Bisectors and foliations in the complex hyperbolic space

Maciej Czarnecki
Uniwersytet Łódzki, Łódź, Poland

Symmetry and shape
Universidade de Santiago de Compostela, Spain
October 29, 2019

Summary

(1) Bisectors in complex hyperbolic spaces
(2) Complex cross-ratio and Goldman invariant
(3) Separating bisectors
(3) Representation in de Sitter space

Summary

(1) Bisectors in complex hyperbolic spaces
(2) Complex cross-ratio and Goldman invariant
(3) Separating bisectors
(3) Representation in de Sitter space

Summary

(1) Bisectors in complex hyperbolic spaces
(2) Complex cross-ratio and Goldman invariant
(3) Separating bisectors
(9) Representation in de Sitter space

Summary

(1) Bisectors in complex hyperbolic spaces
(2) Complex cross-ratio and Goldman invariant
(3) Separating bisectors
(C) Representation in de Sitter space

Summary

(1) Bisectors in complex hyperbolic spaces
(2) Complex cross-ratio and Goldman invariant
(3) Separating bisectors
(9) Representation in de Sitter space

Complex hyperbolic distance

Definition

For the Hermitian form $\langle X \mid Y\rangle=X_{1} \overline{Y_{1}}+\ldots+X_{n} \overline{Y_{n}}-X_{n+1} \overline{Y_{n+1}}$ in \mathbb{C}^{n+1} we define n-dimensional complex hyperbolic space as projectivization of negative vectors i.e.

$$
\mathbb{C} H^{n}=\left\{X \in \mathbb{C}^{n+1} \mid\langle X \mid X\rangle<0\right\} / \mathbb{C}^{*}
$$

and its ideal boundary $\mathbb{C} H^{n}(\infty)$ as projectivization of null vectors.
The Bergman metric makes $\mathbb{C} H^{n}$ an Hadamard manifold of sectional curvature between $-1 / 4$ and -1 and the distance given by

Complex hyperbolic distance

Definition

For the Hermitian form $\langle X \mid Y\rangle=X_{1} \overline{Y_{1}}+\ldots+X_{n} \overline{Y_{n}}-X_{n+1} \overline{Y_{n+1}}$ in \mathbb{C}^{n+1} we define n-dimensional complex hyperbolic space as projectivization of negative vectors i.e.

$$
\mathbb{C} H^{n}=\left\{X \in \mathbb{C}^{n+1} \mid\langle X \mid X\rangle<0\right\} / \mathbb{C}^{*}
$$

and its ideal boundary $\mathbb{C} H^{n}(\infty)$ as projectivization of null vectors.
The Bergman metric makes $\mathbb{C} H^{n}$ an Hadamard manifold of sectional curvature between $-1 / 4$ and -1 and the distance given by

$$
\cosh ^{2} \frac{d(x, y)}{2}=\frac{\langle X \mid Y\rangle\langle Y \mid X\rangle}{\langle X \mid X\rangle\langle Y \mid Y\rangle}
$$

Complex geodesics and complex hyperplanes

A complex geodesic is the projectivization of a vector space in \mathbb{C}^{n+1} spanned by two linearly indpent negative vectors. It is isometric to real hyperbolic plane $\mathbb{R} H^{2}$.

```
A complex hyperplane is the projectivization of a vector space in
\mathbb{C}}\mp@subsup{}{n+1}{c}\mathrm{ spanned by n linearly indpent negative vectors. It is isometric
to \mathbb{CH}}\mp@subsup{H}{}{n-1}\mathrm{ and orthogonal to a unit positive vector (its polar vector)
```


Proposition

I et H_{1} and H_{2} be complex hyperplanes in CH^{n} with polar vectors

(1) $H_{1} \cap H_{2}=\emptyset$ iff $\left|\left\langle C_{1} \mid C_{2}\right\rangle\right|>1$

Complex geodesics and complex hyperplanes

A complex geodesic is the projectivization of a vector space in \mathbb{C}^{n+1} spanned by two linearly indpent negative vectors. It is isometric to real hyperbolic plane $\mathbb{R} H^{2}$.

A complex hyperplane is the projectivization of a vector space in \mathbb{C}^{n+1} spanned by n linearly indpent negative vectors. It is isometric to $\mathbb{C} H^{n-1}$ and orthogonal to a unit positive vector (its polar vector)

Complex geodesics and complex hyperplanes

A complex geodesic is the projectivization of a vector space in \mathbb{C}^{n+1} spanned by two linearly indpent negative vectors. It is isometric to real hyperbolic plane $\mathbb{R} H^{2}$.

A complex hyperplane is the projectivization of a vector space in \mathbb{C}^{n+1} spanned by n linearly indpent negative vectors. It is isometric to $\mathbb{C} H^{n-1}$ and orthogonal to a unit positive vector (its polar vector)

Proposition

Let H_{1} and H_{2} be complex hyperplanes in $\mathbb{C} H^{n}$ with polar vectors C_{1} and C_{2}. Then
(1) $H_{1} \cap H_{2}=\emptyset$ iff $\left|\left\langle C_{1} \mid C_{2}\right\rangle\right|>1$.
(2) $\angle\left(H_{1}, H_{2}\right)=\alpha$ iff $\left|\left\langle C_{1} \mid C_{2}\right\rangle\right|=\cos \alpha$.

Bisectors

Definition

For $z_{1}, z_{2} \in \mathbb{C} H^{n}$ we define a bisector as an equidistant from z_{1} and z_{2}

$$
\mathfrak{E}\left(z_{1}, z_{2}\right)=\left\{z \mid d\left(z, z_{1}\right)=d\left(z, z_{2}\right)\right\} .
$$

Bisectors are in one-to-one correspondence with pairs of points on the ideal boundary $\mathbb{C} H^{n}(\infty)$. These points (called vertices of bisector) are ends of the unique geodesic line through z_{1} and z_{2}

For the bisector \mathfrak{E} of vertices p and q we call the geodesic line σ a spine while the complex geodesic

a complex spine. Observe that $\mathfrak{E} \cap \Sigma=\sigma$.

Bisectors

Definition

For $z_{1}, z_{2} \in \mathbb{C} H^{n}$ we define a bisector as an equidistant from z_{1} and z_{2}

$$
\mathfrak{E}\left(z_{1}, z_{2}\right)=\left\{z \mid d\left(z, z_{1}\right)=d\left(z, z_{2}\right)\right\} .
$$

Bisectors are in one-to-one correspondence with pairs of points on the ideal boundary $\mathbb{C} H^{n}(\infty)$. These points (called vertices of bisector) are ends of the unique geodesic line through z_{1} and z_{2}.

For the bisector \mathbb{E} of vertices p and q we call the geodesic line σ a spine while the complex geodesic

a complex spine. Observe that $\mathfrak{E} \cap \Sigma=\sigma$.

Bisectors

Definition

For $z_{1}, z_{2} \in \mathbb{C} H^{n}$ we define a bisector as an equidistant from z_{1} and z_{2}

$$
\mathfrak{E}\left(z_{1}, z_{2}\right)=\left\{z \mid d\left(z, z_{1}\right)=d\left(z, z_{2}\right)\right\} .
$$

Bisectors are in one-to-one correspondence with pairs of points on the ideal boundary $\mathbb{C} H^{n}(\infty)$. These points (called vertices of bisector) are ends of the unique geodesic line through z_{1} and z_{2}.

For the bisector \mathfrak{E} of vertices p and q we call the geodesic line σ a spine while the complex geodesic

$$
\Sigma=\operatorname{span}_{\mathbb{C}}(p, q) \cap \mathbb{C} H^{n} \simeq \mathbb{C} H^{1} \simeq \mathbb{R} H^{2}
$$

a complex spine. Observe that $\mathfrak{E} \cap \Sigma=\sigma$.

Properties of bisectors

(1) A bisector is a real analytic fibration over its spine with respect to the orthogonal projection onto the complex spine $\mathfrak{E}=\bigcup_{z \in \sigma} \Pi_{\Sigma}^{-1}(z)$ (slice decomposition).
(2) For $z \in \mathbb{C} H^{n}$ the bisector \mathbb{E} is equidistant from z iff $z \in \Sigma \backslash \sigma$
(3) A bisector is a real hypersurface which is Hadamard and even in $\mathbb{C} H^{2}$ it has 3 distinct principal curvatures: $-1,-1 / 4$ and some between $-1 / 2$ and $-1 / 4$.

Observe that in case of $\mathbb{R} H^{n}$ all these properties trivialize bisectors are totally geodesic.

Properties of bisectors

(1) A bisector is a real analytic fibration over its spine with respect to the orthogonal projection onto the complex spine $\mathfrak{E}=\bigcup_{z \in \sigma} \Pi_{\Sigma}^{-1}(z)$ (slice decomposition).
(2) For $z \in \mathbb{C} H^{n}$ the bisector \mathfrak{E} is equidistant from z iff $z \in \Sigma \backslash \sigma$.
(3) A bisector is a real hypersurface which is Hadamard and even in $\mathbb{C} H^{2}$ it has 3 distinct principal curvatures: $-1,-1 / 4$ and some between $-1 / 2$ and $-1 / 4$.

Observe that in case of $\mathbb{R} H^{n}$ all these properties trivialize bisectors are totally geodesic.

Properties of bisectors

(1) A bisector is a real analytic fibration over its spine with respect to the orthogonal projection onto the complex spine $\mathfrak{E}=\bigcup_{z \in \sigma} \Pi_{\Sigma}^{-1}(z)$ (slice decomposition).
(2) For $z \in \mathbb{C} H^{n}$ the bisector \mathfrak{E} is equidistant from z iff $z \in \Sigma \backslash \sigma$.
(3) A bisector is a real hypersurface which is Hadamard and even in $\mathbb{C} H^{2}$ it has 3 distinct principal curvatures: $-1,-1 / 4$ and some between $-1 / 2$ and $-1 / 4$.
(9) Every two bisectors are congruent

Observe that in case of $\mathbb{R} H^{n}$ all these properties trivialize -
bisectors are totally geodesic.

Properties of bisectors

(1) A bisector is a real analytic fibration over its spine with respect to the orthogonal projection onto the complex spine $\mathfrak{E}=\bigcup_{z \in \sigma} \Pi_{\Sigma}^{-1}(z)$ (slice decomposition).
(2) For $z \in \mathbb{C} H^{n}$ the bisector \mathfrak{E} is equidistant from z iff $z \in \Sigma \backslash \sigma$.
(3) A bisector is a real hypersurface which is Hadamard and even in $\mathbb{C} H^{2}$ it has 3 distinct principal curvatures: $-1,-1 / 4$ and some between $-1 / 2$ and $-1 / 4$.
(9) Every two bisectors are congruent

Observe that in case of $\mathbb{R} H^{n}$ all these properties trivialize bisectors are totally geodesic.

Properties of bisectors

(1) A bisector is a real analytic fibration over its spine with respect to the orthogonal projection onto the complex spine $\mathfrak{E}=\bigcup_{z \in \sigma} \Pi_{\Sigma}^{-1}(z)$ (slice decomposition).
(2) For $z \in \mathbb{C} H^{n}$ the bisector \mathfrak{E} is equidistant from z iff $z \in \Sigma \backslash \sigma$.
(3) A bisector is a real hypersurface which is Hadamard and even in $\mathbb{C} H^{2}$ it has 3 distinct principal curvatures: $-1,-1 / 4$ and some between $-1 / 2$ and $-1 / 4$.
(9) Every two bisectors are congruent

Observe that in case of $\mathbb{R} H^{n}$ all these properties trivialize bisectors are totally geodesic.

Spine and polar vectors of slices

Assume that a bisector \mathfrak{E} has vertices p and q represented by such null vectors that $\langle P \mid Q\rangle=-2$. Then
(1) its spine σ is parametrized by arc-length as

(2) a polar vector to a slice of \mathfrak{E} at $\gamma(t)$ is

Spine and polar vectors of slices

Assume that a bisector \mathfrak{E} has vertices p and q represented by such null vectors that $\langle P \mid Q\rangle=-2$. Then
(1) its spine σ is parametrized by arc-length as

$$
\gamma(t)=\frac{1}{2}\left(e^{-\frac{t}{2}} P+e^{\frac{t}{2}} Q\right)
$$

(2) a polar vector to a slice of \mathfrak{E} at $\gamma(t)$ is

Spine and polar vectors of slices

Assume that a bisector \mathfrak{E} has vertices p and q represented by such null vectors that $\langle P \mid Q\rangle=-2$. Then
(1) its spine σ is parametrized by arc-length as

$$
\gamma(t)=\frac{1}{2}\left(e^{-\frac{t}{2}} P+e^{\frac{t}{2}} Q\right)
$$

(2) a polar vector to a slice of \mathfrak{E} at $\gamma(t)$ is

$$
C(t)=\frac{1}{2}\left(e^{-\frac{t}{2}} P-e^{\frac{t}{2}} Q\right)
$$

Bisector foliations

Definition

A bisector foliation in $\mathbb{C} H^{n}$ is a foliation of all the leaves being bisectors.

> By the slice decomposition every bisector foliation decomposes in a (real) codimension 2 totally geodesic foliation of $\mathbb{C} H^{n}$

> Theorem (Cz, P. Walczak 2006, based on Ferus 1973)
> Every cospinal (i.e. having one common complex spine Σ of leaves) bisector foliations in $\mathbb{C} H^{n}$ is that of bisectors of (real) spines in $\Sigma \simeq \mathbb{R} H^{2}$ orthogonal to a curve of geodesic curvature ≤ 1

Bisector foliations

Definition

A bisector foliation in $\mathbb{C} H^{n}$ is a foliation of all the leaves being bisectors.

By the slice decomposition every bisector foliation decomposes in a (real) codimension 2 totally geodesic foliation of $\mathbb{C} H^{n}$.

> Theorem (Cz, P. Walczak 2006, based on Ferus 1973)
> Every cospinal (i.e. having one common complex spine Σ of leaves) bisector foliations in $\mathbb{C} H^{n}$ is that of bisectors of (real) spines in $\Sigma \simeq \mathbb{R} H^{2}$ orthogonal to a curve of geodesic curvature ≤ 1

Bisector foliations

Definition

A bisector foliation in $\mathbb{C} H^{n}$ is a foliation of all the leaves being bisectors.

By the slice decomposition every bisector foliation decomposes in a (real) codimension 2 totally geodesic foliation of $\mathbb{C} H^{n}$.

Theorem (Cz, P. Walczak 2006, based on Ferus 1973)

Every cospinal (i.e. having one common complex spine Σ of leaves) bisector foliations in $\mathbb{C} H^{n}$ is that of bisectors of (real) spines in $\Sigma \simeq \mathbb{R} H^{2}$ orthogonal to a curve of geodesic curvature ≤ 1.

Complex cross-ratio and Goldman invariant

Definition

A Korányi-Reimann complex cross-ratio assigns to a quadruple of points $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{C} H^{n}(\infty)$ a number

$$
\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=\frac{\left\langle X_{3} \mid X_{1}\right\rangle\left\langle X_{4} \mid X_{2}\right\rangle}{\left\langle X_{4} \mid X_{1}\right\rangle\left\langle X_{3} \mid X_{2}\right\rangle}
$$

Definition

For a bisector \mathfrak{E} of vertices p and q and a complex hyperplane H with polar vector C we define a Goldman invariant by

Complex cross-ratio and Goldman invariant

Definition

A Korányi-Reimann complex cross-ratio assigns to a quadruple of points $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{C} H^{n}(\infty)$ a number

$$
\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=\frac{\left\langle X_{3} \mid X_{1}\right\rangle\left\langle X_{4} \mid X_{2}\right\rangle}{\left\langle X_{4} \mid X_{1}\right\rangle\left\langle X_{3} \mid X_{2}\right\rangle}
$$

Definition

For a bisector \mathfrak{E} of vertices p and q and a complex hyperplane H with polar vector C we define a Goldman invariant by

$$
\eta(\mathfrak{E}, H)=\eta(p, q, c)=\frac{\langle P \mid C\rangle\langle C \mid Q\rangle}{\langle P \mid Q\rangle\langle C \mid C\rangle}
$$

Metric properties of $[,, ., .$,$] and \eta$

Theorem (Goldman, Mostow)
Let η be a Goldman invariant for a bisector \mathfrak{E} and a complex hyperplane H. Then $\mathfrak{E} \cap H=\emptyset$ iff $(\operatorname{Im} \eta)^{2}+2 \operatorname{Re} \eta \geq 1$.

Thus a condition for separating bisectors as functions of their ends?
No, because we obtain an equation of degree 8 involving cross-ratios of ends. Even in case case of distance of geodesics it could be unsolvable (M. Sandler example)

If we restrict to $n=2$ the following formula would be useful

Theorem (Parker)

Let σ_{1} and σ_{2} be geodesic lines in $\mathbb{C} H^{2}$ of ends p_{1}, q_{1} and p_{2}, q_{2} respectively. Then
$d\left(\sigma_{1}, \sigma_{2}\right) \geq\left|\left[p_{2}, q_{1}, p_{1}, q_{2}\right]\right|+\left|\left[q_{2}, q_{1}, p_{1}, p_{2}\right]\right|$

Metric properties of $[,, ., .$,$] and \eta$

Theorem (Goldman, Mostow)

Let η be a Goldman invariant for a bisector \mathfrak{E} and a complex hyperplane H. Then $\mathfrak{E} \cap H=\emptyset$ iff $(\operatorname{Im} \eta)^{2}+2 \operatorname{Re} \eta \geq 1$.

Thus a condition for separating bisectors as functions of their ends?

```
No, because we obtain an equation of degree }8\mathrm{ involving cross-ratios of
ends. Even in case case of distance of geodesics it could be unsolvable
(M. Sandler example)
If we restrict to n=2 the following formula would be useful
```


Theorem (Parker)

Let σ_{1} and σ_{2} be grodesic lines in $\mathbb{C H} H^{2}$ of ends p_{1}, q_{1} and p_{2}, q_{2} respectively. Then

Metric properties of $[,, ., .$,$] and \eta$

Theorem (Goldman, Mostow)

Let η be a Goldman invariant for a bisector \mathfrak{E} and a complex hyperplane H. Then $\mathfrak{E} \cap H=\emptyset$ iff $(\operatorname{Im} \eta)^{2}+2 \operatorname{Re} \eta \geq 1$.

Thus a condition for separating bisectors as functions of their ends?
No, because we obtain an equation of degree 8 involving cross-ratios of ends. Even in case case of distance of geodesics it could be unsolvable (M. Sandler example).

If we restrict to $n=2$ the following formula would be useful
Theorem (Parker)
Let σ_{1} and σ_{2} be geodesic lines in CH of ends p_{1}, q_{1} and p_{2}, q_{2} respectively. Then

Metric properties of $[,,,,$,$] and \eta$

Theorem (Goldman, Mostow)

Let η be a Goldman invariant for a bisector \mathfrak{E} and a complex hyperplane H. Then $\mathfrak{E} \cap H=\emptyset$ iff $(\operatorname{Im} \eta)^{2}+2 \operatorname{Re} \eta \geq 1$.

Thus a condition for separating bisectors as functions of their ends?
No, because we obtain an equation of degree 8 involving cross-ratios of ends. Even in case case of distance of geodesics it could be unsolvable (M. Sandler example).

If we restrict to $n=2$ the following formula would be useful

Theorem (Parker)

Let σ_{1} and σ_{2} be geodesic lines in $\mathbb{C} H^{2}$ of ends p_{1}, q_{1} and p_{2}, q_{2} respectively. Then

$$
d\left(\sigma_{1}, \sigma_{2}\right) \geq\left|\left[p_{2}, q_{1}, p_{1}, q_{2}\right]\right|+\left|\left[q_{2}, q_{1}, p_{1}, p_{2}\right]\right|
$$

Local separation of bisectors

In $\mathbb{C} H^{2}$ every complex geodesic is a complex hyperplane. For given bisectors \mathfrak{E}_{j} of vertices p_{j}, q_{j} we define their spines σ_{j}, complex spines Σ_{j}, and polar vectors $C_{j}, j=1,2$.
(1) Taking such representatives of p 's and q's that $\left\langle P_{j} \mid Q_{j}\right\rangle=-2$ we have $C_{j}=\frac{1}{4} P_{j} \boxtimes Q_{j}$ where \boxtimes denotes Hermitian cross-product in \mathbb{C}^{3}.
(2) Assume that complex hyperbolic reflection along $C_{1}-C_{2}$ sends σ_{2} onto geodesic disjoint with σ_{1}
(3) Then using complex hyperbolic trigonometry we find such $k=k\left(\angle\left(C_{1}, C_{2}\right)\right)$ that $d\left(\mathbb{E}_{1}, \mathbb{E}_{2}\right) \geq k d\left(\sigma_{1}, \sigma_{2}\right)$ for the angle
small enough
(9) Thus in terms of vertices of bisectors only (Parker's formula) we expressed separations of close bisectors. This is in fact enough for local condition on bisector foliation.

Local separation of bisectors

In $\mathbb{C} H^{2}$ every complex geodesic is a complex hyperplane. For given bisectors \mathfrak{E}_{j} of vertices p_{j}, q_{j} we define their spines σ_{j}, complex spines Σ_{j}, and polar vectors $C_{j}, j=1,2$.
(1) Taking such representatives of p 's and q 's that $\left\langle P_{j} \mid Q_{j}\right\rangle=-2$ we have $C_{j}=\frac{1}{4} P_{j} \boxtimes Q_{j}$ where \boxtimes denotes Hermitian cross-product in \mathbb{C}^{3}.
(2) Assume that complex hyperbolic reflection along $C_{1}-C_{2}$ sends σ_{2} onto geodesic disjoint with σ_{1}.
(3) Then using complex hyperbolic trigonometry we find such $k=k\left(\angle\left(C_{1}, C_{2}\right)\right)$ that $d\left(\mathbb{E}_{1}, \mathscr{E}_{2}\right) \geq k d\left(\sigma_{1}, \sigma_{2}\right)$ for the angle
small enough
(9) Thus in terms of vertices of bisectors only (Parker's formula) we expressed separations of close bisectors. This is in fact enough for local condition on bisector foliation.

Local separation of bisectors

In $\mathbb{C} H^{2}$ every complex geodesic is a complex hyperplane. For given bisectors \mathfrak{E}_{j} of vertices p_{j}, q_{j} we define their spines σ_{j}, complex spines Σ_{j}, and polar vectors $C_{j}, j=1,2$.
(1) Taking such representatives of p 's and q 's that $\left\langle P_{j} \mid Q_{j}\right\rangle=-2$ we have $C_{j}=\frac{1}{4} P_{j} \boxtimes Q_{j}$ where \boxtimes denotes Hermitian cross-product in \mathbb{C}^{3}.
(2) Assume that complex hyperbolic reflection along $C_{1}-C_{2}$ sends σ_{2} onto geodesic disjoint with σ_{1}.
(3) Then using complex hyperbolic trigonometry we find such $k=k\left(\angle\left(C_{1}, C_{2}\right)\right)$ that $d\left(\mathfrak{E}_{1}, \mathfrak{E}_{2}\right) \geq k d\left(\sigma_{1}, \sigma_{2}\right)$ for the angle small enough.
© Thus in terms of vertices of bisectors only (Parker's formula) we expressed separations of close bisectors. This is in fact enough for local condition on bisector foliation.

Local separation of bisectors

In $\mathbb{C} H^{2}$ every complex geodesic is a complex hyperplane. For given bisectors \mathfrak{E}_{j} of vertices p_{j}, q_{j} we define their spines σ_{j}, complex spines Σ_{j}, and polar vectors $C_{j}, j=1,2$.
(1) Taking such representatives of p 's and q 's that $\left\langle P_{j} \mid Q_{j}\right\rangle=-2$ we have $C_{j}=\frac{1}{4} P_{j} \boxtimes Q_{j}$ where \boxtimes denotes Hermitian cross-product in \mathbb{C}^{3}.
(2) Assume that complex hyperbolic reflection along $C_{1}-C_{2}$ sends σ_{2} onto geodesic disjoint with σ_{1}.
(3) Then using complex hyperbolic trigonometry we find such $k=k\left(\angle\left(C_{1}, C_{2}\right)\right)$ that $d\left(\mathfrak{E}_{1}, \mathfrak{E}_{2}\right) \geq k d\left(\sigma_{1}, \sigma_{2}\right)$ for the angle small enough.
(9) Thus in terms of vertices of bisectors only (Parker's formula) we expressed separations of close bisectors. This is in fact enough for local condition on bisector foliation.

Local separation of bisectors

In $\mathbb{C} H^{2}$ every complex geodesic is a complex hyperplane. For given bisectors \mathfrak{E}_{j} of vertices p_{j}, q_{j} we define their spines σ_{j}, complex spines Σ_{j}, and polar vectors $C_{j}, j=1,2$.
(1) Taking such representatives of p 's and q 's that $\left\langle P_{j} \mid Q_{j}\right\rangle=-2$ we have $C_{j}=\frac{1}{4} P_{j} \boxtimes Q_{j}$ where \boxtimes denotes Hermitian cross-product in \mathbb{C}^{3}.
(2) Assume that complex hyperbolic reflection along $C_{1}-C_{2}$ sends σ_{2} onto geodesic disjoint with σ_{1}.
(3) Then using complex hyperbolic trigonometry we find such $k=k\left(\angle\left(C_{1}, C_{2}\right)\right)$ that $d\left(\mathfrak{E}_{1}, \mathfrak{E}_{2}\right) \geq k d\left(\sigma_{1}, \sigma_{2}\right)$ for the angle small enough.
(9) Thus in terms of vertices of bisectors only (Parker's formula) we expressed separations of close bisectors. This is in fact enough for local condition on bisector foliation.

Representation in de Sitter space

(Real) de Sitter n-space Λ^{n} is a set of unit vectors in \mathbb{R}^{n+1} with respect to the standard Lorentz form. Every oriented totally geodesic hypersurface in $\mathbb{R} H^{n}$ is represented by a unique point on Λ^{n}.

Theorem (Cz, Langevin 2013)
A continuous and unbounded curve Γ in Λ^{n} represents a totally geodesic codimension 1 foliation of $\mathbb{R} H^{n}$ iff at every point the tangent vector to Γ is time-like or light-like.

Description of bisector foliation in complex de Sitter space $\mathbb{C} \wedge^{n}$ is much more complicated because every bisector is represented by a hyperbola. Thus we could follow conformal methods of studying Dupin foliation by Langevin and P. Walczak.

Representation in de Sitter space

(Real) de Sitter n-space Λ^{n} is a set of unit vectors in \mathbb{R}^{n+1} with respect to the standard Lorentz form. Every oriented totally geodesic hypersurface in $\mathbb{R} H^{n}$ is represented by a unique point on Λ^{n}.

Theorem (Cz, Langevin 2013)

A continuous and unbounded curve Γ in Λ^{n} represents a totally geodesic codimension 1 foliation of $\mathbb{R} H^{n}$ iff at every point the tangent vector to Γ is time-like or light-like.

Description of bisector foliation in complex de Sitter space $\mathbb{C} \wedge^{n}$ is
much more complicated because every bisector is represented by a hyperbola. Thus we could follow conformal methods of studying Dupin foliation by Langevin and P. Walczak.

Representation in de Sitter space

(Real) de Sitter n-space Λ^{n} is a set of unit vectors in \mathbb{R}^{n+1} with respect to the standard Lorentz form. Every oriented totally geodesic hypersurface in $\mathbb{R} H^{n}$ is represented by a unique point on Λ^{n}.

Theorem (Cz, Langevin 2013)

A continuous and unbounded curve Γ in Λ^{n} represents a totally geodesic codimension 1 foliation of $\mathbb{R} H^{n}$ iff at every point the tangent vector to Γ is time-like or light-like.

Description of bisector foliation in complex de Sitter space $\mathbb{C} \Lambda^{n}$ is much more complicated because every bisector is represented by a hyperbola. Thus we could follow conformal methods of studying Dupin foliation by Langevin and P. Walczak.

¡Moitas grazas! Thank you! ¡Muchas gracias!

Advertisement

Spanish-Polish Mathematical Meeting

Łódź, September 6-10, 2021

RSME, SEMA, CSM
+ PTM (=Sociedad Matematica Polaca)

