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Complex hyperbolic distance

Definition

For the Hermitian form 〈X |Y 〉 = X1Y1 + . . .+ XnYn − Xn+1Yn+1

in Cn+1 we define n–dimensional complex hyperbolic space as
projectivization of negative vectors i.e.

CHn =
{
X ∈ Cn+1 | 〈X |X 〉 < 0

}
/C∗

and its ideal boundary CHn(∞) as projectivization of null vectors.

The Bergman metric makes CHn an Hadamard manifold of
sectional curvature between −1/4 and −1 and the distance given
by

cosh2 d(x , y)

2
=
〈X |Y 〉〈Y |X 〉
〈X |X 〉〈Y |Y 〉

.
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Complex geodesics and complex hyperplanes

A complex geodesic is the projectivization of a vector space in
Cn+1 spanned by two linearly indpent negative vectors. It is
isometric to real hyperbolic plane RH2.

A complex hyperplane is the projectivization of a vector space in
Cn+1 spanned by n linearly indpent negative vectors. It is isometric
to CHn−1 and orthogonal to a unit positive vector (its polar vector)

Proposition

Let H1 and H2 be complex hyperplanes in CHn with polar vectors
C1 and C2. Then

1 H1 ∩ H2 = ∅ iff |〈C1|C2〉| > 1.

2 ∠(H1,H2) = α iff |〈C1|C2〉| = cosα.
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Bisectors

Definition

For z1, z2 ∈ CHn we define a bisector as an equidistant from z1

and z2

E(z1, z2) = {z | d(z , z1) = d(z , z2)}.

Bisectors are in one-to-one correspondence with pairs of points on
the ideal boundary CHn(∞). These points (called vertices of
bisector) are ends of the unique geodesic line through z1 and z2.

For the bisector E of vertices p and q we call the geodesic line σ a
spine while the complex geodesic

Σ = spanC (p, q) ∩ CHn ' CH1 ' RH2

a complex spine. Observe that E ∩ Σ = σ.
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Properties of bisectors

1 A bisector is a real analytic fibration over its spine with
respect to the orthogonal projection onto the complex spine
E =

⋃
z∈σ Π−1

Σ (z) (slice decomposition).

2 For z ∈ CHn the bisector E is equidistant from z iff
z ∈ Σ \ σ.

3 A bisector is a real hypersurface which is Hadamard and even
in CH2 it has 3 distinct principal curvatures: −1, −1/4 and
some between −1/2 and −1/4.

4 Every two bisectors are congruent

Observe that in case of RHn all these properties trivialize —
bisectors are totally geodesic.
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Spine and polar vectors of slices

Assume that a bisector E has vertices p and q represented by such
null vectors that 〈P|Q〉 = −2. Then

1 its spine σ is parametrized by arc–length as

γ(t) =
1

2

(
e−

t
2P + e

t
2Q
)

2 a polar vector to a slice of E at γ(t) is

C (t) =
1

2

(
e−

t
2P − e

t
2Q
)
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Bisector foliations

Definition

A bisector foliation in CHn is a foliation of all the leaves being
bisectors.

By the slice decomposition every bisector foliation decomposes in a
(real) codimension 2 totally geodesic foliation of CHn.

Theorem (Cz, P. Walczak 2006, based on Ferus 1973)

Every cospinal (i.e. having one common complex spine Σ of leaves)
bisector foliations in CHn is that of bisectors of (real) spines in
Σ ' RH2 orthogonal to a curve of geodesic curvature ≤ 1.
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Complex cross–ratio and Goldman invariant

Definition

A Korányi–Reimann complex cross–ratio assigns to a quadruple of
points x1, x2, x3, x4 ∈ CHn(∞) a number

[x1, x2, x3, x4] =
〈X3|X1〉〈X4|X2〉
〈X4|X1〉〈X3|X2〉

Definition

For a bisector E of vertices p and q and a complex hyperplane H
with polar vector C we define a Goldman invariant by

η(E,H) = η(p, q, c) =
〈P|C 〉〈C |Q〉
〈P|Q〉〈C |C 〉
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Metric properties of [., ., ., .] and η

Theorem (Goldman, Mostow)

Let η be a Goldman invariant for a bisector E and a complex
hyperplane H. Then E ∩ H = ∅ iff (Im η)2 + 2Re η ≥ 1.

Thus a condition for separating bisectors as functions of their ends?

No, because we obtain an equation of degree 8 involving cross–ratios of
ends. Even in case case of distance of geodesics it could be unsolvable
(M. Sandler example).

If we restrict to n = 2 the following formula would be useful

Theorem (Parker)

Let σ1 and σ2 be geodesic lines in CH2 of ends p1, q1 and p2, q2

respectively. Then

d(σ1, σ2) ≥ |[p2, q1, p1, q2]|+ |[q2, q1, p1, p2]|
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Local separation of bisectors

In CH2 every complex geodesic is a complex hyperplane. For given
bisectors Ej of vertices pj , qj we define their spines σj , complex
spines Σj , and polar vectors Cj , j = 1, 2.

1 Taking such representatives of p’s and q’s that 〈Pj |Qj〉 = −2
we have Cj = 1

4Pj � Qj where � denotes Hermitian
cross–product in C3.

2 Assume that complex hyperbolic reflection along C1 − C2

sends σ2 onto geodesic disjoint with σ1.

3 Then using complex hyperbolic trigonometry we find such
k = k(∠(C1,C2)) that d(E1,E2) ≥ kd(σ1, σ2) for the angle
small enough.

4 Thus in terms of vertices of bisectors only (Parker’s formula)
we expressed separations of close bisectors. This is in fact
enough for local condition on bisector foliation.
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Representation in de Sitter space

(Real) de Sitter n–space Λn is a set of unit vectors in Rn+1 with
respect to the standard Lorentz form. Every oriented totally
geodesic hypersurface in RHn is represented by a unique point on
Λn.

Theorem (Cz, Langevin 2013)

A continuous and unbounded curve Γ in Λn represents a totally
geodesic codimension 1 foliation of RHn iff at every point the
tangent vector to Γ is time–like or light–like.

Description of bisector foliation in complex de Sitter space CΛn is
much more complicated because every bisector is represented by a
hyperbola. Thus we could follow conformal methods of studying
Dupin foliation by Langevin and P. Walczak.
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¡Moitas grazas!
Thank you!

¡Muchas gracias!
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