. Anal. Geom. 15 (2007), 217-248.
- G. R. Jensen,
J. Differential Geometry 3 (1969), 309-349.
- H. F. Münzner,

Math. Ann. 251/256 (1980)/(1981), 57-71/215-232.

- B. Palmer,

Differ. Geom. Appl. 7 (1997), 51-58.

Thank you for your attention!

