Regularized mean curvature flow in a Hilbert space and its application to the Gauge theory

Naoyuki Koike

Tokyo University of Science

Symmetry and shape Celebrating the 60th birthday of Prof. Jürgen Berndt Santiago de Compostela, Spain 28-31 October 2019

Contents

- 1. Regularized mean curvature flow
- 2. Collapsing theorem
- 3. Applications to gauge theory
- 4. Future plan

1. Regularized mean curvature flow

Proper Fredholm submanifold

- V : (separable) Hibert space
- M : Hilbert manifold
- $f\,:\,M\hookrightarrow V\,\,\,$: immersion

Fact

Properties of proper Fredholm submanifolds

$$f: M \hookrightarrow V \;\; : \;\; \operatorname{proper} \, \operatorname{Fredholm}$$

 A_v : the shape operator of f for $v (\in T^{\perp}M)$

 A_v : compact operator

The good focal structure of a proper Fredholm submnaiofold

 $M: {\it proper Fredholm submanifold-case}$

of each focal point is finite.

The focal structure of a general Hilbert submanifold

Regularizable submanifolds

 $f: M \hookrightarrow V \;\; : \;\; {
m proper \ Fredholm}$

Regularized mean curvature vector (codimension 1-case)

- $f: M \hookrightarrow V \hspace{.1in}:\hspace{.1in} \operatorname{regularizable} \hspace{.1in} \operatorname{hypersurface}$
- $\xi\,:\,{\rm a}$ unit normal vector field of f

Definition

 $H^s := \operatorname{Tr}_r A_{\xi}$ regularized mean curvature

 $H := \operatorname{Tr}_r A_{\xi} \cdot \xi$ regularized mean curvature vector

For a regularizable submanifold of codimension ≥ 2 , its regularized mean curvature vector cannot be defined.

$$\operatorname{Tr}_r(A_{\xi_1+\xi_2}) \neq \operatorname{Tr}_r A_{\xi_1} + \operatorname{Tr}_r A_{\xi_2}$$

 $\omega_u : T_u^{\perp} M \to \mathbb{R} \iff \omega_u(\xi) := \operatorname{Tr}_r A_{\xi}) \text{ is not linear.}$
Hence
 $\not \supseteq H_u \in T_u^{\perp} M \text{ s.t. } \langle H_u, \xi \rangle = \omega_u(\xi) \quad (\forall \xi \in T_u^{\perp} M).$

- <u>**Remark</u>** ω_u : linear ($\forall u \in M$) \Rightarrow *H* is defined.</u>
- $\phi: H^0([0,1],\mathfrak{g}) o G$: the parallel transport map $(G: ext{compact semi-simple Lie group})$
- \overline{M} : compact submanifold in G

 $\phi^{-1}(\overline{M})(\subset H^0([0,1],\mathfrak{g}))$ is a regularizable submanifold. For $\phi^{-1}(\overline{M})$, ω_u is linear for any $u \in \phi^{-1}(\overline{M})$. Hence its regularized mean curvature vector is defined. Regularized mean curvature flow

$$\{f_t: M \hookrightarrow V\}_{t \in [0,T)} : C^{\infty}$$
-family of regularizable hypersurfaces

H_t : the regularized mean curvature vector of f_t

$$\begin{array}{l} \text{Definition} \\ \{f_t\}_{t\in[0,T)} : \textbf{regularized mean curvature flow} \\ \Longleftrightarrow \\ \stackrel{\partial F}{\det} = H_t(=(\triangle_t)_r f_t) \ (0 \leq t < T) \\ (F(x,t) := f_t(x) \ ((x,t) \in M \times [0,T))) \end{array}$$

2. Collapsing theorem

Setting

- V : (separable) Hilbert space
- ${\cal G}\,:\, Hilbert$ Lie group

 $\phi: V \, \hookrightarrow \, V/\mathcal{G} \, \, : \,$ the orbit map

 g_N : the Riemannian orbi-metric of $N := V/\mathcal{G}$ s.t. $\left\{ egin{array}{l} \phi ext{ is a Riemannian orbi-submersion} \ ext{of } (V, \langle \ , \
angle) ext{ onto } (N, g_N) \end{array}
ight.$

Example

Example

- G/K : symmetirc space of compact type
- $\mathfrak{g}:=\operatorname{Lie} G$
- $H^0([0,a],\mathfrak{g})$ (The space of all H^0 -connections of $P_o:=[0,a] imes G o [0,a]$)
- $H^1([0, a], G)$ (The group of all H^1 -gauge transformations of P_o)

$$egin{aligned} &H^1([0,a],G) \curvearrowright H^0([0,a],\mathfrak{g})\ &\colon \mathop{\Longleftrightarrow}\limits_{\mathrm{def}} \ (\mathrm{g}\cdot u)(t) := \mathrm{Ad}(\mathrm{g}(t))(u(t)) - (R_{g(t)})^{-1}_*(g'(t))\ &(\mathrm{g}\in H^1([0,a],G),\ u\in H^0([0,a],\mathfrak{g})) \end{aligned}$$

(This action is almost free and isometric.)

Example

$$P(G, \Gamma imes K) := \{ \mathrm{g} \in H^1([0, a], G) \, | \, (\mathrm{g}(0), \mathrm{g}(a)) \in \Gamma imes K \}$$

(Γ : a finite subgroup of G)

Fact

- $P(G, \Gamma imes K) \frown H^0([0, a], \mathfrak{g})$ is an almost free and isometric action s.t. the condition (MO).
- $H^0([0,a],\mathfrak{g})/P(G,\Gamma imes K)\cong \Gamma\setminus G/K.$

Setting (continued)

 $\mathcal{G} \curvearrowright V$: almost free isometric action satisfying (MO) \mathcal{G} -orbits are minimal reg. submanifolds $f: M \hookrightarrow V$: regularizable hypersurface s.t. $\begin{cases} f(M) : \mathcal{G}$ -invariant $\overline{M} := f(M)/\mathcal{G}$: compact

Setting (continued)

$$\begin{array}{l} (*_1) \ \overline{M} \subset B_{\frac{\pi}{b}}(x_0) \ \text{and} \ \exp_{x_0}|_{B_{\frac{\pi}{b}}^T(0)} \ : \ \text{injective} \\ (*_2) \ b^2(1-\alpha)^{-2/n}(\omega_n^{-1}\cdot \operatorname{Vol}_{g_N}(\overline{M}))^{2/n} \leq 1 \\ (0 < \alpha < 1) \\ \end{array} \\ \left(\begin{array}{l} b := \sqrt{\overline{K}} & (\overline{K} : \text{the max. sec. curv. of } N := V/\mathcal{G}) \\ B_{\frac{\pi}{b}}(x_0) \ : \ \text{the geodesic ball of radius } \frac{\pi}{b} \ \text{centered at} \\ \text{ some point } x_0 \in N \\ B_{\frac{\pi}{b}}^T(0) \ : \ \text{the ball of radius } \frac{\pi}{b} \ \text{centered at } 0 \in T_{x_0}N \\ \omega_n \ : \ \text{the volume of the Euclidean unit } n\text{-ball} \\ (n := \dim N - 1) \end{array} \right) \end{array}$$

About the injectivity in $(*_1)$

Setting (continued)

 $(*_{3}) \quad (H^{s})^{2}h_{\mathcal{H}} > 2n^{2}Lg_{\mathcal{H}}$ (horizontally convexity condition)

 $\left(\begin{array}{l}g_{\mathcal{H}}: \text{ the horizontal comp. of the induced metric on }M\\h_{\mathcal{H}}: \text{ the horizontal comp. of the second fund. form of }M\\\mathcal{A}^{\phi}(\in \Gamma(\mathcal{H}^*\otimes \mathcal{H}^*\otimes \mathcal{V})) \Leftrightarrow_{\mathrm{def}} \mathcal{A}_X^{\phi}Y := (\widetilde{\nabla}_X Y)_{\mathcal{V}}\\(X,Y\in \Gamma(\mathcal{H}))\\L := \sup_{u\in V}\max_{(X_1,\cdots,X_5)\in (\mathcal{H}_1)_u^5} |\langle \mathcal{A}_{X_1}^{\phi}((\widetilde{\nabla}_{X_2}\mathcal{A}^{\phi})_{X_3}X_4), X_5\rangle|\\\left(|\mathcal{H}_1)_u := \{X\in \mathcal{H}_u \mid ||X|| = 1\}|\right)\end{array}\right)$

Collapsing theorem

f(M) : *G*-invariant, $f(M)/\mathcal{G} = \phi(f(M))$: compact f(M) satisfies $(*_1), (*_2), (*_3)$

Theorem A(Collapsing theorem).

The reg. m.c.f. starting from f(M) collapses to a \mathcal{G} -orbit in finite time.

3. Applications to the gauge theory

The space of H^0 -connections of the principal bundle

$$\pi:P
ightarrow B\ :\ G ext{-bundle}$$

- $\left(\begin{array}{c} B : \text{ compact Riemannian manifold} \\ G : \text{ compact semi-simple Lie group} \end{array}\right)$
- $\mathcal{A}_{P}^{H^{0}}$: the (affine) Hilbert space of all H^{0} -connections of P

Holonomy map

$$c:[0,a] o B \;\;:\; C^\infty ext{-loop}$$

 P_c^{ω} : the parallel translation along c with respect to ω

Definition

$$\operatorname{hol}_c : \mathcal{A}_P^{H^0} \to G \iff P_c^{\omega}(u) = u \cdot \operatorname{hol}_c(\omega) \ (\forall \, u \in P_{c(0)})$$

 $\begin{array}{l} \underline{\operatorname{Remark}} & \{ \operatorname{hol}_c(\omega) \, | \, c \in \Omega^\infty_x(B) \} \text{ is the holonomy group} \\ & \text{ of } \omega \text{ at } x. \end{array}$

$$c:[0,a]
ightarrow B \hspace{0.1 in}: \hspace{0.1 in} ext{unit speed } C^{\infty} ext{-loop}$$

We take a division $0 = t_0 < t_1 < t_2 < \cdots < t_k = a$ of [0, a]and a family $\{\varphi_i : P|_{U_i} \to U_i \times G\}_{i=1}^k$ of local

trivializations of
$$P$$
 satisfying the following condition:

$$\left\{\begin{array}{l} \bullet \quad c([t_{i-1},t_i]) \subset U_i \ (i=1,\cdots,k) \\ \bullet \quad \widetilde{c}_1 \cdots \widetilde{c}_k : [0,a] \to P \text{ is a } C^1\text{-loop} \\ \left(\begin{array}{c} \widetilde{c}_i \ \Leftrightarrow \ \widetilde{c}_i(t) := \varphi_i^{-1}(c(t),e) \ (t \in [t_{i-1},t_i]) \\ \widetilde{c}_1 \cdots \widetilde{c}_k \ \Leftrightarrow \ \widetilde{c}_1 \cdots \widetilde{c}_k \mid_{[t_{i-1},t_i]} = \widetilde{c}_i \ (i=1,\cdots,k) \end{array}\right) \end{array}\right.$$

<u>Remark</u> $\widetilde{c}_i(t) = \sigma_i(c(t))$

 $ig(\sigma_i: U_i o P$: the section giving the local trivialization $arphi_iig)$

 $\sigma_i: U_i \to P \iff \sigma_i(x) := \varphi_i^{-1}(x, e) \quad (x \in U)$

$$\begin{split} c_{i} &:= c|_{[t_{i-1},t_{i}]}, \quad P_{o}^{i} := [t_{i-1},t_{i}] \times G \ (i=1,\cdots,k) \\ \iota_{c_{i}} : c_{i}^{*}P &\hookrightarrow P \iff_{\text{def}} \iota_{c_{i}}(t,u) := u \ ((t,u) \in c_{i}^{*}P) \\ \varphi_{i}^{c_{i}} : c_{i}^{*}P \xrightarrow{\cong} P_{o}^{i} \iff_{\text{def}} \varphi_{i}^{c_{i}}(t,u) := (t, \text{pr}_{2}(\varphi_{i}(u))) \\ ((t,u) \in c_{i}^{*}P) \end{split}$$

Definition

$$\begin{split} \mu_{\varphi_i}^{c_i} \, : \, \mathcal{A}_P^{H^0} &\to H^0([t_{i-1}, t_i], \mathfrak{g}) \\ & \longleftrightarrow_{\mathrm{def}} \, \mu_{\varphi_i}^{c_i}(\omega)(t) := ((\iota_{c_i} \circ (\varphi_i^{c_i})^{-1})^* \widehat{A})_{(t,e)}(c'_e(t)) \\ & (\widehat{A} := \omega - \omega_0, \quad c_e(t) := (t, e) \ (t \in [0, a])) \end{split}$$

Definition

$$\begin{split} \mu^{c_1,\cdots,c_k}_{\varphi_1,\cdots,\varphi_k}:\mathcal{A}_P^{H^0} \to H^0([0,a],\mathfrak{g}) \\ \Longleftrightarrow_{\mathrm{def}} \mu^{c_1,\cdots,c_k}_{\varphi_1,\cdots,\varphi_k}(\omega)|_{[t_{i-1},t_i]} = \mu^{c_i}_{\varphi_i}(\omega) \quad (\omega \in \mathcal{A}_P^{H^0}) \\ (i=1,\cdots,k) \end{split}$$

Metrics of $\mathcal{A}_P^{H^0}, \; H^0([0,a],\mathfrak{g})$ and G

$$T_{ullet}\mathcal{A}_{P}^{H^{0}} = \Gamma^{H^{1}}(T^{*}B\otimes \operatorname{Ad}(P))$$

$$egin{aligned} \langle \;,\;
angle_{\mathcal{A}}: T_{ullet}\mathcal{A}_{P}^{H^{0}} imes T_{ullet}\mathcal{A}_{P}^{H^{0}}
ightarrow \mathbb{R} \ & \longleftrightarrow \ \langle A_{1}, A_{2}
angle_{\mathcal{A}} := \int_{x \in M} \langle (A_{1})_{x}, (A_{2})_{x}
angle_{B, \mathfrak{g}} dv_{B} \ & (A_{1}, A_{2} \in T_{ullet}\mathcal{A}_{P}^{H^{0}}) \end{aligned}$$

 $\left(\begin{array}{c}\langle \ , \ \rangle_{B,\mathfrak{g}} \ : \ \text{the fibre metric of } T^*B\otimes \operatorname{Ad}(P) \ \text{induced from} \\ \text{the metric of } B \ \text{and the Killing form} \ \langle \ , \ \rangle_{\mathfrak{g}} \ \text{of } \mathfrak{g} \end{array}\right)$

Metrics of $\mathcal{A}_P^{H^0},\ H^0([0,a],\mathfrak{g})$ and G

$$egin{aligned} \langle \;,\;
angle_{\mathcal{P}}: H^0([0,a],\mathfrak{g}) imes H^0([0,a],\mathfrak{g}) o \mathbb{R} \ & \longleftrightarrow \ \langle u,v
angle_{\mathcal{P}}:= \int_0^a \langle u,v
angle_{\mathfrak{g}} \, dv_M \ & (u,v \in H^0([0,a],\mathfrak{g})) \end{aligned}$$

 $\langle \;,\;
angle_G$: the bi-invariant metric induced from $\langle \;,\;
angle_{g}$ $\langle \;,\;
angle_{G,a}:=a\langle \;,\;
angle_G$

Results for $\mu^{c_1\cdots c_k}_{arphi_1\cdots arphi_k}$

Proposition 3.1.

(i)
$$\mu_{\varphi_1\cdots\varphi_k}^{c_1\cdots c_k} : (\mathcal{A}_P^{H^0}, \langle , \rangle_{\mathcal{A}}) \to (H^0([0, a], \mathfrak{g}), \langle , \rangle_{\mathcal{P}})$$

is a Riemannian submersion with totally geodesic fibre.
(ii) $\phi \circ \mu_{\varphi_1\cdots\varphi_k}^{c_1\cdots c_k} = \operatorname{hol}_c$.

$$\begin{aligned} \phi &: H^0([0,a],\mathfrak{g}) \to G \quad \text{parallel transport map} \\ &\longleftrightarrow \\ \stackrel{\text{def}}{\longleftrightarrow} \phi(u) &:= g_u(a) \quad (u \in H^0([0,a],\mathfrak{g})) \\ & \left(g_u \in H^1([0,a],G) \text{ s.t. } \left\{ \begin{array}{l} g_u(0) = e \\ (R_{g_u(t)})_*^{-1}(g'_u(t)) = u(t) \end{array} \right. \right) \end{aligned}$$

Results for $\mu^{c_1\cdots c_k}_{arphi_1\cdots arphi_k}$

Results for hol_c

Theorem B.

$$\operatorname{hol}_c : (\mathcal{A}_P^{H^0}, \langle , \rangle_{\mathcal{A}}) \to (G, \langle , \rangle_{G,a})$$
 is
a Riemannian submersion with minimal
regularizable fibre.

Theorem C.

 $L(\subset G)$: equifocal $\iff \operatorname{hol}_c^{-1}(L)$: isoparametric

- The notion of an equifocal submanifold in symmetric spaces was introduced by C.L. Terng and G. Thorbergsson in 1995.
- The notion of an isoparametric submanifold in a Hilbert space was introduced by C.L. Terng in 1989.

Holonomy concentration theorem

From Theorem A and Proposition 3.1, we obtain

Theorem D(Holonomy concentration theorem along r.m.c.f.) $c: [0, a] \rightarrow B : \text{ unit speed } C^{\infty}\text{-loop}$ $\overline{M} : \text{ a strongly convex closed hypersurface in } G$ satisfying $(*_1)$ and $(*_2)$ Then the following statement (i),(ii) and (iii) hold : (i) $\mathcal{B} := \text{hol}_c^{-1}(\overline{M})$ is a reg. hypersurface. (ii) The reg. m.c.f. $\{\mathcal{B}_t\}_{t \in [0,T)}$ starting from \mathcal{B} exists. (iii) As $t \rightarrow T$, $\text{hol}_c(\mathcal{B}_t)$ collapses to a one-point set.

As $t \to T$, the holonomy elements of the connections belonging to \mathcal{B}_t along c concentrate a point of G.

Recall of the conditions $(*_1)$ and $(*_2)$

$$\begin{array}{l} (*_1) \ \overline{M} \subset B_{\frac{\pi}{b}}(x_0) \ \text{and} \ \exp_{x_0}|_{B_{\frac{\pi}{b}}^T(0)} \ : \ \text{injective} \\ (*_2) \ b^2(1-\alpha)^{-2/n}(\omega_n^{-1}\cdot \operatorname{Vol}_{g_N}(\overline{M}))^{2/n} \leq 1 \\ (0 < \alpha < 1) \\ \end{array} \\ \left(\begin{array}{l} b := \sqrt{\overline{K}} & (\overline{K} \ : \text{the max. sec. curv. of } N := V/\mathcal{G}) \\ B_{\frac{\pi}{b}}(x_0) \ : \ \text{the geodesic ball of radius } \frac{\pi}{b} \ \text{centered at} \\ \text{ some point } x_0 \in N \\ B_{\frac{\pi}{b}}^T(0) \ : \ \text{the ball of radius } \frac{\pi}{b} \ \text{centered at } 0 \in T_{x_0}N \\ \omega_n \ : \ \text{the volume of the Euclidean unit } n\text{-ball} \\ (n := \dim N - 1) \end{array} \right)$$

4. Future plan

$$\begin{split} \mathcal{B} &:= \mathrm{hol}_c^{-1}(\overline{M}) \,: \text{regularizable submanifold} \\ \exists \, \{\mathcal{B}_t\}_{t \in [0,T)} \,: \, \text{the regularized mean curvature flow s.t.} \, \, \mathcal{B}_0 = \mathcal{B} \end{split}$$

Question.

Can we find a unit speed C^{∞} -loop c such that

$$\{(\mathcal{B}_t \cap \mathcal{SD}_P^{H^l})/\mathcal{G}_P^{H^{l+1}}\}_{t \in [0,T)}$$

is a mean curvature flow collapsing to a singular point of $\mathcal{M}_{P}^{\mathcal{SD},l}?$

Why does this question arise?

Singular points of the moduli space are the gauge equivalence classes of reducible connections.

$$\mathcal{B}_t = \operatorname{hol}_c^{-1}(\overline{M}_t)$$

It is expected that, for a suitable loop c,

$$\overline{M}_t o \{e\} \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm} (\mathcal{B}_t \cap \mathcal{SD}_P^{H^l})/\mathcal{G}_P^{H^{l+1}} o [\omega_{ ext{red}}] \;?$$

In the case where \overline{M}_t is the m.c.f. starting from a small geodesic sphere centered at e, $\overline{M}_t \to \{e\}$ and hence it is expected that, for a suitable loop c,

$$(\mathcal{B}_t \cap \mathcal{SD}_P^{H^l})/\mathcal{G}_P^{H^{l+1}} o [\omega_{\mathrm{red}}].$$

Thank you for your attention!

Dear Professor Jürgen Berndt! Congratulations on 60-th birthday! With gratitude!

On the images of the Gauge orbits

Equivariance of the bridging map with the gauge action

$$\begin{array}{c|c} \mathcal{A}_{P}^{H^{l}} & \xrightarrow{\mathbf{g}} \mathcal{A}_{P}^{H^{l}} \\ \mu_{\varphi_{1}\cdots\varphi_{k}}^{c_{1}\cdots c_{k}} & \downarrow & \downarrow \mu_{\varphi_{1}\cdots\varphi_{k}}^{c_{1}\cdots c_{k}} \\ H^{l}([0,a],\mathfrak{g}) & \xrightarrow{\mathbf{g}} H^{l}([0,a],\mathfrak{g}) \\ \xrightarrow{\mathbf{g}} := \lambda_{\varphi_{1}\cdots\varphi_{k}}^{c_{1}\cdots c_{k}}(\mathfrak{g}) \\ \lambda_{\varphi_{1}\cdots\varphi_{k}}^{c_{1}\cdots c_{k}} : \mathcal{G}_{P}^{H^{l+1}} \to \Omega^{H^{l+1}}(G) \\ (\lambda_{\varphi_{1}\cdots\varphi_{k}}^{c_{1}\cdots c_{k}}((\mathcal{G}_{P}^{H^{l+1}})_{x_{0}}) \subset \Omega_{e}^{H^{l+1}}(G)) \\ \bullet & \mu_{\varphi_{1}\cdots\varphi_{k}}^{c_{1}\cdots c_{k}}(\mathcal{G}_{P}^{H^{l+1}})_{x_{0}} \cdot \omega) \subset \Omega_{e}^{H^{l+1}}(G) \cdot \mu_{\varphi_{1}\cdots\varphi_{k}}^{c_{1}\cdots c_{k}}(\omega) \\ \bullet & \mu_{\varphi_{1}\cdots\varphi_{k}}^{c_{1}\cdots c_{k}}(\mathcal{G}_{P}^{H^{l+1}} \cdot \omega) \subset \Omega^{H^{l+1}}(G) \cdot \mu_{\varphi_{1}\cdots\varphi_{k}}^{c_{1}\cdots c_{k}}(\omega) \end{array}$$

On the images of the Gauge orbits

- $\operatorname{hol}_{c}((\mathcal{G}_{P}^{H^{l+1}})_{x_{0}}\cdot\omega) = \{\phi(\mu^{c_{1}\cdots c_{k}}_{\varphi_{1}\cdots\varphi_{k}}(\omega))\}$
- $\operatorname{hol}_c(\mathcal{G}_P^{H^{l+1}} \cdot \omega) \subset \operatorname{Ad}(G) \cdot \phi(\mu_{\varphi_1 \dots \varphi_k}^{c_1 \dots c_k}(\omega))$

An important function on the moduli space

An important function on the moduli space

Important fact

Fact

(i)
$$\mathcal{B}_t / \mathcal{G}_P^{H^{l+1}} = (f_R^c)^{-1}(r_t) \ (\exists r_t > 0).$$

(ii) $(\mathcal{B}_t \cap \mathcal{SD}_P^{H^l}) / \mathcal{G}_P^{H^{l+1}} = (f_R^c)^{-1}(r_t) \cap \mathcal{M}_P^{\mathcal{SD},l} \ (\exists r_t > 0).$

By using these facts, we will tackle the question. Question.

Can we find a unit speed C^{∞} -loop c such that $\{(\mathcal{B}_t \cap \mathcal{SD}_P^{H^l})/\mathcal{G}_P^{H^{l+1}}\}_{t \in [0,T)}$ is a mean curvature flow?

B: compact oriented simply connected Riemannian 4-manifold whose intersection form is positive definite $\pi: P \to B:$ a SU(2)-bundle of instanton number k > 1

Theorem(Groisser-Parker)

(i) $(\mathcal{M}_{P}^{\mathcal{SD},l}, \langle , \rangle)$ $(l \ge 2)$ is a (8k - 3)-dim. singular Riemannian manifold with cone singularity. (Cone points are the gauge equivalence classes of reducible connectons.)

Theorem(Groisser-Parker) (continued)

(ii) A sufficiently small neighborhood U of a cone point p of $(\mathcal{M}_P^{S\mathcal{D},l}, \langle , \rangle)$ is homeomorphic to the cone over $\mathbb{C}P^{4k-2}$, $\langle , \rangle|_U$ is described as $\langle , \rangle = dr^2 \cdot r^2(\mathrm{pr}^*g_0 + O(r^2)),$

where r is the distance function from p, g_0 is the metric of $\mathbb{C}P^{4k-2}$ of constant holomorphic sectional curvature, pr is the projection of U onto $r^{-1}(\varepsilon)$ along grad r.

$Theorem(Groisser-Parker)(continued^2)$

(iii) In the case of k = 1, the boundary of the completion of $(\mathcal{M}_P^{S\mathcal{D}}, \langle , \rangle)$ is homothetic to B and its sufficiently small neighborhood consists of the gauge equivalence classes of the connections such that the energy density concentrates at a point.

