Totally geodesic submanifolds in the Riemannian symmetric spaces of rank 2

Sebastian Klein

University of Mannheim, Germany

31st October 2019
Totally geodesic submanifolds in Riemannian manifolds

- **Totally geodesic** submanifolds in **symmetric** spaces rank 2.
- **Reminder.** A submanifold M' of a Riemannian manifold M is called **totally geodesic**, if
 - the second fundamental form h of $M' \hookrightarrow M$ vanishes,
 or equivalently, if
 - every geodesic of M' also is a geodesic in M.
If M' is totally geodesic, then $T_p M'$ is **curvature-invariant**, i.e. $R^M(T_p M', T_p M') T_p M' \subset T_p M'$.
- **Examples.**
 - $\mathbb{R}^k \subset \mathbb{R}^n$
 - $S^k \subset S^n$
 - $\mathbb{C}P^k \subset \mathbb{C}P^n$
 - $\mathbb{R}P^k \subset \mathbb{C}P^n$
 - $\mathbb{H}P^k \subset \mathbb{H}P^n$
 - $\mathbb{C}P^k \subset \mathbb{H}P^n$
 - $\mathbb{R}P^k \subset \mathbb{H}P^n$
- **Murphy** (2019): On a differentiable manifold M with $\dim(M) \geq 4$, **generic** Riemannian metrics on M do not admit any totally geodesic submanifolds of dimension ≥ 2.
Today we are interested in the following classification problem:

Given a Riemannian symmetric space \(M \), find all totally geodesic submanifolds of \(M \).

Clearly, totally geodesic submanifolds in \(M \) come in families by the action of \(I(M) \). In general, there exist several such families of totally geodesic submanifolds \(M' \).

Classify totally geodesic submanifolds in \(M \)?

- Up to congruence?
- Up to (local) isometry?
- Up to (local) homothety?
Known classification results for totally geodesic submanifolds

- **All** totally geodesic submanifolds are known in
 - **Rank 1 symmetric spaces.**
 Spheres, projective spaces, Cayley plane. **Wolf** 1963.
 - **Rank 2 symmetric spaces.** “We have to talk.”
 - No symmetric spaces of rank \(\geq 3 \).

- **Specific types** of totally geodesic submanifolds have been classified in all (irreducible) symmetric spaces, for example:
 - **Reflective submanifolds.** They are connected components of the fixed point set of involutive isometries of \(M \).
 Leung 1974/75.
 - **Complex submanifolds** (in Hermitian symmetric spaces).
 Ihara 1967.
 - **Maximal spheres.**
 Makiko Sumi Tanaka 1991.
 - **Subspaces of maximal rank.**
 Ikawa/Tasaki 2000, **Zhu/Liang** 2004.
Totally geodesic submanifolds in spaces of rank 2

- **Chen/Nagano 1978**: Classification to **local homothety**.
 - First application of \((M_+, M_-)\)-method (polars/meridians).
 - No information about the **position** of the submanifolds.
 - **Missed** some “skew” maximal totally geodesic submanifolds:
 \[
 S^2(\frac{1}{2}\sqrt{10}) \subset Q^3 = G_2^+(\mathbb{R}^5), \quad \mathbb{CP}^2 \subset G_2(\mathbb{C}^6), \quad \mathbb{HP}^2 \subset G_2(\mathbb{H}^7),
 \]
 \[
 S^3(\frac{1}{2}\sqrt{10}) \subset Sp(2), \quad S^2(\frac{2}{3}\sqrt{21}) \subset G_2/\text{SO}(4), \quad S^3(\frac{2}{3}\sqrt{21}) \subset G_2.
 \]

- **Kimura/Tanaka 2008**: Classification **global homothety**.
 - Refinement of the method by Chen/Nagano.
 - The above “skew” submanifolds are still missing.

- **K~ 2005–09**: Classification up to **congruence**.
 - Postdoctoral Fellowship at the University College Cork (2006–08), under the guidance of **Jürgen Berndt**.
 - Different methods: **Root systems**.
 - Description of the **position** of submanifolds (tangent spaces/totally geodesic embeddings).
 - The missing “skew” totally geodesic submanifolds were **found**.
Let $M = G/K$ be a Riemannian symmetric space with symmetric triple (G, K, σ) and origin $p_0 := eK \in M$.

Every connected totally geodesic (t.g.) submanifold of M is contained in a complete one, congruent to one through p_0.

Two connected, complete, t.g. submanifolds M', M'' through p_0 with $T_{p_0}M' = T_{p_0}M''$ are identical: $M' = M''$.

A connected, complete submanifold M' of M with $p_0 \in M'$ is t.g. if and only if it is a symmetric subspace, i.e. if there exists a σ-invariant Lie subgroup G' of G so that $(G', G' \cap K, \sigma|G')$ is a symmetric triple for M'.

$U \subset T_{p_0}M$ a linear subspace. There exists a t.g. submanifold $M' \subset M$ with $p_0 \in M'$ and $T_{p_0}M' = U$ if and only if U is curvature invariant (a Lie triple system), i.e. if $R_M(U, U)U \subset U$ (or $[[m', m'], m'] \subset m'$) holds.
The task that is set before us is to classify the Lie triple systems of \(M \), for every Riemannian symmetric space \(M \) of rank 2.

The simply connected, irreducible Riemannian symmetric spaces \(M \) of compact type are the following:

- The 2-Grassmannians
 \[Q^m = G_2^+(\mathbb{R}^{m+2}), \ G_2(\mathbb{C}^{m+2}) \text{ and } G_2(\mathbb{H}^{m+2}). \]
- The classical quotient spaces
 \[\text{SU}(3)/\text{SO}(3), \ \text{SU}(6)/\text{Sp}(3) \text{ and } \text{SO}(10)/\text{U}(5). \]
- The exceptional spaces
 \[E_6/((\text{U}(1) \cdot \text{Spin}(10)), \ E_6/F_4 \text{ and } G_2/\text{SO}(4). \]
- The compact Lie groups \(\text{SU}(3), \text{Sp}(2) \) and \(G_2 \).
Roots and root spaces

- Suppose that \(M \cong (G, K, \sigma) \) is of compact type.
- Let \(g \) be the Lie algebra of \(G \), \(\sigma_L \) the linearisation of \(\sigma \). Then \(\mathfrak{k} = \text{Eig}(\sigma_L, 1) \), \(\mathfrak{m} = \text{Eig}(\sigma_L, -1) \cong T_{p_0}M \), \(g = \mathfrak{k} \oplus \mathfrak{m} \) and \(-[[u, v], w] \cong R_M(u, v)w \) for \(u, v, w \in \mathfrak{m} \cong T_{p_0}M \).
- Choose a Cartan subalgebra \(\mathfrak{a} \subset \mathfrak{m} \). For \(\lambda \in \mathfrak{a}^* \setminus \{0\} \) we let

\[
\mathfrak{m}_\lambda = \{X \in \mathfrak{m} \mid \forall H \in \mathfrak{a} : \text{ad}(H)^2 X = -\lambda(H)^2 \cdot X\}.
\]

If \(\mathfrak{m}_\lambda \neq \{0\} \), \(\lambda \) is called a root of \(M \), and \(\mathfrak{m}_\lambda \) is its root space. The set \(\Delta \subset \mathfrak{a}^* \setminus \{0\} \) of all roots is the root system.
- We have \(-\Delta = \Delta\). For \(H_0 \in \mathfrak{a} \) with \(\lambda(H_0) \neq 0 \) for all \(\lambda \in \Delta \), \(\Delta_+ := \{\lambda \in \Delta \mid \lambda(H_0) > 0\} \) is the set of positive roots with respect to \(H_0 \). We have

\[
\mathfrak{m} = \mathfrak{a} \oplus \bigoplus_{\lambda \in \Delta_+} \mathfrak{m}_\lambda.
\]
The complex quadric

$Q^m = G_2^+(\mathbb{R}^{m+2}) = SO(m+2)/SO(2) \times SO(m)$ is a Hermitian symmetric space of rank 2.

We can visualise the root system of Q^m with respect to a Cartan algebra \mathfrak{a} by plotting $\alpha^\# \in \mathfrak{a}$ for $\alpha \in \Delta \subset \mathfrak{a}^*$:

\[
\begin{array}{ccc}
& & m-2 \\
1\cdot & \cdot & \cdot 1 \\
& \cdot & \bigcirc & \cdot m-2 \\
& \cdot & \cdot & \cdot \\
\end{array}
\]
How to describe Lie triple systems in root theory

Let $m' \subset m$ be a Lie triple system, \(\mathfrak{k}' = [m', m'] \subset \mathfrak{k} \) and $g' = \mathfrak{k}' \oplus m'$.

There exists a Cartan subalgebra \(\mathfrak{a} \) of m such that \(\mathfrak{a}' = \mathfrak{a} \cap m' \) is a Cartan subalgebra of m'. Let $\Delta' \subset (\mathfrak{a}')^*$ be the root system of m' with respect to \mathfrak{a}', and for $\alpha \in \Delta'$, let m'_α be the corresponding root space.

Then we have

\begin{align*}
\Delta' &\subset \{ \lambda|\mathfrak{a}' \mid \lambda \in \Delta, \lambda|\mathfrak{a}' \neq 0 \} \\
\forall \alpha \in \Delta' : \quad m'_\alpha &\subset \bigoplus_{\lambda \in \Delta, \lambda|\mathfrak{a}' = \alpha} m_\lambda \\
m' &\subset \mathfrak{a}' \oplus \bigoplus_{\alpha \in \Delta'_+} m'_\alpha.
\end{align*}

In particular for $\text{rk}(m') = \text{rk}(m)$:

\begin{align*}
\mathfrak{a}' &= \mathfrak{a} , \quad \Delta' \subset \Delta , \quad m'_\alpha \subset m_\alpha.
\end{align*}
Consider the case $\text{rk}(m') = \text{rk}(m) = 2$. Then $\alpha' = \alpha$, $\Delta' \subset \Delta$ and $m'_\alpha \subset m_\alpha$.

The possibilities for m' are further restricted by:

- Δ' is invariant under its Weyl group.
- $[[m'_\alpha, m'_\beta], m'_\gamma] \subset \bigoplus_{\alpha \pm \beta \pm \gamma \in \Delta'} m'_{\alpha \pm \beta \pm \gamma}$

Need to evaluate the Lie bracket.

- If G is a classical Lie group, do matrix calculations in g (or something similar).
- If G is an exceptional Lie group, consider the root system of g^C. Use $\dim_C(g^C_\lambda) = 1$ and $[X_\lambda, X_\mu] = c_{\lambda, \mu} \cdot X_{\lambda + \mu}$. The numbers $c_{\lambda, \mu}$ are determined up to sign from the root system, consistent choice of signs can be obtained. Computer algebra is useful. ⇔ http://satake.sourceforge.net.

In this way, one can classify the rank 2 Lie triple systems in every rank 2 symmetric space.
Lie triple systems of rank 2 in the complex quadric

• • • \(M' = G_2^+ (\mathbb{R}^{k+2}) \)
• • • \(3 \leq k < m \)

• • • \(M' = (S^k \times S^\ell)/\mathbb{Z}_2 \)
• • • \(k, \ell \geq 2; \ k + \ell \leq m \)

• • • \(M' = \mathbb{CP}^1 \times \mathbb{CP}^1 \cong G_2^+ (\mathbb{R}^4) \)

• • • \(M' = (S^k \times S^1)/\mathbb{Z}_2 \)
• • • \(2 \leq k \leq m - 1 \)

• • • \(M' = \mathbb{CP}^1 \times \mathbb{RP}^1 \)

• • • \(M' = (S^1 \times S^1)/\mathbb{Z}_2 \)
• • • (a maximal flat torus)
Lie triple systems of rank 1.

- Consider the case $rk(m') = 1$ and $rk(m) = 2$. Then a' is a line in the plane a.
- Is every line $a' \subset a$ possible? Take $\alpha \in \Delta'$, then $a' = \mathbb{R}\alpha^\#$, and $\alpha = \lambda |a'$ for one or more $\lambda \in \Delta$.
 - We call α elementary, if there exists only one $\lambda \in \Delta$ with $\lambda |a' = \alpha$. In this case we have $\lambda |(a')^\perp = 0$, i.e. $\lambda^\# \in a'$.
 - We call α composite, if there exist (at least) two different $\lambda, \mu \in \Delta$ with $\lambda |a' = \alpha = \mu |a'$. Then $a \perp (\lambda^\# - \mu^\#)$.
- Therefore
 - either $a' = \mathbb{R}\lambda^\#$ for some $\lambda \in \Delta$,
 - or $a' = (\mathbb{R}(\lambda^\# - \mu^\#))^\perp$ for some $\lambda, \mu \in \Delta$, $\lambda \neq \mu$.
- It follows that for every space M, there exist only finitely many possible a'.
- Still have to evaluate $[[m'_{j\alpha}, m'_{k\alpha}], m'_{l\alpha}]$ (for $j, k, l \in \{\pm 1, \pm 2\}$) to determine the possibilities for m'_{α} and $m'_{2\alpha}$.
Rank 1 Lie triple systems in the complex quadric

\[M' = S^k(1), \quad 1 \leq k \leq m \]
\[M' = G_2(\mathbb{R}^3) \cong S^2 \]

\[M' = \mathbb{CP}^k, \quad 1 \leq k \leq \frac{n}{2} \]
\[M' = \mathbb{RP}^k, \quad 1 \leq k \leq \frac{n}{2} \]

\[M' = S^2\left(\frac{1}{2}\sqrt{10}\right) \]
in a special, “skew” position
The “skew” 2-sphere in Q^3

- We want to **embed** the 2-sphere $M = \text{SO}(3)/\text{SO}(2)$ in $Q^3 = \text{SO}(5)/\text{SO}(2) \times \text{SO}(3)$ as a **totally geodesic** submanifold (**symmetric subspace**).

- $V := \text{End}^0_+(\mathbb{R}^3)$: symmetric, trace-free real (3×3)-matrices. The **Cartan representation** is the 5-dimensional irreducible, orthogonal, real representation

\[
\text{SO}(3) \times V \to V, \ (B, X) \mapsto BXB^t = BXB^{-1}.
\]

It acts on the complex quadric $Q^3 \cong G^+_2(V)$ via **isometries**.

- Let $Z_0 := \mathbb{R} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \oplus \mathbb{R} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \in G^+_2(V)$.

- It turns out that the **orbit** M of the action of $\text{SO}(3)$ on $G^+_2(V)$ through Z_0 is **totally geodesic**, and **isometric** to S^2. It is neither a complex nor a totally real submanifold of $Q(V, \beta)$, and is therefore the **totally geodesic 2-sphere** that we seek.