On product minimal Lagrangian submanifolds in complex space forms

MARILENA MORUZ

FACULTY OF SCIENCE

Symmetry and shape Celebrating the 60th birthday of Prof. J. Berndt, Santiago de Compostela, Spain

October 31, 2019

Problem studied jointly with X. Cheng, Z. Hu and L. Vrancken

Let

$$\psi: M^n \longrightarrow \tilde{M}^n(4\tilde{c})$$

be a minimal Lagrangian submanifold immersion into a complex space form, where

$$M^n = M_1^{n_1}(c_1) \times M_2^{n_2}(c_2)$$

and $M_1^{n_1}(c_1)$, $M_2^{n_2}(c_2)$

- \checkmark are manifolds of real dimensions n_1 , n_2 respectively: $n_1 + n_2 = n$,
- \checkmark have each constant sectional curvature c_1 and c_2 , respectively.

Motivation

Theorem 1 (N. Ejiri¹)

Let M be an n-dimensional, totally real, minimal submanifold of constant sectional curvature c, immersed in an n-dimensional complex space form. Then M is totally geodesic or flat (c = 0).

- $\checkmark\,$ there is a rich literature on minimal Lagrangian immersions of complex space forms
- $\checkmark\,$ the present problem represents a generalization of the classical result of N. Ejiri.

¹N. Ejiri, Totally real minimal immersions of n-dimensional real space forms into n-dimensional complex space forms, Proc. Amer. Math. Soc. 84 (1982) 243–246.

Background

- Kähler manifolds are defined as the almost Hermitian manifolds for which the almost complex structure J is parallel with respect to the Levi-Civita connection ∇.
- A complex *n*-dimensional complete and simply connected Kähler manifold of constant holomorphic sectional curvature 4*c̃* is called **a** complex space form.

• Let $\tilde{M}^n(4\tilde{c})$ denote a complex space form. Then, if

•
$$\tilde{c} > 0$$
: $\tilde{M}^n(4\tilde{c}) \equiv \mathbb{CP}^n$

$$\quad \tilde{c} = 0: \ M^n(4\tilde{c}) \equiv \mathbb{C}^n,$$

• $\tilde{c} < 0$: $\tilde{M}^n(4\tilde{c}) \equiv \mathbb{C}\mathbb{H}^n$.

Background

Let *M* be a submanifold of a Kähler manifold and let $X \in T_pM$. Given the behaviour of *J* on tangent vectors, *M* can be:

► almost complex : JX tangent.

*The almost complex submanifolds must have even dimension.

► totally real : JX normal.

 \star If, additionally, the dimension of *M* is half the dimension of the ambient space then *M* is called *Lagrangian*.

$$\blacktriangleright \ \mathsf{CR} : TM = \mathcal{D}_1 \oplus \mathcal{D}_2.$$

Main equations

 \checkmark The formulas of Gauss and Weingarten write out as:

$$ilde{
abla}_X Y =
abla_X Y + h(X,Y), \quad ilde{
abla}_X \xi = -A_{\xi}X +
abla_X^{\perp}\xi,$$

✓ Properties of J:

$$\nabla_X^{\perp} JY = J \nabla_X Y, \quad A_{JX} Y = -Jh(X, Y) = A_{JY} X.$$

 $\checkmark\,$ The equations of Gauss, Codazzi and Ricci are

$$\begin{aligned} R(X,Y)Z &= \tilde{c}(\langle Y,Z\rangle X - \langle X,Z\rangle Y) + [A_{JX},A_{JY}]Z,\\ (\nabla h)(X,Y,Z) &= (\nabla h)(Y,X,Z),\\ R^{\perp}(X,Y)JZ &= \tilde{c}(\langle Y,Z\rangle JX - \langle X,Z\rangle JY) + J[A_{JX},A_{JY}]Z \end{aligned}$$

A new equation – *The Tsinghua Principle* due to Li Haizhong, Luc Vrancken and Wang Xianfeng (2013)

✓ need to have a tangential version of the Codazzi equation. After appying the Tsinghua principle, we obtain in our case:

$$0 = R(W, X)Jh(Y, Z) - Jh(Y, R(W, X)Z) + R(X, Y)Jh(W, Z) - Jh(W, R(X, Y)Z) + R(Y, W)Jh(X, Z) - Jh(X, R(Y, W)Z).$$

 $\checkmark\,$ need to have an explicit expression for the curvature tensor:

 $R(X,Y)Z = c_1(\langle Y_1, Z_1 \rangle X_1 - \langle X_1, Z_1 \rangle Y_1) + c_2(\langle Y_2, Z_2 \rangle X_2 - \langle X_2, Z_2 \rangle Y_2),$

where X_i, Y_i, Z_i are the projections of X, Y, Z on the i^{th} component of M^n , for i = 1, 2.

Theorem 2 (The main Theorem)

Let $\psi: M^n \longrightarrow \tilde{M}^n$ be a minimal Lagrangian submanifold into a complex space form. If $M^n = M_1^{n_1} \times M_2^{n_2}$, where $M_1^{n_1}$ and $M_2^{n_2}$ have constant sectional curvatures c_1 and c_2 , then $c_1c_2 = 0$. Moreover

1. $c_1 = c_2 = 0$. M^n is equivalent to

- the totally geodesic immersion in $\mathbb{C}^{n_1+n_2}$,
- the Lagrangian flat torus in $\mathbb{CP}^{n_1+n_2}(4)$.
- 2. $c_1c_2 = 0$, $c_1^2 + c_2^2 \neq 0$. We must have $\tilde{c} > 0$, so we may assume that the ambiant space is $\mathbb{CP}^{n_1+n_2}(4)$. We have that the lift of the immersion is congruent with

$$\frac{1}{n+1}(e^{iu_1},\ldots,e^{iu_{n_1}},ae^{iu_{n_1+1}}y_1,\ldots,ae^{iu_{n_1+1}}y_{n_2+1}),$$
 where

1.
$$(y_1, y_2, \dots, y_{n_2+1})$$
 is the standard sphere $\mathbb{S}^{n_2} \subset \mathbb{R}^{n_2+1} \subset \mathbb{C}^{n_2+1}$,
2. $a = \sqrt{n - n_1 + 1}$,
3. $u_{n_1+1} = -\frac{1}{a^2}(u_1 + \dots + u_{n_1})$.

Case $c_1 = 0$ and $c_2 \neq 0$

Lemma 1

Let $\{X_i\}$ and $\{Y_j\}$, $i = 1, ..., n_1$, $j = 1, ..., n_2$ be orthonormal bases of $M_1^{n_1}$ and $M_2^{n_2}$, respectively. Then we have

$$A_{JX_i}Y_I = \mu(X_i)Y_I.$$

It is straightforward to see that

$$\langle A_{JX_i}Y_k, X_j \rangle = 0 \text{ and } \langle A_{JX_i}Y_j, Y_k \rangle = \begin{cases} 0, \text{ if } j \neq k, \\ \mu(X_i), \text{ if } j = k. \end{cases}$$

Lemma 2 (Main Lemma)

There exist orthonormal frames of vector fields $\{X_i\}$, $\{Y_j\}$, $i = 1, ..., n_1$, $j = 1, ..., n_2$ on $M_1^{n_1}$ and $M_2^{n_2}$ respectively, such that:

$$A_{JX_{1}}X_{1} = \lambda_{11}X_{1}, A_{JX_{i}}X_{i} = \mu_{1}X_{1} + \ldots + \mu_{i-1}X_{i-1} + \lambda_{ii}X_{i}, 1 < i \le n_{1}, A_{JX_{i}}X_{j} = \mu_{i}X_{j}, 1 \le i < j, A_{JX_{i}}Y_{j} = \mu_{i}Y_{j}, 1 \le i \le n_{1}, 1 \le j \le n_{2}$$
(1)

$$A_{JY_i}Y_j = \delta_{ij}(\mu_1 X_1 + \ldots + \mu_{n_1} X_{n_1}), \qquad (2)$$

where λ_{ii}, μ_i are constant and satisfy

$$\lambda_{11} + (n-1)\mu_1 = 0,$$

$$\lambda_{22} + (n-2)\mu_2 = 0,$$

$$\dots$$

$$\lambda_{n_1 n_1} + (n-n_1)\mu_{n_1} = 0.$$
(3)

Determine explicitly the Lagrangian immersion

Theorem 3 (H. Li, X.Wang)

Let $\psi : M \longrightarrow \mathbb{CP}^n(4)$ be a Lagrangian immersion. Then ψ is locally a Calabi product Lagrangian immersion of an (n-1)-dimensional Lagrangian immersion $\psi_1 : M_1 \longrightarrow \mathbb{CP}^{n-1}(4)$ and a point iff $\exists \lambda_1, \lambda_2 \in \mathbb{R}, \exists \mathcal{D}_1 = \text{span}\{E_1\}$ and $\mathcal{D}_2 = \text{span}\{E_2, \ldots, E_n\}$ such that

$$\lambda_1 \neq 2\lambda_2$$
 and
$$\begin{cases} h(E_1, E_1) = \lambda_1 J E_1, \\ h(E_1, E_i) = \lambda_2 J E_i, i = 2, \dots, n_2 \end{cases}$$

Moreover, $\psi: M \longrightarrow \mathbb{CP}^n(4)$ satisfies:

• ψ is minimal iff ψ_1 is minimal. Locally $M = I \times M_1$ and $\psi = \Pi \circ \tilde{\psi}$

$$\tilde{\psi}(t,p) = \left(\sqrt{\frac{n}{n+1}}e^{i\frac{1}{n+1}t}\tilde{\psi}_1(p), \sqrt{\frac{1}{n+1}}e^{-i\frac{n}{n+1}t}\right), \ (t,p) \in I \times M_1,$$

where Π is the Hopf fibration and $\tilde{\psi}_1 : M_1 \longrightarrow S^{2n-1}(1)$ is the horizontal lift of ψ_1 .

Theorem 4 (H. Li, X.Wang)

Let $\psi : M \to \mathbb{CP}^{n}(4)$ be a Lagrangian immersion. **Suppose that**: $\exists \lambda_{1}, \lambda_{2} \text{ local functions,}$ $\exists \mathcal{D}_{1} = span\{E_{1}\} \text{ and } \mathcal{D}_{2} = span\{E_{2}..., E_{n}\} \text{ orthogonal distributions s.t.}$

$$\lambda_1 \neq 2\lambda_2 \text{ and } \begin{cases} h(E_1, E_1) = \lambda_1 J E_1, \\ h(E_1, E_i) = \lambda_2 J E_i, i = 2, \dots, n \end{cases}$$

Then *M* has parallel second fundamental form if and only if ψ is locally a Calabi product Lagrangian immersion of a point and an (n - 1)-dimensional Lagrangian immersion $\psi_1 : M_1 \longrightarrow \mathbb{CP}^{n-1}(4)$ which has parallel second fundamental form.

🍽 esc

Apply Theorem 3 on M^n

- On $M^n = M_1 \times M_2$, consider \mathcal{D}_1 spanned by X_1 and \mathcal{D}_2 spanned by $\{X_2, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2}\}$.
- given the form of A_{JE_1} we may apply Theorem 2 (H. Li, X. Wang) $\implies M^n$ is locally a Calabi product Lagrangian immersion of $\psi_1 : M_{11} \longrightarrow \mathbb{CP}^{n-1}(4)$ and a point, i.e. $M^n = I_1 \times M_{11}$.

 \blacktriangleright As ψ is minimal in our case, we get further that $\psi = \Pi \circ \tilde{\psi}$ for

$$\tilde{\psi}(t,p) = \left(\sqrt{\frac{n}{n+1}}e^{i\frac{1}{n+1}t}\tilde{\psi}_1(p), \sqrt{\frac{1}{n+1}}e^{-i\frac{n}{n+1}t}\right), \ (t,p) \in I_1 \times M_1,$$

where $\Pi : \mathbb{S}^{2n-1}(1) \longrightarrow \mathbb{CP}^{n-1}(4)$ is the Hopf fibration and $\tilde{\psi}_1 : M_1 \longrightarrow \mathbb{S}^{2n-1}(1)$ is the horizontal lift of ψ_1 .

Apply Theorem 3 on M_{11} , where $M^n = I \times M_{11}$

► Consider next the immersion $\psi_1 : M_{11} \longrightarrow \mathbb{CP}^{n-1}(4)$. ► the restriction A_J^1 of the shape operator A_J on $\{X_2, \dots, X_{n_1}, Y_1, \dots, Y_{n_2}\}$ (which spans $T_p M_{11}$) is defined as $A_{JX_2}^1 X_2 = \lambda_{22} X_2,$ $A_{JX_i}^1 X_i = \mu_2 X_2 + \dots + \mu_{i-1} X_{i-1} + \lambda_{ii} X_i, 2 < i \le n_1,$ $A_{JX_i}^1 X_j = \mu_i X_j, 2 \le i < j,$ (4) $A_{JX_i}^1 Y_j = \mu_i Y_j, 2 \le i \le n_1, 1 \le j \le n_2,$ $A_{JY_i}^1 Y_j = \delta_{ij} (\mu_2 X_2 + \dots + \mu_{n_1} X_{n_1}),$

 We may then apply Theorem 3 (H. Li, X. Wang) on M₁₁: D₁ → span{X₂}, D₂ → span{X₃,...,X_{n1}, Y₁,...,Y_{n2}}. ⇒ M₁₁ is locally a Calabi product Lagrangian immersion of ψ₂ : M₁₂ → CPⁿ⁻²(4) and a point: M₁₁ = l₂ × M₁₂, l₂ ∈ ℝ. Thus:

 $M^n = I_1 \times I_2 \times M_{12}$

As ψ₂ is minimal, we further apply Theorem 3 and we get for ψ₁ = Π₁ ∘ ψ̃₁ that

$$\tilde{\psi}_1(t,p) = \left(\sqrt{\frac{n-1}{n}}e^{i\frac{1}{n}t}\tilde{\psi}_2(p), \sqrt{\frac{1}{n}}e^{-i\frac{n-1}{n}t}\right),$$

where
$$(t, p) \in I_2 \times M_1$$
,
 $\Pi_1 : \mathbb{S}^{2n-3}(1) \longrightarrow \mathbb{CP}^{n-2}(4)$ is the Hopf fibration
 $\tilde{\psi}_2 : M_{12} \longrightarrow \mathbb{S}^{2n-3}(1)$ is the horizontal lift of ψ_2 .

Apply succesively Theorem 3 for n₁ times: Mⁿ is locally a Calabi product Lagrangian immersion of n₁ points and an n₂-dimensional Lagrangian immersion

$$\psi_{n_1}: M_2^{n_2} \longrightarrow \mathbb{CP}^{n-n_1}(4),$$

where $M_2^{n_2}$ is totally geodesic.

$$M^n = I_1 \times I_2 \times \ldots \times I_{n_1} \times M_2^{n_2},$$

for $I_1, \ldots, I_{n_1} \in \mathbb{R}$. Finally, for $q \in M_2^{n_2}$ and $t := (t_1, \ldots, t_{n_1})$ the parametrization of M^n is:

$$\psi(t,q) = \left(\frac{\sqrt{n-(n_1-1)}}{\sqrt{n+1}}e^{iu_{n_1+1}}y_1, \frac{\sqrt{n-(n_1-1)}}{\sqrt{n+1}}e^{iu_{n_1+1}}y_2, \dots, \frac{\sqrt{n-(n_1-1)}}{\sqrt{n+1}}e^{iu_{n_1+1}}y_{n_2+1}, \frac{1}{\sqrt{n+1}}e^{iu_1}, \dots, \frac{1}{\sqrt{n+1}}e^{iu_{n_1}}\right),$$

where $-(n - n_1 + 1)u_{n_1+1} = u_1 + u_2 + \ldots + u_{n_1}$ and

$$u_1=-\frac{n}{n+1}t_1,$$

 $\cdots,$

$$u_{n_1} = \frac{t_1}{n+1} + \frac{t_2}{n} + \ldots + \frac{t_{n_1-1}}{n-(n_1-2)+1} - \frac{n-(n_1-1)}{n-(n_1-1)+1}t_{n_1},$$

$$u_{n_1+1} = \frac{t_1}{n+1} + \frac{t_2}{n} + \ldots + \frac{t_{n_1-1}}{n-(n_1-2)+1} + \frac{t_{n_1}}{n-(n_1-1)+1}.$$

Recall

Theorem

Let $\psi: M^n \longrightarrow \tilde{M}^n$ be a minimal Lagrangian submanifold into a complex space form. If $M^n = M_1^{n_1} \times M_2^{n_2}$, where $M_1^{n_1}$ and $M_2^{n_2}$ have constant sectional curvatures c_1 and c_2 , then $c_1c_2 = 0$. Moreover

1. $c_1 = c_2 = 0$. M^n is equivalent to

- ► the totally geodesic immersion in Cⁿ¹⁺ⁿ²,
- the Lagrangian flat torus in $\mathbb{CP}^{n_1+n_2}(4)$.
- 2. $c_1c_2 = 0$, $c_1^2 + c_2^2 \neq 0$. We must have $\tilde{c} > 0$, so we may assume that the ambiant space is $\mathbb{CP}^{n_1+n_2}(4)$. We have that the lift of the immersion is congruent with

$$\frac{1}{n+1}(e^{iu_1},\ldots,e^{iu_{n_1}},ae^{iu_{n_1+1}}y_1,\ldots,ae^{iu_{n_1+1}}y_{n_2+1}),$$

(y₁, y₂..., y_{n2+1}) describes the standard sphere Sⁿ² ⊂ Rⁿ²⁺¹ ⊂ Cⁿ²⁺¹,
 a = √n - n₁ + 1, u_{n1+1} = -¹/_{a²}(u₁ + ... + u_{n1}).

Thank you!