HOMOGENEOUS CR-SUBMANIFOLDS IN COMPLEX HYPERBOLIC SPACES

Olga Pérez Barral

Universidade de Santiago de Compostela

October 29, 2019

HOMOGENEOUS CR-SUBMANIFOLDS

Index

(2) The isometry group of $\mathbb{C}H^n$

CR-submanifolds

\bar{M} Hermitian manifold, J complex structure

Definition

 $M\subset \bar{M}$ CR-submanifold if

$$T_p M = \Delta_p \oplus \Delta_p^{\perp}, \ \forall p \in M,$$

where:

- Δ_p complex subspace of T_pM $(J\Delta_p \subset \Delta_p)$
- Δ_p^{\perp} totally real subspace of T_pM $(\Delta_p^{\perp} \perp J\Delta_p^{\perp})$

Examples

- Complex submanifolds
- Totally real submanifolds
- Real hypersurfaces

イロト イヨト イヨト イヨト

э

Motivation

Problem

To classify homogeneous CR-submanifolds of $\mathbb{C}H^n$

- Homogeneous real hypersurfaces (Berndt-Tamaru)
- Homogeneous complex submanifolds (Di Scala-Ishi-Loi)
- Homogeneous Lagrangian submanifolds
 - H < AN (Hashinaga-Kajigaya)

Our problem

To classify those CR-submanifolds of $\mathbb{C}H^n$ given by the action of H < AN.

The isometry group of $\mathbb{C}H^n$

•
$$\mathbb{C}H^n$$
 symmetric space $\Rightarrow \mathbb{C}H^n = G/K$
• $G = \text{Isom}^0(\mathbb{C}H^n) = SU(1, n)$
• $K = G_o = S(U(1)U(n)), o \in \mathbb{C}H^n$

• $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition

• $\mathfrak{a} \subset \mathfrak{p}$ maximal abelian subspace, $\mathfrak{a} \simeq \mathbb{R}$

• For
$$\lambda \in \mathfrak{a}^*$$
, $\mathfrak{g}_{\lambda} = \{X \in \mathfrak{g} : [A, X] = \lambda(A)X, \forall A \in \mathfrak{a}\}$ root spaces

•
$$\Sigma = \{\pm \alpha, \pm 2\alpha\}$$
 set of roots

• $\mathfrak{g} = \mathfrak{g}_{-2\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_\alpha \oplus \mathfrak{g}_{2\alpha}$ root space decomposition

• $\Sigma^+ = \{\alpha, 2\alpha\}$ positive roots

• $\mathfrak{n} = \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2\alpha}$ nilpotent Lie algebra

• $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$ lwasawa decomposition $\rightarrow G = KAN$

• $\mathfrak{a} \oplus \mathfrak{n}$ solvable part: $J\mathfrak{a} = \mathfrak{g}_{2\alpha}, \ J\mathfrak{g}_{\alpha} = \mathfrak{g}_{\alpha}, \ \mathfrak{g}_{\alpha} \simeq \mathbb{C}^{n-1}$

Lemma

 $G = \text{Isom}^{0}(\mathbb{C}H^{n}), o \in \mathbb{C}H^{n}, H < G \text{ connected subgroup, } Lie(H) = \mathfrak{h}.$

 $M = H \cdot o$ *CR*-submanifold \Leftrightarrow $\mathfrak{h}_{\mathfrak{a} \oplus \mathfrak{n}} = \mathfrak{c} \oplus \mathfrak{r}$.

Example

- G = KAN, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$, where $\mathfrak{n} = \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2\alpha}$
- $\mathfrak{w}^{\perp} \subset \mathfrak{g}_{lpha}$ totally real vector subspace of dimension k
- $\mathfrak{w} = \mathfrak{g}_{\alpha} \ominus \mathfrak{w}^{\perp}$
- $\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2lpha}$ Lie subalgebra with associated Lie group S

 $W^{2n-k} = S \cdot o$ Berndt-Brück submanifold of $\mathbb{C}H^n$

Lemma

 $G = \text{Isom}^{0}(\mathbb{C}H^{n}), o \in \mathbb{C}H^{n}, H < G \text{ connected subgroup, } Lie(H) = \mathfrak{h}.$

 $M = H \cdot o$ *CR*-submanifold \Leftrightarrow $\mathfrak{h}_{\mathfrak{a} \oplus \mathfrak{n}} = \mathfrak{c} \oplus \mathfrak{r}$.

Example

- G = KAN, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$, where $\mathfrak{n} = \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2\alpha}$
- $\mathfrak{w}^{\perp} \subset \mathfrak{g}_{lpha}$ totally real vector subspace of dimension k
- $\mathfrak{w} = \mathfrak{g}_{\alpha} \ominus \mathfrak{w}^{\perp}$
- $\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2lpha}$ Lie subalgebra with associated Lie group S

 $W^{2n-k} = S \cdot o$ homogeneous, minimal, ruled by $\mathbb{C}H^{n-k}$

Main result

Our problem

To classify those CR-submanifolds of $\mathbb{C}H^n$ given by the action of H < AN.

Theorem

Let H < AN be a connected subgroup acting on $\mathbb{C}H^n$ in such a way that the orbit $M = H \cdot o$ is a CR-submanifold. Then, its Lie algebra \mathfrak{h} is conjugated to one of the following

- **1** $\mathfrak{h} = \mathfrak{r}$, or
- 2 $\mathfrak{h} = \mathfrak{a} \oplus \mathfrak{r}$, or
- $\textbf{3} \ \mathfrak{h} = \mathfrak{c} \oplus \mathfrak{r} \oplus \mathfrak{g}_{2\alpha}, \text{ or }$

where $\mathfrak{r}, \mathfrak{c} \subset \mathfrak{g}_{\alpha}$, \mathfrak{r} is a totally real subspace and \mathfrak{c} is a complex one.

Idea of the proof

Idea of the proof

 $pr(\mathfrak{h}) = \mathfrak{a}: \mathfrak{h} = \mathbb{R}(B + X) \oplus \mathfrak{w}$, for $\mathfrak{w} \subset \mathfrak{g}_{\alpha}$, $X \in \mathfrak{g}_{\alpha} \ominus \mathfrak{w}$. Let $U, V \in \mathfrak{w}$.

• Due to the properties of the Lie bracket of $\mathfrak{a} \oplus \mathfrak{n}$,

$$\begin{split} 2[U,V] &= \langle JU,V\rangle Z \Rightarrow \langle JU,V\rangle = 0 \Rightarrow \mathfrak{w} \text{ totally real subspace}, \\ 2[B+X,U] &= U + \langle JX,U\rangle Z \Rightarrow \langle JX,U\rangle = 0 \Rightarrow X \perp \mathbb{C}\mathfrak{w}. \end{split}$$

- $\langle J(B+X), U \rangle = \langle Z + JX, U \rangle = 0 \Rightarrow \mathfrak{h}$ totally real subspace.
- $\operatorname{Ad}(\operatorname{Exp}(2X))\mathfrak{h} = e^{2\operatorname{ad}(X)}\mathfrak{h} = \mathfrak{a} \oplus \mathfrak{w}.$

同 ト イヨ ト イヨ ト ニヨ

Main result

Theorem

Let H < AN be a connected subgroup acting on $\mathbb{C}H^n$ in such a way that the orbit $M = H \cdot o$ is a CR-submanifold. Then, its Lie algebra \mathfrak{h} is conjugated to one of the following

 $\bullet \ \mathfrak{h} = \mathfrak{r} \ \rightsquigarrow \ H \cdot o \text{ is a horosphere in a totally geodesic } \mathbb{R}H^k,$

2 $\mathfrak{h} = \mathfrak{a} \oplus \mathfrak{r} \rightsquigarrow H \cdot o$ is a totally geodesic $\mathbb{R}H^k$,

S h = r ⊕ c ⊕ g_{2α} → H · o is a direct product of a horosphere in a totally geodesic CH^k and a horosphere in a totally geodesic ℝH^ℓ,

where $\mathfrak{r}, \mathfrak{c} \subset \mathfrak{g}_{\alpha}, \mathfrak{r}$ is a totally real subspace and \mathfrak{c} is a complex one.

▲ □ ▶ ▲ □ ▶ ▲

HOMOGENEOUS CR-SUBMANIFOLDS IN COMPLEX HYPERBOLIC SPACES

Olga Pérez Barral

Universidade de Santiago de Compostela

October 29, 2019

HOMOGENEOUS CR-SUBMANIFOLDS

Olga Pérez Barral

10 / 10