

Lagrangian submanifolds of the complex quadric

Joeri Van der Veken

SYMMETRY AND SHAPE celebrating the 60th birthday of Prof. J. Berndt Santiago de Compostela - 30/10/2019

0 - Outline

- **(2)** The complex quadric Q^n
- The Gauss map of a hypersurface of a sphere
- 4 Study of Lagrangian submanifolds of Q^n

1 – Outline

- (2) The complex quadric Q^n
- The Gauss map of a hypersurface of a sphere
- 4 Study of Lagrangian submanifolds of Q^n
- 5 Question

1 – How we started research on Q^n

The homogeneous nearly Kähler $(S^3 \times S^3, g)$

1 – How we started research on Q^n

The homogeneous nearly Kähler $(S^3 imes S^3, g)$ has

- \bullet an almost complex structure J
- and an almost product struture P,
- which anti-commute,
- and the curvature tensor is given by

$$\begin{split} R(X,Y)Z &= \frac{5}{12} \left(g(Y,Z)X - g(X,Z)Y \right) \\ &+ \frac{1}{12} \left(g(X,JZ)JY - g(Y,JZ)JX + 2g(X,JY)JZ \right) \\ &+ \frac{1}{3} \left(g(PY,Z)PX - g(PX,Z)PY \right) \\ &+ g(JPY,Z)JPX - g(JPX,Z)JPY \right). \end{split}$$

- **2** The complex quadric Q^n
- The Gauss map of a hypersurface of a sphere
- (4) Study of Lagrangian submanifolds of Q^n
- 6 Question

$$Q^{n} := \{ [(z_0, \dots, z_{n+1})] \in \mathbb{C}P^{n+1}(4) \mid z_0^2 + \dots + z_{n+1}^2 = 0 \}.$$

$$Q^{n} := \{ [(z_0, \dots, z_{n+1})] \in \mathbb{C}P^{n+1}(4) \mid z_0^2 + \dots + z_{n+1}^2 = 0 \}.$$

 Q^n is a holomorphic submanifold of $\mathbb{C}P^{n+1}(4)$ and hence, equipped with the induced metric and almost complex structure, a Kähler manifold.

KU LEU

$$Q^{n} := \{ [(z_0, \dots, z_{n+1})] \in \mathbb{C}P^{n+1}(4) \mid z_0^2 + \dots + z_{n+1}^2 = 0 \}.$$

 Q^n is a holomorphic submanifold of $\mathbb{C}P^{n+1}(4)$ and hence, equipped with the induced metric and almost complex structure, a Kähler manifold.

What is the inverse image of Q^n under the Hopf fibration

$$\pi: S^{2n+3}(1) \subseteq \mathbb{C}^{n+2} \to \mathbb{C}P^{n+1}(4)?$$

$$Q^{n} := \{ [(z_{0}, \dots, z_{n+1})] \in \mathbb{C}P^{n+1}(4) \mid z_{0}^{2} + \dots + z_{n+1}^{2} = 0 \}.$$

 Q^n is a holomorphic submanifold of $\mathbb{C}P^{n+1}(4)$ and hence, equipped with the induced metric and almost complex structure, a Kähler manifold.

What is the inverse image of Q^n under the Hopf fibration

$$\pi: S^{2n+3}(1) \subseteq \mathbb{C}^{n+2} \to \mathbb{C}P^{n+1}(4)?$$

Lemma $\pi^{-1}Q^{n} = \left\{ u + iv \mid u, v \in \mathbb{R}^{n+2}, \ \langle u, u \rangle = \langle v, v \rangle = \frac{1}{2}, \ \langle u, v \rangle = 0 \right\} \subseteq S^{2n+3}(1),$ where $\langle \cdot, \cdot \rangle$ is the Euclidean metric on \mathbb{R}^{n+2} .

2 – The complex quadric Q^n

Remark. Alternative descriptions:

• Q^n is the Grassmannian of oriented 2-planes in \mathbb{R}^{n+2}

• $Q^n = \frac{\mathrm{SO}(n+2)}{\mathrm{SO}(n) \times \mathrm{SO}(2)}$

2 – The complex quadric Q^n

Remark. Alternative descriptions:

• Q^n is the Grassmannian of oriented 2-planes in \mathbb{R}^{n+2}

• $Q^n = \frac{\mathrm{SO}(n+2)}{\mathrm{SO}(n) \times \mathrm{SO}(2)}$

Lemma

$$T_{[z]}^{\perp}Q^n = \text{span}\{(d\pi)_z(\bar{z}), (d\pi)_z(i\bar{z})\}.$$

2 – The complex quadric Q^n

Remark. Alternative descriptions:

• Q^n is the Grassmannian of oriented 2-planes in \mathbb{R}^{n+2}

• $Q^n = \frac{\mathrm{SO}(n+2)}{\mathrm{SO}(n) \times \mathrm{SO}(2)}$

Lemma

$$T_{[z]}^{\perp}Q^n = \text{span}\{(d\pi)_z(\bar{z}), (d\pi)_z(i\bar{z})\}.$$

$$\begin{aligned} \operatorname{Re}(z_0^2 + \ldots + z_{n+1}^2) &= 0 \quad \Rightarrow \bar{z} \perp z \quad \Rightarrow \bar{z} \text{ is tangent to } S^{2n+3}(1) \\ \operatorname{Im}(z_0^2 + \ldots + z_{n+1}^2) &= 0 \quad \Rightarrow \bar{z} \perp iz \quad \Rightarrow \bar{z} \text{ is horizontal} \end{aligned}$$

Any shape operator A of Q^n in $\mathbb{C}P^{n+1}(4)$, associated to a unit normal vector field, has the following properties:

KU LEU

- $\bullet \quad A^2 = \mathrm{id},$

Any shape operator A of Q^n in $\mathbb{C}P^{n+1}(4)$, associated to a unit normal vector field, has the following properties:

- $\bullet \quad A^2 = \mathrm{id},$
- $\ \, {\bf 2} \ \ \, g(AX,AY)=g(X,Y),$

A is an almost product structure that anti-commutes with J!

KULE

Any shape operator A of Q^n in $\mathbb{C}P^{n+1}(4)$, associated to a unit normal vector field, has the following properties:

• $A^2 = id,$ • g(AX, AY) = g(X, Y),• AJ = -JA

A is an almost product structure that anti-commutes with J!

Let \mathcal{A} be the set of these operators. Choose $A_0 \in \mathcal{A}$, then

 $\mathcal{A} = \{ \cos \varphi \, A_0 + \sin \varphi \, J A_0 \mid \varphi : Q^n \to \mathbb{R} \}.$

Any shape operator A of Q^n in $\mathbb{C}P^{n+1}(4)$, associated to a unit normal vector field, has the following properties:

• $A^2 = id,$ • g(AX, AY) = g(X, Y),• AJ = -JA.

A is an almost product structure that anti-commutes with J!

Let \mathcal{A} be the set of these operators. Choose $A_0 \in \mathcal{A}$, then

$$\mathcal{A} = \{ \cos \varphi \, A_0 + \sin \varphi \, J A_0 \mid \varphi : Q^n \to \mathbb{R} \}.$$

Lemma

For all $A \in A$, there exists a non-zero one-form s such that $\nabla_X A = s(X)JA$.

KU LEUVEN

From the equation of Gauss:

 $R^{Q^{n}}(X,Y)Z = g(Y,Z)X - g(X,Z)Y$ +g(X,JZ)JY - g(Y,JZ)JX + 2g(X,JY)JZ +g(AY,Z)AX - g(AX,Z)AY +g(JAY,Z)JAX - g(JAX,Z)JAY

From the equation of Gauss:

 $R^{Q^{n}}(X,Y)Z = g(Y,Z)X - g(X,Z)Y$ +g(X,JZ)JY - g(Y,JZ)JX + 2g(X,JY)JZ +g(AY,Z)AX - g(AX,Z)AY +g(JAY,Z)JAX - g(JAX,Z)JAY

Remark. Although none of the $A \in \mathcal{A}$ are integrable, we have

 $Q^2 \cong S^2\left(\frac{1}{2}\right) \times S^2\left(\frac{1}{2}\right).$

From the equation of Gauss:

 $R^{Q^n}(X,Y)Z = g(Y,Z)X - g(X,Z)Y$ +g(X,JZ)JY - g(Y,JZ)JX + 2g(X,JY)JZ+g(AY,Z)AX - g(AX,Z)AY+g(JAY,Z)JAX - g(JAX,Z)JAY

Remark. Although none of the $A \in \mathcal{A}$ are integrable, we have

 $Q^2 \cong S^2\left(\frac{1}{2}\right) \times S^2\left(\frac{1}{2}\right).$

Theorem (Jensen)

A Riemannian homogeneous Einstein four-manifold is symmetric and hence locally isometric to either a real space form \mathbb{R}^4 , $S^4(c)$ or $H^4(c)$; a complex space form $\mathbb{C}P^2(4c)$ or $\mathbb{C}H^2(4c)$; or a product of surfaces $S^2(c) \times S^2(c)$ or $H^2(c) \times H^2(c)$.

KU LEUVEN

3 - Outline

 $lacksymbol{1}$ How we started research on Q^n

- (2) The complex quadric Q^n
- The Gauss map of a hypersurface of a sphere
- (4) Study of Lagrangian submanifolds of Q^n

6 Question

Gauss map of a hypersurface of \mathbb{R}^{n+1}

 $a: M^n \rightarrow \mathbb{R}^{n+1}$ hypersurface with unit normal b

Gauss map of a hypersurface of \mathbb{R}^{n+1}

 $a: M^n \rightarrow \mathbb{R}^{n+1}$ hypersurface with unit normal b

Definition

The map $G: M^n \to S^n(1): p \mapsto b(p)$ is the Gauss map of a.

Gauss map of a hypersurface of \mathbb{R}^{n+1}

 $a: M^n \rightarrow \mathbb{R}^{n+1}$ hypersurface with unit normal b

Definition The map $G: M^n \to S^n(1): p \mapsto b(p)$ is the Gauss map of a.

Remark:

• Any parallel hypersurface to a, given by

 $a_t: M^n \to \mathbb{R}^{n+1}: p \mapsto a(p) + t \, b(p)$

for some $t \in \mathbb{R}$, has the same Gauss map.

Gauss map of a hypersurface of $S^{n+1}(1)$

 $a: M^n \to S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.

Gauss map of a hypersurface of $S^{n+1}(1)$

 $a: M^n \to S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.

Definition

The map $G: M^n \to Q^n: p \mapsto [a(p) + ib(p)]$ is the Gauss map of a.

Gauss map of a hypersurface of $S^{n+1}(1)$

 $a: M^n \to S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.

Definition

The map $G: M^n \to Q^n: p \mapsto [a(p) + ib(p)]$ is the Gauss map of a.

Remark:

$$\bullet \ \langle \frac{a(p)}{\sqrt{2}}, \frac{a(p)}{\sqrt{2}} \rangle \!=\! \langle \frac{b(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}} \rangle \!=\! \frac{1}{2}, \\ \langle \frac{a(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}} \rangle \!=\! 0 \Rightarrow \frac{a(p)}{\sqrt{2}} + i \frac{b(p)}{\sqrt{2}} \in \pi^{-1}Q^n$$

Gauss map of a hypersurface of ${\cal S}^{n+1}(1)$

 $a: M^n \to S^{n+1}(1) \subseteq \mathbb{R}^{n+2}$ hypersurface with unit normal b.

Definition

The map $G: M^n \to Q^n: p \mapsto [a(p) + ib(p)]$ is the Gauss map of a.

Remark:

$$\bullet \ \langle \frac{a(p)}{\sqrt{2}}, \frac{a(p)}{\sqrt{2}} \rangle \!=\! \langle \frac{b(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}} \rangle \!=\! \frac{1}{2}, \\ \langle \frac{a(p)}{\sqrt{2}}, \frac{b(p)}{\sqrt{2}} \rangle \!=\! 0 \Rightarrow \frac{a(p)}{\sqrt{2}} + i \frac{b(p)}{\sqrt{2}} \in \pi^{-1}Q^n$$

• A parallel hypersurface to a is now given by

 $a_t: M^n \to S^{n+1}(1) \subseteq \mathbb{R}^{n+2}: p \mapsto \cos t \, a(p) + \sin t \, b(p)$

for some $t \in \mathbb{R}$. Since $b_t = \cos t b - \sin t a$ is a unit normal to a_t , $a_t + ib_t = e^{-it}(a+ib)$ and a_t has the same Gauss map as a.

KU LEUVEN

Proposition

The Gauss map $G: M^n \to Q^n$ of a hypersurface $a: M^n \to S^{n+1}(1)$ is a Lagrangian immersion.

Proposition

The Gauss map $G: M^n \to Q^n$ of a hypersurface $a: M^n \to S^{n+1}(1)$ is a Lagrangian immersion.

Proof. Diagonalize the shape operator S of a: $Se_j = \lambda_j e_j$. For the horizontal lift $\hat{G}: M^n \to \pi^{-1}Q^n : p \mapsto \frac{1}{\sqrt{2}}(a(p) + ib(p))$, one has

$$(d\hat{G})e_j = \frac{1}{\sqrt{2}}(e_j - iSe_j) = \frac{1}{\sqrt{2}}(1 - i\lambda_j)e_j.$$

 $(d\hat{G})e_1, \dots, (d\hat{G})e_n$ are linearly independent $\Rightarrow G$ is an immersion. $\forall j,k \in \{1,\dots,n\}: \langle (d\hat{G})e_j, i(d\hat{G})e_k \rangle = 0 \Rightarrow G$ is Lagrangian.

KU LEUVEN

Proposition

If the principal curvatures of a hypersurface $a: M^n \to S^{n+1}(1)$ are constant, then its Gauss map $G: M^n \to Q^n$ is a minimal Lagrangian immersion.

Proposition

If the principal curvatures of a hypersurface $a: M^n \to S^{n+1}(1)$ are constant, then its Gauss map $G: M^n \to Q^n$ is a minimal Lagrangian immersion.

The statement follows from the following formula by Palmer:

$$g(JH, \cdot) = -\frac{1}{n} d\left(\operatorname{Im}\left(\log \prod_{j=1}^{n} (1+i\lambda_j) \right) \right).$$

Definition

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of *isoparametric functions* F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of *isoparametric functions* F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.

Full classification of isoparametric hypersurfaces of \mathbb{R}^{n+1} .

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of *isoparametric functions* F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.

Full classification of isoparametric hypersurfaces of \mathbb{R}^{n+1} .

Theorem (Somigliana, Levi-Civita, Segre)

An isoparametric hypersurface of \mathbb{R}^{n+1} is an op part of a hyperplane \mathbb{R}^n , of a hypersphere $S^n(r)$ or of a product immersion $S^k(r) \times \mathbb{R}^{n-k}$.

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of *isoparametric functions* F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.

Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of *isoparametric functions* F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.

Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.

• A hypersphere $(0 < r \le 1)$ $a_1: S^n(r) \to S^{n+1}(1): p \mapsto (p, \sqrt{1-r^2})$

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of *isoparametric functions* F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.

Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.

• A hypersphere $(0 < r \le 1)$ $a_1 : S^n(r) \to S^{n+1}(1) : p \mapsto (p, \sqrt{1-r^2})$ • A product of spheres $(0 < r_1, r_2 < 1 \text{ with } r_1^2 + r_2^2 = 1)$ $a_2 : S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1) : (p_1, p_2) \mapsto (p_1, p_2)$

An isoparametric hypersurface is a hypersurface with constant principal curvatures.

Remark. Originally defined as level sets of *isoparametric functions* F on the ambient space: functions for which $\|\nabla F\| = \phi_1(F)$, $\Delta F = \phi_2(F)$.

Examples of isoparametric hypersurfaces of $S^{n+1}(1)$.

• A hypersphere ($0 < r \leq 1$)

 $a_1: S^n(r) \to S^{n+1}(1): p \mapsto (p, \sqrt{1-r^2})$

• A product of spheres $(0 < r_1, r_2 < 1 \text{ with } r_1^2 + r_2^2 = 1)$

 $a_2: S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1): (p_1, p_2) \mapsto (p_1, p_2)$

• A tube around the Veronese surface in $S^4(1)$ (*Cartan's example*) $a_3: \mathbb{R}P^2 \times S^1(\varepsilon) \to S^4(1)$

3 – The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

•
$$a_1: \quad \lambda_1 = \ldots = \lambda_n = \frac{\sqrt{1-r^2}}{r}$$

•
$$a_2: \quad \lambda_1 = \ldots = \lambda_k = \frac{r_2}{r_1}, \ \lambda_{k+1} = \ldots = \lambda_n = -\frac{r_1}{r_2}$$

• $a_3: \lambda_1, \lambda_2, \lambda_3$ mutually different

3 - The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

• $a_1: \quad \lambda_1 = \ldots = \lambda_n = \frac{\sqrt{1-r^2}}{r}$

•
$$a_2: \quad \lambda_1 = \ldots = \lambda_k = \frac{r_2}{r_1}, \ \lambda_{k+1} = \ldots = \lambda_n = -\frac{r_1}{r_2}$$

• $a_3: \lambda_1, \lambda_2, \lambda_3$ mutually different

Theorem (Münzner, 1981)

Let g be the number of distinct constant principal curvatures of an isoparametric hypersurface of $S^{n+1}(1)$, then $g \in \{1, 2, 3, 4, 6\}$.

3 - The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

• $a_1: \quad \lambda_1 = \ldots = \lambda_n = \frac{\sqrt{1-r^2}}{r}$

•
$$a_2: \quad \lambda_1 = \ldots = \lambda_k = \frac{r_2}{r_1}, \ \lambda_{k+1} = \ldots = \lambda_n = -\frac{r_1}{r_2}$$

• $a_3: \lambda_1, \lambda_2, \lambda_3$ mutually different

Theorem (Münzner, 1981)

Let g be the number of distinct constant principal curvatures of an isoparametric hypersurface of $S^{n+1}(1)$, then $g \in \{1, 2, 3, 4, 6\}$.

The proof uses algebraic topology.

3 - The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

• $a_1: \quad \lambda_1 = \ldots = \lambda_n = \frac{\sqrt{1-r^2}}{r}$

•
$$a_2: \quad \lambda_1 = \ldots = \lambda_k = \frac{r_2}{r_1}, \ \lambda_{k+1} = \ldots = \lambda_n = -\frac{r_1}{r_2}$$

• $a_3: \lambda_1, \lambda_2, \lambda_3$ mutually different

Theorem (Münzner, 1981)

Let g be the number of distinct constant principal curvatures of an isoparametric hypersurface of $S^{n+1}(1)$, then $g \in \{1, 2, 3, 4, 6\}$.

The proof uses algebraic topology.

Until today, the classification of isoparametric hypersurfaces of $S^{n+1}(1)$ is still not completely understood.

4 – Outline

old n How we started research on Q^n

- (2) The complex quadric Q^n
- The Gauss map of a hypersurface of a sphere

KU LEU

4 Study of Lagrangian submanifolds of Q^n

5 Question

KU LEUVEN

Let $f: M^n \to Q^n$ be a Lagrangian immersion. Assume $A \in \mathcal{A}$ is fixed. If X is tangent to M^n , the decomposition

AX = BX - JCX

into a tangent and a normal part, defines two (1,1)-tensor fields on M^n .

Let $f: M^n \to Q^n$ be a Lagrangian immersion. Assume $A \in \mathcal{A}$ is fixed. If X is tangent to M^n , the decomposition

AX = BX - JCX

into a tangent and a normal part, defines two (1,1)-tensor fields on M^n .

In the neighborhood of a point, $\theta_1, \ldots, \theta_n$ define local angle functions, which we can change by changing $A \in \mathcal{A}$.

In the neighborhood of a point, $\theta_1, \ldots, \theta_n$ define local angle functions, which we can change by changing $A \in \mathcal{A}$.

Lemma

Let $f: M^n \to Q^n$ be a Lagrangian immersion and $A_0, A \in \mathcal{A}$. Then there exists a function $\varphi: M^n \to \mathbb{R}$ such that $A = \cos \varphi A_0 + \sin \varphi J A_0$ along M^n and the local angle functions $\theta_1, \ldots, \theta_n$ associated to A are related to the local angle functions $\theta_1^0, \ldots, \theta_n^0$ associated to A_0 by

$$\theta_j = \theta_j^0 - \frac{\varphi}{2}.$$

In the neighborhood of a point, $\theta_1, \ldots, \theta_n$ define local angle functions, which we can change by changing $A \in \mathcal{A}$.

Lemma

Let $f: M^n \to Q^n$ be a Lagrangian immersion and $A_0, A \in \mathcal{A}$. Then there exists a function $\varphi: M^n \to \mathbb{R}$ such that $A = \cos \varphi A_0 + \sin \varphi J A_0$ along M^n and the local angle functions $\theta_1, \ldots, \theta_n$ associated to A are related to the local angle functions $\theta_1^0, \ldots, \theta_n^0$ associated to A_0 by

$$\theta_j = \theta_j^0 - \frac{\varphi}{2}.$$

Example. One can choose $A \in \mathcal{A}$ such that

$$\theta_1 + \ldots + \theta_n = 0 \mod \pi.$$

KU LEUVEN

Equation of Gauss:

$$\begin{split} g(R(X,Y)Z,W) &= g(Y,Z)g(X,W) - g(X,Z)g(Y,W) \\ &+ g(BY,Z)g(BX,W) - g(BX,Z)g(BY,W) \\ &+ g(CY,Z)g(CX,W) - g(CX,Z)g(CY,W) \\ &+ g(h(Y,Z),h(X,W)) - g(h(X,Z),h(Y,W)) \end{split}$$

Equation of Gauss:

$$\begin{split} g(R(X,Y)Z,W) &= g(Y,Z)g(X,W) - g(X,Z)g(Y,W) \\ &+ g(BY,Z)g(BX,W) - g(BX,Z)g(BY,W) \\ &+ g(CY,Z)g(CX,W) - g(CX,Z)g(CY,W) \\ &+ g(h(Y,Z),h(X,W)) - g(h(X,Z),h(Y,W)) \end{split}$$

Equation of Codazzi:

 $(\overline{\nabla}h)(X,Y,Z) - (\overline{\nabla}h)(Y,X,Z) = g(CY,Z)JBX - g(CX,Z)JBY - g(BY,Z)JCX + g(BX,Z)JCY$

Question: Given a Lagrangian immersion $f: M^n \to Q^n$, can we see it as the Gauss map of a hypersurface $a: M^n \to S^{n+1}(1)$?

Question: Given a Lagrangian immersion $f: M^n \to Q^n$, can we see it as the Gauss map of a hypersurface $a: M^n \to S^{n+1}(1)$?

Idea:

Take a horizontal lift $\widehat{f}:M^n\to\pi^{-1}Q^n$ and put

$$\begin{split} a &:= \sqrt{2} \operatorname{Re} \hat{f}, \\ b &:= \sqrt{2} \operatorname{Im} \hat{f}. \end{split}$$

Question: Given a Lagrangian immersion $f: M^n \to Q^n$, can we see it as the Gauss map of a hypersurface $a: M^n \to S^{n+1}(1)$?

Idea:

Take a horizontal lift $\widehat{f}: M^n \to \pi^{-1}Q^n$ and put

 $a := \sqrt{2} \operatorname{Re} \hat{f},$ $b := \sqrt{2} \operatorname{Im} \hat{f}.$

KUI

Remark:

 \bullet We have to work locally to guarantee that a is an immersion

Question: Given a Lagrangian immersion $f: M^n \to Q^n$, can we see it as the Gauss map of a hypersurface $a: M^n \to S^{n+1}(1)$?

Idea:

Take a horizontal lift $\widehat{f}: M^n \to \pi^{-1}Q^n$ and put

 $a := \sqrt{2} \operatorname{Re} \hat{f},$ $b := \sqrt{2} \operatorname{Im} \hat{f}.$

Remark:

- ullet We have to work locally to guarantee that a is an immersion
- We expect a relation between the angle functions of f and the principal curvatures of a.

KU LEUVEN

Theorem (VdV, Wijffels)

PART I

Let $a: M^n \to S^{n+1}(1)$ be a hypersurface with unit normal b and denote by $G: M^n \to Q^n: p \mapsto [a(p) + ib(p)]$ its Gauss map. After a suitable choice of $A \in A$, the relation between the principal curvatures a and the angle functions of G is

 $\lambda_j = \cot \theta_j$

for j = 1, ..., n.

Theorem (VdV, Wijffels)

PART I

Let $a: M^n \to S^{n+1}(1)$ be a hypersurface with unit normal b and denote by $G: M^n \to Q^n: p \mapsto [a(p) + ib(p)]$ its Gauss map. After a suitable choice of $A \in A$, the relation between the principal curvatures a and the angle functions of G is

$$\lambda_j = \cot \theta_j$$

for j = 1, ..., n.

Remark. The choice of A comes down to choosing

$$\overline{\hat{G}(p)} = \frac{1}{\sqrt{2}}(a(p) - ib(p))$$

as a unit normal to $\pi^{-1}Q^n$ in $S^{2n+3}(1)$ along $\hat{G}.$

KU LEUVEN

Theorem (VdV, Wijffels)

PART II

Conversely, if $f: M^n \to Q^n$ is a Lagrangian immersion, then for every point of M^n there exist an open neighborhood U of that point in M^n and an immersion $a: U \to S^{n+1}(1)$ with Gauss map $f|_U$. This immersion is not unique, nor are its principal curvature functions. However, for any choice of the hypersurface a and of the almost product structure $A \in A$, the principal curvature functions of a are related to the corresponding angle functions of f by

$$\cot(\theta_j - \theta_k) = \pm \frac{\lambda_j \lambda_k + 1}{\lambda_j - \lambda_k}$$

for $j, k = 1, \ldots, n$ in points where $\lambda_j \neq \lambda_k$.

KU LEUVEN

Some classification theorems for minimal Lagrangian immersions into Q^n

Some classification theorems for minimal Lagrangian immersions into Q^n

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a minimal Lagrangian immersion with constant local angle functions. If g is the number of different constant local angle functions modulo π , then $g \in \{1, 2, 3, 4, 6\}$. Moreover,

- if g = 1, then f is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1);$
- if g = 2, then f is the Gauss map of a part of $a_2: S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1);$
- if g = 3, then f is the Gauss map of a part of $a_3 : \mathbb{R}P^2 \times S^1(\varepsilon) \to S^4(1)$ or of tubes around standard embeddings $\mathbb{C}P^2 \to S^7(1)$, $\mathbb{H}P^2 \to S^{13}(1)$ or $\mathbb{O}P^2 \to S^{25}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1)$ or of a part of $a_2: S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1)$.

KULE

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1)$ or of a part of $a_2: S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a minimal Lagrangian immersion, such that M^n has constant sectional curvature c. Then either

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1)$ or of a part of $a_2: S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a minimal Lagrangian immersion, such that M^n has constant sectional curvature c. Then either

•
$$f$$
 is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1);$

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1)$ or of a part of $a_2: S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a minimal Lagrangian immersion, such that M^n has constant sectional curvature c. Then either

•
$$f$$
 is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1);$

•
$$n = 2$$
 and f is the Gauss map of a part of $a_2: S^1(r_1) \times S^1(r_2) \rightarrow S^3(1);$

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1)$ or of a part of $a_2: S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a minimal Lagrangian immersion, such that M^n has constant sectional curvature c. Then either

•
$$f$$
 is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1);$

•
$$n = 2$$
 and f is the Gauss map of a part of $a_2: S^1(r_1) \times S^1(r_2) \rightarrow S^3(1);$

• n = 3 and f is the Gauss map of a part of $a_3 : \mathbb{R}P^2 \times S^1(\varepsilon) \to S^4(1).$

KU LEUVEN

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a totally geodesic Lagrangian immersion. Then f is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1)$ or of a part of $a_2: S^k(r_1) \times S^{n-k}(r_2) \to S^{n+1}(1)$.

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let $f: M^n \to Q^n$, $n \ge 2$, be a minimal Lagrangian immersion, such that M^n has constant sectional curvature c. Then either

•
$$f$$
 is the Gauss map of a part of
 $a_1: S^n(r) \to S^{n+1}(1);$ $c = 2$

•
$$n = 2$$
 and f is the Gauss map of a part of
 $a_2: S^1(r_1) \times S^1(r_2) \rightarrow S^3(1);$ $c = 0$

• n = 3 and f is the Gauss map of a part of $a_3 : \mathbb{R}P^2 \times S^1(\varepsilon) \to S^4(1).$ $c = \frac{1}{8}$

KU LEUVEN

Some steps in the proof of the last theorem

Some steps in the proof of the last theorem

Lemma

Let $f: M^n \to Q^n$, $n \ge 2$, be a Lagrangian immersion, such that M^n has constant sectional curvature c. Then $\sin(\theta_i - \theta_i)\sin(\theta_i + \theta_i - 2\theta_k)(\delta_{k\ell}h(e_i, e_i) + h_{ij}^{\ell}Je_k)$ $+\sin(\theta_i - \theta_k)\sin(\theta_i + \theta_k - 2\theta_i)(\delta_{i\ell}h(e_i, e_k) + h_{ik}^{\ell}Je_i)$ $+\sin(\theta_k - \theta_i)\sin(\theta_k + \theta_i - 2\theta_i)(\delta_{i\ell}h(e_i, e_k) + h_{ik}^{\ell}Je_i) = 0$ for all i, j, k, ℓ . In particular, if i, j, k are mutually different, then $h_{ii}^k \sin(\theta_i - \theta_k) \sin(\theta_i + \theta_k - 2\theta_i) = h_{ii}^k \sin(\theta_i - \theta_k) \sin(\theta_i + \theta_k - 2\theta_i),$ $h_{ij}^k \sin(\theta_i - \theta_j) \sin(\theta_i + \theta_j - 2\theta_k) = 0$ and if i, j, k, ℓ are mutually different, then $h_{ii}^k \sin(\theta_i - \theta_i) \sin(\theta_i + \theta_i - 2\theta_\ell) = 0.$ KUI

Proposition

Let $f: M^n \to Q^n$, $n \ge 2$, be a minimal Lagrangian immersion such that M^n has constant sectional curvature and choose $A \in \mathcal{A}$ such that $\theta_1 + \ldots + \theta_n = 0 \mod \pi$. Then either

• all local angle functions are the same modulo π , or

• all local angle functions are mutually different modulo π . In the former case, the immersion is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1)$.

Proposition

Let $f: M^n \to Q^n$, $n \ge 2$, be a minimal Lagrangian immersion such that M^n has constant sectional curvature and choose $A \in \mathcal{A}$ such that $\theta_1 + \ldots + \theta_n = 0 \mod \pi$. Then either

• all local angle functions are the same modulo π , or

• all local angle functions are mutually different modulo π . In the former case, the immersion is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1)$.

The conclusion follows by algebraic computations using all the obtained relations and the equations of Gauss and Codazzi.

KUI

Proposition

Let $f: M^n \to Q^n$, $n \ge 2$, be a minimal Lagrangian immersion such that M^n has constant sectional curvature and choose $A \in \mathcal{A}$ such that $\theta_1 + \ldots + \theta_n = 0 \mod \pi$. Then either

• all local angle functions are the same modulo π , or

• all local angle functions are mutually different modulo π . In the former case, the immersion is the Gauss map of a part of $a_1: S^n(r) \to S^{n+1}(1)$.

The conclusion follows by algebraic computations using all the obtained relations and the equations of Gauss and Codazzi.

Remark. For $M^2 \to Q^2 \cong S^2(\frac{1}{2}) \times S^2(\frac{1}{2})$, the classification was already obtained by Castro and Urbano.

KU LEUVEN

5 - Outline

- old 1 How we started research on Q^n
- (2) The complex quadric Q^n
- The Gauss map of a hypersurface of a sphere
- (4) Study of Lagrangian submanifolds of Q^n

5 – Question

Question:

Are there other Riemannian manifolds (M,g) with anti-commuting almost complex structure J and almost product structure P such that

$$\begin{split} R(X,Y)Z &= a\left(g(Y,Z)X - g(X,Z)Y\right) \\ &+ b\left(g(X,JZ)JY - g(Y,JZ)JX + 2g(X,JY)JZ\right) \\ &+ c\left(g(PY,Z)PX - g(PX,Z)PY + g(JPY,Z)JPX - g(JPX,Z)JPY\right)? \end{split}$$

5 – Question

Question:

Are there other Riemannian manifolds (M,g) with anti-commuting almost complex structure J and almost product structure P such that

$$\begin{split} R(X,Y)Z &= a\left(g(Y,Z)X - g(X,Z)Y\right) \\ &+ b\left(g(X,JZ)JY - g(Y,JZ)JX + 2g(X,JY)JZ\right) \\ &+ c\left(g(PY,Z)PX - g(PX,Z)PY + g(JPY,Z)JPX - g(JPX,Z)JPY\right)? \end{split}$$

Only examples that I know of so far:

- real space forms (no J, no P), complex space forms (no P)
- \bullet the homogeneous nearly Kähler $S^3 \times S^3$
- the complex quadric, the hyperbolic complex quadric

Remark. All such manifolds will be Einstein.

5 – References

- J. Van der Veken and A. Wijffels, Contemporary Mathematics, AMS, to appear.
- H. Li, H. Ma, J. Van der Veken, L. Vrancken and X. Wang, Science China Mathematics, to appear.
- I. Castro and F. Urbano, Comm. Anal. Geom. 15 (2007), 217–248.
- G. R. Jensen,
 - J. Differential Geometry 3 (1969), 309-349.
- H. F. Münzner, Math. Ann. 251/256 (1980)/(1981), 57-71/215-232.
- B. Palmer, Differ. Geom. Appl. **7** (1997), 51–58.

Thank you for your attention!

