Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

On Mean curvature flow of Singular Riemannian foliations: Non compact cases

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

[ACG19] Marcos M. Alexandrino, Leonardo F. Cavenaghi and Icaro Gonçalves, *Mean curvature flow of singular Riemannian foliations: Non compact cases*, arXiv:1909.04201 (2019)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular lear

Cylinder structure

Type 1

Definition

Given a Riemannian manifold M and an immersion $\varphi: L_0 \to M$, a smooth family of immersions $\varphi_t: L_0 \to M$, $t \in [0, T)$ is called a solution of the **mean curvature flow** (MCF for short) if φ_t satisfies the evolution equation

$$\frac{d}{dt}\varphi_t(x)=\vec{H}(t,x),$$

where $\vec{H}(t,x)$ is the mean curvature of $L(t) := \varphi_t(L_0)$.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Definition

A submanifold L of a space form M(k) is called **isoparametric** if its normal bundle is flat and the principal curvatures along any parallel normal vector field are constant.

An **isoparametric foliation** \mathcal{F} on M(k) is a partition of M(k) by submanifolds parallel to a given isoparametric submanifold L.

Jurgen Berndt, Sergio Console, Carlos Enrique Olmos Submanifolds and Holonomy Chapman & Hall/CRC Monographs and Research Notes in Mathematics(2003)

G. Thorbergsson, *Singular Riemannian Foliations and Isoparametric Submanifolds* Milan J. Math. Vol. 78 (2010) 355–370

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular lear

Cylinder structure

Type 1

Definition

A singular foliation $\mathcal{F} = \{L\}$ is called a **generalized** isoparametric if

• *F* is **Riemannian**, i.e., every geodesic perpendicular to one leaf is perpendicular to every leaf it meets.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leat

Cylinder structure

Type 1

Definition

A singular foliation $\mathcal{F} = \{L\}$ is called a **generalized** isoparametric if

1 *F* is **Riemannian**, i.e., every geodesic perpendicular to one leaf is perpendicular to every leaf it meets.

2 the mean curvature field \vec{H} is **basic** in the principal stratum M^0

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Definition

A singular foliation $\mathcal{F} = \{L\}$ is called a **generalized** isoparametric if

• *F* is **Riemannian**, i.e., every geodesic perpendicular to one leaf is perpendicular to every leaf it meets.

2 the mean curvature field \vec{H} is **basic** in the principal stratum M^0

Examples:

- 1 $\mathcal{F} = \{G(x)\}_{x \in M}$, where G is Lie subgroup of Iso(M)
- 2 isoparametric foliations,
- 3 Singular Riemannian foliations with compact leaves on ℝⁿ, Sⁿ and projective spaces (see Clifford foliations for non homogenous examples).

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Example (Holonomy foliations)

- L is a Riemannian manifold ,
- E is a Euclidean vector bundle over L (i.e., with an inner product (,)_p on each fiber E_p)
- ∇^{E} is a metric connection on E, i.e.

$$X\langle \xi, \eta \rangle = \langle \nabla_X^E \xi, \eta \rangle + \langle \xi, \nabla_X^E \eta \rangle.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• the connection (Sasaki) metric g^E on E

Define the **holonomy foliation** \mathcal{F}^h on E, by declaring two vectors $\xi, \eta \in E$ in the same leaf if they can be connected to one another via a composition of parallel transports (with respect to ∇^E).

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Example (Model)

Consider a Euclidean vector bundle $\mathbb{R}^n \to E \to L$, with a metric connection ∇^E and a the Sasaki metric g^E . Let $\mathcal{F}_p^0 = \{L_{\xi}^0\}_{\xi \in E_p}$ be a SRF with compact leaves on the fiber E_p . Assume \mathcal{F}^0 is invariant by the the holonomy group H_p at p i.e., the group sends leaves to leaves.

F = {L_ξ}_{ξ∈E_p} with leaves L_ξ = H(L⁰_ξ) where H is the holonomy groupoid associate to the connection ∇^E.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Example (Model)

Consider a Euclidean vector bundle $\mathbb{R}^n \to E \to L$, with a metric connection ∇^E and a the Sasaki metric g^E . Let $\mathcal{F}_p^0 = \{L_{\xi}^0\}_{\xi \in E_p}$ be a SRF with compact leaves on the fiber E_p . Assume \mathcal{F}^0 is invariant by the the holonomy group H_p at p i.e., the group sends leaves to leaves.

F = {L_ξ}_{ξ∈E_p} with leaves L_ξ = H(L⁰_ξ) where H is the holonomy groupoid associate to the connection ∇^E.

ACG19 + Alexandrino, Inagaki, Struchiner(18) imply

Lemma (Semi-local Model)

Let \mathcal{F} be a SRF with closed leaves. Then $\mathcal{F}|_{\operatorname{Tub}_{\epsilon}(L_q)}$ is foliated diffeomorphic to the foliation defined in Model. Therefore $\operatorname{Tub}_{\epsilon}(L_q)$ admits a metric so that $\mathcal{F}|_{\operatorname{Tub}_{\epsilon}(L_q)}$ is a generalized isoparametric foliation.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular lea

Cylinder structure

Type 1

Theorem A (ACG19)

Let $\mathcal{F} := \{L\}$ be a generalized isoparametric foliation with closed leaves on a complete manifold M so that M/\mathcal{F} is compact. Let $L_0 \in \mathcal{F}$ be a regular leaf of M and let L(t) denote the MCF evolution of L_0 . Assume that $T < \infty$. Then:

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular lea

Cylinder structure

Type 1

Theorem A (ACG19)

Let $\mathcal{F} := \{L\}$ be a generalized isoparametric foliation with closed leaves on a complete manifold M so that M/\mathcal{F} is compact. Let $L_0 \in \mathcal{F}$ be a regular leaf of M and let L(t) denote the MCF evolution of L_0 . Assume that $T < \infty$. Then:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(a) L(t) converges to a singular leaf L_T of \mathcal{F} .

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Theorem A (ACG19)

Let $\mathcal{F} := \{L\}$ be a generalized isoparametric foliation with closed leaves on a complete manifold M so that M/\mathcal{F} is compact. Let $L_0 \in \mathcal{F}$ be a regular leaf of M and let L(t) denote the MCF evolution of L_0 . Assume that $T < \infty$. Then:

(a) L(t) converges to a singular leaf L_T of \mathcal{F} .

(b) If the curvature of M is bounded and the shape operator along each leaf is bounded, then φ_t(p) converges to a point of L_T, for each p ∈ L(0). In addition the singularity is of type I, i.e.,

 $\limsup_{t\to T^-} \|A_t\|_{\infty}^2(T-t) < \infty,$

where $||A_t||_{\infty}$ is the sup norm of the second fundamental form of L(t).

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular lea

Cylinder structure

Type 1

Lemma (basins of attraction)

Let L_q be a singular leaf. Then there exists an $\epsilon = \epsilon(L_q)$ such that if $L(t_0)$ lies in $\text{Tub}_{\epsilon}(L_q)$ we have:

(a) For any $t > t_0$ the distance $r(t) = dist(L(t), L_q)$ satisfies

$$C_1^2(t-t_0) \leq r^2(t_0) - r^2(t) \leq C_2^2(t-t_0)$$

where C_1 and C_2 are positive constants that depend only on $\operatorname{Tub}_{\epsilon}(L_q)$.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Lemma (basins of attraction)

Let L_q be a singular leaf. Then there exists an $\epsilon = \epsilon(L_q)$ such that if $L(t_0)$ lies in $\text{Tub}_{\epsilon}(L_q)$ we have:

(a) For any $t > t_0$ the distance $r(t) = dist(L(t), L_q)$ satisfies

$$C_1^2(t-t_0) \leq r^2(t_0) - r^2(t) \leq C_2^2(t-t_0)$$

where C_1 and C_2 are positive constants that depend only on $\operatorname{Tub}_{\epsilon}(L_q)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

(b) $T < \infty$ and $L(t) \subset \text{Tub}_{\epsilon}(L_q)$ for all $t \in (t_0, T)$.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Lemma (basins of attraction)

Let L_q be a singular leaf. Then there exists an $\epsilon = \epsilon(L_q)$ such that if $L(t_0)$ lies in $\text{Tub}_{\epsilon}(L_q)$ we have:

(a) For any $t > t_0$ the distance $r(t) = dist(L(t), L_q)$ satisfies

$$C_1^2(t-t_0) \leq r^2(t_0) - r^2(t) \leq C_2^2(t-t_0)$$

where C_1 and C_2 are positive constants that depend only on $\operatorname{Tub}_{\epsilon}(L_q)$.

(b) $T < \infty$ and $L(t) \subset Tub_{\epsilon}(L_q)$ for all $t \in (t_0, T)$.

(c) If L(t) converges to L_q at time T then for any $t \in (t_0, T]$,

$$C_1\sqrt{T-t} \leq r(t) \leq C_2\sqrt{T-t}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Sketch of proof of lemma

(1)
$$r'(t) = \langle \nabla r, \varphi'_t(p) \rangle = \langle \nabla r, \vec{H}(t) \rangle = \operatorname{tr}(A_{\nabla r})$$

イロト 不得 トイヨト イヨト

€ 990

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular lea

Cylinder structure

Type 1

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular lea

Cylinder structure

Type 1

Sketch of proof of lemma

(1)
$$r'(t) = \langle \nabla r, \varphi'_t(p) \rangle = \langle \nabla r, \vec{H}(t) \rangle = \operatorname{tr}(A_{\nabla r})$$

(2) $-\frac{\tilde{c}_2}{r} - c \leq \operatorname{tr}A_{\nabla r} \leq -\frac{\tilde{c}_1}{r} + c$, from lemma semi-local model.

イロト 不得 トイヨト イヨト

€ 990

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular lea

Cylinder structure

Type 1

Sketch of proof of lemma

(1) $r'(t) = \langle \nabla r, \varphi'_t(p) \rangle = \langle \nabla r, \vec{H}(t) \rangle = \operatorname{tr}(A_{\nabla r})$ (2) $-\frac{\tilde{C}_2}{r} - c \leq \operatorname{tr}A_{\nabla r} \leq -\frac{\tilde{C}_1}{r} + c.$, from lemma semi-local model.

Set
$$\frac{C_1^2}{2} := \tilde{C}_1 - \epsilon c$$
 and $\frac{C_2^2}{2} := \tilde{C}_2 + \epsilon c$

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leat

Cylinder structure

Type 1

Sketch of proof of lemma

(1) $r'(t) = \langle \nabla r, \varphi'_t(p) \rangle = \langle \nabla r, \vec{H}(t) \rangle = \operatorname{tr}(A_{\nabla r})$ (2) $-\frac{\tilde{C}_2}{r} - c \leq \operatorname{tr}A_{\nabla r} \leq -\frac{\tilde{C}_1}{r} + c.$, from lemma semi-local model. Set $\frac{C_1^2}{2} := \tilde{C}_1 - \epsilon c$ and $\frac{C_2^2}{2} := \tilde{C}_2 + \epsilon c$ Eq. (1) and eq. (2) imply

•
$$-\frac{C_2^2}{2r(t)} \le r'(t) \le -\frac{C_1^2}{2r(t)}$$

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Sketch of proof of lemma

(1) $r'(t) = \langle \nabla r, \varphi'_t(p) \rangle = \langle \nabla r, \vec{H}(t) \rangle = \operatorname{tr}(A_{\nabla r})$ (2) $-\frac{\tilde{C}_2}{r} - c \leq \operatorname{tr}A_{\nabla r} \leq -\frac{\tilde{C}_1}{r} + c.$, from lemma semi-local model. Set $\frac{C_1^2}{2} := \tilde{C}_1 - \epsilon c$ and $\frac{C_2^2}{2} := \tilde{C}_2 + \epsilon c$ Eq. (1) and eq. (2) imply

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• $-\frac{C_2^2}{2r(t)} \le r'(t) \le -\frac{C_1^2}{2r(t)}$ • $-C_2^2 \le 2r(t)r'(t) \le -C_1^2$

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Sketch of proof of lemma

(1) $r'(t) = \langle \nabla r, \varphi'_t(p) \rangle = \langle \nabla r, \vec{H}(t) \rangle = \operatorname{tr}(A_{\nabla r})$ (2) $-\frac{\tilde{C}_2}{r} - c \leq \operatorname{tr}A_{\nabla r} \leq -\frac{\tilde{C}_1}{r} + c.$, from lemma semi-local model. Set $\frac{C_1^2}{2} := \tilde{C}_1 - \epsilon c$ and $\frac{C_2^2}{2} := \tilde{C}_2 + \epsilon c$ Eq. (1) and eq. (2) imply

•
$$-\frac{C_2^2}{2r(t)} \le r'(t) \le -\frac{C_1^2}{2r(t)}$$

• $-C_2^2 \le 2r(t)r'(t) \le -C_1^2$
• $C_1^2(t-t_0) \le r^2(t_0) - r^2(t) \le C_2^2(t-t_0)$ Q.E.D

Proof of item (a) of Theorem A the fact that M/\mathcal{F} is compact, $T < \infty$ and the lemma imply $L(t) \rightarrow L_T$ Q.E.D

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Proposition (ACG19)

Let M be a compact Riemannian manifold and \mathcal{F} be a generalized isoparametric foliation on M, with possible non-closed leaves. Assume that the MCF $t \rightarrow L(t)$ of a regular leaf L(0) as initial datum has $T < \infty$.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Proposition (ACG19)

Let M be a compact Riemannian manifold and \mathcal{F} be a generalized isoparametric foliation on M, with possible non-closed leaves. Assume that the MCF $t \to L(t)$ of a regular leaf L(0) as initial datum has $T < \infty$. Then $t \to L(t)$ must converge to the closure of a singular leaf. In other words, $\pi(L(t))$ converges to a singular point of $M/\overline{\mathcal{F}}$, where $\pi: M \to M/\overline{\mathcal{F}}$ is the canonical projection.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular lear

Cylinder structure

Type 1

Lemma Under bounded curvature conditions, if $N \subset \partial \operatorname{Tub}_{\epsilon}(L)$ then $-\frac{C}{r(x)} - c_1 \leq \operatorname{tr}(A_{\nabla r}) \leq -\frac{C}{r(x)} + c_1$, where dim $N > \dim L$.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Lemma Under bounded curvature conditions, if $N \subset \partial \operatorname{Tub}_{\epsilon}(L)$ then $-\frac{C}{r(x)} - c_1 \leq \operatorname{tr}(A_{\nabla r}) \leq -\frac{C}{r(x)} + c_1$, where dim $N > \dim L$.

Proposition (ACG19)

Let \mathcal{F} be a SRF with closed leaves on a complete manifold (M, g). Assume that

(a1) *M* has bounded sectional curvature;

(a2) the shape operator along each leaf L ∈ F is bounded;
(a3) M/F is compact.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Lemma Under bounded curvature conditions, if $N \subset \partial \operatorname{Tub}_{\epsilon}(L)$ then $-\frac{C}{r(x)} - c_1 \leq \operatorname{tr}(A_{\nabla r}) \leq -\frac{C}{r(x)} + c_1$, where dim $N > \dim L$.

Proposition (ACG19)

Let \mathcal{F} be a SRF with closed leaves on a complete manifold (M, g). Assume that

- (a1) *M* has bounded sectional curvature;
- (a2) the shape operator along each leaf $L \in \mathcal{F}$ is bounded;
- (a3) M/\mathcal{F} is compact.
- (b1) N is a immersed sub.manifold in a regular leaf;
- (b2) dim $N > \dim \operatorname{singular} \operatorname{leaves};$

(b3) MCF $t \to N(t)$ is a restriction of a \mathcal{F} -basic flow; (b4) $T < \infty$.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Lemma Under bounded curvature conditions, if $N \subset \partial \operatorname{Tub}_{\epsilon}(L)$ then $-\frac{C}{r(x)} - c_1 \leq \operatorname{tr}(A_{\nabla r}) \leq -\frac{C}{r(x)} + c_1$, where dim $N > \dim L$.

Proposition (ACG19)

Let \mathcal{F} be a SRF with closed leaves on a complete manifold (M, g). Assume that

- (a1) *M* has bounded sectional curvature;
- (a2) the shape operator along each leaf $L \in \mathcal{F}$ is bounded;
- (a3) M/\mathcal{F} is compact.
- (b1) N is a immersed sub.manifold in a regular leaf;
- (b2) dim $N > \dim \operatorname{singular} \operatorname{leaves};$
- (b3) MCF $t \to N(t)$ is a restriction of a \mathcal{F} -basic flow; (b4) $T < \infty$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Then N(t) converges to a singular leaf L.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular lea

Cylinder structure

Type 1

Sketch of proof: Type I convergence

Let $f^0(t)$ be the distance between L_x and its focal set with respect with g^0 . From Radeschi and Alexandrino (2015) $f^0(t) \ge C\sqrt{T-t}$. We also have that $||A^0(t)||_0 = \frac{1}{t^0(t)}$

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Sketch of proof: Type I convergence

Let $f^0(t)$ be the distance between L_x and its focal set with respect with g^0 . From Radeschi and Alexandrino (2015) $f^0(t) \ge C\sqrt{T-t}$. We also have that $||A^0(t)||_0 = \frac{1}{f^0(t)}$

(1) $\|A^0(t)\|_0\sqrt{T-t} \leq C$ (from the above discussion).

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Sketch of proof: Type I convergence

Let $f^0(t)$ be the distance between L_x and its focal set with respect with g^0 . From Radeschi and Alexandrino (2015) $f^0(t) \ge C\sqrt{T-t}$. We also have that $||A^0(t)||_0 = \frac{1}{f^0(t)}$

(1) $\|A^0(t)\|_0\sqrt{T-t} \leq C$ (from the above discussion).

(2) $||A_x(t)|| \le C_1 ||A_x^0(t)||_0 + C_3$ (holds for x close to q)

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Sketch of proof: Type I convergence

Let $f^0(t)$ be the distance between L_x and its focal set with respect with g^0 . From Radeschi and Alexandrino (2015) $f^0(t) \ge C\sqrt{T-t}$. We also have that $||A^0(t)||_0 = \frac{1}{f^0(t)}$

(1) $\|A^0(t)\|_0\sqrt{T-t} \leq C$ (from the above discussion).

(2) $||A_x(t)|| \le C_1 ||A_x^0(t)||_0 + C_3$ (holds for x close to q) (3) $H(t)|| \le C_1 ||A^0(t)||_0 + C_2$ (from lemma semi-local model)

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Sketch of proof: Type I convergence

Let $f^0(t)$ be the distance between L_x and its focal set with respect with g^0 . From Radeschi and Alexandrino (2015) $f^0(t) \ge C\sqrt{T-t}$. We also have that $||A^0(t)||_0 = \frac{1}{f^0(t)}$

(1) $\|A^0(t)\|_0\sqrt{T-t} \leq C$ (from the above discussion).

(2) $||A_x(t)|| \le C_1 ||A_x^0(t)||_0 + C_3$ (holds for x close to q)

(3) $H(t) \| \le C_1 \| A^0(t) \|_0 + C_2$ (from lemma semi-local model)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

4)
$$\|H(t)\|\sqrt{T-t} \leq C_4$$
 (from (1) and (3))

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Sketch of proof: Type I convergence

Let $f^0(t)$ be the distance between L_x and its focal set with respect with g^0 . From Radeschi and Alexandrino (2015) $f^0(t) \ge C\sqrt{T-t}$. We also have that $||A^0(t)||_0 = \frac{1}{f^0(t)}$

(1) $\|A^0(t)\|_0\sqrt{T-t} \leq C$ (from the above discussion).

(2) $\|A_x(t)\| \le C_1 \|A_x^0(t)\|_0 + C_3$ (holds for x close to q)

- (3) $H(t) \| \le C_1 \| A^0(t) \|_0 + C_2$ (from lemma semi-local model)
- (4) $||H(t)||\sqrt{T-t} \le C_4$ (from (1) and (3))
- (5) Eq. (4) implies the convergence of MCF in a relative compact neighborhoods.

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular leaf

Cylinder structure

Type 1

Sketch of proof: Type I convergence

Let $f^0(t)$ be the distance between L_x and its focal set with respect with g^0 . From Radeschi and Alexandrino (2015) $f^0(t) \ge C\sqrt{T-t}$. We also have that $||A^0(t)||_0 = \frac{1}{f^0(t)}$

(1) $||A^0(t)||_0 \sqrt{T-t} \leq C$ (from the above discussion).

(2) $||A_x(t)|| \le C_1 ||A_x^0(t)||_0 + C_3$ (holds for x close to q)

(3) $H(t) \le C_1 \|A^0(t)\|_0 + C_2$ (from lemma semi-local model)

4)
$$\|H(t)\|\sqrt{T-t} \le C_4$$
 (from (1) and (3))

(5) Eq. (4) implies the convergence of MCF in a relative compact neighborhoods.

(1), (2), (5) imply:

$$\|A_x(t)\|\sqrt{T-t} \leq C_5$$

and hence type I convergence.

On Mean
curvature
flow of
Singular
Riemannian
foliations:
Non
compact
cases

Marcos M. Alexandrino (IME-USP) In honor of Professor Jürgen Berndt's 60th birthday.

Definitions

ThmA

Basins of attraction

MCF of non-closed regular lea

Cylinder structure

Type 1

Thank you very much!

Moitíssimas grazas!

Vielen Dank!