The transverse Jacobi equation

Luis Guijarro

Universidad Autónoma de Madrid-ICMAT

Symmetry and shape, 28th October 2019

Luis Guijarro (UAM-ICMAT)

The transverse Jacobi equation

- The transverse Jacobi equation.
- Omparison for the transverse Jacobi equation
- Geometric applications.

・ロン ・回 と ・ ヨン・

The linear symplectic space of Jacobi fields

Joint work with Frederick Wilhelm (UCR).

 (M^n,g) *n*-dimensional Riemannian manifold; $\gamma:\mathbb{R} o M$ unit speed geodesic. Definition

 ${\rm Jac}(\gamma)$ denotes the 2(n-1)-dimensional vector space of normal Jacobi fields along γ

$$\mathsf{Jac}(\gamma) := \{ J \text{ Jacobi fields along } \gamma : J, J' \perp \gamma' \}.$$

There is a linear symplectic form

$$\omega: \mathsf{Jac}(\gamma) \times \mathsf{Jac}(\gamma) \to \mathbb{R}, \qquad \omega(X,Y) = \langle X',Y \rangle - \langle X,Y' \rangle$$

イロト 不得下 イヨト イヨト

Lagrangian subspaces

Definition

Let $W \subset \operatorname{Jac}(\gamma)$ a linear subspace.

- W is isotropic if $\omega|_{W \times W} \equiv 0$;
- Solution L is Lagrangian if isotropic and maximal, i.e, dim L = (n 1).

For a Lagrangian L, $\{J(t) : J \in L\} = \gamma'(t)^{\perp}$, except at isolated points.

Examples:

• Geodesic variations of γ leaving the initial point fixed;

$$L_0 := \{ J : J(0) = 0 \}$$

Zeros: conjugate points.

• given $N \subset M$ a submanifold, γ orthogonal to N at t = 0,

$$L_N := \left\{ J : J(0) \in T_{\gamma(0)}N, J'(0)^T + S_{\gamma'(0)}J(0) = 0 \right\}$$

Zeros: focal points of N.

(a)

Vertical/horizontal bundles

Choose $W \subset L$; at each $t \in \mathbb{R}$, let

$$W(t) := \{ J(t) : J \in W \} \oplus \{ J'(t) : J \in W, J(t) = 0 \}$$

 $t \rightarrow W(t)$ is a smooth bundle, inducing a smooth splitting

$$\gamma'(t)^{\perp} = W(t) \oplus W(t)^{\perp} = W(t) \oplus H(t).$$

There is a covariant derivative of sections

$$rac{D^{\perp}}{dt}: \Gamma(H)
ightarrow \Gamma(H), \qquad rac{D^{\perp}Y}{dt}:=Y'^{H}$$

イロト イヨト イヨト イヨト

Wilking's O'Neill's operators

Definition

Whenever possible,

• choose $J \in W$ with J(t) = v, and define $A_t : W(t) \rightarrow H(t)$ as

$$A_t(v) := J'^H(t),$$

• and
$$A^*_t: H(t)
ightarrow W(t)$$
 as

$$A_t^*(v) := J'^W(t).$$

 A_t , A_t^* admit smooth extensions to all t.

イロト イヨト イヨト イヨ

Theorem (Wilking, 2007)

Let $L \subset \text{Jac}(\gamma)$ Lagrangian, and $W \subset L$. Then for any $J \in L$, we have that for every $t \in \mathbb{R}$,

$$\frac{D^{\perp^2}Y}{dt^2} + \{R(t)Y\}^H + 3A_t A_t^* Y = 0$$

where $Y = J^{H}$.

• • • • • • • • • • • • •

Example: Riemannian submersions

 $\pi: M^{n+k} \to B^n$ Riemannian submersion.

 $\gamma:\mathbb{R}\rightarrow {\it M}$ horizontal geodesic.

Projectable Jacobi fields \mathcal{P} : those arising from horizontally lifting to γ geodesic variations of $\bar{\gamma} := \pi \circ \gamma$ in B.

The holonomy vector fields are obtained lifting horizontally $\pi \circ \gamma$ to *M*:

$$W = \{ J \in \mathcal{P} : J \text{ vertical } \}; \quad \dim W = k$$

Any Lagrangian $L \subset \mathcal{P}$ contains W; H are the horizontal parts.

Wilking's transverse equation for $L/W \Leftrightarrow$ standard Jacobi equation for $\bar{\gamma}$ in B and A_t is the O'Neill tensor.

イロト 不得下 イヨト イヨト 二日

Comparison

Some overlap with results from Verdiani-Ziller.

Definition (The Riccati operator)

Define $\hat{S}(t)$: H(t)
ightarrow H(t) as

$$\hat{S}(t)(v) := J'(t)^H,$$

where $J \in L$ with J(t) = v.

Important: Well defined whenever any $J \in L$ with J(t) = 0 lies in W.

Definition

W is of full index in an interval $I \subset \mathbb{R}$ if the above happens at every point of I.

$$(\hat{S}_t J^H)' = \hat{S}_t' J^H + \hat{S}_t J^{H'} = (\hat{S}_t' + \hat{S}_t^2) J^H$$

(日) (同) (日) (日)

Wilking's equation:

$$\hat{S}_{t}' + \hat{S}_{t}^{2} + \{R(t)\}^{H} + 3A_{t}A_{t}^{*} = 0$$

Taking traces leaves

$$\hat{s_t}' + \hat{s_t}^2 + \hat{r_t} = 0,$$

where, if $k = \dim H$, \hat{S}_t^0 the trace free part of \hat{S}_t ,

•
$$\hat{s_t} = \frac{1}{k} \operatorname{Trace} \hat{S_t};$$

• $\hat{r_t} = \frac{1}{k} (|\hat{S_t}^0|^2 + \operatorname{Trace} [R(t)^H + 3A_t A_t^*]) \ge \frac{1}{k} \operatorname{Trace} R(t)^H$

Intermediate Ricci curvature appears naturally:

Definition

 $Ric_k \ge \ell$ if for any $v \in T_pM$, and any (k + 1)-orthogonal frame $\{v, e_1, \dots, e_k\}$ we have

$$\sum_{i=1}^{\kappa} \sec(v, e_i) \geq \ell.$$

Riccati comparison, dimension one

$$s' + s^2 + r(t) = 0.$$
 (1)

Image: A math a math

Denote by s_a solutions of $s' + s^2 + a = 0$, with a = 1, 0, -1.

Lemma

Suppose $r \ge a$, and let s be a solution of (1) defined in $[t_0, t_{max}]$, with $s(t_0) \le s_a(t_0)$. then

•
$$s(t) \leq s_a(t)$$
,

• if there is some t_1 with $s(t_1) = s_a(t_1)$, then $s \equiv s_a$ and $r \equiv a$ in $[t_0, t_1]$.

Corollary

If $r \ge 1$, $[t_0, t_{max}] \subset [0, \pi]$, and $\alpha \in [0, \pi - t_0)$, then the only solution of the Riccati equation with $s(t_0) \le \cot(t_0 + \alpha)$ that is defined in $[t_0, \pi - \alpha)$ is $s(t) = \cot(t + \alpha)$, and $r \equiv 1$.

Positive intermediate Ricci comparison

Theorem (F.Wilhelm, LG)

 $\operatorname{Ric}_k \geq k$, and L a Lagrangian along γ with Riccati operator S_t . If there is a k-dimensional subspace $\mathcal{H}_0 \perp \gamma'(0)$ such that the Ricatti operator for L satisfies

Frace
$$S_0|_{\mathcal{H}_0} \leq 0,$$

then:

- There is some nonzero J ∈ L, J(0) ∈ H₀, such that J(t₁) = 0 for some t₁ ∈ (0, π/2].
- If no J ∈ L vanishes before time π/2, then there are subspaces W, H in L, with H₀ = H₀, such that L splits as L = W ⊕ H orthogonally for every t ∈ [0, π/2]. Moreover, every field in H is of the form

$$\sin(t+\frac{\pi}{2})\cdot E(t)$$

where E is a parallel vector field.

• • • • • • • • • • • • •

Existence of focal points for Ric_k .

Theorem (F.Wilhelm, LG)

Let M be a complete manifold with $\operatorname{Ric}_k \ge k$, and $N \subset M$ a submanifold (possibly not embedded, not complete) with dim $N \ge k$. Then

() for any geodesic $\gamma : \mathbb{R} \to M$ with $\gamma(0) \in N$, $\gamma'(0) \perp N$, there are at least

 $\dim N - k + 1$

focal points to N in the interval $[-\pi/2, \pi/2]$;

 if for every geodesic as above, the first focal point is at time π/2 or -π/2, then N is totally geodesic

(日) (同) (日) (日)

Diameter rigidity vs. focal rigidity

Theorem (Gromoll-Grove's diameter rigidity)

Let M be a compact Riemannian manifold with sec ≥ 1 and diam $= \pi/2$. Then M is homeomorphic to a sphere, or isometric to a compact projective space.

Definition

The focal radius of a submanifold N is the smallest time t_0 such that there is a focal point to N along a geodesic $\gamma : \mathbb{R} \to M$ with $\gamma(0) \in N$, $\gamma'(0) \perp N$.

Theorem (Focal rigidity, F. Wilhelm, LG)

Let *M* be a compact Riemannian manifold with $\operatorname{Ric}_k \ge k$; if *M* contains an embedded submanifold *N* with dim $N \ge k$, and with focal radius $\pi/2$, then the universal cover of *M* is isometric to a round sphere, or to a compact projective space with *N* totally geodesic in *M*.

Luis Guijarro (UAM-ICMAT)

• • • • • • • • • • • • •

Definition

Let $\gamma : [0, \ell] \to M$ a unit geodesic. The index of γ is the number (with multiplicity) of conjugate points to $\gamma(0)$ along γ .

Lemma (Index of "long" geodesics, F.Wilhelm, LG)

 (M^n, g) with $\operatorname{Ric}_k \geq k$. Then any unit geodesic $\gamma : [0, b] \to M$ with $b \geq \pi$ satisfies

 $index(\gamma) \ge n - k.$

Case of sec: David González-Álvaro, LG.

Theorem (Sphere Theorem for Ric_k)

 (M^n, g) with $\operatorname{Ric}_k \geq k$. Suppose there is some $p \in M$ with $\operatorname{conj}_p > \pi/2$. Then

- the universal cover of M is (n k)-connected;
- if $k \le n/2$, then the universal cover of M is homeomorphic to a sphere.

Proof of the Sphere Theorem

We can assume $\pi_1 M = 0$, $n - k \ge 2$.

 Ω_p : Loops based at p (or a finite dimensional manifold approximation).

Enough to show that Ω_p is (n-k-1)-connected .

Lemma

Let $f : P \to \mathbb{R}$ be a proper, smooth function, and a < b such that every critical point in $f^{-1}[a, b]$ has index $\geq m$. Then

$$f^{-1}(-\infty, a] \hookrightarrow f^{-1}(-\infty, b]$$

is (m-1)-connected.

 $E:\Omega_{
ho}
ightarrow$ [0, ∞) the energy function

$$E(\alpha) = \frac{1}{2} \int_0^\ell |\alpha'(t)|^2 dt$$

Its critical points are geodesic loops based at p.

Luis Guijarro (UAM-ICMAT)

The transverse Jacobi equation

Proof of the Sphere Theorem (cont.)

Choose some $\pi < \ell < 2 \operatorname{conj}_p$

() The long geodesic lemma \equiv geodesics longer than ℓ have index $\geq n - k$,

$$\Rightarrow E^{-1}(-\infty, b/2] \hookrightarrow \Omega_p$$
 is $(n-k-1)$ -connected.

• $E^{-1}(-\infty, b/2]$ has no critical points (contradiction).

- $n-k \ge 2$ and Ω_p connected $\Rightarrow E^{-1}(-\infty, b/2]$ is connected.
- Any geodesic loop in $E^{-1}(-\infty, b/2]$ is not connected to $\{p\}$, because

Lemma (Long homotopy lemma, Abresch-Meyer)

 $\gamma : [0, \ell] \to M$ a unit geodesic loop based at p. If $\ell < 2 \operatorname{conj}_p$, and $\{\gamma_s\}$ is a homotopy from γ to $\{p\}$, then there is some $s_0 \in (0, 1)$ such that

$$\operatorname{length}(\gamma_{s_0}) > 2 \operatorname{conj}_p$$
.

イロト イポト イヨト イヨト

Thanks!

▲□→ ▲圖→ ▲温→ ▲温→

Luis Guijarro (UAM-ICMAT)

The transverse Jacobi equation

October 28th, 2019 19 / 23

★ロト ★問 と ★ 注 と ★ 注 と 二 注

Bounds on the second fundamental form

Theorem

Let M be a complete Riemannian manifold with sec \geq a (where a can take the values $\{1, 0, -1\}$.

Then the second fundamental form of N satisfies

•
$$| II_N | \le \cot(foc N)$$
 if $a = 1$;

•
$$| ||_N | \le \frac{1}{\text{foc } N}$$
 if $a = 0$;

•
$$|II_N| \leq \operatorname{coth}(\operatorname{foc} N)$$
 if $a = -1$.

There is a similar theorem for k-submanifolds and Ric_k .

Theorem

Let M be a compact Riemannian manifold. Given D, r > 0 the class S of closed Riemannian manifolds that can be isometrically embedded into M with focal radius $\geq r$ and intrinsic diameter $\leq D$ is precompact in the $C^{1,\alpha}$ -topology. In particular, S contains only finitely many diffeomorphism types.

A soft connectivity principle

Theorem

Let *M* be a simply connected, complete Riemannian n-manifold with $\operatorname{Ric}_k M \ge k$, and let $N \subset M$ be a compact, connected, embedded, ℓ -dimensional submanifold. If for some $r \in [0, \frac{\pi}{2})$,

$$foc_N > r,$$
 (2)

and for all unit vectors v normal to N and all k-dimensional subspaces $W \subset TN$,

$$|\operatorname{Trace}(S_{\nu}|_{W})| \leq k \cot\left(\frac{\pi}{2} - r\right),$$
(3)

then the inclusion $N \hookrightarrow M$ is $(2\ell - n - k + 2)$ -connected.

Soft: hypothesis are satisfied for an C^2 -open set in the space of metrics and immersions.

Luis Guijarro (UAM-ICMAT)

Theorem (Soul theorem)

M a complete, noncompact manifold with sec ≥ 0 . Then there is a totally geodesic, totally convex compact submanifold $N \subset M$ such that *M* is diffeomorphic to the normal bundle of *S*.

The metric relation of how N sits inside M was described by Perelman.

Theorem (F.Wilhelm, LG)

M a complete, noncompact manifold with sec ≥ 0 . If *N* is a closed submanifold with infinite focal radius, then *N* is a soul of *M*.

< ロ > < 同 > < 三 > < 三

Theorem (Soul theorem for nonnegative Ric_k curvature)

Let M be a complete Riemannian n-manifold with $Ric_k \ge 0$, and let N be any closed submanifold of M with dim $(N) \ge k$ and infinite focal radius. Then

- N is totally geodesic;
- the normal bundle ν (N) with the pull back metric (exp[⊥]_N)^{*}(g) is a complete manifold with Ric_k ≥ 0, that covers M;
- N lies in ν (N) as in the description of Perelman's rigidity theorem (vertizontal flats, Riemannian submersion into N, etc.

< ロ > < 同 > < 三 > < 三