On product minimal Lagrangian submanifolds in complex space forms

Marilena Moruz
fwo Postdoctoral researcher
\section*{KULEUVEN}
FACULTY OF SCIENCE

Symmetry and shape
Celebrating the 60th birthday of Prof. J. Berndt, Santiago de Compostela, Spain

October 31, 2019

Problem studied

jointly with X. Cheng, Z. Hu and L. Vrancken

Let

$$
\psi: M^{n} \longrightarrow \tilde{M}^{n}(4 \tilde{c})
$$

be a minimal Lagrangian submanifold immersion into a complex space form, where

$$
M^{n}=M_{1}^{n_{1}}\left(c_{1}\right) \times M_{2}^{n_{2}}\left(c_{2}\right)
$$

and $M_{1}^{n_{1}}\left(c_{1}\right), M_{2}^{n_{2}}\left(c_{2}\right)$
\checkmark are manifolds of real dimensions n_{1}, n_{2} respectively: $n_{1}+n_{2}=n$,
\checkmark have each constant sectional curvature c_{1} and c_{2}, respectively.

Motivation

Theorem 1 (N. Ejiri ${ }^{1}$)

Let M be an n-dimensional, totally real, minimal submanifold of constant sectional curvature c, immersed in an n-dimensional complex space form. Then M is totally geodesic or flat ($c=0$).
\checkmark there is a rich literature on minimal Lagrangian immersions of complex space forms
the present problem represents a generalization of the classical result of N. Ejiri.

[^0]
Background

- Kähler manifolds are defined as the almost Hermitian manifolds for which the almost complex structure J is parallel with respect to the Levi-Civita connection ∇.
- A complex n-dimensional complete and simply connected Kähler manifold of constant holomorphic sectional curvature $4 \tilde{c}$ is called a complex space form.
- Let $\tilde{M}^{n}(4 \tilde{c})$ denote a complex space form. Then, if
- $\tilde{c}>0: \tilde{M}^{n}(4 \tilde{c}) \equiv \mathbb{C P}^{n}$,
- $\tilde{c}=0: \tilde{M}^{n}(4 \tilde{c}) \equiv \mathbb{C}^{n}$,
- $\tilde{c}<0: \tilde{M}^{n}(4 \tilde{c}) \equiv \mathbb{C} \mathbb{H}^{n}$.

Background

Let M be a submanifold of a Kähler manifold and let $X \in T_{p} M$.
Given the behaviour of J on tangent vectors, M can be:

- almost complex: JX tangent.
* The almost complex submanifolds must have even dimension.
- totally real : JX normal. *lf, additionally, the dimension of M is half the dimension of the ambient space then M is called Lagrangian.
- CR: $T M=\mathcal{D}_{1} \oplus \mathcal{D}_{2}$.

Main equations

\checkmark The formulas of Gauss and Weingarten write out as:

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \tilde{\nabla}_{X} \xi=-A_{\xi} X+\nabla \frac{1}{x} \xi
$$

\checkmark Properties of J :

$$
\nabla_{X}^{\frac{1}{X} J Y}=J \nabla_{X} Y, \quad A_{J X} Y=-J h(X, Y)=A_{J Y} X
$$

\checkmark The equations of Gauss, Codazzi and Ricci are

$$
\begin{aligned}
R(X, Y) Z & =\tilde{c}(\langle Y, Z\rangle X-\langle X, Z\rangle Y)+\left[A_{J X}, A_{J Y}\right] Z \\
(\nabla h)(X, Y, Z) & =(\nabla h)(Y, X, Z) \\
R^{\perp}(X, Y) J Z & =\tilde{c}(\langle Y, Z\rangle J X-\langle X, Z\rangle J Y)+J\left[A_{J X}, A_{J Y}\right] Z
\end{aligned}
$$

A new equation - The Tsinghua Principle

 due to Li Haizhong, Luc Vrancken and Wang Xianfeng (2013)\checkmark need to have a tangential version of the Codazzi equation. After appying the Tsinghua principle, we obtain in our case:

$$
\begin{aligned}
0= & R(W, X) \operatorname{Jh}(Y, Z)-\operatorname{Jh}(Y, R(W, X) Z)+ \\
& R(X, Y) \operatorname{Jh}(W, Z)-\operatorname{Jh}(W, R(X, Y) Z)+ \\
& R(Y, W) \operatorname{Jh}(X, Z)-\operatorname{Jh}(X, R(Y, W) Z)
\end{aligned}
$$

\checkmark need to have an explicit expression for the curvature tensor:

$$
R(X, Y) Z=c_{1}\left(\left\langle Y_{1}, Z_{1}\right\rangle X_{1}-\left\langle X_{1}, Z_{1}\right\rangle Y_{1}\right)+c_{2}\left(\left\langle Y_{2}, Z_{2}\right\rangle X_{2}-\left\langle X_{2}, Z_{2}\right\rangle Y_{2}\right)
$$

where X_{i}, Y_{i}, Z_{i} are the projections of X, Y, Z on the $i^{t h}$ component of M^{n}, for $i=1,2$.

Theorem 2 (The main Theorem)

Let $\psi: M^{n} \longrightarrow \tilde{M}^{n}$ be a minimal Lagrangian submanifold into a complex space form. If $M^{n}=M_{1}^{n_{1}} \times M_{2}^{n_{2}}$, where $M_{1}^{n_{1}}$ and $M_{2}^{n_{2}}$ have constant sectional curvatures c_{1} and c_{2}, then $c_{1} c_{2}=0$. Moreover

1. $c_{1}=c_{2}=0 . M^{n}$ is equivalent to

- the totally geodesic immersion in $\mathbb{C}^{n_{1}+n_{2}}$,
- the Lagrangian flat torus in $\mathbb{C P}^{n_{1}+n_{2}}(4)$.

2. $c_{1} c_{2}=0, c_{1}^{2}+c_{2}^{2} \neq 0$. We must have $\tilde{c}>0$, so we may assume that the ambiant space is $\mathbb{C P}^{n_{1}+n_{2}}(4)$. We have that the lift of the immersion is congruent with

$$
\frac{1}{n+1}\left(e^{i u_{1}}, \ldots, e^{i u_{n_{1}}}, a e^{i u_{n_{1}+1}} y_{1}, \ldots, a e^{i u_{n_{1}+1}} y_{n_{2}+1}\right), \text { where }
$$

1. $\left(y_{1}, y_{2} \ldots, y_{n_{2}+1}\right)$ is the standard sphere $\mathbb{S}^{n_{2}} \subset \mathbb{R}^{n_{2}+1} \subset \mathbb{C}^{n_{2}+1}$,
2. $a=\sqrt{n-n_{1}+1}$,
3. $u_{n_{1}+1}=-\frac{1}{a^{2}}\left(u_{1}+\ldots+u_{n_{1}}\right)$.

Case $c_{1}=0$ and $c_{2} \neq 0$

Lemma 1

Let $\left\{X_{i}\right\}$ and $\left\{Y_{j}\right\}, i=1, \ldots n_{1}, j=1, \ldots n_{2}$ be orthonormal bases of $M_{1}^{n_{1}}$ and $M_{2}^{n_{2}}$, respectively. Then we have

$$
A_{J X_{i}} Y_{l}=\mu\left(X_{i}\right) Y_{l} .
$$

- It is straightforward to see that

$$
\left\langle A_{J X_{i}} Y_{k}, X_{j}\right\rangle=0 \text { and }\left\langle A_{J X_{i}} Y_{j}, Y_{k}\right\rangle=\left\{\begin{array}{l}
0, \text { if } j \neq k, \\
\mu\left(X_{i}\right), \text { if } j=k
\end{array}\right.
$$

Lemma 2 (Main Lemma)

There exist orthonormal frames of vector fields $\left\{X_{i}\right\},\left\{Y_{j}\right\}, i=1, \ldots, n_{1}$, $j=1, \ldots, n_{2}$ on $M_{1}^{n_{1}}$ and $M_{2}^{n_{2}}$ respectively, such that:

$$
\begin{align*}
& A_{J X_{1}} X_{1}=\lambda_{11} X_{1}, \\
& A_{J X_{i}} X_{i}=\mu_{1} X_{1}+\ldots+\mu_{i-1} X_{i-1}+\lambda_{i i} X_{i}, 1<i \leq n_{1}, \tag{1}\\
& A_{J X_{i}} X_{j}=\mu_{i} X_{j}, 1 \leq i<j, \\
& A_{J X_{i}} Y_{j}=\mu_{i} Y_{j}, 1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}
\end{align*}
$$

$$
\begin{equation*}
A_{J Y_{i}} Y_{j}=\delta_{i j}\left(\mu_{1} X_{1}+\ldots+\mu_{n_{1}} X_{n_{1}}\right) \tag{2}
\end{equation*}
$$

where $\lambda_{i i}, \mu_{i}$ are constant and satisfy

$$
\begin{align*}
& \lambda_{11}+(n-1) \mu_{1}=0, \\
& \lambda_{22}+(n-2) \mu_{2}=0, \tag{3}
\end{align*}
$$

$$
\lambda_{n_{1} n_{1}}+\left(n-n_{1}\right) \mu_{n_{1}}=0 .
$$

Determine explicitly the Lagrangian immersion

Theorem 3 (H. Li, X.Wang)

Let $\psi: M \longrightarrow \mathbb{C P}^{n}(4)$ be a Lagrangian immersion. Then ψ is locally a Calabi product Lagrangian immersion of an $(n-1)$-dimensional Lagrangian immersion $\psi_{1}: M_{1} \longrightarrow \mathbb{C P}^{n-1}(4)$ and a point iff \exists $\lambda_{1}, \lambda_{2} \in \mathbb{R}, \exists \mathcal{D}_{1}=\operatorname{span}\left\{E_{1}\right\}$ and $\mathcal{D}_{2}=\operatorname{span}\left\{E_{2}, \ldots, E_{n}\right\}$ such that

$$
\lambda_{1} \neq 2 \lambda_{2} \text { and }\left\{\begin{array}{l}
h\left(E_{1}, E_{1}\right)=\lambda_{1} J E_{1} \\
h\left(E_{1}, E_{i}\right)=\lambda_{2} J E_{i}, i=2, \ldots, n
\end{array}\right.
$$

Moreover, $\psi: M \longrightarrow \mathbb{C P}^{n}(4)$ satisfies:

- ψ is minimal iff ψ_{1} is minimal. Locally $M=I \times M_{1}$ and $\psi=\Pi \circ \tilde{\psi}$

$$
\tilde{\psi}(t, p)=\left(\sqrt{\frac{n}{n+1}} e^{i \frac{1}{n+1} t} \tilde{\psi}_{1}(p), \sqrt{\frac{1}{n+1}} e^{-i \frac{n}{n+1} t}\right),(t, p) \in I \times M_{1}
$$

where Π is the Hopf fibration and $\tilde{\psi}_{1}: M_{1} \longrightarrow S^{2 n-1}(1)$ is the horizontal lift of ψ_{1}.

Theorem 4 (H. Li, X.Wang)

Let $\psi: M \rightarrow \mathbb{C P}^{n}(4)$ be a Lagrangian immersion.

Suppose that:

$\exists \lambda_{1}, \lambda_{2}$ local functions,
$\exists \mathcal{D}_{1}=\operatorname{span}\left\{E_{1}\right\}$ and $\mathcal{D}_{2}=\operatorname{span}\left\{E_{2} \ldots, E_{n}\right\}$ orthogonal distributions s.t.

$$
\lambda_{1} \neq 2 \lambda_{2} \text { and }\left\{\begin{array}{l}
h\left(E_{1}, E_{1}\right)=\lambda_{1} J E_{1}, \\
h\left(E_{1}, E_{i}\right)=\lambda_{2} J E_{i}, \quad i=2, \ldots, n
\end{array}\right.
$$

Then M has parallel second fundamental form if and only if ψ is locally a Calabi product Lagrangian immersion of a point and an $(n-1)$-dimensional Lagrangian immersion $\psi_{1}: M_{1} \longrightarrow \mathbb{C P}^{n-1}(4)$ which has parallel second fundamental form.

Apply Theorem 3 on M^{n}

- On $M^{n}=M_{1} \times M_{2}$, consider \mathcal{D}_{1} spanned by X_{1} and \mathcal{D}_{2} spanned by $\left\{X_{2}, \ldots, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right\}$.
- given the form of $A_{J E_{1}}$ we may apply Theorem 2 (H. Li, X. Wang) $\Longrightarrow M^{n}$ is locally a Calabi product Lagrangian immersion of $\psi_{1}: M_{11} \longrightarrow \mathbb{C P}^{n-1}(4)$ and a point, i.e. $M^{n}=I_{1} \times M_{11}$.
- As ψ is minimal in our case, we get further that $\psi=\Pi \circ \tilde{\psi}$ for

$$
\tilde{\psi}(t, p)=\left(\sqrt{\frac{n}{n+1}} e^{i \frac{1}{n+1} t} \tilde{\psi}_{1}(p), \sqrt{\frac{1}{n+1}} e^{-i \frac{n}{n+1} t}\right),(t, p) \in I_{1} \times M_{1},
$$

where $\Pi: \mathbb{S}^{2 n-1}(1) \longrightarrow \mathbb{C P}^{n-1}(4)$ is the Hopf fibration and $\tilde{\psi}_{1}: M_{1} \longrightarrow \mathbb{S}^{2 n-1}(1)$ is the horizontal lift of ψ_{1}.

Apply Theorem 3 on M_{11}, where $M^{n}=I \times M_{11}$

- Consider next the immersion $\psi_{1}: M_{11} \longrightarrow \mathbb{C P}^{n-1}(4)$.
- the restriction A_{J}^{1} of the shape operator A_{J} on $\left\{X_{2}, \ldots, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right\}$ (which spans $T_{p} M_{11}$) is defined as

$$
\begin{align*}
A_{J X_{2}}^{1} X_{2} & =\lambda_{22} X_{2}, \\
A_{J X_{i}}^{1} X_{i} & =\mu_{2} X_{2}+\ldots+\mu_{i-1} X_{i-1}+\lambda_{i i} X_{i}, 2<i \leq n_{1}, \\
A_{J X_{i}}^{1} X_{j} & =\mu_{i} X_{j}, 2 \leq i<j, \tag{4}\\
A_{J X_{i}}^{1} Y_{j} & =\mu_{i} Y_{j}, 2 \leq i \leq n_{1}, 1 \leq j \leq n_{2}, \\
A_{J Y_{i}}^{1} Y_{j} & =\delta_{i j}\left(\mu_{2} X_{2}+\ldots+\mu_{n_{1}} X_{n_{1}}\right),
\end{align*}
$$

- We may then apply Theorem 3 (H. Li, X. Wang) on M_{11} : $\mathcal{D}_{1} \rightsquigarrow \operatorname{span}\left\{X_{2}\right\}, \quad \mathcal{D}_{2} \rightsquigarrow \operatorname{span}\left\{X_{3}, \ldots, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right\}$.
$\Longrightarrow M_{11}$ is locally a Calabi product Lagrangian immersion of $\psi_{2}: M_{12} \longrightarrow \mathbb{C P}^{n-2}(4)$ and a point: $M_{11}=I_{2} \times M_{12}, I_{2} \in \mathbb{R}$. Thus:

$$
M^{n}=I_{1} \times I_{2} \times M_{12}
$$

- As ψ_{2} is minimal, we further apply Theorem 3 and we get for $\psi_{1}=\Pi_{1} \circ \tilde{\psi}_{1}$ that

$$
\tilde{\psi}_{1}(t, p)=\left(\sqrt{\frac{n-1}{n}} e^{i \frac{1}{n} t} \tilde{\psi}_{2}(p), \sqrt{\frac{1}{n}} e^{-i \frac{n-1}{n} t}\right)
$$

where $(t, p) \in I_{2} \times M_{1}$,
$\Pi_{1}: \mathbb{S}^{2 n-3}(1) \longrightarrow \mathbb{C P}^{n-2}(4)$ is the Hopf fibration
$\tilde{\psi}_{2}: M_{12} \longrightarrow \mathbb{S}^{2 n-3}(1)$ is the horizontal lift of ψ_{2}.

- Apply succesively Theorem 3 for n_{1} times:
M^{n} is locally a Calabi product Lagrangian immersion of n_{1} points and an n_{2}-dimensional Lagrangian immersion

$$
\psi_{n_{1}}: M_{2}^{n_{2}} \longrightarrow \mathbb{C P}^{n-n_{1}}(4),
$$

where $M_{2}^{n_{2}}$ is totally geodesic.

$$
M^{n}=I_{1} \times I_{2} \times \ldots \times I_{n_{1}} \times M_{2}^{n_{2}}
$$

for $t_{1}, \ldots, I_{n_{1}} \in \mathbb{R}$. Finally, for $q \in M_{2}^{n_{2}}$ and $t:=\left(t_{1}, \ldots, t_{n_{1}}\right)$ the parametrization of M^{n} is:

$$
\begin{aligned}
\psi(t, q)= & \left(\frac{\sqrt{n-\left(n_{1}-1\right)}}{\sqrt{n+1}} e^{i u_{n_{1}+1}} y_{1}, \frac{\sqrt{n-\left(n_{1}-1\right)}}{\sqrt{n+1}} e^{i u_{n_{1}+1}} y_{2}, \ldots\right. \\
& \left.\frac{\sqrt{n-\left(n_{1}-1\right)}}{\sqrt{n+1}} e^{i u_{n_{1}+1}} y_{n_{2}+1}, \frac{1}{\sqrt{n+1}} e^{i u_{1}}, \ldots, \frac{1}{\sqrt{n+1}} e^{i u_{n_{1}}}\right),
\end{aligned}
$$

where $-\left(n-n_{1}+1\right) u_{n_{1}+1}=u_{1}+u_{2}+\ldots+u_{n_{1}}$ and

$$
\begin{aligned}
& u_{1}=-\frac{n}{n+1} t_{1} \\
& \ldots \\
& u_{n_{1}}=\frac{t_{1}}{n+1}+\frac{t_{2}}{n}+\ldots+\frac{t_{n_{1}-1}}{n-\left(n_{1}-2\right)+1}-\frac{n-\left(n_{1}-1\right)}{n-\left(n_{1}-1\right)+1} t_{n_{1}} \\
& u_{n_{1}+1}=\frac{t_{1}}{n+1}+\frac{t_{2}}{n}+\ldots+\frac{t_{n_{1}-1}}{n-\left(n_{1}-2\right)+1}+\frac{t_{n_{1}}}{n-\left(n_{1}-1\right)+1} .
\end{aligned}
$$

Recall

Theorem

Let $\psi: M^{n} \longrightarrow \tilde{M}^{n}$ be a minimal Lagrangian submanifold into a complex space form. If $M^{n}=M_{1}^{n_{1}} \times M_{2}^{n_{2}}$, where $M_{1}^{n_{1}}$ and $M_{2}^{n_{2}}$ have constant sectional curvatures c_{1} and c_{2}, then $c_{1} c_{2}=0$. Moreover

1. $c_{1}=c_{2}=0 . M^{n}$ is equivalent to

- the totally geodesic immersion in $\mathbb{C}^{n_{1}+n_{2}}$,
- the Lagrangian flat torus in $\mathbb{C P}^{n_{1}+n_{2}}(4)$.

2. $c_{1} c_{2}=0, c_{1}^{2}+c_{2}^{2} \neq 0$. We must have $\tilde{c}>0$, so we may assume that the ambiant space is $\mathbb{C P}^{n_{1}+n_{2}}(4)$. We have that the lift of the immersion is congruent with

$$
\frac{1}{n+1}\left(e^{i u_{1}}, \ldots, e^{i u_{n_{1}}}, a e^{i u_{n_{1}+1}} y_{1}, \ldots, a e^{i u_{n_{1}+1}} y_{n_{2}+1}\right)
$$

$-\left(y_{1}, y_{2} \ldots, y_{n_{2}+1}\right)$ describes the standard sphere $\mathbb{S}^{n_{2}} \subset \mathbb{R}^{n_{2}+1} \subset \mathbb{C}^{n_{2}+1}$,

- $a=\sqrt{n-n_{1}+1}, u_{n_{1}+1}=-\frac{1}{a^{2}}\left(u_{1}+\ldots+u_{n_{1}}\right)$.

Thank you!

[^0]: ${ }^{1} \mathrm{~N}$. Ejiri, Totally real minimal immersions of n-dimensional real space forms into n-dimensional complex space forms, Proc. Amer. Math. Soc. 84 (1982) 243-246.

