Invariant Ricci-flat Kähler metrics on tangent bundles of compact symmetric spaces

José Carmelo González Dávila

Departamento de Matemáticas, Estadística e Investigación Operativa
University of La Laguna (Spain)

Symmetry and shape - Celebrating the 60th birthday of Prof. J. Berndt

28 - 31 October 2019, Santiago de Compostela, Spain

Our goal

We give a new technique to determine explicitly all invariant Ricci-flat Kähler structures on the tangent bundle of compact symmetric spaces of any rank, not only for rank one. For rank one, we find new examples of Ricci-flat Kahler metrics.

Our goal

We give a new technique to determine explicitly all invariant Ricci-flat Kähler structures on the tangent bundle of compact symmetric spaces of any rank, not only for rank one. For rank one, we find new examples of Ricci-flat Kahler metrics.

Our goal

We give a new technique to determine explicitly all invariant Ricci-flat Kähler structures on the tangent bundle of compact symmetric spaces of any rank, not only for rank one. For rank one, we find new examples of Ricci-flat Kahler metrics.
Polarizations and Kähler structures

Let J be an almost complex structure on a $2n$-dimensional manifold M ($J^2 = -Id$). The complex $\pm i$-eigenspaces of J on T^CM can be expressed as

\[T^{(1,0)}M = \{z = u - iJu \mid u \in TM\}, \quad T^{(0,1)}M = \{z = u + iJu \mid u \in TM\}. \]

- J defines a complex subbundle
 \[F(J) = T^{(1,0)}M = \{z = u - iJu \mid u \in TM\} \subset T^CM \text{ s. t.} \]
 \[T^CM = F(J) \oplus F(J). \]

The converse holds.

Existence of almost complex structures

Let F be a complex subbundle of T^CM such that $T^CM = F \oplus \overline{F}$. Then there exists a unique almost complex structure J on M s. t.

\[F = F(J) = \{z = u - iJu \mid u \in TM\}. \]

Moreover, F is involutive ($[F, F] \subset F$) if and only if J is integrable.
Let J be an almost complex structure on a $2n$-dimensional manifold M ($J^2 = -\text{Id}$). The complex $\pm i$-eigenspaces of J on $T^C M$ can be expressed as

$$T^{(1,0)} M = \{ z = u - iJu \mid u \in TM \}, \quad T^{(0,1)} M = \{ z = u + iJu \mid u \in TM \}.\$$

- J defines a complex subbundle

 $F(J) = T^{(1,0)} M = \{ z = u - iJu \mid u \in TM \} \subset T^C M$ s. t. $T^C M = F(J) \oplus \overline{F(J)}$.

The converse holds.

Existence of almost complex structures

Let F be a complex subbundle of $T^C M$ such that $T^C M = F \oplus \overline{F}$. Then there exists a unique almost complex structure J on M s. t.

$$F = F(J) = \{ z = u - iJu \mid u \in TM \}.$$

Moreover, F is involutive ($[F, F] \subset F$) if and only if J is integrable.
Polarizations and Kähler structures

Let J be an almost complex structure on a $2n$-dimensional manifold M ($J^2 = -Id$). The complex $\pm i$-eigenspaces of J on $T^\mathbb{C}M$ can be expressed as

$$T^{(1,0)}M = \{ z = u - iJu \mid u \in TM \}, \quad T^{(0,1)}M = \{ z = u + iJu \mid u \in TM \}.$$

- J defines a complex subbundle

$$F(J) = T^{(1,0)}M = \{ z = u - iJu \mid u \in TM \} \subset T^\mathbb{C}M \text{ s. t.}$$

$$T^\mathbb{C}M = F(J) \oplus \overline{F(J)}.$$

The converse holds.

Existence of almost complex structures

Let F be a complex subbundle of $T^\mathbb{C}M$ such that $T^\mathbb{C}M = F \oplus \overline{F}$. Then there exists a unique almost complex structure J on M s. t.

$$F = F(J) = \{ z = u - iJu \mid u \in TM \}.$$

Moreover, F is involutive ($[F, F] \subset F$) if and only if J is integrable.
Let J be an almost complex structure on a $2n$-dimensional manifold M ($J^2 = -\text{Id}$). The complex $\pm i$-eigenspaces of J on $T^\mathbb{C} M$ can be expressed as

$$T^{(1,0)} M = \{ z = u - iJu \mid u \in TM \}, \quad T^{(0,1)} M = \{ z = u + iJu \mid u \in TM \}. $$

- J defines a complex subbundle
 $$F(J) = T^{(1,0)} M = \{ z = u - iJu \mid u \in TM \} \subset T^\mathbb{C} M \text{ s. t.}$$
 $$T^\mathbb{C} M = F(J) \oplus \overline{F(J)}.$$

The converse holds.

Existence of almost complex structures

Let F be a complex subbundle of $T^\mathbb{C} M$ such that $T^\mathbb{C} M = F \oplus \overline{F}$. Then there exists a unique almost complex structure J on M s. t.

$$F = F(J) = \{ z = u - iJu \mid u \in TM \}. $$

Moreover, F is involutive ($[F, F] \subset F$) if and only if J is integrable.
On an almost Hermitian manifold \((M, J, g) \) \((g(JX, JY) = g(X, Y))\), the fundamental 2-form \(\omega \) is given by

\[
\omega(X, Y) = -g(JX, Y), \quad X, Y \in \mathfrak{X}(M).
\]

Then, \(g(X, Y) = \omega(JX, Y) \).

- If \(d\omega = 0 \), \((M, J, g)\) is called almost Kähler.
- If, moreover \(J \) is integrable, it is called Kähler.

- \(F \subset T^\mathbb{C}M \) is said to be integrable if \(F \cap \overline{F} \) has constant rank and the subbundles \(F \) and \(F + \overline{F} \) are involutive. \((F(J) \) is integrable if and only if it is involutive).
On an almost Hermitian manifold \((M, J, g)\)
\((g(JX, JY) = g(X, Y))\), the \textit{fundamental} 2-form \(\omega\) is given by

\[
\omega(X, Y) = -g(JX, Y), \quad X, Y \in \mathfrak{X}(M).
\]

Then, \(g(X, Y) = \omega(JX, Y)\).

- If \(d\omega = 0\), \((M, J, g)\) is called \textit{almost Kähler}.
- If, moreover \(J\) is integrable, it is called \textit{Kähler}.

- \(F \subset T^\mathbb{C}M\) is said to be \textit{integrable} if \(F \cap \overline{F}\) has constant rank
 and the subbundles \(F\) and \(F + \overline{F}\) are involutive. \((F(J)\) is
 integrable if and only if it is involutive).
On an almost Hermitian manifold \((M, J, g)\)
\((g(JX, JY) = g(X, Y))\), the fundamental 2-form \(\omega\) is given by
\[
\omega(X, Y) = -g(JX, Y), \quad X, Y \in \mathfrak{X}(M).
\]
Then, \(g(X, Y) = \omega(JX, Y)\).

- If \(d\omega = 0\), \((M, J, g)\) is called \emph{almost Kähler}.
- If, moreover \(J\) is integrable, it is called \emph{Kähler}.

- \(F \subset T^CM\) is said to be \emph{integrable} if \(F \cap \overline{F}\) has constant rank and the subbundles \(F\) and \(F + \overline{F}\) are involutive. (\(F(J)\) is integrable if and only if it is involutive).
On an almost Hermitian manifold \((M, J, g)\)
\((g(JX, JY) = g(X, Y))\), the \textit{fundamental} 2-form \(\omega\) is given by

\[
\omega(X, Y) = -g(JX, Y), \quad X, Y \in \mathfrak{X}(M).
\]

Then, \(g(X, Y) = \omega(JX, Y)\).

- If \(d\omega = 0\), \((M, J, g)\) is called \textit{almost Kähler}.
- If, moreover \(J\) is integrable, it is called \textit{Kähler}.
- \(F \subset T^\mathbb{C}M\) is said to be \textit{integrable} if \(F \cap \overline{F}\) has constant rank and the subbundles \(F\) and \(F + \overline{F}\) are involutive. (\(F(J)\) is integrable if and only if it is involutive).
Polarizations and Kähler structures

Fix a non-degenerate 2-form ω on a $2n$-dimensional manifold M:

- $F \subset T^\mathbb{C}M$ is said to be *Lagrangian* if $\omega(F, F) = 0$ and $\dim_{\mathbb{C}} F = n$.
- A *polarization* of M is an integrable complex subbundle F which is Lagrangian.
- A polarization F is said to be *positive-definite* if the Hermitian form

 \[h(u, v) = i\omega(u, \overline{v}), \quad u, v \in T^\mathbb{C}M, \]

 is positive-definite on F.

Equivalent Kähler condition

Let (M, ω) be a symplectic manifold and let J be an almost complex structure on M. The pair $(J, g = \omega(J\cdot, \cdot))$ is a Kähler structure on M if and only if the subbundle $F(J)$ is a positive-definite polarization.

Invariant Ricci-flat Kähler metrics
Polarizations and Kähler structures

Fix a non-degenerate 2-form \(\omega \) on a \(2n \)-dimensional manifold \(M \):

- \(F \subset T^C M \) is said to be \textit{Lagrangian} if \(\omega(F, F) = 0 \) and \(\dim_C F = n \).
- A \textit{polarization} of \(M \) is an integrable complex subbundle \(F \) which is Lagrangian.
- A polarization \(F \) is said to be \textit{positive-definite} if the Hermitian form

 \[h(u, v) = i \omega(u, \overline{v}), \quad u, v \in T^C M, \]

 is positive-definite on \(F \).

Equivalent Kähler condition

Let \((M, \omega)\) be a symplectic manifold and let \(J \) be an almost complex structure on \(M \). The pair \((J, g = \omega(J \cdot, \cdot))\) is a Kähler structure on \(M \) if and only if the subbundle \(F(J) \) is a positive-definite polarization.

Invariant Ricci-flat Kähler metrics
Fix a non-degenerate 2-form ω on a $2n$-dimensional manifold M:

- $F \subset T^C M$ is said to be *Lagrangian* if $\omega(F, F) = 0$ and $\dim_C F = n$.
- A *polarization* of M is an integrable complex subbundle F which is Lagrangian.
- A polarization F is said to be *positive-definite* if the Hermitian form
 \[h(u, v) = i\omega(u, \overline{v}), \quad u, v \in T^C M, \]
 is positive-definite on F.

Equivalent Kähler condition

Let (M, ω) be a symplectic manifold and let J be an almost complex structure on M. The pair $(J, g = \omega(J\cdot, \cdot))$ is a Kähler structure on M if and only if the subbundle $F(J)$ is a positive-definite polarization.
Polarizations and Kähler structures

Fix a non-degenerate 2-form ω on a $2n$-dimensional manifold M:

- $F \subset T^\mathbb{C}M$ is said to be *Lagrangian* if $\omega(F, F) = 0$ and $\dim_{\mathbb{C}} F = n$.
- A *polarization* of M is an integrable complex subbundle F which is Lagrangian.
- A polarization F is said to be *positive-definite* if the Hermitian form
 \[h(u, v) = i\omega(u, \overline{v}), \quad u, v \in T^\mathbb{C}M, \]
 is positive-definite on F.

Equivalent Kähler condition

Let (M, ω) be a symplectic manifold and let J be an almost complex structure on M. The pair $(J, g = \omega(J\cdot, \cdot))$ is a Kähler structure on M if and only if the subbundle $F(J)$ is a positive-definite polarization.
The canonical complex structure on $T(G/K)$

The tangent bundle $T(G/K)$

Let $M = G/K$ where G is a compact, connected Lie group and K is closed subgroup of G. Then there exists a positive-definite $\text{Ad}(G)$-invariant form $\langle \cdot, \cdot \rangle$ on \mathfrak{g}.

- **Reductive decomposition**: $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}$ ($\text{Ad}(K)\mathfrak{m} \subset \mathfrak{m}$).
- $(M = G/K, g)$ is a Riemannian homogeneous manifold determined by $\langle \cdot, \cdot \rangle_m$.

Consider $G \times \mathfrak{m}$ with two actions:

$$l_a: (g, w) \mapsto (ag, w), \quad r_k: (g, w) \mapsto (gk, \text{Ad}(k^{-1})(w)),$$

where $a, g \in G$ and $k \in K$.

- The projection $\pi: G \times \mathfrak{m} \to G \times_K \mathfrak{m}, (g, w) \mapsto [(g, w)]$, is G-equivariant.
- The mapping $\phi: G \times_K \mathfrak{m} \to T(G/K), [(g, w)] \mapsto (\tau_g)_* w$, is a G-equivariant diffeomorphism.

Invariant Ricci-flat Kähler metrics
The tangent bundle $T(G/K)$

Let $M = G/K$ where G is a compact, connected Lie group and K is closed subgroup of G. Then there exists a positive-definite $\text{Ad}(G)$-invariant form $\langle \cdot, \cdot \rangle$ on g.

- **Reductive decomposition**: $g = m \oplus \mathfrak{k}$ ($\text{Ad}(K)m \subset m$).
- $(M = G/K, g)$ is a Riemannian homogeneous manifold determined by $\langle \cdot, \cdot \rangle_m$.

Consider $G \times m$ with two actions:

$$l_a : (g, w) \mapsto (ag, w), \quad r_k : (g, w) \mapsto (gk, \text{Ad}(k^{-1})(w)),$$

where $a, g \in G$ and $k \in K$.

- The projection $\pi : G \times m \to G \times_K m$, $(g, w) \mapsto [(g, w)]$, is G-equivariant.
- The mapping $\phi : G \times_K m \to T(G/K)$, $[(g, w)] \mapsto (\tau_g)_* \omega w$, is a G-equivariant diffeomorphism.

Invariant Ricci-flat Kähler metrics
The canonical complex structure on $T(G/K)$

The tangent bundle $T(G/K)$

Let $M = G/K$ where G is a compact, connected Lie group and K is closed subgroup of G. Then there exists a positive-definite $\text{Ad}(G)$-invariant form $\langle \cdot, \cdot \rangle$ on g.

- **Reductive decomposition:** $g = m \oplus k$ $(\text{Ad}(K)m \subset m)$.
- $(M = G/K, g)$ is a Riemannian homogeneous manifold determined by $\langle \cdot, \cdot \rangle_m$.

Consider $G \times m$ with two actions:

$$l_a : (g, w) \mapsto (ag, w), \quad r_k : (g, w) \mapsto (gk, \text{Ad}(k^{-1})(w)),$$

where $a, g \in G$ and $k \in K$.

- The projection $\pi : G \times m \to G \times_K m$, $(g, w) \mapsto [(g, w)]$, is G-equivariant.
- The mapping $\phi : G \times_K m \to T(G/K)$, $[(g, w)] \mapsto (\tau_g)_* o w$, is a G-equivariant diffeomorphism.

Invariant Ricci-flat Kähler metrics
The canonical complex structure on $T(G/K)$

The tangent bundle $T(G/K)$

Let $M = G/K$ where G is a compact, connected Lie group and K is closed subgroup of G. Then there exists a positive-definite $\text{Ad}(G)$-invariant form $\langle \cdot, \cdot \rangle$ on \mathfrak{g}.

- **Reductive decomposition**: $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}$ ($\text{Ad}(K)\mathfrak{m} \subset \mathfrak{m}$).
- $(M = G/K, \mathfrak{g})$ is a Riemannian homogeneous manifold determined by $\langle \cdot, \cdot \rangle_\mathfrak{m}$.

Consider $G \times \mathfrak{m}$ with two actions:

$$l_a : (g, w) \mapsto (ag, w), \quad r_k : (g, w) \mapsto (gk, \text{Ad}(k^{-1})(w)),$$

where $a, g \in G$ and $k \in K$.

- The projection $\pi : G \times \mathfrak{m} \to G \times_K \mathfrak{m}$, $(g, w) \mapsto [(g, w)]$, is G-equivariant.
- The mapping $\phi : G \times_K \mathfrak{m} \to T(G/K)$, $[(g, w)] \mapsto (\tau_g)_* o w$, is a G-equivariant diffeomorphism.
The canonical complex structure on $T(G/K)$

The tangent bundle $T(G/K)$

Let $M = G/K$ where G is a compact, connected Lie group and K is closed subgroup of G. Then there exists a positive-definite $\text{Ad}(G)$-invariant form $\langle \cdot, \cdot \rangle$ on \mathfrak{g}.

- **Reductive decomposition:** $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}$ ($\text{Ad}(K)\mathfrak{m} \subset \mathfrak{m}$).
- $(M = G/K, g)$ is a Riemannian homogeneous manifold determined by $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$.

Consider $G \times \mathfrak{m}$ with two actions:

$$
l_a : (g, w) \mapsto (ag, w), \quad r_k : (g, w) \mapsto (gk, \text{Ad}(k^{-1})(w)),
$$

where $a, g \in G$ and $k \in K$.

- The projection $\pi : G \times \mathfrak{m} \to G \times_K \mathfrak{m}$, $(g, w) \mapsto [(g, w)]$, is G-equivariant.
- The mapping $\phi : G \times_K \mathfrak{m} \to T(G/K)$, $[(g, w)] \mapsto (\tau_g)_{*\circ}w$, is a G-equivariant diffeomorphism.
The canonical complex structure on $T(G/K)$

The tangent bundle $T(G/K)$

Let $M = G/K$ where G is a compact, connected Lie group and K is closed subgroup of G. Then there exists a positive-definite $\text{Ad}(G)$-invariant form $\langle \cdot, \cdot \rangle$ on \mathfrak{g}.

- **Reductive decomposition**: $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}$ ($\text{Ad}(K) \mathfrak{m} \subset \mathfrak{m}$).
- $(M = G/K, g)$ is a Riemannian homogeneous manifold determined by $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$.

Consider $G \times \mathfrak{m}$ with two actions:

$$l_a : (g, w) \mapsto (ag, w), \quad r_k : (g, w) \mapsto (gk, \text{Ad}(k^{-1})(w)),$$

where $a, g \in G$ and $k \in K$.

- The projection $\pi : G \times \mathfrak{m} \to G \times_K \mathfrak{m}$, $(g, w) \mapsto [(g, w)]$, is G-equivariant.
- The mapping $\phi : G \times_K \mathfrak{m} \to T(G/K)$, $[(g, w)] \mapsto (\tau_g)_* o w$, is a G-equivariant diffeomorphism.
The canonical complex structure on $T(G/K)$

Complexifications of Lie groups

Any compact Lie group G admits, up to isomorphisms, a unique complexification $G^\mathbb{C}$ which is given by $G^\mathbb{C} = G \exp(i\mathfrak{g})$.

- $G^\mathbb{C}/K^\mathbb{C}$ is a complex homogeneous manifold and $p_h : G^\mathbb{C} \to G^\mathbb{C}/K^\mathbb{C}$ is a holomorphic mapping. Moreover, $G^\mathbb{C} = G \exp(i\mathfrak{m}) \exp(i\mathfrak{k})$.
- The complex vector fields $\xi^x_h = \xi^x - i(l\xi)^x$, $\xi \in \mathfrak{g}$, $l\xi = i\xi$, determine a complex involutive subbundle of $T^\mathbb{C}G^\mathbb{C}$.
- The $G^\mathbb{C}$-invariant canonical complex structure J^K_c:
 $$(p_h)_*(\xi^x_h) = (p_h)_*(\xi^x) - i(p_h)_*(l\xi)^x$$
- A relevant fact: The mapping $f_K : G^\mathbb{C}/K^\mathbb{C} \to G \times_K m$, $g \exp(iw) \exp(i\zeta)K^\mathbb{C} \mapsto [(g, w)]$, $(g, w, \zeta) \in G \times m \times \mathfrak{k}$, is a G-equivariant diffeomorphism. Then it determines a G-invariant complex structure J^K_c on $T(G/K)$.

Invariant Ricci-flat Kähler metrics
The canonical complex structure on $T(G/K)$

Complexifications of Lie groups

Any compact Lie group G admits, up to isomorphisms, a unique complexification $G^\mathbb{C}$ which is given by $G^\mathbb{C} = G \exp(ig)$.

- $G^\mathbb{C}/K^\mathbb{C}$ is a complex homogeneous manifold and $p_h : G^\mathbb{C} \to G^\mathbb{C}/K^\mathbb{C}$ is a holomorphic mapping. Moreover, $G^\mathbb{C} = G \exp(i\mathfrak{m}) \exp(i\mathfrak{t})$.

- The complex vector fields $\xi^r_h = \xi^r - i(I\xi)^r$, $\xi \in \mathfrak{g}$, $I\xi = i\xi$, determine a complex involutive subbundle of $T^\mathbb{C}G^\mathbb{C}$.

- The $G^\mathbb{C}$-invariant canonical complex structure J^K_c:
 $$(p_h)_*(\xi^r_h) = (p_h)_*(\xi^r) - i(p_h)_*(I\xi)^r$$

- A relevant fact: The mapping
 $$f_K : G^\mathbb{C}/K^\mathbb{C} \to G \times_K \mathfrak{m}, \quad g \exp(iw) \exp(i\zeta)K^\mathbb{C} \mapsto [(g, w)],$$
 $$(g, w, \zeta) \in G \times \mathfrak{m} \times \mathfrak{t},$$
 is a G-equivariant diffeomorphism. Then it determines a G-invariant complex structure J^K_c on $T(G/K)$.

Invariant Ricci-flat Kähler metrics
Any compact Lie group G admits, up to isomorphisms, a unique complexification $G^\mathbb{C}$ which is given by $G^\mathbb{C} = G \exp(i\mathfrak{g})$.

- $G^\mathbb{C}/K^\mathbb{C}$ is a complex homogeneous manifold and $p_h : G^\mathbb{C} \to G^\mathbb{C}/K^\mathbb{C}$ is a holomorphic mapping. Moreover, $G^\mathbb{C} = G \exp(i\mathfrak{m}) \exp(i\mathfrak{k})$.

- The complex vector fields $\xi^r_h = \xi^r - i(l\xi)^r$, $\xi \in \mathfrak{g}$, $l\xi = i\xi$, determine a complex involutive subbundle of $T^\mathbb{C}G^\mathbb{C}$.

- The $G^\mathbb{C}$-invariant canonical complex structure J^K_c: $(p_h)_*(\xi^r_h) = (p_h)_*(\xi^r) - i(p_h)_*(l\xi)^r$

- A relevant fact: The mapping $f_K : G^\mathbb{C}/K^\mathbb{C} \to G \times_K \mathfrak{m}$, $g \exp(iw) \exp(i\zeta)K^\mathbb{C} \mapsto [(g, w)]$, $(g, w, \zeta) \in G \times \mathfrak{m} \times \mathfrak{k}$, is a G-equivariant diffeomorphism. Then it determines a G-invariant complex structure J^K_c on $T(G/K)$.
The canonical complex structure on $T(G/K)$

Complexifications of Lie groups

Any compact Lie group G admits, up to isomorphisms, a unique complexification $G^\mathbb{C}$ which is given by $G^\mathbb{C} = G \exp(i\mathfrak{g})$.

- $G^\mathbb{C}/K^\mathbb{C}$ is a complex homogeneous manifold and $p_h : G^\mathbb{C} \to G^\mathbb{C}/K^\mathbb{C}$ is a holomorphic mapping. Moreover, $G^\mathbb{C} = G \exp(i\mathfrak{m}) \exp(i\mathfrak{k})$.

- The complex vector fields $\xi^r_h = \xi^r - i(I\xi)^r$, $\xi \in \mathfrak{g}$, $I\xi = i\xi$, determine a complex involutive subbundle of $T^\mathbb{C}G^\mathbb{C}$.

- The $G^\mathbb{C}$-invariant canonical complex structure $J^K_C : (p_h)_*(\xi^r_h) = (p_h)_*(\xi^r) - i(p_h)_*(I\xi)^r$

- A relevant fact: The mapping $f_K : G^\mathbb{C}/K^\mathbb{C} \to G \times_K \mathfrak{m}$, $g \exp(iw) \exp(i\zeta)K^\mathbb{C} \mapsto [(g, w)]$, $(g, w, \zeta) \in G \times \mathfrak{m} \times \mathfrak{k}$, is a G-equivariant diffeomorphism. Then it determines a G-invariant complex structure J^K_C on $T(G/K)$.
The canonical complex structure on $T(G/K)$

Complexifications of Lie groups

Any compact Lie group G admits, up to isomorphisms, a unique complexification $G^\mathbb{C}$ which is given by $G^\mathbb{C} = G \exp(i\mathfrak{g})$.

- $G^\mathbb{C}/K^\mathbb{C}$ is a complex homogeneous manifold and $\rho_h : G^\mathbb{C} \to G^\mathbb{C}/K^\mathbb{C}$ is a holomorphic mapping. Moreover, $G^\mathbb{C} = G \exp(i\mathfrak{m}) \exp(i\mathfrak{t})$.

- The complex vector fields $\xi_h^r = \xi^r - i(I\xi)^r$, $\xi \in \mathfrak{g}$, $I\xi = i\xi$, determine a complex involutive subbundle of $T^\mathbb{C}G^\mathbb{C}$.

- The $G^\mathbb{C}$-invariant canonical complex structure J^K_c: $(\rho_h)_*(\xi_h^r) = (\rho_h)_*(\xi^r) - i(\rho_h)_*(I\xi)^r$

- A relevant fact: The mapping $f_K : G^\mathbb{C}/K^\mathbb{C} \to G \times_K \mathfrak{m}$, $g \exp(i\mathfrak{w}) \exp(i\zeta)K^\mathbb{C} \mapsto [(g, \mathfrak{w})]$, $(g, \mathfrak{w}, \zeta) \in G \times \mathfrak{m} \times \mathfrak{k}$, is a G-equivariant diffeomorphism. Then it determines a G-invariant complex structure J^K_c on $T(G/K)$.
The canonical complex structure on $T(G/K)$

Complexifications of Lie groups

Any compact Lie group G admits, up to isomorphisms, a unique complexification $G^\mathbb{C}$ which is given by $G^\mathbb{C} = G \exp(i\mathfrak{g})$.

- $G^\mathbb{C}/K^\mathbb{C}$ is a complex homogeneous manifold and $p_h : G^\mathbb{C} \to G^\mathbb{C}/K^\mathbb{C}$ is a holomorphic mapping. Moreover, $G^\mathbb{C} = G \exp(i\mathfrak{m}) \exp(i\mathfrak{k})$.

- The complex vector fields $\xi^r_h = \xi^r - i(I\xi)^r$, $\xi \in \mathfrak{g}$, $I\xi = i\xi$, determine a complex involutive subbundle of $T^\mathbb{C}G^\mathbb{C}$.

- **The $G^\mathbb{C}$-invariant canonical complex structure J^K_C**: $(p_h)_*(\xi^r_h) = (p_h)_*(\xi^r) - i(p_h)_*(I\xi)^r$

- **A relevant fact**: The mapping $f_K : G^\mathbb{C}/K^\mathbb{C} \to G \times_K \mathfrak{m}$, $g \exp(iw) \exp(i\zeta) K^\mathbb{C} \mapsto [(g, w)]$, $(g, w, \zeta) \in G \times \mathfrak{m} \times \mathfrak{k}$, is a G-equivariant diffeomorphism. Then it determines a G-invariant complex structure J^K_C on $T(G/K)$.

Invariant Ricci-flat Kähler metrics
Let G/K be a rank-r symmetric space of compact type. Here, there exists an involutive automorphism $\sigma : g \to g$ and $\mathfrak{k} = \{\xi \in g : \sigma(\xi) = \xi\}$ and $\mathfrak{m} = \{\xi \in g : \sigma(\xi) = -\xi\}$.

Let $\mathfrak{a} \subset \mathfrak{m}$ be some Cartan subspace of \mathfrak{m}. Then $\dim \mathfrak{a} = r$ and there exists a Cartan subalgebra $\mathfrak{t} \sigma$-invariante de g such that $\mathfrak{a} \subset \mathfrak{t}$.

- \mathfrak{t}^C is a Cartan subalgebra of g^C.
- Root space decomposition

$$g^C = \mathfrak{t}^C \oplus \sum_{\alpha \in \Delta} g_\alpha, \quad g_\alpha = \{\xi \in g^C : [t, \xi] = \alpha(t)\xi, \ t \in \mathfrak{t}^C\}.$$

- Restricted roots of $(g, \mathfrak{k}, \mathfrak{a})$

$$\Sigma = \{\lambda \in (\mathfrak{a}^C)^* : \lambda = \alpha|_{\mathfrak{a}^C}, \ \alpha \in \Delta \setminus \Delta_0\}.$$
Let G/K be a rank-r symmetric space of compact type. Here, there exists an involutive automorphism $\sigma : g \to g$ and $\mathfrak{k} = \{\xi \in g : \sigma(\xi) = \xi\}$ and $\mathfrak{m} = \{\xi \in g : \sigma(\xi) = -\xi\}$. Let $\mathfrak{a} \subset \mathfrak{m}$ be some Cartan subspace of \mathfrak{m}. Then $\dim \mathfrak{a} = r$ and there exists a Cartan subalgebra \mathfrak{t} σ-invariant de g such that $\mathfrak{a} \subset \mathfrak{t}$.

- \mathfrak{t}^C is a Cartan subalgebra of g^C.
- Root space decomposition

$$g^C = \mathfrak{t}^C \oplus \sum_{\alpha \in \Delta} g_{\alpha}, \quad g_{\alpha} = \{\xi \in g^C : [t, \xi] = \alpha(t)\xi, \ t \in \mathfrak{t}^C\}.$$

- Restricted roots of $(g, \mathfrak{k}, \mathfrak{a})$

$$\Sigma = \{\lambda \in (\mathfrak{a}^C)^* : \lambda = \alpha|_{\mathfrak{a}^C}, \ \alpha \in \Delta \setminus \Delta_0\}$$
Let G/K be a rank-r symmetric space of compact type. Here, there exists an involutive automorphism $\sigma : g \to g$ and $\mathfrak{k} = \{\xi \in g : \sigma(\xi) = \xi\}$ and $\mathfrak{m} = \{\xi \in g : \sigma(\xi) = -\xi\}$. Let $\mathfrak{a} \subset \mathfrak{m}$ be some Cartan subspace of \mathfrak{m}. Then $\dim \mathfrak{a} = r$ and there exists a Cartan subalgebra \mathfrak{t} σ-invariant of g such that $\mathfrak{a} \subset \mathfrak{t}$.

- \mathfrak{t}^C is a Cartan subalgebra of g^C.
- Root space decomposition

$$g^C = \mathfrak{t}^C \oplus \sum_{\alpha \in \Delta} g_\alpha, \quad g_\alpha = \{\xi \in g^C : [t, \xi] = \alpha(t)\xi, \ t \in \mathfrak{t}^C\}.$$

- Restricted roots of $(g, \mathfrak{k}, \mathfrak{a})$

$$\Sigma = \{\lambda \in (\mathfrak{a}^C)^* : \lambda = \alpha|_{\mathfrak{a}^C}, \ \alpha \in \Delta \setminus \Delta_0\}.$$
Let G/K be a rank-r symmetric space of compact type. Here, there exists an involutive automorphism $\sigma : g \to g$ and
\[k = \{ \xi \in g : \sigma(\xi) = \xi \} \] and
\[m = \{ \xi \in g : \sigma(\xi) = -\xi \} \].

Let $a \subset m$ be some Cartan subspace of m. Then $\dim a = r$ and there exists a Cartan subalgebra t σ-invariante de g such that $a \subset t$.

- t^C is a Cartan subalgebra of g^C.
- Root space decomposition

\[g^C = t^C \oplus \sum_{\alpha \in \Delta} g_\alpha, \quad g_\alpha = \{ \xi \in g^C : [t, \xi] = \alpha(t)\xi, \ t \in t^C \}. \]

- Restricted roots of (g, k, a)

\[\Sigma = \{ \lambda \in (a^C)^* : \lambda = \alpha|_{a^C}, \ \alpha \in \Delta \setminus \Delta_0 \} \]
Let G/K be a rank-r symmetric space of compact type. Here, there exists an involutive automorphism $\sigma : g \to g$ and $\mathfrak{k} = \{\xi \in g : \sigma(\xi) = \xi\}$ and $\mathfrak{m} = \{\xi \in g : \sigma(\xi) = -\xi\}$. Let $\mathfrak{a} \subset \mathfrak{m}$ be some Cartan subspace of \mathfrak{m}. Then $\dim \mathfrak{a} = r$ and there exists a Cartan subalgebra \mathfrak{t} σ-invariant de g such that $\mathfrak{a} \subset \mathfrak{t}$.

- \mathfrak{t}^C is a Cartan subalgebra of g^C.
- Root space decomposition

$$g^C = \mathfrak{t}^C \oplus \sum_{\alpha \in \Delta} g_\alpha, \quad g_\alpha = \{\xi \in g^C : [t, \xi] = \alpha(t)\xi, \ t \in \mathfrak{t}^C\}.$$

- Restricted roots of $(g, \mathfrak{k}, \mathfrak{a})$

$$\Sigma = \{\lambda \in (\mathfrak{a}^C)^* : \lambda = \alpha|_{\mathfrak{a}^C}, \ \alpha \in \Delta \setminus \Delta_0\}$$
• $\lambda(a) \subset i\mathbb{R}$. Define $\lambda': a \to \mathbb{R}$, $\lambda \in \Sigma^+$, such that $i\lambda' = \lambda$.

• Weyl chamber W^+ in \mathfrak{a}:

$$W^+ = \{ w \in \mathfrak{a} : \lambda'(w) > 0 \text{ for all } \lambda \in \Sigma^+ \}.$$

• Regular points of \mathfrak{m}:

$$\mathfrak{m}^R = \text{Ad}(K)(W^+) \subset \mathfrak{m}.$$
• \(\lambda(a) \subset i\mathbb{R} \). Define \(\lambda' : a \to \mathbb{R} \), \(\lambda \in \Sigma^+ \), such that \(i\lambda' = \lambda \).

• Weyl chamber \(W^+ \) in \(a \):

\[
W^+ = \{ w \in a : \lambda'(w) > 0 \text{ for all } \lambda \in \Sigma^+ \}.
\]

• Regular points of \(m \):

\[
m^R = \text{Ad}(K)(W^+) \subset m.
\]

Fundamental property on our study

\[
T^+(G/K) = \phi(G \times_K m^R) \text{ is an open dense subset of } T(G/K).
\]
• $\lambda(a) \subset i\mathbb{R}$. Define $\lambda': a \to \mathbb{R}$, $\lambda \in \Sigma^+$, such that $i\lambda' = \lambda$.

• **Weyl chamber** W^+ in \mathfrak{a}:

$$W^+ = \{ w \in a : \lambda'(w) > 0 \text{ for all } \lambda \in \Sigma^+ \}.$$

• Regular points of \mathfrak{m}:

$$\mathfrak{m}^R = \text{Ad}(K)(W^+) \subset \mathfrak{m}.$$

Fundamental property on our study

$T^+(G/K) = \phi(G \times_K \mathfrak{m}^R)$ is an open dense subset of $T(G/K)$.
• \(\lambda(a) \subset i\mathbb{R} \). Define \(\lambda': a \to \mathbb{R}, \lambda \in \Sigma^+ \), such that \(i\lambda' = \lambda \).

• **Weyl chamber** \(W^+ \) in \(a \):

\[
W^+ = \{ w \in a : \lambda'(w) > 0 \text{ for all } \lambda \in \Sigma^+ \}.
\]

• **Regular points** of \(m \):

\[
m^R = \text{Ad}(K)(W^+) \subset m.
\]

Fundamental property on our study

\[
T^+(G/K) = \phi(G \times_K m^R) \text{ is an open dense subset of } T(G/K).
\]
• $\lambda(a) \subset i\mathbb{R}$. Define $\lambda' : a \to \mathbb{R}$, $\lambda \in \Sigma^+$, such that $i\lambda' = \lambda$.

• **Weyl chamber** W^+ in a:

$$W^+ = \{ w \in a : \lambda'(w) > 0 \text{ for all } \lambda \in \Sigma^+ \}.$$

• **Regular points** of m:

$$m^R = \text{Ad}(K)(W^+) \subset m.$$
If G/K is a rank-one symmetric space, then $\dim \mathfrak{a} = 1$ ($\mathfrak{a} = \mathbb{R}X$) and

$$\Sigma = \{\pm \varepsilon\} \quad \text{and} \quad \Sigma = \{\pm \varepsilon, \pm \frac{1}{2} \varepsilon\}, \quad \varepsilon \in (\mathfrak{a}^\mathbb{C})^*, \quad \varepsilon(X) = 1,$$

$$W^+ = \{xX : x \in \mathbb{R}^+\} \cong \mathbb{R}^+.$$

- **Property of compact rank-one symmetric spaces:** The linear isotropy group $\text{Ad}(K)$ acts transitively on the unit sphere of \mathfrak{m}.
- $\mathfrak{m}^\mathbb{R} = \text{Ad}(K)W^+ = \mathfrak{m} \setminus \{0\}$.
- $T^+(G/K) = \phi(G \times_K \mathfrak{m}^\mathbb{R}) = T(G/K) \setminus \{\text{zero section}\}$.
- **Conclusion:** $T^+(G/K)$ is a ‘punctured tangent bundle’.
If G/K is a rank-one symmetric space, then $\dim \mathfrak{a} = 1$ ($\mathfrak{a} = \mathbb{R}X$) and

$$\Sigma = \{\pm \varepsilon\} \text{ or } \Sigma = \{\pm \varepsilon, \pm \frac{1}{2} \varepsilon\}, \quad \varepsilon \in (\mathfrak{a}^\mathbb{C})^*, \; \varepsilon(X) = 1,$$

$$W^+ = \{xX : x \in \mathbb{R}^+\} \cong \mathbb{R}^+.$$

- **Property of compact rank-one symmetric spaces:** The linear isotropy group $\text{Ad}(K)$ acts transitively on the unit sphere of \mathfrak{m}.
- $\mathfrak{m}^\mathbb{R} = \text{Ad}(K)W^+ = \mathfrak{m} \setminus \{0\}$.
- $T^+(G/K) = \phi(G \times_K \mathfrak{m}^\mathbb{R}) = T(G/K) \setminus \{\text{zero section}\}$.
- **Conclusion:** $T^+(G/K)$ is a ‘punctured tangent bundle’.
Restricted roots on symmetric spaces of compact type

Compact rank-one symmetric spaces

If G/K is a rank-one symmetric space, then $\dim \mathfrak{a} = 1$ ($\mathfrak{a} = \mathbb{R}X$) and

$$\Sigma = \{\pm \varepsilon\} \quad \text{and} \quad \Sigma = \{\pm \varepsilon, \pm \frac{1}{2} \varepsilon\}, \quad \varepsilon \in (\mathfrak{a}^\mathbb{C})^*, \ \varepsilon(X) = 1,$$

$$W^+ = \{xX : x \in \mathbb{R}^+\} \cong \mathbb{R}^+.$$

- Property of compact rank-one symmetric spaces: The linear isotropy group $\text{Ad}(K)$ acts transitively on the unit sphere of \mathfrak{m}.
- $\mathfrak{m}^R = \text{Ad}(K)W^+ = \mathfrak{m} \setminus \{0\}$.
- $T^+(G/K) = \phi(G \times_K \mathfrak{m}^R) = T(G/K) \setminus \{\text{zero section}\}$.
- Conclusion: $T^+(G/K)$ is a ‘punctured tangent bundle’.

Invariant Ricci-flat Kähler metrics
If G/K is a rank-one symmetric space, then $\dim \mathfrak{a} = 1$ ($\mathfrak{a} = \mathbb{R}X$) and

$$\Sigma = \{\pm \varepsilon\} \cup \Sigma = \{\pm \varepsilon, \pm \frac{1}{2} \varepsilon\}, \quad \varepsilon \in (\mathfrak{a}^\mathbb{C})^*, \quad \varepsilon(X) = 1,$$

$$W^+ = \{xX : x \in \mathbb{R}^+\} \cong \mathbb{R}^+.$$

- **Property of compact rank-one symmetric spaces**: The linear isotropy group $\text{Ad}(K)$ acts transitively on the unit sphere of \mathfrak{m}.
 - $\mathfrak{m}^R = \text{Ad}(K)W^+ = \mathfrak{m} \setminus \{0\}$.
 - $T^+(G/K) = \phi_G(\mathfrak{g} \times_K \mathfrak{m}^R) = T(G/K) \setminus \{\text{zero section}\}$.
 - **Conclusion**: $T^+(G/K)$ is a ‘punctured tangent bundle’.
Restricted roots on symmetric spaces of compact type

Compact rank-one symmetric spaces

If G/K is a rank-one symmetric space, then $\dim \mathfrak{a} = 1$ ($\mathfrak{a} = \mathbb{R}X$) and

$$\Sigma = \{ \pm \varepsilon \} \quad \text{and} \quad \Sigma = \{ \pm \varepsilon, \pm \frac{1}{2} \varepsilon \}, \quad \varepsilon \in (\mathfrak{a}^\mathbb{C})^*, \; \varepsilon(X) = 1, \;$$

$$W^+ = \{ xX : x \in \mathbb{R}^+ \} \cong \mathbb{R}^+.$$

- **Property of compact rank-one symmetric spaces:** The linear isotropy group $\text{Ad}(K)$ acts transitively on the unit sphere of \mathfrak{m}.
 - $\mathfrak{m}^\mathbb{R} = \text{Ad}(K)W^+ = \mathfrak{m} \setminus \{0\}$.
 - $T^+(G/K) = \phi(G \times_K \mathfrak{m}^\mathbb{R}) = T(G/K) \setminus \{ \text{zero section} \}$.
 - **Conclusion:** $T^+(G/K)$ is a ‘punctured tangent bundle’.
Restricted roots on symmetric spaces of compact type

Compact rank-one symmetric spaces

If G/K is a rank-one symmetric space, then $\dim \mathfrak{a} = 1$ ($\mathfrak{a} = \mathbb{R}X$) and

$$\Sigma = \{\pm \varepsilon\} \cap \Sigma = \{\pm \varepsilon, \pm \frac{1}{2} \varepsilon\}, \quad \varepsilon \in (\mathfrak{a}^\mathbb{C})^*, \quad \varepsilon(X) = 1,$$

$$W^+ = \{xX : x \in \mathbb{R}^+\} \cong \mathbb{R}^+.$$

- **Property of compact rank-one symmetric spaces:** The linear isotropy group $\text{Ad}(K)$ acts transitively on the unit sphere of \mathfrak{m}.
- $\mathfrak{m}^\mathbb{R} = \text{Ad}(K)W^+ = \mathfrak{m} \setminus \{0\}$.
- $T^+(G/K) = \phi(G \times_K \mathfrak{m}^\mathbb{R}) = T(G/K) \setminus \{\text{zero section}\}$.
- **Conclusion:** $T^+(G/K)$ is a ‘punctured tangent bundle’.
If G/K is a rank-one symmetric space, then $\dim \mathfrak{a} = 1$ ($\mathfrak{a} = \mathbb{R}X$) and

$$\Sigma = \{\pm \varepsilon\} \quad \text{and} \quad \Sigma = \{\pm \varepsilon, \pm \frac{1}{2} \varepsilon\}, \quad \varepsilon \in (\mathfrak{a}^\mathbb{C})^*, \varepsilon(X) = 1,$$

$$\mathcal{W}^+ = \{xX : x \in \mathbb{R}^+\} \cong \mathbb{R}^+.$$

- **Property of compact rank-one symmetric spaces:** The linear isotropy group $\text{Ad}(K)$ acts transitively on the unit sphere of \mathfrak{m}.
- $\mathfrak{m}^\mathbb{R} = \text{Ad}(K)\mathcal{W}^+ = \mathfrak{m} \setminus \{0\}$.
- $T^+(G/K) = \phi(G \times_K \mathfrak{m}^\mathbb{R}) = T(G/K) \setminus \{\text{zero section}\}$.
- **Conclusion:** $T^+(G/K)$ is a ‘punctured tangent bundle’.
Some previous considerations

- Let H be the subgroup of K given by $H = \{ k \in K : \text{Ad}_k u = u, \text{for all } u \in \mathfrak{a} \}$.

- The mapping $f^+ : G/H \times W^+ \to G \times_K \mathfrak{m}^R$, $(gH, w) \mapsto [(g, w)]$, is well-defined and it is a G-equivariant diffeomorphism.
Some previous considerations

- Let H be the subgroup of K given by $H = \{ k \in K : \text{Ad}_k u = u, \text{ for all } u \in \mathfrak{a} \}$.
- The mapping $f^+ : G/H \times W^+ \to G \times_K m^R$, $(gH, w) \mapsto [(g, w)]$, is well-defined and it is a G-equivariant diffeomorphism.
Some previous considerations

- Let H be the subgroup of K given by $H = \{ k \in K : \text{Ad}_k u = u, \text{ for all } u \in \mathfrak{a} \}$.
- The mapping $f^+ : G/H \times W^+ \to G \times_K \mathbb{R}^m, (gH, w) \mapsto [(g, w)]$, is well-defined and it is a G-equivariant diffeomorphism.
Some previous considerations

- Let H be the subgroup of K given by
 \[H = \{ k \in K : \text{Ad}_{k} u = u, \text{ for all } u \in \mathfrak{a} \} \].
- The mapping
 \[f^{+} : G/H \times W^{+} \to G \times_{K} \mathfrak{m}^{\mathbb{R}} \],
 \[(gH, w) \mapsto [(g, w)]\]
 is well-defined and it is a G-equivariant diffeomorphism.
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

The Ricci form

On a Riemannian Kähler manifold (M, g, J),

$$\text{Ric}(g)(X, Y) = \text{Ric}(X, JY), \quad X, Y \in \mathfrak{X}(M),$$

is a 2-form, known as the **Ricci form** of g.

- Its complex extension can be expressed (locally) as $\text{Ric}(g) = -i\partial\bar{\partial} \ln \det(\omega_{js})$.
- If $g = \omega(J^K_c \cdot, \cdot)$ is a G-invariant Kähler metric on $T(G/K)$ then $\text{Ric}(g) = i\partial\bar{\partial} \ln S$, where $S : T(G/K) \to \mathbb{C}$ is a G-invariant function.
- Assume that the group G is semisimple. If $g = \omega(J^K_c \cdot, \cdot)$ is a G-invariant Kähler metric on $G/H \times W^+$, then $\text{Ric}(g) = 0 \iff S = \text{const.}$
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

The Ricci form

On a Riemannian Kähler manifold (M, g, J),

$$\text{Ric}(g)(X, Y) = \text{Ric}(X, JY), \quad X, Y \in \mathfrak{X}(M),$$

is a 2-form, known as the **Ricci form** of g.

- Its complex extension can be expressed (locally) as
 $$\text{Ric}(g) = -i \partial \bar{\partial} \ln \det(\omega_{js}).$$

- If $g = \omega(J^K_C, \cdot)$ is a G-invariant Kähler metric on $T(G/K)$
 then $\text{Ric}(g) = i \partial \bar{\partial} \ln S$, where $S : T(G/K) \to \mathbb{C}$ is a
 G-invariant function.

- Assume that the group G is semisimple. If $g = \omega(J^K_C, \cdot)$ is a
 G-invariant Kähler metric on $G/H \times W^+$, then
 $\text{Ric}(g) = 0 \iff S = \text{const}$.

Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

The Ricci form

On a Riemannian Kähler manifold (M, g, J),

$$\text{Ric}(g)(X, Y) = \text{Ric}(X, JY), \quad X, Y \in \mathfrak{X}(M),$$

is a 2-form, known as the **Ricci form** of g.

- Its complex extension can be expressed (locally) as $\text{Ric}(g) = -i \partial \bar{\partial} \ln \det(\omega_{js})$.
- If $g = \omega(J^K_c, \cdot, \cdot)$ is a G-invariant Kähler metric on $T(G/K)$ then $\text{Ric}(g) = i \partial \bar{\partial} \ln S$, where $S : T(G/K) \to \mathbb{C}$ is a G-invariant function.
- Assume that the group G is semisimple. If $g = \omega(J^K_c, \cdot, \cdot)$ is a G-invariant Kähler metric on $G/H \times W^+$, then $\text{Ric}(g) = 0 \iff S = \text{const}$.
Invariant Ricci-flat Kähler metrics on $T^+ (G/K)$

The Ricci form

On a Riemannian Kähler manifold (M, g, J),

$$\text{Ric}(g)(X, Y) = \text{Ric}(X, JY), \quad X, Y \in \mathfrak{X}(M),$$

is a 2-form, known as the **Ricci form** of g.

- Its complex extension can be expressed (locally) as $\text{Ric}(g) = -i \partial \bar{\partial} \ln \det (\omega_{js})$.
- If $g = \omega(J^K_C \cdot \cdot \cdot \cdot)$ is a G-invariant Kähler metric on $T(G/K)$ then $\text{Ric}(g) = i \partial \bar{\partial} \ln S$, where $S : T(G/K) \to \mathbb{C}$ is a G-invariant function.
- Assume that the group G is semisimple. If $g = \omega(J^K_C \cdot \cdot \cdot \cdot)$ is a G-invariant Kähler metric on $G/H \times W^+$, then $\text{Ric}(g) = 0 \iff S = \text{const.}$
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

The Ricci form

On a Riemannian Kähler manifold (M, g, J),

$$\text{Ric}(g)(X, Y) = \text{Ric}(X, JY), \quad X, Y \in \mathfrak{X}(M),$$

is a 2-form, known as the **Ricci form** of g.

- Its complex extension can be expressed (locally) as
 $$\text{Ric}(g) = -i \partial \bar{\partial} \ln \det(\omega_{js}).$$

- If $g = \omega(J^K_c \cdot, \cdot)$ is a G-invariant Kähler metric on $T(G/K)$ then
 $$\text{Ric}(g) = i \partial \bar{\partial} \ln S,$$
 where $S : T(G/K) \to \mathbb{C}$ is a G-invariant function.

- Assume that the group G is semisimple. If $g = \omega(J^K_c \cdot, \cdot)$ is a G-invariant Kähler metric on $G/H \times W^+$, then
 $$\text{Ric}(g) = 0 \iff S = \text{const}.$$
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

- A two-form ω on $G/H \times W^+$ is a G-invariant symplectic structure if and only if $\tilde{\omega} = (\pi_H \times id)^* \omega$ satisfies the following three conditions:
 1. $\tilde{\omega}$ is closed;
 2. $\tilde{\omega}$ is left G-invariant and right H-invariant;
 3. $\text{Ker}(\tilde{\omega}) = \text{Ker}(\pi_H \times id)_*$.

- Consider $\mathcal{F} = (\pi_H \times id)_(-1)(F) \subset T^\mathbb{C}(G \times W^+)$. Then $\mathcal{F} = \text{Ker}(\tilde{\omega}) \oplus \tilde{\mathcal{F}}$, where $\tilde{\mathcal{F}}$ is a n-dimensional G-invariant complex subbundle with $(\pi_H \times id)_* \tilde{\mathcal{F}} = F$ and there exists G-invariant complex vector fields $\{T_1, \ldots, T_n\}$ which generate $\tilde{\mathcal{F}}$.
A two-form ω on $G/H \times W^+$ is a G-invariant symplectic structure if and only if $\tilde{\omega} = (\pi_H \times id)^* \omega$ satisfies the following three conditions:

1. $\tilde{\omega}$ is closed;
2. $\tilde{\omega}$ is left G-invariant and right H-invariant;
3. $\text{Ker}(\tilde{\omega}) = \text{Ker}(\pi_H \times id)_*$.

Consider $\mathcal{F} = (\pi_H \times id)^{-1}(F) \subset T^\mathbb{C}(G \times W^+)$. Then $\mathcal{F} = \text{Ker}(\tilde{\omega}) \oplus \tilde{\mathcal{F}}$, where $\tilde{\mathcal{F}}$ is a n-dimensional G-invariant complex subbundle with $(\pi_H \times id)_* \tilde{\mathcal{F}} = F$ and there exists G-invariant complex vector fields $\{T_1, \ldots, T_n\}$ which generate $\tilde{\mathcal{F}}$.
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

- A two-form ω on $G/H \times W^+$ is a G-invariant symplectic structure if and only if $\tilde{\omega} = (\pi_H \times id)^* \omega$ satisfies the following three conditions:
 1. $\tilde{\omega}$ is closed;
 2. $\tilde{\omega}$ is left G-invariant and right H-invariant;
 3. $\text{Ker}(\tilde{\omega}) = \text{Ker}(\pi_H \times id)_*$.

- Consider $\mathcal{F} = (\pi_H \times id)^{-1}(F) \subset T^C(G \times W^+)$. Then $\mathcal{F} = \text{Ker}(\tilde{\omega}) \oplus \tilde{\mathcal{F}}$, where $\tilde{\mathcal{F}}$ is a n-dimensional G-invariant complex subbundle with $(\pi_H \times id)_* \tilde{\mathcal{F}} = F$ and there exists G-invariant complex vector fields $\{T_1, \ldots, T_n\}$ which generate $\tilde{\mathcal{F}}$.
A two-form ω on $G/H \times W^+$ is a G-invariant symplectic structure if and only if $\tilde{\omega} = (\pi_H \times id)^* \omega$ satisfies the following three conditions:

1. $\tilde{\omega}$ is closed;
2. $\tilde{\omega}$ is left G-invariant and right H-invariant;
3. $\text{Ker}(\tilde{\omega}) = \text{Ker}(\pi_H \times id)_*$.

Consider $\mathcal{F} = (\pi_H \times id)^{-1}(F) \subset T^C(G \times W^+)$. Then $\mathcal{F} = \text{Ker}(\tilde{\omega}) \oplus \tilde{\mathcal{F}}$, where $\tilde{\mathcal{F}}$ is a n-dimensional G-invariant complex subbundle with $(\pi_H \times id)_* \tilde{\mathcal{F}} = F$ and there exists G-invariant complex vector fields $\{T_1, \ldots, T_n\}$ which generate $\tilde{\mathcal{F}}$.
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

- A two-form ω on $G/H \times W^+$ is a G-invariant symplectic structure if and only if $\tilde{\omega} = (\pi_H \times id)^* \omega$ satisfies the following three conditions:
 1. $\tilde{\omega}$ is closed;
 2. $\tilde{\omega}$ is left G-invariant and right H-invariant;
 3. $\text{Ker}(\tilde{\omega}) = \text{Ker}(\pi_H \times id)^*.$

- Consider $\mathcal{F} = (\pi_H \times id)^{-1}(F) \subset T^\mathbb{C}(G \times W^+)$. Then $\mathcal{F} = \text{Ker}(\tilde{\omega}) \oplus \tilde{\mathcal{F}}$, where $\tilde{\mathcal{F}}$ is a n-dimensional G-invariant complex subbundle with $(\pi_H \times id)^* \tilde{\mathcal{F}} = F$ and there exists G-invariant complex vector fields $\{T_1, \ldots, T_n\}$ which generate $\tilde{\mathcal{F}}$.
• \(\omega \) satisfying (1) – (3), is a positive-definite polarization if and only if

\[
(4) \quad \tilde{\omega}(T_j, T_k) = 0, \ j, k = 1, \ldots, n;
\]

\[
(5) \quad i\tilde{\omega}(T, \overline{T}) > 0 \text{ for each } T = \sum_{j=1}^{n} c_j T_j, \ (c_1, \ldots, c_n) \in \mathbb{C}^n \setminus \{0\}.
\]

• If moreover, \(G \) is semisimple and \(\tilde{\omega} \) satisfies

\[
(6) \quad \det(\tilde{\omega}(T_j, T_k)) = \text{const on } G \times W^+,
\]

then the corresponding Kähler metrics is Ricci-flat.

• The correspondence between \(\omega \) and its pullback \(\tilde{\omega} \) is one-to-one.
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

- ω satisfying (1) – (3), is a positive-definite polarization if and only if
 1. $\tilde{\omega}(T_j, T_k) = 0$, $j, k = 1, \ldots n$;
 2. $i\tilde{\omega}(T, \bar{T}) > 0$ for each $T = \sum_{j=1}^n c_j T_j$, $(c_1, \ldots, c_n) \in \mathbb{C}^n \setminus \{0\}$.

- If moreover, G is semisimple and $\tilde{\omega}$ satisfies
 3. $\det(\tilde{\omega}(T_j, \bar{T}_k)) = \text{const}$ on $G \times W^+$,
then the corresponding Kähler metrics is Ricci-flat.

- The correspondence between ω and its pullback $\tilde{\omega}$ is one-to-one.
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

- ω satisfying (1) – (3), is a positive-definite polarization if and only if

 (4) $\tilde{\omega}(T_j, T_k) = 0, j, k = 1, \ldots n$;

 (5) $i\tilde{\omega}(T, \overline{T}) > 0$ for each $T = \sum_{j=1}^{n} c_j T_j$, $(c_1, \ldots, c_n) \in \mathbb{C}^n \setminus \{0\}$.

- If moreover, G is semisimple and $\tilde{\omega}$ satisfies

 (6) $\det(\tilde{\omega}(T_j, T_k)) = \text{const}$ on $G \times W^+$,

 then the corresponding Kähler metrics is Ricci-flat.

- The correspondence between ω and its pullback $\tilde{\omega}$ is one-to-one.
• ω satisfying (1) – (3), is a positive-definite polarization if and only if

$$\bar{\omega}(T_j, T_k) = 0, \ j, k = 1, \ldots, n;$$

and

$$i\bar{\omega}(T, \overline{T}) > 0 \ \text{for each} \ T = \sum_{j=1}^{n} c_j T_j, \ (c_1, \ldots, c_n) \in \mathbb{C}^n \setminus \{0\}.$$

• If moreover, G is semisimple and $\bar{\omega}$ satisfies

$$\det(\bar{\omega}(T_j, \overline{T_k})) = \text{const} \ \text{on} \ G \times W^+,$$

then the corresponding Kähler metrics is Ricci-flat.

• The correspondence between ω and its pullback $\bar{\omega}$ is one-to-one.
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

- ω satisfying (1) – (3), is a positive-definite polarization if and only if

 (4) $\tilde{\omega}(T_j, T_k) = 0$, $j, k = 1, \ldots n$;

 (5) $i\tilde{\omega}(T, \overline{T}) > 0$ for each $T = \sum_{j=1}^{n} c_j T_j$, $(c_1, \ldots, c_n) \in \mathbb{C}^n \setminus \{0\}$.

- If moreover, G is semisimple and $\tilde{\omega}$ satisfies

 (6) $\det(\tilde{\omega}(T_j, \overline{T}_k)) = \text{const}$ on $G \times W^+$,

 then the corresponding Kähler metrics is Ricci-flat.

- The correspondence between ω and its pullback $\tilde{\omega}$ is one-to-one.
• \(\omega \) satisfying (1) – (3), is a positive-definite polarization if and only if

\[
\begin{align*}
(4) & \quad \tilde{\omega}(T_j, T_k) = 0, j, k = 1, \ldots n; \\
(5) & \quad i\tilde{\omega}(T, \overline{T}) > 0 \text{ for each } T = \sum_{j=1}^{n} c_j T_j, (c_1, \ldots, c_n) \in \mathbb{C}^n \setminus \{0\}.
\end{align*}
\]

• If moreover, \(G \) is semisimple and \(\tilde{\omega} \) satisfies

\[
(6) \quad \det(\tilde{\omega}(T_j, \overline{T}_k)) = \text{const on } G \times W^+,
\]

then the corresponding Kähler metrics is Ricci-flat.

• The correspondence between \(\omega \) and its pullback \(\tilde{\omega} \) is one-to-one.
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

Theorem

(Main Theorem) Let G/K be a Riemannian symmetric space of compact type. Each G-invariant Kähler metric g, associated with the canonical complex structure J^K_c on $G/H \times W^+ \cong T^+(G/K)$, is determined by the Kähler form $\omega(\cdot, \cdot) = -g(J^K_c \cdot, \cdot)$ on $G/H \times W^+$ given by $(\pi_H \times \text{id})^* \omega = d\tilde{\theta}^a$, where $a : W^+ \to g$ is a smooth vector-function which is unique for each ω, satisfying certain conditions equivalent to the previous conditions (2)–(5) and $\tilde{\theta}^a$ is the G-invariant 1-form on $G \times W^+$

$$\tilde{\theta}^a_{(g,x)}(\xi^l, w_x) = \langle a(x), \xi \rangle,$$

for all $(g, x) \in G \times W^+$, $\xi \in g$ and $w \in a$.

If, in addition, the corresponding condition (6) for a holds, this metric g is Ricci-flat.
(Main Theorem) Let G/K be a Riemannian symmetric space of compact type. Each G-invariant Kähler metric g, associated with the canonical complex structure J^K_c on $G/H \times W^+ \cong T^+(G/K)$, is determined by the Kähler form $\omega(\cdot, \cdot) = -g(J^K_c \cdot, \cdot)$ on $G/H \times W^+$ given by $(\pi_H \times \text{id})^* \omega = d\tilde{\theta}^a$, where $a : W^+ \to \mathfrak{g}$ is a smooth vector-function which is unique for each ω, satisfying certain conditions equivalent to the previous conditions (2)–(5) and $\tilde{\theta}^a$ is the G-invariant 1-form on $G \times W^+$

$$\tilde{\theta}^a_{(g,x)}(\xi^l, w_x) = \langle a(x), \xi \rangle,$$

for all $(g, x) \in G \times W^+$, $\xi \in \mathfrak{g}$ and $w \in \mathfrak{a}$.

If, in addition, the corresponding condition (6) for a holds, this metric g is Ricci-flat.
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

Theorem

(Main Theorem) Let G/K be a Riemannian symmetric space of compact type. Each G-invariant Kähler metric g, associated with the canonical complex structure J^K_c on $G/H \times W^+ \cong T^+(G/K)$, is determined by the Kähler form $\omega(\cdot, \cdot) = -g(J^K_c \cdot, \cdot)$ on $G/H \times W^+$ given by $(\pi_H \times \text{id})^* \omega = d\tilde{\theta}^a$, where $a : W^+ \to \mathfrak{g}$ is a smooth vector-function which is unique for each ω, satisfying certain conditions equivalent to the previous conditions (2)–(5) and $\tilde{\theta}^a$ is the G-invariant 1-form on $G \times W^+$

$$\tilde{\theta}^a_{(g, x)}(\xi^l, w_x) = \langle a(x), \xi \rangle,$$

for all $(g, x) \in G \times W^+$, $\xi \in \mathfrak{g}$ and $w \in a$. If, in addition, the corresponding condition (6) for a holds, this metric g is Ricci-flat.
Other aspects which have been studied for these metrics

- Their differentiable \textit{extensions} to all the tangent bundle.
- The analysis of their \textit{completeness}.
Other aspects which have been studied for these metrics

- Their differentiable extensions to all the tangent bundle.
- The analysis of their completeness.
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

Other aspects which have been studied for these metrics

- Their differentiable extensions to all the tangent bundle.
- The analysis of their completeness.
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

Other aspects which have been studied for these metrics

- Their differentiable **extensions** to all the tangent bundle.
- The analysis of their **completeness**.
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

A first application of the Main Theorem

Theorem

Let $G/K = SO(3)/SO(2) = S^2$. A 2-form ω on the punctured tangent bundle $G \times W^+ \cong T^+ S^2$ of S^2 defines a G-invariant Kähler structure, associated to the canonical complex structure J^K_c, and the corresponding metric $g = \omega(J^K_c \cdot, \cdot)$ is Ricci-flat, if and only if ω on $G \times W^+$ is expressed as $\omega = d\tilde{\theta}^a$, where the vector function $a(x) = f'(x)X + \frac{cz}{\cosh x}Z$, cz being an arbitrary real number and

$$f'(x) = \sqrt{C \sinh^2 x + c^2_Z \sinh^2 x \cosh^{-2} x + C_1},$$

for some real constants $C > 0$ and $C_1 \geq 0$.

The corresponding G-invariant Ricci-flat Kähler metric on $T^+ S^2$ is uniquely extendable to a smooth complete metric on $T S^2$ if and only if $C_1 = 0$ (that is, $\lim_{x \to 0} f'(x) = 0$).
Let $G/K = SO(3)/SO(2) = S^2$. A 2-form ω on the punctured tangent bundle $G \times W^+ \cong T^+ S^2$ of S^2 defines a G-invariant Kähler structure, associated to the canonical complex structure J^K_c, and the corresponding metric $g = \omega(J^K_c \cdot, \cdot)$ is Ricci-flat, if and only if ω on $G \times W^+$ is expressed as $\omega = d\tilde{\theta}^a$, where the vector function $a(x) = f'(x)X + \frac{cz}{\cosh x}Z$, cz being an arbitrary real number and

$$f'(x) = \sqrt{C \sinh^2 x + c_Z^2 \sinh^2 x \cosh^{-2} x + C_1},$$

for some real constants $C > 0$ and $C_1 \geq 0$.

The corresponding G-invariant Ricci-flat Kähler metric on $T^+ S^2$ is uniquely extendable to a smooth complete metric on $T S^2$ if and only if $C_1 = 0$ (that is, $\lim_{x \to 0} f'(x) = 0$).
A first application of the Main Theorem

Theorem

Let $G/K = SO(3)/SO(2) = \mathbb{S}^2$. A 2-form ω on the punctured tangent bundle $G \times W^+ \cong T^+\mathbb{S}^2$ of \mathbb{S}^2 defines a G-invariant Kähler structure, associated to the canonical complex structure J^K_c, and the corresponding metric $g = \omega(J^K_c \cdot, \cdot)$ is Ricci-flat, if and only if ω on $G \times W^+$ is expressed as $\omega = d\tilde{\theta}^a$, where the vector function $a(x) = f'(x)X + \frac{cZ}{\cosh x}Z$, cZ being an arbitrary real number and

$$f'(x) = \sqrt{C \sinh^2 x + c_Z^2 \sinh^2 x \cosh^{-2} x + C_1},$$

for some real constants $C > 0$ and $C_1 \geq 0$.

The corresponding G-invariant Ricci-flat Kähler metric on $T^+\mathbb{S}^2$ is uniquely extendable to a smooth complete metric on $T\mathbb{S}^2$ if and only if $C_1 = 0$ (that is, $\lim_{x \to 0} f'(x) = 0$).
All the metrics for $C_1 = 0$ and $c_Z \neq 0$ are new examples of complete Ricci-flat Kähler metrics on whole $T^+ S^2$.

Thanks for your attention
Invariant Ricci-flat Kähler metrics on $T^+(G/K)$

- All the metrics for $C_1 = 0$ and $c_Z \neq 0$ are **new** examples of complete Ricci-flat Kähler metrics on whole $T\mathbb{S}^2$.

Thanks for your attention
All the metrics for $C_1 = 0$ and $c_Z \neq 0$ are new examples of complete Ricci-flat Kähler metrics on whole $T^+\mathbb{S}^2$.

Thanks for your attention