Totally geodesic submanifolds in the Riemannian symmetric spaces of rank 2

Sebastian Klein

University of Mannheim, Germany

31st October 2019

Totally geodesic submanifolds in Riemannian manifolds

- Totally geodesic submanifolds in symmetric spaces rank 2.
- Reminder. A submanifold M^{\prime} of a Riemannian manifold M is called totally geodesic, if
- the second fundamental form h of $M^{\prime} \hookrightarrow M$ vanishes, or equivalently, if
- every geodesic of M^{\prime} also is a geodesic in M.

If M^{\prime} is totally geodesic, then $T_{p} M^{\prime}$ is curvature-invariant, i.e. $R^{M}\left(T_{p} M^{\prime}, T_{p} M^{\prime}\right) T_{p} M^{\prime} \subset T_{p} M^{\prime}$.

- Examples.
- $\mathbb{R}^{k} \subset \mathbb{R}^{n}$
- $S^{k} \subset S^{n}$
- $\mathbb{C P}^{k} \subset \mathbb{C P}^{n} \quad \mathbb{R P}^{k} \subset \mathbb{C P}^{n}$
- $\mathbb{H} \mathbb{P}^{k} \subset \mathbb{H P}^{n} \quad \mathbb{C P}^{k} \subset \mathbb{H} \mathbb{P}^{n} \quad \mathbb{R P}^{k} \subset \mathbb{H}^{P^{n}}$
- Murphy (2019): On a differentiable manifold M with $\operatorname{dim}(M) \geq 4$, generic Riemannian metrics on M do not admit any totally geodesic submanifolds of dimension ≥ 2.

The classification problem for totally geodesic submanifolds

- Today we are interested in the following classification problem:

Given a Riemannian symmetric space M, find all totally geodesic submanifolds of M.

- Clearly, totally geodesic submanifolds in M come in families by the action of $I(M)$. In general, there exist several such families of totally geodesic submanifolds M^{\prime}.
- Classify totally geodesic submanifolds in M ?
- Up to congruence?
- Up to (local) isometry?
- Up to (local) homothety?

Known classification results for totally geodesic submfds

- All totally geodesic submanifolds are known in
- Rank 1 symmetric spaces. Spheres, projective spaces, Cayley plane. Wolf 1963.
- Rank 2 symmetric spaces. "We have to talk."
- No symmetric spaces of rank ≥ 3.
- Specific types of totally geodesic submanifolds have been classified in all (irreducible) symmetric spaces, for example:
- Reflective submanifolds. They are connected components of the fixed point set of involutive isometries of M.
Leung 1974/75.
- Complex submanifolds (in Hermitian symmetric spaces). Ihara 1967.
- Maximal spheres. Makiko Sumi Tanaka 1991.
- Subspaces of maximal rank. Ikawa/Tasaki 2000, Zhu/Liang 2004.

Totally geodesic submanifolds in spaces of rank 2

- Chen/Nagano 1978: Classification to local homothety.
- First application of (M_{+}, M_{-})-method (polars/meridians).
- No information about the position of the submanifolds.
- Missed some "skew" maximal totally geodesic submanifolds:

$$
\begin{aligned}
& S^{2}\left(\frac{1}{2} \sqrt{10}\right) \subset Q^{3}=G_{2}^{+}\left(\mathbb{R}^{5}\right), \quad \mathbb{C P}^{2} \subset G_{2}\left(\mathbb{C}^{6}\right), \quad \mathbb{H P}^{2} \subset G_{2}\left(\mathbb{H}^{7}\right) \text {, } \\
& S^{3}\left(\frac{1}{2} \sqrt{10}\right) \subset \mathrm{Sp}(2), \quad S^{2}\left(\frac{2}{3} \sqrt{21}\right) \subset \mathrm{G}_{2} / \mathrm{SO}(4), \quad S^{3}\left(\frac{2}{3} \sqrt{21}\right) \subset \mathrm{G}_{2} .
\end{aligned}
$$

- Kimura/Tanaka 2008: Classification global homothety.
- Refinement of the method by Chen/Nagano.
- The above "skew" submanifolds are still missing.
- K~2005-09: Classification up to congruence.
- Postdoctoral Fellowship at the University College Cork (2006-08), under the guidance of Jürgen Berndt.
- Different methods: Root systems.
- Description of the position of submanifolds (tangent spaces/totally geodesic embeddings).
- The missing "skew" totally geodesic submanifolds were found.

Totally geodesic submfds in Riemannian symmetric spaces

- Let $M=G / K$ be a Riemannian symmetric space with symmetric triple (G, K, σ) and origin $p_{0}:=e K \in M$.
- Every connected totally geodesic (t.g.) submanifold of M is contained in a complete one, congruent to one through p_{0}.
- Two connected, complete, t.g. submanifolds $M^{\prime}, M^{\prime \prime}$ through p_{0} with $T_{p_{0}} M^{\prime}=T_{p_{0}} M^{\prime \prime}$ are identical: $M^{\prime}=M^{\prime \prime}$.
- A connected, complete submanifold M^{\prime} of M with $p_{0} \in M^{\prime}$ is \mathbf{t}.g. if and only if it is a symmetric subspace, i.e. if there exists a σ-invariant Lie subgroup G^{\prime} of G so that $\left(G^{\prime}, G^{\prime} \cap K, \sigma \mid G^{\prime}\right)$ is a symmetric triple for M^{\prime}.
- $U \subset T_{p_{0}} M$ a linear subspace. There exists a t.g. submanifold $M^{\prime} \subset M$ with $p_{0} \in M^{\prime}$ and $T_{p_{0}} M^{\prime}=U$ if and only if U is curvature invariant (a Lie triple system), i.e. if $R_{M}(U, U) U \subset U\left(\right.$ or $\left.\left[\left[\mathfrak{m}^{\prime}, \mathfrak{m}^{\prime}\right], \mathfrak{m}^{\prime}\right] \subset \mathfrak{m}^{\prime}\right)$ holds.

Riemannian symmetric spaces of rank 2

- The task that is set before us is to classify the Lie triple systems of M, for every Riemannian symmetric space M of rank 2.
- The simply connected, irreducible Riemannian symmetric spaces M of compact type are the following:
- The 2-Grassmannians $Q^{m}=G_{2}^{+}\left(\mathbb{R}^{m+2}\right), G_{2}\left(\mathbb{C}^{m+2}\right)$ and $G_{2}\left(\mathbb{H}^{m+2}\right)$.
- The classical quotient spaces $\mathrm{SU}(3) / \mathrm{SO}(3), \mathrm{SU}(6) / \mathrm{Sp}(3)$ and $\mathrm{SO}(10) / \mathrm{U}(5)$.
- The exceptional spaces
$\mathrm{E}_{6} /(\mathrm{U}(1) \cdot \operatorname{Spin}(10)), \mathrm{E}_{6} / \mathrm{F}_{4}$ and $\mathrm{G}_{2} / \mathrm{SO}(4)$.
- The compact Lie groups $\mathrm{SU}(3), \mathrm{Sp}(2)$ and G_{2}.

Roots and root spaces

- Suppose that $M \cong(G, K, \sigma)$ is of compact type.
- Let \mathfrak{g} be the Lie algebra of G, σ_{L} the linearisation of σ. Then $\mathfrak{k}=\operatorname{Eig}\left(\sigma_{L}, 1\right), \mathfrak{m}=\operatorname{Eig}\left(\sigma_{L},-1\right) \cong T_{p_{0}} M, \mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}$ and $-[[u, v], w] \cong R_{M}(u, v) w$ for $u, v, w \in \mathfrak{m} \cong T_{p_{0}} M$.
- Choose a Cartan subalgebra $\mathfrak{a} \subset \mathfrak{m}$. For $\lambda \in \mathfrak{a}^{*} \backslash\{0\}$ we let

$$
\mathfrak{m}_{\lambda}=\left\{X \in \mathfrak{m} \mid \forall H \in \mathfrak{a}: \operatorname{ad}(H)^{2} X=-\lambda(H)^{2} \cdot X\right\}
$$

If $\mathfrak{m}_{\lambda} \neq\{0\}, \lambda$ is called a root of M, and \mathfrak{m}_{λ} is its root space. The set $\Delta \subset \mathfrak{a}^{*} \backslash\{0\}$ of all roots is the root system.

- We have $-\Delta=\Delta$. For $H_{0} \in \mathfrak{a}$ with $\lambda\left(H_{0}\right) \neq 0$ for all $\lambda \in \Delta, \Delta_{+}:=\left\{\lambda \in \Delta \mid \lambda\left(H_{0}\right)>0\right\}$ is the set of positive roots with respect to H_{0}. We have

$$
\mathfrak{m}=\mathfrak{a} \oplus \bigoplus_{\lambda \in \Delta_{+}} \mathfrak{m}_{\lambda}
$$

Example: The complex quadric

- The complex quadric $Q^{m}=G_{2}^{+}\left(\mathbb{R}^{m+2}\right)=\mathrm{SO}(m+2) / \mathrm{SO}(2) \times \mathrm{SO}(m)$ is a Hermitian symmetric space of rank 2.
- We can visualise the root system of Q^{m} with respect to a Cartan algebra \mathfrak{a} by plotting $\alpha^{\sharp} \in \mathfrak{a}$ for $\alpha \in \Delta \subset \mathfrak{a}^{*}$:

How to describe Lie triple systems in root theory

- Let $\mathfrak{m}^{\prime} \subset \mathfrak{m}$ be a Lie triple system, $\mathfrak{k}^{\prime}=\left[\mathfrak{m}^{\prime}, \mathfrak{m}^{\prime}\right] \subset \mathfrak{k}$ and $\mathfrak{g}^{\prime}=\mathfrak{k}^{\prime} \oplus \mathfrak{m}^{\prime}$.
- There exists a Cartan subalgebra \mathfrak{a} of \mathfrak{m} such that $\mathfrak{a}^{\prime}=\mathfrak{a} \cap \mathfrak{m}^{\prime}$ is a Cartan subalgebra of \mathfrak{m}^{\prime}. Let $\Delta^{\prime} \subset\left(\mathfrak{a}^{\prime}\right)^{*}$ be the root system of \mathfrak{m}^{\prime} with respect to \mathfrak{a}^{\prime}, and for $\alpha \in \Delta^{\prime}$, let $\mathfrak{m}_{\alpha}^{\prime}$ be the corresponding root space.
- Then we have

$$
\begin{gathered}
\mathfrak{a}^{\prime} \subset \mathfrak{a} \\
\Delta^{\prime} \subset\left\{\lambda\left|\mathfrak{a}^{\prime}\right| \lambda \in \Delta, \lambda \mid \mathfrak{a}^{\prime} \neq 0\right\} \\
\forall \alpha \in \Delta^{\prime}: \mathfrak{m}_{\alpha}^{\prime} \subset \bigoplus_{\substack{\lambda \in \Delta \\
\lambda \mid \mathfrak{a}^{\prime}=\alpha}} \mathfrak{m}_{\lambda} \\
\mathfrak{m}^{\prime}=\mathfrak{a}^{\prime} \oplus \bigoplus_{\alpha \in \Delta_{+}^{\prime}} \mathfrak{m}_{\alpha}^{\prime}
\end{gathered}
$$

- In particular for $\operatorname{rk}\left(\mathfrak{m}^{\prime}\right)=\operatorname{rk}(\mathfrak{m})$:

$$
\mathfrak{a}^{\prime}=\mathfrak{a}, \quad \Delta^{\prime} \subset \Delta, \quad \mathfrak{m}_{\alpha}^{\prime} \subset \mathfrak{m}_{\alpha} .
$$

Lie triple systems of rank 2.

- Consider the case $\operatorname{rk}\left(\mathfrak{m}^{\prime}\right)=\operatorname{rk}(\mathfrak{m})=2$.

Then $\mathfrak{a}^{\prime}=\mathfrak{a}, \Delta^{\prime} \subset \Delta$ and $\mathfrak{m}_{\alpha}^{\prime} \subset \mathfrak{m}_{\alpha}$.

- The possibilities for \mathfrak{m}^{\prime} are further restricted by:
- Δ^{\prime} is invariant under its Weyl group.
- $\left[\left[\mathfrak{m}_{\alpha}^{\prime}, \mathfrak{m}_{\beta}^{\prime}\right], \mathfrak{m}_{\gamma}^{\prime}\right] \subset \bigoplus_{\alpha \pm \beta \pm \gamma \in \Delta^{\prime}} \mathfrak{m}_{\alpha \pm \beta \pm \gamma}^{\prime}$
- Need to evaluate the Lie bracket.
- If G is a classical Lie group, do matrix calculations in \mathfrak{g} (or something similar).
- If G is an exceptional Lie group, consider the root system of $\mathfrak{g}^{\mathbb{C}}$. Use $\operatorname{dim}_{\mathbb{C}}\left(\mathfrak{g}_{\lambda}^{\mathbb{C}}\right)=1$ and $\left[X_{\lambda}, X_{\mu}\right]=c_{\lambda, \mu} \cdot X_{\lambda+\mu}$. The numbers $c_{\lambda, \mu}$ are determined up to sign from the root system, consistent choice of signs can be obtained. Computer algebra is useful. \rightsquigarrow http://satake. sourceforge.net.
- In this way, one can classify the rank 2 Lie triple systems in every rank 2 symmetric space.

Lie triple systems of rank 2 in the complex quadric

Lie triple systems of rank 1.

- Consider the case $\operatorname{rk}\left(\mathfrak{m}^{\prime}\right)=1$ and $\operatorname{rk}(\mathfrak{m})=2$. Then \mathfrak{a}^{\prime} is a line in the plane \mathfrak{a}.
- Is every line $\mathfrak{a}^{\prime} \subset \mathfrak{a}$ possible? Take $\alpha \in \Delta^{\prime}$, then $\mathfrak{a}^{\prime}=\mathbb{R} \alpha^{\sharp}$, and $\alpha=\lambda \mid \mathfrak{a}^{\prime}$ for one or more $\lambda \in \Delta$.
- We call α elementary, if there exists only one $\lambda \in \Delta$ with $\lambda \mid \mathfrak{a}^{\prime}=\alpha$. In this case we have $\lambda \mid\left(\mathfrak{a}^{\prime}\right)^{\perp}=0$, i.e. $\lambda^{\sharp} \in \mathfrak{a}^{\prime}$.
- We call α composite, if there exist (at least) two different $\lambda, \mu \in \Delta$ with $\lambda\left|\mathfrak{a}^{\prime}=\alpha=\mu\right| \mathfrak{a}^{\prime}$. Then $\mathfrak{a} \perp\left(\lambda^{\sharp}-\mu^{\sharp}\right)$.
- Therefore
- either $\mathfrak{a}^{\prime}=\mathbb{R} \lambda^{\sharp}$ for some $\lambda \in \Delta$,
- or $\mathfrak{a}^{\prime}=\left(\mathbb{R}\left(\lambda^{\sharp}-\mu^{\sharp}\right)\right)^{\perp}$ for some $\lambda, \mu \in \Delta, \lambda \neq \mu$.
- It follows that for every space M, there exist only finitely many possible \mathfrak{a}^{\prime}.
- Still have to evaluate $\left[\left[\mathfrak{m}_{j \alpha}^{\prime}, \mathfrak{m}_{k \alpha}^{\prime}\right], \mathfrak{m}_{\ell \alpha}^{\prime}\right]$ (for $j, k, \ell \in\{ \pm 1, \pm 2\}$) to determine the possibilities for $\mathfrak{m}_{\alpha}^{\prime}$ and $\mathfrak{m}_{2 \alpha}^{\prime}$.

Rank 1 Lie triple systems in the complex quadric

$$
\begin{aligned}
& M^{\prime}=S^{k}(1), \quad 1 \leq k \leq m \\
& M^{\prime}=G_{2}\left(\mathbb{R}^{3}\right) \cong S^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
M^{\prime}=\mathbb{C P}^{k}, & 1 \leq k \leq \frac{n}{2} \\
M^{\prime}=\mathbb{R} \mathbb{P}^{k}, & 1 \leq k \leq \frac{n}{2}
\end{array}
$$

$$
M^{\prime}=S^{2}\left(\frac{1}{2} \sqrt{10}\right)
$$

in a special, "skew" position

The "skew" 2-sphere in Q^{3}

- We want to embed the 2-sphere $M=\mathrm{SO}(3) / \mathrm{SO}(2)$ in $Q^{3}=\mathrm{SO}(5) / \mathrm{SO}(2) \times \mathrm{SO}(3)$ as a totally geodesic submanifold (symmetric subspace).
- $V:=\operatorname{End}_{+}^{0}\left(\mathbb{R}^{3}\right)$: symmetric, trace-free real (3×3)-matrices. The Cartan representation is the 5 -dimensional irreducible, orthogonal, real representation

$$
\mathrm{SO}(3) \times V \rightarrow V,(B, X) \mapsto B X B^{t}=B X B^{-1} .
$$

It acts on the complex quadric $Q^{3} \cong G_{2}^{+}(V)$ via isometries.

- Let $Z_{0}:=\mathbb{R}\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \oplus \mathbb{R}\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right) \in G_{2}^{+}(V)$.
- It turns out that the orbit M of the action of $\mathrm{SO}(3)$ on $G_{2}^{+}(V)$ through Z_{0} is totally geodesic, and isometric to S^{2}. It is neither a complex nor a totally real submanifold of $Q(V, \beta)$, and is therefore the totally geodesic 2-sphere that we seek.

