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Motivation

Einstein metrics are critical metrics for the Hilbert-Einstein
functional, E : g 7→

∫
M
τdvg , restricted to constant volume

metrics

∇E = ρ− τ

2
g

dimM = 2: Gauss-Bonnet Theorem∫
M

τdvg = 2πχ(M)

Universal 2-dimensional curvature identity

ρ =
τ

2
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Motivation Ř-Einstein Hypersurfaces in space forms

Motivation

Einstein metrics are critical metrics for the Hilbert-Einstein
functional, E : g 7→

∫
M
τdvg , restricted to constant volume

metrics

∇E = ρ− τ

2
g

dimM = 2: Gauss-Bonnet Theorem∫
M

τdvg = 2πχ(M)

Universal 2-dimensional curvature identity

ρ =
τ

2
g
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A 4-dimensional curvature identity
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∫
M
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A 4-dimensional curvature identity

Quadratic curvature functional

Fa,b,c : g 7→
∫
M

{a||R||2 − 4b||ρ||2 + cτ 2}dvg

4-dimensional curvature identity

(
Ř − ‖R‖
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4
g

)
+τ
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4
g
)
−2

(
ρ̌− ‖ρ‖

2

4
g

)
−2

(
R[ρ]− ‖ρ‖

2

4
g

)
= 0

Řij = RiabcR
abc
j , ρ̌ij = ρiaρ

a
j , R[ρ]ij = Riabjρ

ab

M. Berger, Quelques formules de variation pour une structure

riemannienne, Ann. Sci. Éc. Norm. Super. (4) 3 (1970), 285–294
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Motivation Ř-Einstein Hypersurfaces in space forms

A 4-dimensional curvature identity

Quadratic curvature functional

Fa,b,c : g 7→
∫
M

{a||R||2 − 4b||ρ||2 + cτ 2}dvg

4-dimensional curvature identity

(
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Weakly Einstein Conditions

(
Ř − ‖R‖
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4
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Definition

A non–Einstein Riemannian manifold (M, g) is said to be

1 Ř-Einstein if Ř =
‖R‖2

n
g .

2 ρ̌-Einstein if ρ̌ =
‖ρ‖2

n
g .

3 R[ρ]-Einstein if R[ρ] =
‖ρ‖2

n
g .
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4-dimensional examples

Y. Euh, J. Park, and K. Sekigawa

M = M1(c)×M2(−c) is Ř-Einstein, ρ̌-Einstein and R[ρ]-Einstein.

Y. Euh, J. Park, and K. Sekigawa, A curvature identity on a
4-dimensional Riemannian manifold, Result. Math. 63 (2013),
107–114.
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M = M1(c)×M2(−c) is Ř-Einstein, ρ̌-Einstein and R[ρ]-Einstein.

Y. Euh, J. Park, and K. Sekigawa, A curvature identity on a
4-dimensional Riemannian manifold, Result. Math. 63 (2013),
107–114.

Locally Conformally Flat Ř-Einstein Manifolds

Let M a four dimensional locally conformally flat Riemannian manifold.
Then M is Ř-Einstein if and only if it has vanishing scalar curvature.

An examples is

R×f N(c), with f (t)2 = t2 − 1, t, 1− t2 if c = 1, 0,−1 respectively.

E. Garćıa-Ŕıo, A. Haji-Badali, ———–, and M.E. Vázquez-Abal
Locally conformally flat weakly-Einstein manifolds, Arch. Math.
(Basel) 111 (2018), 549–559.
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Ř-Einstein Hypersurfaces in a space form Q5
c

RM(X ,Y ,Z ,V ) = cR0(X ,Y ,Z ,V ) + 〈SY ,Z 〉〈SX ,V 〉 − 〈SX ,Z 〉〈SY ,V 〉.

R0(X ,Y ,Z ,V ) = {〈Y ,Z 〉〈X ,V 〉 − 〈X ,Z 〉〈Y ,V 〉}

Algebraic Structure of the Shape Operator

S4 − (‖S‖2 − 2c)S2 − (2ncH)S

− 1

n
{‖S2‖2 − (‖S‖2 − 2c)‖S‖2 − 2c(nH)2} Id = 0,

where H =
1

n
trS is the mean curvature.
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Two eigenvalues

Ř-Einstein Hypersurfaces in Rn+1

Theorem (Intrinsic Characterization)

A hypersurface in Rn+1 is Ř-Einstein if and only if it is a warped product
R×f Sn−1 with f (t)2 = t2 − 1.

E. Garćıa-Ŕıo, A. Haji-Badali, ———–, and M.E. Vázquez-Abal
Locally conformally flat weakly-Einstein manifolds, Arch. Math.
(Basel) 111 (2018), 549–559.

Theorem (Extrinsic Characterization)

A hypersurface in Rn+1 is Ř-Einstein if and only if it is a rotation
hypersurface over a plane catenary.
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A hypersurface in Rn+1 is Ř-Einstein if and only if it is a warped product
R×f Sn−1 with f (t)2 = t2 − 1.
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Two eigenvalues

Two different principal curvatures in Sn+1, Hn+1

dimVλ ≥ dimVµ ≥ 2

In Sn+1 we have

Sm
(
sin−2 θ

)
× Sn−m

(
cos−2 θ

)
, with tan4 θ =

m − 1

n −m − 1.

In Hn+1 we have

Sm
(
sinh−2 θ

)
×Hn−m (cosh−2 θ

)
, with tanh4 θ =

m − 1

n −m − 1.



Motivation Ř-Einstein Hypersurfaces in space forms

Two eigenvalues

Two different principal curvatures in Sn+1, Hn+1

dimVλ ≥ dimVµ ≥ 2

In Sn+1 we have

Sm
(
sin−2 θ

)
× Sn−m

(
cos−2 θ

)
, with tan4 θ =

m − 1

n −m − 1.

In Hn+1 we have

Sm
(
sinh−2 θ

)
×Hn−m (cosh−2 θ

)
, with tanh4 θ =

m − 1

n −m − 1.
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Two eigenvalues

Two different principal curvatures in Sn+1, Hn+1

dimVλ = n − 1, dimVµ = 1

M is locally conformally flat

x ′1(s)2 + x1(s)x ′′1 (s)− 1 = 0,

In Sn+1, M is a rotation hypersurface over a curve
α(t) = (x1(t), x2(t), x3(t)) with

Parametrization

x2(s) = (1− x2
1 )

1
2 sinφ(s),

x3(s) = (1− x2
1 )

1
2 cosφ(s),

φ(s) =

∫ s

0

√
1− x2

1 − x ′21

1− x2
1

dσ.

M. do Carmo, M. Dajczaer, Rotation Hypersurface in Spaces of
Constant Curvature, Trans. Amer. Math. Soc 277 (1983), 685–709.
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Two eigenvalues

Two different principal curvatures in Sn+1, Hn+1

In Hn+1, M is a rotation hypersurface over a curve
α(t) = (x1(t), x2(t), x3(t)) with

x ′1(s)2 + x1(s)x ′′1 (s) + 1 = 0,
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Two eigenvalues

Two different principal curvatures in Sn+1, Hn+1

In Hn+1, M is a rotation hypersurface over a curve
α(t) = (x1(t), x2(t), x3(t)) with

x ′1(s)2 + x1(s)x ′′1 (s) + 1 = 0,

Parametrization (Parallels in a degenerate space)

x ′3(s)x1(s)−x ′1(s)x3(s) =
√

x1(s)− x ′1(s)

x3(s) = x1

∫ s

0

√
x1 − x ′1
x2

1

dσ.
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Three eigenvalues

Three different principal curvatures in S5 and H5

Algebraic characterization for S

2ncH + (λα + λβ)
(
||S ||2 − 2c − λ2

α − λ2
β

)
= 0.
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Algebraic characterization for S

2ncH + (λα + λβ)
(
||S ||2 − 2c − λ2

α − λ2
β

)
= 0.

In S5, solutions are

S = diag

[
0, 0,

−2

γ
, γ

]
and S = diag

[
λ, λ,

−1 +
√

1− λ4

λ
,
−1−

√
1− λ4

λ
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Three eigenvalues

Three different principal curvatures in S5 and H5

Algebraic Structure:

S = diag

[
0, 0,

±2

γ
, γ

]

Lemma 1

There does not exist a hypersurface in S5 (respectively H5) with 0 as a
principal curvature of multiplicity two and two others simple principal
curvatures µ and γ satisfying µγ = −2 (respectively µγ = 2).
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Three eigenvalues

Three different principal curvatures in S5 and H5

Algebraic Structure:

S = diag

[
λ, λ,

∓1 +
√

1− λ4

λ
,
∓1−

√
1− λ4

λ

]

Lemma 2

Let Mn ↪→ Qn+1
c be a hypersurface with principal curvatures λ, µ1 and

µ2 where λ has multiplicity r ≥ 2 and µ1 and µ2 are simple. Assume that
µi = µi (λ) for i = 1, 2. Then M is a rotation hypersurface over an
umbilical-free surface L2 ↪→ Q3

c .
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Three eigenvalues

Three different principal curvatures in S5 and H5

Algebraic Structure:

S = diag

[
λ, λ,

∓1 +
√

1− λ4

λ
,
∓1−

√
1− λ4

λ

]

Corollary

Let M4 ↪→ Q5
±1 a hypersurface with principal curvatures λ, µ and γ

where λ has multiplicity two and µ and γ are simple and depends on λ.
Assume that

µγ = λ2 and µ+ γ = ∓ 2

λ
.

Then M is a rotation hypersurface over an umbilic-free surface
g : L2 ↪→ Q3

c , g = (g1, g2, g3, g4), such that the following conditions hold:

1 g1 is a harmonic function on L2.

2 ±1− || grad g1||2 = Kg2
1 , where K is the Gaussian curvature of L2.
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Four eigenvalues

Four different principal curvatures in S5

S4 − (‖S‖2 − 2c)S2 − (2ncH)S

− 1

n
{‖S2‖2 − (‖S‖2 − 2c)‖S‖2 − 2c(nH)2} Id = 0,

λ1 + λ2 + λ3 + λ4 = 0 = nH

S4 − (‖S‖2 − 2c)S2 − 1

n
{‖S2‖2 − (‖S‖2 − 2c)‖S‖2} Id = 0
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Four eigenvalues

Four different principal curvatures in S5

S4 − (‖S‖2 − 2c)S2 − 1

n
{‖S2‖2 − (‖S‖2 − 2c)‖S‖2} Id = 0

λ1 =

√
(||S ||2 − 2) +

√
||S2||2 − 2(||S ||2 − 2)

2
= −λ2

λ3 =

√
(||S ||2 − 2)−

√
||S2||2 − 2(||S ||2 − 2)

2
= −λ4,

and so
||S ||2 = 2λ2

1 + 2λ2
3 = 2(||S ||2 − 2),

||S ||2 = 4
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Four eigenvalues

Four different principal curvatures in S5

Theorem

The only minimal submanifold into the sphere with ||S ||2 = 4 is the

product Sm
(√

m
2

)
× S4−m

(√
4−m
2

)
.

S-S. Chern, M. do Carmo, S. Kobayashi, Minimal Submanifolds of a
Sphere with Second Fundamental Form of Constant Length,
Springer-Verlag, Berlin and New York (1970), 59–75.

There are no examples of Ř-Einstein hypersurfaces in S5 with four
different principal curvatures.
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Four eigenvalues

Four different principal curvatures in H5

Lemma
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