Regularized mean curvature flow in a Hilbert space and
 its application to the Gauge theory

Naoyuki Koike

Tokyo University of Science
Symmetry and shape
Celebrating the 60th birthday of Prof. Jürgen Berndt
Santiago de Compostela, Spain 28-31 October 2019

Contents

1. Regularized mean curvature flow
2. Collapsing theorem
3. Applications to gauge theory
4. Future plan

1. Regularized mean curvature flow

Proper Fredholm submanifold

V : (separable) Hibert space
M : Hilbert manifold
$f: M \hookrightarrow V$: immersion
Definition(C.L. Terng, 1989)
$f: M \hookrightarrow V$: proper Fredholm

$$
\underset{\text { def }}{\Longleftrightarrow}\left\{\begin{array}{l}
\bullet \operatorname{codim} M<\infty \\
\left.\bullet \exp ^{\perp}\right|_{B^{+r}(M)} ^{\perp^{\prime}}: \text { proper map }(\forall r>0) \\
\bullet \exp _{* v}^{\perp}: \text { Fredholm operator }\left(\forall v \in T^{\perp} M\right)
\end{array}\right.
$$

Properties of proper Fredholm submanifolds

$f: M \hookrightarrow V$: proper Fredholm
A_{v} : the shape operator of f for $v\left(\in T^{\perp} M\right)$

Fact

A_{v} : compact operator

The good focal structure of a proper Fredholm submnaiofold

M : proper Fredholm submanifold-case

The set of all focal points of M along γ_{v} has no accumulating point and the multiplicity of each focal point is finite.

The focal structure of a general Hilbert submanifold

M : (general) Hilbert submanifold-case

The set of all focal points of M along γ_{v} is possible to have accumulating points and the multiplicity of each focal point is possible to be infinite.

Regularizable submanifolds

$f: M \hookrightarrow V:$ proper Fredholm

Definition(Heintze-Liu-OImos, 2006)

 $f: M \hookrightarrow V:$ regularizable $\quad \underset{\text { def }}{\Longleftrightarrow}$$$
\left\{\begin{array}{l}
\forall v \in T^{\perp} M, \\
\exists \operatorname{Tr}_{r} A_{v}(<\infty), \quad \exists \operatorname{Tr}\left(A_{v}^{2}\right)(<\infty) \\
\left(\begin{array}{l}
\operatorname{Tr}_{r} A_{v}:=\sum_{i=1}^{\infty}\left(\lambda_{i}+\mu_{i}\right) \\
\left(\operatorname{Spec} A_{v}=\left\{\mu_{1} \leq \mu_{2} \leq \cdot \cdot \leq 0 \leq \cdot \cdot \leq \lambda_{2} \leq \lambda_{1}\right\}\right) \\
\operatorname{Tr}\left(A_{v}^{2}\right):=\sum_{i=1}^{\infty} \nu_{i} \\
\left(\operatorname{Spec} A_{v}^{2}=\left\{\nu_{1} \geq \nu_{2} \geq \cdots>0\right\}\right)
\end{array}\right.
\end{array}\right.
$$

Regularized mean curvature vector (codimension 1-case)

$f: M \hookrightarrow V: \quad$ regularizable hypersurface
ξ : a unit normal vector field of f
Definition
$H^{s}:=\operatorname{Tr}_{r} A_{\xi}$ regularized mean curvature
$H:=\operatorname{Tr}_{r} A_{\xi} \cdot \xi$ regularized mean curvature vector

\nexists Regularized mean curvature vector (codimension \geq 2-case)

For a regularizable submanifold of codimension ≥ 2, its regularized mean curvature vector cannot be defined.

$$
\operatorname{Tr}_{r}\left(A_{\xi_{1}+\xi_{2}}\right) \neq \operatorname{Tr}_{r} A_{\xi_{1}}+\operatorname{Tr}_{r} A_{\xi_{2}}
$$

$\omega_{u}: T_{u}^{\perp} M \rightarrow \mathbb{R}\left(\Leftrightarrow \omega_{u}(\xi):=\operatorname{Tr}_{r} A_{\xi}\right)$ is not linear. Hence
$\nexists H_{u} \in T_{u}^{\perp} M$ s.t. $\left\langle H_{u}, \xi\right\rangle=\omega_{u}(\xi) \quad\left(\forall \xi \in T_{u}^{\perp} M\right)$.

\nexists Regularized mean curvature vector (codimension ≥ 2-case)

Remark ω_{u} : linear $(\forall u \in M) \Rightarrow H$ is defined.
$\phi: H^{0}([0,1], \mathfrak{g}) \rightarrow G:$ the parallel transport map (G : compact semi-simple Lie group)
\bar{M} : compact submanifold in G
$\phi^{-1}(\bar{M})\left(\subset H^{0}([0,1], \mathfrak{g})\right)$ is a regularizable submanifold.
For $\phi^{-1}(\bar{M}), \omega_{u}$ is linear for any $u \in \phi^{-1}(\bar{M})$.
Hence its regularized mean curvature vector is defined.

Regularized mean curvature flow

$\left\{f_{t}: M \hookrightarrow V\right\}_{t \in[0, T)}: C^{\infty}$-family of regularizable hypersurfaces
H_{t} : the regularized mean curvature vector of f_{t}

Definition

$$
\begin{aligned}
& \left\{f_{t}\right\}_{t \in[0, T)} \text { : regularized mean curvature flow } \\
& \stackrel{\partial \mathrm{def}}{\Longleftrightarrow} \frac{\partial F}{\partial t}=H_{t}\left(=\left(\triangle_{t}\right)_{r} f_{t}\right)(0 \leq t<T) \\
& \quad\left(F(x, t):=f_{t}(x)((x, t) \in M \times[0, T))\right)
\end{aligned}
$$

2. Collapsing theorem

Setting

V : (separable) Hilbert space
\mathcal{G} : Hilbert Lie group
$\mathcal{G} \curvearrowright V$: almost free isometric action satisfying
(MO) \mathcal{G}-orbits are minimal reg. submanifolds
("minimal" $\left.\underset{\text { def }}{\Longleftrightarrow} \operatorname{Tr}_{r} A_{\xi}=0\left(\forall \xi \in T^{\perp} M\right)\right)$
$\phi: V \hookrightarrow V / \mathcal{G}:$ the orbit map
$g_{N}:$ the Riemannian orbi-metric of $N:=V / \mathcal{G}$

$$
\text { s.t. }\left\{\begin{array}{l}
\phi \text { is a Riemannian orbi }- \text { submersion } \\
\text { of }(V,\langle,\rangle) \text { onto }\left(N, g_{N}\right)
\end{array}\right.
$$

Example

Example

G / K : symmetirc space of compact type $\mathfrak{g}:=\operatorname{Lie} G$
$H^{0}([0, a], \mathfrak{g})$ (The space of all H^{0}-connections of

$$
\left.P_{o}:=[0, a] \times G \rightarrow[0, a]\right)
$$

$H^{1}([0, a], G)$ (The group of all H^{1}-gauge transformations of P_{o})

$$
H^{1}([0, a], G) \curvearrowright H^{0}([0, a], \mathfrak{g})
$$

$$
\begin{gathered}
: \Longleftrightarrow(\mathrm{g} \cdot u)(t):=\operatorname{Ad}(\mathrm{g}(t))(u(t))-\left(R_{g(t)}\right)_{*}^{-1}\left(g^{\prime}(t)\right) \\
\left(\mathrm{g} \in H^{1}([0, a], G), u \in H^{0}([0, a], \mathfrak{g})\right)
\end{gathered}
$$

(This action is almost free and isometric.)

Example

$$
P(G, \Gamma \times K):=\left\{\mathrm{g} \in H^{1}([0, a], G) \mid(\mathrm{g}(0), \mathrm{g}(a)) \in \Gamma \times K\right\}
$$

(Γ : a finite subgroup of G)

Fact

- $P(G, \Gamma \times K) \curvearrowright H^{0}([0, a], \mathfrak{g})$ is an almost free and isometric action s.t. the condition (MO).
- $H^{0}([0, a], \mathfrak{g}) / P(G, \Gamma \times K) \cong \Gamma \backslash G / K$.

Setting (continued)

$\mathcal{G} \curvearrowright V$: almost free isometric action satisfying (MO) \mathcal{G}-orbits are minimal reg. submanifolds
$f: M \hookrightarrow V:$ regularizable hypersurface

$$
\text { s.t. }\left\{\begin{array}{l}
f(M): \mathcal{G} \text {-invariant } \\
\bar{M}:=f(M) / \mathcal{G}: \text { compact }
\end{array}\right.
$$

Setting (continued)

$\left(*_{1}\right) \bar{M} \subset B_{\frac{\pi}{b}}\left(x_{0}\right)$ and $\left.\exp _{x_{0}}\right|_{B_{\frac{\pi}{b}}^{T}(0)}:$ injective
$\left(*_{2}\right) b^{2}(1-\alpha)^{-2 / n}\left(\omega_{n}^{-1} \cdot \operatorname{Vol}_{g_{N}}(\bar{M})\right)^{2 / n} \leq 1$

$$
(0<\alpha<1)
$$

$(b:=\sqrt{\bar{K}} \quad(\bar{K}:$ the max. sec. curv. of $N:=V / \mathcal{G})$ $B_{\frac{\pi}{b}}\left(x_{0}\right)$: the geodesic ball of radius $\frac{\pi}{b}$ centered at some point $x_{0} \in N$
$B_{\frac{\pi}{b}}^{T}(0)$: the ball of radius $\frac{\pi}{b}$ centered at $0 \in T_{x_{0}} N$ ω_{n} : the volume of the Euclidean unit n-ball

$$
(n:=\operatorname{dim} N-1)
$$

About the injectivity in $\left(*_{1}\right)$

(I),(II) : $\left.\exp _{x_{0}}\right|_{B_{r}^{T}\left(x_{0}\right)}:$ injective
(III) : $\left.\exp _{x_{0}}\right|_{B_{r}^{T}\left(x_{0}\right)}:$ not injective

Setting (continued)

$$
\begin{aligned}
& \quad\left(*_{3}\right)\left(H^{s}\right)^{2} h_{\mathcal{H}}>2 n^{2} L g_{\mathcal{H}} \\
& \text { (horizontally convexity condition) }
\end{aligned}
$$

$g_{\mathcal{H}}$: the horizontal comp. of the induced metric on M $h_{\mathcal{H}}$: the horizontal comp. of the second fund. form of M $\mathcal{A}^{\phi}\left(\in \Gamma\left(\mathcal{H}^{*} \otimes \mathcal{H}^{*} \otimes \mathcal{V}\right)\right) \underset{\text { def }}{\stackrel{\leftrightarrow}{A}} \mathcal{A}_{X}^{\phi} Y:=\left(\widetilde{\nabla}_{X} Y\right) \mathcal{V}$ $(\boldsymbol{X}, \boldsymbol{Y} \in \Gamma(\mathcal{H}))$
$L:=\sup _{u \in V} \max _{\left(X_{1}, \ldots, X_{5}\right) \in\left(\mathcal{H}_{1}\right)_{u}^{5}}\left|\left\langle\mathcal{A}_{X_{1}}^{\phi}\left(\left(\widetilde{\nabla}_{X_{2}} \mathcal{A}^{\phi}\right)_{X_{3}} X_{4}\right), X_{5}\right\rangle\right|$
$\left(\left(\mathcal{H}_{1}\right)_{u}:=\left\{X \in \mathcal{H}_{u} \mid\|X\|=1\right\}\right)$

Collapsing theorem

$$
\begin{gathered}
f(M): \mathcal{G} \text {-invariant, } \quad f(M) / \mathcal{G}=\phi(f(M)): \text { compact } \\
f(M) \text { satisfies }\left(*_{1}\right),\left(*_{2}\right),\left(*_{3}\right)
\end{gathered}
$$

Theorem A(Collapsing theorem).

The reg. m.c.f. starting from $f(M)$ collapses to a \mathcal{G}-orbit in finite time.

3. Applications to the gauge theory

The space of H^{0}-connections of the principal bundle

$\pi: P \rightarrow B: G$-bundle

$$
\binom{B: \text { compact Riemannian manifold }}{G: \text { compact semi-simple Lie group }}
$$

$\mathcal{A}_{P}^{H^{0}}$: the (affine) Hilbert space of all H^{0}-connections of P

$$
\begin{aligned}
& \mathcal{A}_{P}^{H^{0}} \quad \approx \quad T_{\omega_{0}} \mathcal{A}_{P}^{H^{0}}=\Omega_{\mathcal{T}, 1}^{\boldsymbol{H}^{0}}(P, \mathfrak{g})=\Gamma^{H^{0}}\left(T^{*} B \otimes \operatorname{Ad}(P)\right) \\
& \cup \quad \cup \\
& \omega \quad \longleftrightarrow \longrightarrow \widehat{A}\left(:=\omega-\omega_{0}\right)
\end{aligned}
$$

Holonomy map

$$
c:[0, a] \rightarrow B \quad: C^{\infty} \text {-loop }
$$

P_{c}^{ω} : the parallel translation along c with respect to ω

Definition

$\operatorname{hol}_{c}: \mathcal{A}_{P}^{H^{0}} \rightarrow G \underset{\text { def }}{\Longleftrightarrow} P_{c}^{\omega}(u)=u \cdot \operatorname{hol}_{c}(\omega) \quad\left(\forall u \in P_{c(0)}\right)$

Remark $\left\{\operatorname{hol}_{c}(\omega) \mid c \in \Omega_{x}^{\infty}(B)\right\}$ is the holonomy group of ω at x.

Construction of a map of $\mathcal{A}_{P}^{H^{0}}$ onto $H^{0}([0, a], \mathfrak{g})$

$$
c:[0, a] \rightarrow B \quad: \text { unit speed } C^{\infty} \text {-loop }
$$

We take a division $0=t_{0}<t_{1}<t_{2}<\cdots<t_{k}=a$ of [0, a] and a family $\left\{\varphi_{i}:\left.P\right|_{U_{i}} \rightarrow U_{i} \times G\right\}_{i=1}^{k}$ of local trivializations of \boldsymbol{P} satisfying the following condition:

$$
\begin{aligned}
& \text { - } c\left(\left[t_{i-1}, t_{i}\right]\right) \subset U_{i}(i=1, \cdots, k) \\
& \text { - } \widetilde{\boldsymbol{c}}_{1} \cdots \widetilde{c}_{\boldsymbol{k}}:[0, a] \rightarrow P \text { is a } C^{1} \text {-loop } \\
& \left\{\left(\left.\begin{array}{l}
\widetilde{c}_{i} \\
\underset{\operatorname{def}}{\Leftrightarrow} \\
\widetilde{c}_{1} \cdots \widetilde{c}_{i}(t):=\varphi_{i}^{-1}(c(t), e) \quad\left(t \in\left[t_{i-1}, t_{i}\right]\right) \\
\text { def }
\end{array} \underset{c_{1}}{\Leftrightarrow} \cdots \widetilde{c}_{k}\right|_{\left[t_{i-1}, t_{i}\right]}=\widetilde{c}_{i} \quad(i=1, \cdots, k)\right)\right.
\end{aligned}
$$

Remark

$$
\widetilde{c}_{i}(t)=\sigma_{i}(c(t))
$$

($\sigma_{i}: U_{i} \rightarrow P:$ the section giving the local trivialization φ_{i})

Construction of a map of $\mathcal{A}_{P}^{\xi^{0}}$ onto $H^{0}([0, a], \mathfrak{g})$

Construction of a map of $\mathcal{A}_{P}^{H^{0}}$ onto $H^{0}([0, a], \mathfrak{g})$

Construction of a map of $\mathcal{A}_{P}^{H^{0}}$ onto $H^{0}([0, a], \mathfrak{g})$

$$
\begin{array}{r}
c_{i}:=\left.c\right|_{\left[t_{i-1}, t_{i}\right]}, \quad P_{o}^{i}:=\left[t_{i-1}, t_{i}\right] \times G(i=1, \cdots, k) \\
\iota_{c_{i}}: c_{i}^{*} P \hookrightarrow P \underset{\operatorname{def}}{\Longleftrightarrow} \iota_{c_{i}}(t, u):=u\left((t, u) \in c_{i}^{*} P\right) \\
\varphi_{i}^{c_{i}}: c_{i}^{*} P \underset{o}{\Longleftrightarrow} P_{o}^{i} \varphi_{i}^{c_{i}}(t, u):=\left(t, \operatorname{pr}_{2}\left(\varphi_{i}(u)\right)\right) \\
\left((t, u) \in c_{i}^{*} P\right)
\end{array}
$$

Definition

$$
\begin{aligned}
& \mu_{\varphi_{i}}^{c_{i}}: \mathcal{A}_{P}^{H^{0}} \rightarrow H^{0}\left(\left[t_{i-1}, t_{i}\right], \mathfrak{g}\right) \\
\Longleftrightarrow \Longleftrightarrow & \mu_{\varphi_{i}}^{c_{i}}(\omega)(t):=\left(\left(\iota_{c_{i}} \circ\left(\varphi_{i}^{c_{i}}\right)^{-1}\right)^{*} \widehat{A}\right)_{(t, e)}\left(c_{e}^{\prime}(t)\right) \\
& \left(\widehat{A}:=\omega-\omega_{0}, \quad c_{e}(t):=(t, e) \quad(t \in[0, a])\right)
\end{aligned}
$$

Construction of a map of $\mathcal{A}_{P}^{H^{0}}$ onto $H^{0}([0, a], \mathfrak{g})$

Definition

$$
\begin{aligned}
& \mu_{\varphi_{1}, \cdots, \varphi_{k}}^{c_{1}, \cdots, c_{k}}: \mathcal{A}_{P}^{H^{0}} \rightarrow H^{0}([0, a], \mathfrak{g}) \\
\Longleftrightarrow & \left.\mu_{\varphi_{1}, \cdots, \varphi_{k}}^{c_{1}, \cdots, c_{k}}(\omega)\right|_{\left[t_{i-1}, t_{i}\right]}=\mu_{\varphi_{i}}^{c_{i}}(\omega) \quad\left(\omega \in \mathcal{A}_{P}^{H^{0}}\right) \\
& (i=1, \cdots, k)
\end{aligned}
$$

Metrics of $\mathcal{A}_{P}^{H^{0}}, H^{0}([0, a], \mathfrak{g})$ and G

$$
\begin{gathered}
T_{\bullet} \mathcal{A}_{P}^{H^{0}}=\Gamma^{H^{1}}\left(T^{*} B \otimes \operatorname{Ad}(P)\right) \\
\langle,\rangle_{\mathcal{A}}: T_{\bullet} \mathcal{A}_{P}^{H^{0}} \times T_{\bullet} \mathcal{A}_{P}^{H^{0}} \rightarrow \mathbb{R} \\
\Longleftrightarrow\left\langle A_{1}, A_{2}\right\rangle_{\mathcal{A}}:=\int_{x \in M}\left\langle\left(A_{1}\right)_{x},\left(A_{2}\right)_{x}\right\rangle_{B, \mathfrak{g}} d v_{B} \\
\left(A_{1}, A_{2} \in T_{\bullet} \mathcal{A}_{P}^{H^{0}}\right)
\end{gathered}
$$

$\binom{\langle,\rangle_{B, \mathfrak{g}}:$ the fibre metric of $T^{*} B \otimes \operatorname{Ad}(P)$ induced from }{ the metric of B and the Killing form $\langle,\rangle_{\mathfrak{g}}$ of $\mathfrak{g}}$

Metrics of $\mathcal{A}_{P}^{H^{0}}, H^{0}([0, a], \mathfrak{g})$ and G

$$
\begin{aligned}
&\langle,\rangle_{\mathcal{P}}: H^{0}([0, a], \mathfrak{g}) \times H^{0}([0, a], \mathfrak{g}) \rightarrow \mathbb{R} \\
& \overleftrightarrow{\text { def }}\langle u, v\rangle_{\mathcal{P}}:= \int_{0}^{a}\langle u, v\rangle_{\mathfrak{g}} d v_{M} \\
&\left(u, v \in H^{0}([0, a], \mathfrak{g})\right)
\end{aligned}
$$

\langle,\rangle_{G} : the bi-invariant metric induced from $\langle,\rangle_{\mathfrak{g}}$

$$
\langle,\rangle_{G, a}:=a\langle,\rangle_{G}
$$

Results for $\mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}$

Proposition 3.1.

(i) $\mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}:\left(\mathcal{A}_{P}^{H^{0}},\langle,\rangle_{\mathcal{A}}\right) \rightarrow\left(H^{0}([0, a], \mathfrak{g}),\langle,\rangle_{\mathcal{P}}\right)$ is a Riemannian submersion with totally geodesic fibre.
(ii) $\phi \circ \mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}=\operatorname{hol}_{c}$.

$$
\begin{gathered}
\phi: H^{0}([0, a], \mathfrak{g}) \rightarrow G \quad \text { parallel transport map } \\
\Longleftrightarrow \phi(u):=g_{u}(a) \quad\left(u \in H^{0}([0, a], \mathfrak{g})\right)
\end{gathered} \begin{aligned}
& \Longleftrightarrow g_{u} \in H^{1}([0, a], G) \text { s.t. }\left\{\begin{array}{l}
g_{u}(0)=e \\
\left(R_{\left.g_{u}(t)\right)_{*}}\left(g_{u}^{\prime}(t)\right)=u(t)\right.
\end{array}\right)
\end{aligned}
$$

Results for $\mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}$

Results for hol $_{c}$

Theorem B.

$$
\operatorname{hol}_{c}:\left(\mathcal{A}_{P}^{H^{0}},\langle,\rangle_{\mathcal{A}}\right) \rightarrow\left(G,\langle,\rangle_{G, a}\right) \text { is }
$$

a Riemannian submersion with minimal regularizable fibre.

Theorem C.

$L(\subset G)$: equifocal $\Longleftrightarrow \operatorname{hol}_{c}^{-1}(L)$: isoparametric

- The notion of an equifocal submanifold in symmetric spaces was introduced by C.L. Terng and G. Thorbergsson in 1995.
- The notion of an isoparametric submanifold in a Hilbert space was introduced by C.L. Terng in 1989.

Holonomy concentration theorem

From Theorem A and Proposition 3.1, we obtain
Theorem D (Holonomy concentration theorem along r.m.c.f.)
$c:[0, a] \rightarrow B:$ unit speed C^{∞}-loop
\bar{M} : a strongly convex closed hypersurface in G satisfying $\left(*_{1}\right)$ and $\left(*_{2}\right)$
Then the following statement (i),(ii) and (iii) hold :
(i) $\mathcal{B}:=\operatorname{hol}_{c}^{-1}(\bar{M})$ is a reg. hypersurface.
(ii) The reg. m.c.f. $\left\{\mathcal{B}_{t}\right\}_{t \in[0, T)}$ starting from \mathcal{B} exists.
(iii) As $t \rightarrow T$, $\operatorname{hol}_{c}\left(\mathcal{B}_{t}\right)$ collapses to a one-point set.

As $t \rightarrow T$, the holonomy elements of the connections belonging to \mathcal{B}_{t} along c concentrate a point of G.

Recall of the conditions $\left(*_{1}\right)$ and $\left(*_{2}\right)$

$\left(*_{1}\right) \bar{M} \subset B_{\frac{\pi}{b}}\left(x_{0}\right)$ and $\left.\exp _{x_{0}}\right|_{B_{\frac{\pi}{b}}^{T}(0)}:$ injective
$\left(*_{2}\right) b^{2}(1-\alpha)^{-2 / n}\left(\omega_{n}^{-1} \cdot \operatorname{Vol}_{g_{N}}(\bar{M})\right)^{2 / n} \leq 1$

$$
(0<\alpha<1)
$$

($b:=\sqrt{\bar{K}} \quad(\bar{K}:$ the max. sec. curv. of $N:=V / \mathcal{G})$ $B_{\frac{\pi}{b}}\left(x_{0}\right)$: the geodesic ball of radius $\frac{\pi}{b}$ centered at some point $x_{0} \in N$
$B_{\frac{\pi}{b}}^{T}(0)$: the ball of radius $\frac{\pi}{b}$ centered at $0 \in T_{x_{0}} N$ ω_{n} : the volume of the Euclidean unit n-ball

$$
(n:=\operatorname{dim} N-1)
$$

4. Future plan

Flow approach to the singular point of the moduli space of self-dual connections

$$
\begin{aligned}
& \pi: P \rightarrow B: S U(2) \text {-bundle (} \operatorname{dim} B=4 \text {) } \\
& \mathcal{B} \subset \mathcal{A}_{P}^{H^{l}} \xrightarrow{\substack{\mu_{\varphi_{1}, \cdots, \varphi_{k}}^{c_{1}, \cdots, c_{k}}}} H^{l}([0, a], \mathfrak{s u}(2)) \\
& \begin{array}{l}
\downarrow \phi \\
\boldsymbol{V U (2)} \supset \bar{M}
\end{array} \\
& \text { small geodesic sphere } \\
& \text { center at } e
\end{aligned}
$$

$\mathcal{B}:=\operatorname{hol}_{c}^{-1}(\bar{M}):$ regularizable submanifold
$\exists\left\{\mathcal{B}_{t}\right\}_{t \in[0, T)}$: the regularized mean curvature flow s.t. $\mathcal{B}_{0}=\mathcal{B}$

Flow approach to the singular point of the moduli space of self-dual connections

$$
\mathcal{B}_{t} \cap \mathcal{S D}_{P}^{H^{l}} \quad \mathcal{B}_{t} \cap \mathcal{Y}_{P}^{H^{H^{l}}} \quad \mathcal{B}_{t}
$$

$\left(\mathcal{B}_{t} \cap \mathcal{S D}_{P}^{H^{l}}\right) / \mathcal{G}_{P}^{H^{l+1}} \subset \mathcal{M}_{P}^{\mathcal{S D}, l} \subset \mathcal{M}_{P}^{\mathcal{Y M}, l} \subset \mathcal{M}_{P}^{l}$

$$
\binom{\mathcal{M}_{P}^{l}:=\mathcal{A}_{P}^{H^{l}} / \mathcal{G}_{P}^{H^{l+1}}, \mathcal{M}_{P}^{\mathcal{Y} \mathcal{M}, l}:=\mathcal{Y}^{\mathcal{M}_{P}^{l}} / \mathcal{G}_{P}^{H^{l+1}}}{\mathcal{M}_{P}^{\mathcal{S D}, l}:=\mathcal{S D}_{P}^{H^{l}} / \mathcal{G}_{P}^{H^{l+1}}}
$$

Flow approach to the singular point of the moduli space of self-dual connections

Question.

Can we find a unit speed C^{∞}-loop c such that

$$
\left\{\left(\mathcal{B}_{t} \cap \mathcal{S} \mathcal{D}_{P}^{\boldsymbol{H}^{l}}\right) / \mathcal{G}_{P}^{\boldsymbol{H}^{l+1}}\right\}_{t \in[0, T)}
$$

is a mean curvature flow collapsing to a singular point of $\mathcal{M}_{P}^{\mathcal{S} D, l}$?

Flow approach to the singular point of the moduli space of self-dual connections

We want to find a unit speed C^{∞}-loop c such that

$$
\left\{\left(\mathcal{B}_{t} \cap \mathcal{S D}_{P}^{H^{l}}\right) / \mathcal{G}_{P}^{H^{l+1}}\right\}_{t \in[0, T)}
$$

is like this?

Why does this question arise?

Singular points of the moduli space are the gauge equivalence classes of reducible connections.

$$
\mathcal{B}_{t}=\operatorname{hol}_{c}^{-1}\left(\bar{M}_{t}\right)
$$

It is expected that, for a suitable loop c,

$$
\bar{M}_{t} \rightarrow\{e\} \quad \Longleftrightarrow\left(\mathcal{B}_{t} \cap \mathcal{S D}_{P}^{H^{l}}\right) / \mathcal{G}_{P}^{H^{l+1}} \rightarrow\left[\omega_{\text {red }}\right] ?
$$

In the case where $\bar{M}_{\boldsymbol{t}}$ is the m.c.f. starting from a small geodesic sphere centered at $e, \bar{M}_{t} \rightarrow\{e\}$ and hence it is expected that, for a suitable loop c,

$$
\left(\mathcal{B}_{t} \cap \mathcal{S} \mathcal{D}_{P}^{H^{l}}\right) / \mathcal{G}_{P}^{H^{l+1}} \rightarrow\left[\omega_{\mathrm{red}}\right]
$$

Thank you for your attention!

Dear Professor Jürgen Berndt! Congratulations on 60-th birthday! With gratitude!

On the images of the Gauge orbits

Equivariance of the bridging map with the gauge action

$$
\begin{aligned}
& \mathcal{A}_{P}^{H^{l}} \xrightarrow{\mathrm{~g}} \mathcal{A}_{P}^{H^{l}} \\
& \mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}} \downarrow \downarrow \quad \bigcirc \quad \downarrow \mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}} \\
& H^{l}([0, a], \mathfrak{g}) \xrightarrow[\substack{ \\
:=\lambda_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \ldots c_{k}}(\mathrm{~g})}]{ } H^{l}([0, a], \mathfrak{g}) \\
& \lambda_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}: \mathcal{G}_{P}^{H^{l+1}} \rightarrow \Omega^{H^{l+1}}(G) \\
& \left(\lambda_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}\left(\left(\mathcal{G}_{P}^{H^{l+1}}\right)_{x_{0}}\right) \subset \Omega_{e}^{H^{l+1}}(G)\right) \\
& \text { - } \mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}\left(\left(\mathcal{G}_{P}^{H^{l+1}}\right)_{x_{0}} \cdot \omega\right) \subset \Omega_{e}^{H^{l+1}}(G) \cdot \mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}(\omega) \\
& \text { - } \mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}\left(\mathcal{G}_{P}^{H^{l+1}} \cdot \omega\right) \subset \Omega^{H^{l+1}}(G) \cdot \mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}(\omega)
\end{aligned}
$$

On the images of the Gauge orbits

$$
\begin{aligned}
& \boldsymbol{H}^{l}([0, a], \mathfrak{g}) \xrightarrow{\overline{\mathrm{g}}} \boldsymbol{H}^{l}([0, a], \mathfrak{g}) \\
& \oiint \\
& \downarrow \phi \\
& \text { G } \\
& \operatorname{Ad}(\bar{g}(0))
\end{aligned}
$$

- $\phi\left(\Omega_{e}^{H^{l+1}}(G) \cdot u\right)=\{\phi(u)\}$
- $\phi\left(\Omega^{H^{l+1}}(G) \cdot u\right)=\operatorname{Ad}(G) \cdot \phi(u)$

Hence

- $\operatorname{hol}_{c}\left(\left(\mathcal{G}_{P}^{H^{l+1}}\right)_{x_{0}} \cdot \omega\right)=\left\{\phi\left(\mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}(\omega)\right)\right\}$
- $\operatorname{hol}_{c}\left(\mathcal{G}_{P}^{H^{l+1}} \cdot \omega\right) \subset \operatorname{Ad}(G) \cdot \phi\left(\mu_{\varphi_{1} \cdots \varphi_{k}}^{c_{1} \cdots c_{k}}(\omega)\right)$

An important function on the moduli space

An important function on the moduli space

$$
(G=S U(2), \mathfrak{g}=\mathfrak{s u}(2))
$$

Important fact

Fact

(i) $\mathcal{B}_{t} / \mathcal{G}_{P}^{H^{l+1}}=\left(f_{R}^{c}\right)^{-1}\left(r_{t}\right)\left(\exists r_{t}>0\right)$.
(ii) $\left(\mathcal{B}_{t} \cap \mathcal{S D} \mathcal{D}_{P}^{H^{l}}\right) / \mathcal{G}_{P}^{H^{l+1}}=\left(f_{R}^{c}\right)^{-1}\left(r_{t}\right) \cap \mathcal{M}_{P}^{\mathcal{S D}, l}\left(\exists r_{t}>0\right)$.

By using these facts, we will tackle the question.

Question.

Can we find a unit speed C^{∞}-loop c such that $\left\{\left(\mathcal{B}_{t} \cap \mathcal{S} \mathcal{D}_{P}^{\boldsymbol{H}^{l}}\right) / \mathcal{G}_{P}^{\boldsymbol{H}^{l+1}}\right\}_{t \in[0, T)}$ is a mean curvature flow?

Groisser-Parker's result

B : compact oriented simply connected Riemannian 4-manifold whose intersection form is positive definite
$\pi: P \rightarrow B:$ a $S U(2)$-bundle of instanton number $k \geq 1$
Theorem(Groisser-Parker)
(i) $\left(\mathcal{M}_{P}^{\mathcal{S D}, l},\langle\rangle,\right)(l \geq 2)$ is a $(8 k-3)$-dim. singular Riemannian manifold with cone singularity. (Cone points are the gauge equivalence classes of reducible connectons.)

Groisser-Parker's result

Theorem(Groisser-Parker) (continued)
(ii) A sufficiently small neighborhood U of a cone point p of $\left(\mathcal{M}_{P}^{\mathcal{S D}, l},\langle\rangle,\right)$ is homeomorphic to the cone over $\mathbb{C} P^{4 k-2},\left.\langle\rangle\right|_{U$,$} is described as$

$$
\langle,\rangle=d r^{2} \cdot r^{2}\left(\mathrm{pr}^{*} g_{0}+O\left(r^{2}\right)\right)
$$

where r is the distance function from p, g_{0} is the metric of $\mathbb{C} P^{4 k-2}$ of constant holomorphic sectional curvature, pr is the projection of U onto $r^{-1}(\varepsilon)$ along grad r.

Groisser-Parker's result

Theorem(Groisser-Parker)(continued ${ }^{2}$)
(iii) In the case of $k=1$, the boundary of the completion of $\left(\mathcal{M}_{P}^{\mathcal{S D}},\langle\rangle,\right)$ is homothetic to B and its sufficiently small neighborhood consists of the gauge equivalence classes of the connections such that the energy density concentrates at a point.

Groisser-Parker's result

