HOMOGENEOUS CR-SUBMANIFOLDS IN COMPLEX HYPERBOLIC SPACES

Olga Pérez Barral
Universidade de Santiago de Compostela

October 29, 2019

Index

(1) Definition of CR-submanifold
(2) The isometry group of $\mathbb{C} H^{n}$
(3) Main result

CR-submanifolds

\bar{M} Hermitian manifold, J complex structure

Definition

$M \subset \bar{M} C R$-submanifold if

$$
T_{p} M=\Delta_{p} \oplus \Delta_{p}^{\perp}, \forall p \in M,
$$

where:

- Δ_{p} complex subspace of $T_{p} M\left(J \Delta_{p} \subset \Delta_{p}\right)$
- Δ_{p}^{\perp} totally real subspace of $T_{p} M\left(\Delta_{p}^{\perp} \perp J \Delta_{p}^{\perp}\right)$

Examples

- Complex submanifolds
- Totally real submanifolds
- Real hypersurfaces

Motivation

Problem

To classify homogeneous CR-submanifolds of $\mathbb{C} \mathrm{H}^{n}$

- Homogeneous real hypersurfaces (Berndt-Tamaru)
- Homogeneous complex submanifolds (Di Scala-Ishi-Loi)
- Homogeneous Lagrangian submanifolds

$$
H<A N \text { (Hashinaga-Kajigaya) }
$$

Our problem
To classify those CR-submanifolds of $\mathbb{C} H^{n}$ given by the action of $H<A N$.

The isometry group of $\mathbb{C} H^{n}$

- $\mathbb{C} H^{n}$ symmetric space $\Rightarrow \mathbb{C} H^{n}=G / K$

$$
\begin{aligned}
& G=\operatorname{Isom}^{0}\left(\mathbb{C} H^{n}\right)=S U(1, n) \\
& K=G_{o}=S(U(1) U(n)), o \in \mathbb{C} H^{n}
\end{aligned}
$$

- $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition
- $\mathfrak{a} \subset \mathfrak{p}$ maximal abelian subspace, $\mathfrak{a} \simeq \mathbb{R}$
- For $\lambda \in \mathfrak{a}^{*}, \mathfrak{g}_{\lambda}=\{X \in \mathfrak{g}:[A, X]=\lambda(A) X, \forall A \in \mathfrak{a}\}$ root spaces
- $\Sigma=\{ \pm \alpha, \pm 2 \alpha\}$ set of roots
- $\mathfrak{g}=\mathfrak{g}_{-2 \alpha} \oplus \mathfrak{g}_{-\alpha} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2 \alpha}$ root space decomposition
- $\Sigma^{+}=\{\alpha, 2 \alpha\}$ positive roots
- $\mathfrak{n}=\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2 \alpha}$ nilpotent Lie algebra
- $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$ Iwasawa decomposition $\rightarrow G=K A N$
- $\mathfrak{a} \oplus \mathfrak{n}$ solvable part: $J \mathfrak{a}=\mathfrak{g}_{2 \alpha}, J \mathfrak{g}_{\alpha}=\mathfrak{g}_{\alpha}, \mathfrak{g}_{\alpha} \simeq \mathbb{C}^{n-1}$

Lemma

$G=\operatorname{Isom}^{0}\left(\mathbb{C} H^{n}\right), o \in \mathbb{C} H^{n}, H<G$ connected subgroup, Lie $(H)=\mathfrak{h}$.

$$
M=H \cdot o \quad C R \text {-submanifold } \Leftrightarrow \mathfrak{h}_{\mathfrak{a} \oplus \mathfrak{n}}=\mathfrak{c} \oplus \mathfrak{r} .
$$

Example

- $G=K A N, \mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$, where $\mathfrak{n}=\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2 \alpha}$
- $\mathfrak{w}^{\perp} \subset \mathfrak{g}_{\alpha}$ totally real vector subspace of dimension k
- $\mathfrak{w}=\mathfrak{g}_{\alpha} \ominus \mathfrak{w}^{\perp}$
- $\mathfrak{s}=\mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2 \alpha}$ Lie subalgebra with associated Lie group S

$$
W^{2 n-k}=S \cdot o \text { Berndt-Brück submanifold of } \mathbb{C} H^{n}
$$

$W^{2 n-k}$ is a CR-submanifold

$$
\mathfrak{s}=\underbrace{\left(\mathfrak{a} \oplus \mathfrak{c} \oplus \mathfrak{g}_{2 \alpha}\right)}_{\text {complex }} \oplus \underbrace{J \mathfrak{w}^{\perp}}_{\text {totally real }}, \quad \text { where } \quad \mathfrak{c}=\mathfrak{w} \ominus J \mathfrak{w}^{\perp}
$$

Lemma

$G=\operatorname{Isom}^{0}\left(\mathbb{C} H^{n}\right), o \in \mathbb{C} H^{n}, H<G$ connected subgroup, Lie $(H)=\mathfrak{h}$.

$$
M=H \cdot \circ \quad C R \text {-submanifold } \Leftrightarrow \mathfrak{h}_{\mathfrak{a} \oplus \mathfrak{n}}=\mathfrak{c} \oplus \mathfrak{r} .
$$

Example

- $G=K A N, \mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$, where $\mathfrak{n}=\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2 \alpha}$
- $\mathfrak{w}^{\perp} \subset \mathfrak{g}_{\alpha}$ totally real vector subspace of dimension k
- $\mathfrak{w}=\mathfrak{g}_{\alpha} \ominus \mathfrak{w}^{\perp}$
- $\mathfrak{s}=\mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2 \alpha}$ Lie subalgebra with associated Lie group S

$$
W^{2 n-k}=S \cdot o \text { homogeneous, minimal, ruled by } \mathbb{C} H^{n-k}
$$

$W^{2 n-k}$ is a CR-submanifold

$$
\mathfrak{s}=\underbrace{\left(\mathfrak{a} \oplus \mathfrak{c} \oplus \mathfrak{g}_{2 \alpha}\right)}_{\text {complex }} \oplus \underbrace{\mathfrak{j w}^{\perp}}_{\text {totally real }}, \text { where } \mathfrak{c}=\mathfrak{w} \ominus \mathfrak{J} \mathfrak{w}^{\perp}
$$

Main result

Our problem

To classify those CR-submanifolds of $\mathbb{C} H^{n}$ given by the action of $H<A N$.

```
Theorem
Let H<AN be a connected subgroup acting on \mathbb{CH}}\mp@subsup{H}{}{n}\mathrm{ in such a way that
the orbit M =H\cdoto is a CR-submanifold. Then, its Lie algebra }\mathfrak{h}\mathrm{ is conjugated to one of the following
```

(1) $\mathfrak{h}=\mathfrak{r}$, or
(2) $\mathfrak{h}=\mathfrak{a} \oplus \mathfrak{r}$, or
(3) $\mathfrak{h}=\mathfrak{c} \oplus \mathfrak{r} \oplus \mathfrak{g}_{2 \alpha}$, or
(9) $\mathfrak{h}=\mathfrak{a} \oplus \mathfrak{c} \oplus \mathfrak{r} \oplus \mathfrak{g}_{2 \alpha}$,
where $\mathfrak{r}, \mathfrak{c} \subset \mathfrak{g}_{\alpha}, \mathfrak{r}$ is a totally real subspace and \mathfrak{c} is a complex one.

Idea of the proof

(1) Lemma: $\mathfrak{h}=$ complex \oplus totally real
(2) pr: $\mathfrak{g} \rightarrow \mathfrak{a} \oplus \mathfrak{g}_{2 \alpha}$ projection onto $\mathfrak{a} \oplus \mathfrak{g}_{2 \alpha}$
(3) $\operatorname{pr}(\mathfrak{h}) \in\left\{0, \mathfrak{a}, \mathfrak{g}_{2 \alpha}, \mathbb{R}(a B+b Z), \mathfrak{a} \oplus \mathfrak{g}_{2 \alpha}\right\}$, where $B \in \mathfrak{a}, Z \in \mathfrak{g}_{2 \alpha}$

Idea of the proof

(1) Lemma: $\mathfrak{h}=$ complex \oplus totally real
(2) pr: $\mathfrak{g} \rightarrow \mathfrak{a} \oplus \mathfrak{g}_{2 \alpha}$ projection onto $\mathfrak{a} \oplus \mathfrak{g}_{2 \alpha}$
(3) $\operatorname{pr}(\mathfrak{h}) \in\left\{0, \mathfrak{a}, \mathfrak{g}_{2 \alpha}, \mathbb{R}(a B+b Z), \mathfrak{a} \oplus \mathfrak{g}_{2 \alpha}\right\}$, where $B \in \mathfrak{a}, Z \in \mathfrak{g}_{2 \alpha}$
$\operatorname{pr}(\mathfrak{h})=\mathfrak{a}: \mathfrak{h}=\mathbb{R}(B+X) \oplus \mathfrak{w}$, for $\mathfrak{w} \subset \mathfrak{g}_{\alpha}, X \in \mathfrak{g}_{\alpha} \ominus \mathfrak{w}$. Let $U, V \in \mathfrak{w}$.

- Due to the properties of the Lie bracket of $\mathfrak{a} \oplus \mathfrak{n}$,

$$
\begin{aligned}
& 2[U, V]=\langle J U, V\rangle Z \Rightarrow\langle J U, V\rangle=0 \Rightarrow \mathfrak{w} \text { totally real subspace, } \\
& 2[B+X, U]=U+\langle J X, U\rangle Z \Rightarrow\langle J X, U\rangle=0 \Rightarrow X \perp \mathbb{C} \mathfrak{w} .
\end{aligned}
$$

- $\langle J(B+X), U\rangle=\langle Z+J X, U\rangle=0 \Rightarrow \mathfrak{h}$ totally real subspace.
- $\operatorname{Ad}(\operatorname{Exp}(2 X)) \mathfrak{h}=e^{2 \operatorname{ad}(X)} \mathfrak{h}=\mathfrak{a} \oplus \mathfrak{w}$.

Main result

Theorem

Let $H<A N$ be a connected subgroup acting on $\mathbb{C} H^{n}$ in such a way that the orbit $M=H \cdot o$ is a $C R$-submanifold. Then, its Lie algebra \mathfrak{h} is conjugated to one of the following
(1) $\mathfrak{h}=\mathfrak{r} \rightsquigarrow H \cdot o$ is a horosphere in a totally geodesic $\mathbb{R} H^{k}$,
(2) $\mathfrak{h}=\mathfrak{a} \oplus \mathfrak{r} \rightsquigarrow H \cdot o$ is a totally geodesic $\mathbb{R} H^{k}$,
(3) $\mathfrak{h}=\mathfrak{r} \oplus \mathfrak{c} \oplus \mathfrak{g}_{2 \alpha} \rightsquigarrow H \cdot o$ is a direct product of a horosphere in a totally geodesic $\mathbb{C} H^{k}$ and a horosphere in a totally geodesic $\mathbb{R} H^{\ell}$,
(c) $\mathfrak{h}=\mathfrak{a} \oplus \mathfrak{r} \oplus \mathfrak{c} \oplus \mathfrak{g}_{2 \alpha} \rightsquigarrow H \cdot o$ is the Berndt-Brück submanifold $W^{2 m-k}$ in a totally geodesic $\mathbb{C} H^{m}$,
where $\mathfrak{r}, \mathfrak{c} \subset \mathfrak{g}_{\alpha}, \mathfrak{r}$ is a totally real subspace and \mathfrak{c} is a complex one.

HOMOGENEOUS CR-SUBMANIFOLDS IN COMPLEX HYPERBOLIC SPACES

Olga Pérez Barral
Universidade de Santiago de Compostela

October 29, 2019

