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1. Regularized mean curvature flow



Regularized mean curvature flow

Proper Fredholm submanifold

V : (separable) Hibert space

M : Hilbert manifold

f : M ↪→ V : immersion

.
Definition(C.L. Terng, 1989)
..

......

f : M ↪→ V : proper Fredholm

⇐⇒
def


• codimM < ∞
• exp⊥ |B⊥r (M) : proper map (∀ r > 0)

• exp⊥
∗v : Fredholm operator (∀ v ∈ T⊥M)



Regularized mean curvature flow

Properties of proper Fredholm submanifolds

f : M ↪→ V : proper Fredholm

Av : the shape operator of f for v(∈ T⊥M)

.
Fact
..
...... Av : compact operator



Regularized mean curvature flow

The good focal structure of a proper Fredholm submnaiofold

The set of all focal points of M along γv

has no accumulating point and the multiplicity

of each focal point is finite.

M

γv

M : proper Fredholm submanifold-case



Regularized mean curvature flow

The focal structure of a general Hilbert submanifold

M

γv

accumulating point

M : (general) Hilbert submanifold-case

The set of all focal points of M along γv

is possible to have accumulating points and

the multiplicity of each focal point is possible to be infinite.



Regularized mean curvature flow

Regularizable submanifolds

f : M ↪→ V : proper Fredholm

.
Definition(Heintze-Liu-Olmos, 2006)
..

......

f : M ↪→ V : regularizable ⇐⇒
def

∀ v ∈ T⊥M,

∃TrrAv (< ∞), ∃Tr(A2
v) (< ∞)

TrrAv :=

∞∑
i=1

(λi + µi)

(SpecAv = {µ1 ≤ µ2 ≤ ·· ≤ 0 ≤ ·· ≤ λ2 ≤ λ1})

Tr(A2
v) :=

∞∑
i=1

νi

(SpecA2
v = {ν1 ≥ ν2 ≥ · · · > 0})





Regularized mean curvature flow

Regularized mean curvature vector (codimension 1-case)

f : M ↪→ V : regularizable hypersurface

ξ : a unit normal vector field of f

.
Definition
..

......

Hs := TrrAξ regularized mean curvature

H := TrrAξ · ξ regularized mean curvature vector



Regularized mean curvature flow

6 ∃ Regularized mean curvature vector (codimension≥ 2-case)

For a regularizable submanifold of codimension ≥ 2,

its regularized mean curvature vector cannot be defined.

Trr(Aξ1+ξ2) 6= Trr Aξ1 + Trr Aξ2

ωu : T⊥
u M → R (⇔ ωu(ξ) := Trr Aξ) is not linear.

Hence

6 ∃Hu ∈ T⊥
u M s.t. 〈Hu, ξ〉 = ωu(ξ) (∀ ξ ∈ T⊥

u M).



Regularized mean curvature flow

6 ∃ Regularized mean curvature vector (codimension≥ 2-case)

Remark ωu : linear (∀u ∈ M) ⇒ H is defined.

φ : H0([0, 1], g) → G : the parallel transport map

(G : compact semi-simple Lie group)

M : compact submanifold in G

φ−1(M)(⊂ H0([0, 1], g)) is a regularizable submanifold.

For φ−1(M), ωu is linear for any u ∈ φ−1(M).

Hence its regularized mean curvature vector is defined.



Regularized mean curvature flow

Regularized mean curvature flow

{ft : M ↪→ V }t∈[0,T ) : C∞-family of regularizable

hypersurfaces

Ht : the regularized mean curvature vector of ft

.
Definition
..

......

{ft}t∈[0,T ) : regularized mean curvature flow

⇐⇒
def

∂F

∂t
= Ht(= (4t)rft) (0 ≤ t < T )

(F (x, t) := ft(x) ((x, t) ∈ M × [0, T )))



2. Collapsing theorem



Collapsing theorem

Setting

V : (separable) Hilbert space

G : Hilbert Lie group

G y V : almost free isometric action satisfying

(MO) G-orbits are minimal reg. submanifolds(
“minimal” ⇐⇒

def
Trr Aξ = 0 (∀ ξ ∈ T⊥M)

)
φ : V ↪→ V/G : the orbit map

gN : the Riemannian orbi-metric of N := V/G

s.t.

{
φ is a Riemannian orbi − submersion

of (V, 〈 , 〉) onto (N, gN)



Collapsing theorem

Example

Example

G/K : symmetirc space of compact type

g := LieG

H0([0, a], g) (The space of all H0-connections of

Po := [0, a] × G → [0, a])

H1([0, a], G) (The group of all H1-gauge

transformations of Po)

H1([0, a], G) y H0([0, a], g)

: ⇐⇒
def

(g · u)(t) := Ad(g(t))(u(t)) − (Rg(t))
−1
∗ (g′(t))

(g ∈ H1([0, a], G), u ∈ H0([0, a], g))

(This action is almost free and isometric.)



Collapsing theorem

Example

P (G,Γ×K) := {g ∈ H1([0, a], G) | (g(0), g(a)) ∈ Γ×K}
(Γ : a finite subgroup of G)

.
Fact
..

......

• P (G,Γ × K) y H0([0, a], g) is an almost free and

isometric action s.t. the condition (MO).

• H0([0, a], g)/P (G,Γ × K) ∼= Γ \ G/K.



Collapsing theorem

Setting (continued)

G y V : almost free isometric action satisfying

(MO) G-orbits are minimal reg. submanifolds

f : M ↪→ V : regularizable hypersurface

s.t.

{
f(M) : G-invariant
M := f(M)/G : compact



Collapsing theorem

Setting (continued)

(∗1) M ⊂ Bπ
b
(x0) and expx0

|BT
π
b
(0) : injective

(∗2) b2(1 − α)−2/n(ω−1
n · VolgN (M))2/n ≤ 1

(0 < α < 1)

b :=
√
K (K : the max. sec. curv. of N := V/G)

Bπ
b
(x0) : the geodesic ball of radius π

b
centered at

some point x0 ∈ N

BT
π
b
(0) : the ball of radius π

b
centered at 0 ∈ Tx0N

ωn : the volume of the Euclidean unit n-ball

(n := dimN − 1)





Collapsing theorem

About the injectivity in (∗1)

expx0 expx0

expx0

Tx0N

Tx0N

Tx0N

N N N

(I),(II) : expx0
|BT

r (x0) : injective

Br(x0) Br(x0)

Br(x0)

BT
r (x0)

BT
r (x0)

BT
r (x0)

(I) (II) (III)

(III) : expx0
|BT

r (x0) : not injective



Collapsing theorem

Setting (continued)

(∗3) (Hs)2hH > 2n2LgH

(horizontally convexity condition)



gH : the horizontal comp. of the induced metric on M

hH : the horizontal comp. of the second fund. form of M

Aφ(∈ Γ(H∗ ⊗ H∗ ⊗ V)) ⇔
def

Aφ
XY := (∇̃XY )V

(X,Y ∈ Γ(H))

L := sup
u∈V

max
(X1,··· ,X5)∈(H1)5u

|〈Aφ
X1

((∇̃X2Aφ)X3X4), X5〉|(
(H1)u := {X ∈ Hu | ||X|| = 1}

)





Collapsing theorem

Collapsing theorem

f(M) : G-invariant, f(M)/G = φ(f(M)) : compact

f(M) satisfies (∗1), (∗2), (∗3)
.
Theorem A(Collapsing theorem).
..

......

The reg. m.c.f. starting from f(M)

collapses to a G-orbit in finite time.

φ

V/G

V

f(M)

φ(f(M))



3. Applications to the gauge theory



Applications to the gauge theory

The space of H0-connections of the principal bundle

π : P → B : G-bundle(
B : compact Riemannian manifold

G : compact semi-simple Lie group

)

AH0

P : the (affine) Hilbert space of all H0-connections of P

Tω0AH0

P = ΩH0

T ,1(P, g) = ΓH0
(T ∗B ⊗ Ad(P ))≈

Â(:= ω − ω0)

AH0

P

ω



Applications to the gauge theory

Holonomy map

c : [0, a] → B : C∞-loop

Pω
c : the parallel translation along c with respect to ω

.
Definition
..

......
holc : AH0

P → G ⇐⇒
def

Pω
c (u) = u · holc(ω) (∀u ∈ Pc(0))

Remark {holc(ω) | c ∈ Ω∞
x (B)} is the holonomy group

of ω at x.



Applications to the gauge theory

Construction of a map of AH0

P onto H0([0, a], g)

c : [0, a] → B : unit speed C∞-loop

We take a division 0 = t0 < t1 < t2 < · · · < tk = a of [0, a]

and a family {ϕi : P |Ui → Ui × G}ki=1 of local

trivializations of P satisfying the following condition:
• c([ti−1, ti]) ⊂ Ui (i = 1, · · · , k)
• c̃1 · · · c̃k : [0, a] → P is a C1-loop c̃i ⇔

def
c̃i(t) := ϕ−1

i (c(t), e) (t ∈ [ti−1, ti])

c̃1 · · · c̃k ⇔
def

c̃1 · · · c̃k |[ti−1,ti] = c̃i (i = 1, · · · , k)


Remark c̃i(t) = σi(c(t))

(σi : Ui → P : the section giving the local trivialization ϕi)



Applications to the gauge theory

Construction of a map of AH0

P onto H0([0, a], g)

c

c̃1 · · · c̃k

U2

U1

σ1(U1)

σ2(U2)

c(0)
c(t1)

c(t2) π

P

B

σi : Ui → P ⇐⇒
def

σi(x) := ϕ−1
i (x, e) (x ∈ U)

c̃1(t1) = c̃2(t1)

c̃2(t2) = c̃3(t2)

c̃1(0)



Applications to the gauge theory

Construction of a map of AH0

P onto H0([0, a], g)

U1

U2

U3

Uk
c(0)

c(t1) c(t2)

c(t3)

c(tk−1)

c̃1(0)

c̃1(t1) = c̃2(t1)

c̃2(t2) = c̃3(t2)

c̃3(t3) = c̃4(t3)

c̃k−1(tk−1) = c̃k(tk−1)

P

B

π

c̃1 · · · c̃k



Applications to the gauge theory

Construction of a map of AH0

P onto H0([0, a], g)

ci := c|[ti−1,ti]， P i
o := [ti−1, ti] × G (i = 1, · · · , k)

ιci : c∗iP ↪→ P ⇐⇒
def

ιci(t, u) := u ((t, u) ∈ c∗iP )

ϕci
i : c∗iP →∼=

P i
o ⇐⇒

def
ϕci

i (t, u) := (t, pr2(ϕi(u)))

((t, u) ∈ c∗iP )

.
Definition
..

......

µci
ϕi

: AH0

P → H0([ti−1, ti], g)

⇐⇒
def

µci
ϕi
(ω)(t) := ((ιci ◦ (ϕci

i )−1)∗Â)(t,e)(c
′
e(t))

(Â := ω − ω0, ce(t) := (t, e) (t ∈ [0, a]))



Applications to the gauge theory

Construction of a map of AH0

P onto H0([0, a], g)

.
Definition
..

......

µc1,··· ,ck
ϕ1,··· ,ϕk

: AH0

P → H0([0, a], g)

⇐⇒
def

µc1,··· ,ck
ϕ1,··· ,ϕk

(ω)|[ti−1,ti] = µci
ϕi
(ω) (ω ∈ AH0

P )

(i = 1, · · · , k)



Applications to the gauge theory

Metrics of AH0

P , H0([0, a], g) and G

T•AH0

P = ΓH1
(T ∗B ⊗ Ad(P ))

〈 , 〉A : T•AH0

P × T•AH0

P → R

⇐⇒
def

〈A1, A2〉A :=

∫
x∈M

〈(A1)x, (A2)x〉B,g dvB

(A1, A2 ∈ T•AH0

P )(
〈 , 〉B,g : the fibre metric of T ∗B ⊗ Ad(P ) induced from

the metric of B and the Killing form 〈 , 〉g of g

)



Applications to the gauge theory

Metrics of AH0

P , H0([0, a], g) and G

〈 , 〉P : H0([0, a], g) × H0([0, a], g) → R

⇐⇒
def

〈u, v〉P :=

∫ a

0
〈u, v〉g dvM

(u, v ∈ H0([0, a], g))

〈 , 〉G : the bi-invariant metric induced from 〈 , 〉g
〈 , 〉G,a := a〈 , 〉G



Applications to the gauge theory

Results for µc1···ck
ϕ1···ϕk

.
Proposition 3.1.
..

......

(i) µc1···ck
ϕ1···ϕk

: (AH0

P , 〈 , 〉A) → (H0([0, a], g), 〈 , 〉P)

is a Riemannian submersion with totally geodesic fibre.

(ii) φ ◦ µc1···ck
ϕ1···ϕk

= holc.

φ : H0([0, a], g) → G parallel transport map

⇐⇒
def

φ(u) := gu(a) (u ∈ H0([0, a], g))(
gu ∈ H1([0, a], G) s.t.

{
gu(0) = e

(Rgu(t))
−1
∗ (g′

u(t)) = u(t)

)



Applications to the gauge theory

Results for µc1···ck
ϕ1···ϕk

AH0

P
H0([0, a], g)

µc1,··· ,ck
ϕ1,··· ,ϕk

G

holc
φ



Applications to the gauge theory

Results for holc

.
Theorem B.
..

......

holc : (AH0

P , 〈 , 〉A) → (G, 〈 , 〉G,a) is

a Riemannian submersion with minimal

regularizable fibre.

.
Theorem C.
..

...... L(⊂ G) : equifocal ⇐⇒ hol−1
c (L) : isoparametric

• The notion of an equifocal submanifold in symmetric spaces

was introduced by C.L. Terng and G. Thorbergsson in 1995.

• The notion of an isoparametric submanifold in a Hilbert space

was introduced by C.L. Terng in 1989.



Applications to the gauge theory

Holonomy concentration theorem

From Theorem A and Proposition 3.1, we obtain

.
Theorem D(Holonomy concentration theorem along r.m.c.f.)
..

......

c : [0, a] → B : unit speed C∞-loop

M : a strongly convex closed hypersurface in G

satisfying (∗1) and (∗2)
Then the following statement (i),(ii) and (iii) hold：

(i) B := hol−1
c (M) is a reg. hypersurface.

(ii) The reg. m.c.f. {Bt}t∈[0,T ) starting from B exists.

(iii) As t → T , holc(Bt) collapses to a one-point set.

As t → T , the holonomy elements of the connections

belonging to Bt along c concentrate a point of G.



Applications to the gauge theory

Recall of the conditions (∗1) and (∗2)

(∗1) M ⊂ Bπ
b
(x0) and expx0

|BT
π
b
(0) : injective

(∗2) b2(1 − α)−2/n(ω−1
n · VolgN (M))2/n ≤ 1

(0 < α < 1)

b :=
√
K (K : the max. sec. curv. of N := V/G)

Bπ
b
(x0) : the geodesic ball of radius π

b
centered at

some point x0 ∈ N

BT
π
b
(0) : the ball of radius π

b
centered at 0 ∈ Tx0N

ωn : the volume of the Euclidean unit n-ball

(n := dimN − 1)





4. Future plan



Flow approach to the singular point of the moduli space of self-dual connections

Flow approach to the singular point of

the moduli space of self-dual connections

B ⊂ AHl

P
Hl([0, a], su(2))

µc1,··· ,ck
ϕ1,··· ,ϕk

SU(2) ⊃ M

holc
φ

B := hol−1
c (M) : regularizable submanifold

π : P → B : SU(2)-bundle (dimB = 4)

small geodesic sphere

∃ {Bt}t∈[0,T ) : the regularized mean curvature flow s.t. B0 = B

center at e



Flow approach to the singular point of the moduli space of self-dual connections

Flow approach to the singular point of

the moduli space of self-dual connections

AHl

P

Ml
P := AHl

P /GHl+1

P , MYM,l
P := YMHl

P /GHl+1

P

MSD,l
P := SDHl

P /GHl+1

P

YMHl

P
SDHl

P

Ml
PMYM,l

P
MSD,l

P

Bt
Bt ∩ YMHl

PBt ∩ SDHl

P

(Bt ∩ SDHl

P )/GHl+1

P



Flow approach to the singular point of the moduli space of self-dual connections

Flow approach to the singular point of

the moduli space of self-dual connections

Question.

Can we find a unit speed C∞-loop c such that

{(Bt ∩ SDHl

P )/GHl+1

P }t∈[0,T )

is a mean curvature flow collapsing to a singular point

of MSD,l
P ?



Flow approach to the singular point of the moduli space of self-dual connections

Flow approach to the singular point of

the moduli space of self-dual connections

{(Bt ∩ SDHl

P )/GHl+1

P }t∈[0,T )

MSD,l
P

singular point

∂ MSD,l
P

a collar neighborhood

is like this?

We want to find a unit speed C∞-loop c such that



Flow approach to the singular point of the moduli space of self-dual connections

Why does this question arise?

Singular points of the moduli space are the gauge

equivalence classes of reducible connections.

Bt = hol−1
c (M t)

It is expected that, for a suitable loop c,

M t → {e} ⇐⇒ (Bt ∩ SDHl

P )/GHl+1

P → [ωred] ?

In the case where M t is the m.c.f. starting from a small

geodesic sphere centered at e, M t → {e} and hence

it is expected that, for a suitable loop c,

(Bt ∩ SDHl

P )/GHl+1

P → [ωred].



Flow approach to the singular point of the moduli space of self-dual connections

Thank you for your attention!



Flow approach to the singular point of the moduli space of self-dual connections

Dear Professor Jürgen Berndt!

Congratulations on 60-th birthday!

With gratitude!



Flow approach to the singular point of the moduli space of self-dual connections



Flow approach to the singular point of the moduli space of self-dual connections

On the images of the Gauge orbits

H l([0, a], g)

G

H l([0, a], g)

φφ

G

g

Ad(g(0))

µc1···ck
ϕ1···ϕk

µc1···ck
ϕ1···ϕk

AHl

P AHl

P

g

g ∈ GHl+1

P , g := λc1···ck
ϕ1···ϕk

(g) :=
def

ĝ ◦ c̃1 · · · c̃k



Flow approach to the singular point of the moduli space of self-dual connections

Equivariance of the bridging map with the gauge action

AHl

P AHl

P

H l([0, a], g) H l([0, a], g)

µc1···ck
ϕ1···ϕk

µc1···ck
ϕ1···ϕk

λc1···ck
ϕ1···ϕk

: GHl+1

P → ΩHl+1

(G)

g := λc1···ck
ϕ1···ϕk

(g)

g

( λc1···ck
ϕ1···ϕk

((GHl+1

P )x0) ⊂ ΩHl+1

e (G) )

• µc1···ck
ϕ1···ϕk

((GHl+1

P )x0 · ω) ⊂ ΩHl+1

e (G) · µc1···ck
ϕ1···ϕk

(ω)

• µc1···ck
ϕ1···ϕk

(GHl+1

P · ω) ⊂ ΩHl+1
(G) · µc1···ck

ϕ1···ϕk
(ω)



Flow approach to the singular point of the moduli space of self-dual connections

On the images of the Gauge orbits

H l([0, a], g)

G

H l([0, a], g)

φ

• φ(ΩHl+1

e (G) · u) = {φ(u)}

φ

G

g

Ad(ḡ(0))

• φ(ΩHl+1
(G) · u) = Ad(G) · φ(u)

Hence

• holc((GHl+1

P )x0 · ω) = {φ(µc1···ck
ϕ1···ϕk

(ω))}

• holc(GHl+1

P · ω) ⊂ Ad(G) · φ(µc1···ck
ϕ1···ϕk

(ω))



Flow approach to the singular point of the moduli space of self-dual connections

An important function on the moduli space

AHl

P
H l([0, a], g)

µc1,··· ,ck
ϕ1,··· ,ϕk

(AHl

P /(GHl+1

P )x0 =)M̃Hl

P
Hl([0, a], g)/ΩHl+1

e (G) = G
holc

holc
φπM̃

πM

[0,∞)

πAd

(AHl

P /GHl+1

P =)MHl

P

holc
G/Ad(G)

dG
e

fc
R

dG
e



Flow approach to the singular point of the moduli space of self-dual connections

An important function on the moduli space

AHl

P
H l([0, a], g)

µc1,··· ,ck
ϕ1,··· ,ϕk

M̃Hl

P
Hl([0, a], g)/ΩHl+1

e (G) = G
holc

holc
φπM̃

πM

[0,∞)MHl

P

dG
e

fc
R

SDHl

P

M̃SD,l
P

MSD,l
P

(G = SU(2), g = su(2))



Flow approach to the singular point of the moduli space of self-dual connections

Important fact

.
Fact
..

......

(i) Bt/GHl+1

P = (fc
R)−1(rt) (∃ rt > 0).

(ii) (Bt∩SDHl

P )/GHl+1

P = (fc
R)−1(rt)∩MSD,l

P (∃ rt > 0).

By using these facts, we will tackle the question.

Question.

Can we find a unit speed C∞-loop c such that

{(Bt ∩ SDHl

P )/GHl+1

P }t∈[0,T ) is a mean curvature flow?



Flow approach to the singular point of the moduli space of self-dual connections

Groisser-Parker’s result

B : compact oriented simply connected Riemannian

4-manifold whose intersection form is positive definite

π : P → B : a SU(2)-bundle of instanton number k ≥ 1

.
Theorem(Groisser-Parker)
..

......

(i) (MSD,l
P , 〈 , 〉) (l ≥ 2) is a (8k − 3)-dim. singular

Riemannian manifold with cone singularity.

(Cone points are the gauge equivalence classes of

reducible connectons.)



Flow approach to the singular point of the moduli space of self-dual connections

Groisser-Parker’s result

.
Theorem(Groisser-Parker) (continued)
..

......

(ii) A sufficiently small neighborhood U of a cone point

p of (MSD,l
P , 〈 , 〉) is homeomorphic to the cone over

CP 4k−2, 〈 , 〉|U is described as

〈 , 〉 = dr2 · r2(pr∗g0 + O(r2)),

where r is the distance function from p, g0 is the metric

of CP 4k−2 of constant holomorphic sectional curvature,

pr is the projection of U onto r−1(ε) along grad r.



Flow approach to the singular point of the moduli space of self-dual connections

Groisser-Parker’s result

.
Theorem(Groisser-Parker)(continued2)
..

......

(iii) In the case of k = 1, the boundary of the completion

of (MSD
P , 〈 , 〉) is homothetic to B and

its sufficiently small neighborhood consists of

the gauge equivalence classes of the connections

such that the energy density concentrates at a point.



Flow approach to the singular point of the moduli space of self-dual connections

Groisser-Parker’s result

MSD,l
P

cone point

∂ MSD,l
P

a collar neighborhood

B
homothetic

(when k = 1)


