Realizations of contact metric (κ, μ) -spaces as homogeneous real hypersurfaces in noncompact two-plane Grassmanians

> Takahiro Hashinaga National Institute Technolofgy of Kitakyushu collage, Santiago de Compositera university (as overseas research fellow ~28/03/2020)

Symmetry and shape Celebrating the 60th birthday of Prof. J. Berndt

イロト イポト イヨト イヨト

Aim of this talk

 (κ,μ) -space was defined by Blair, Koufogiorgos and Papantoniou.

Definition

A contact metric manifold $(M, \eta, \xi, \varphi, g)$ with $\Phi = d\eta$ is called a (κ, μ) -space if the Riemannian curavture tensor R satisfies

 $R(X,Y)\xi = (\kappa I + \mu h)(\eta(Y)X - \eta(X)Y), \quad (\forall X,Y \in \mathfrak{X}(M))$

where I denotes the identity transformation and $h := (1/2)\mathcal{L}_{\xi}\varphi$ is the Lie derivative of φ along ξ .

Main results:

Theorem (Cho-Kubo-Taketomi-Tamaru-H., Kubo-Taketomi-Tamaru-H., Cho, Inoguchi-Hashinaga)

 $\forall \mu \in \mathbb{R}$, $(0, \mu)$ -spaces can be realized as homogeneous real hypersurfaces in noncompact real two-plane Grassmanian $G_2^*(\mathbb{R}^{n+2})$ with some min. sec. curv. $-c(\mu)$.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Aim of this talk

- $G_2^*(\mathbb{R}^{n+2})\cong Q^{n*}(:$ noncompact dual of complex quadric)
- homogeneous contact real hypersurfaces with constant mean curvature in Q^{n*} have been classified by Berndt-Suh:

Theorem (Berndt-Suh, 2015)

M: a connected orientable real hypersurface with constant mean curvature in Q^{n*} $(n \ge 3)$.

- M is a contact real hypersurface
- $\Longleftrightarrow M$ is congruent to an open part of one of the following:
 - ullet a tube around the totally geodesic Q^{n-1*}
 - a "certain horosphere"
 - ullet a tube around the totally real $\mathbb{R} H^n$

Aim of this talk:

Roughly speaking, above homogeneous contact real hypersurfaces in Q^{n*} satisfy (κ,μ) condition:

 $R(X,Y)\xi = (\kappa I + \mu h)(\eta(Y)X - \eta(X)Y), \quad (\forall X,Y \in \mathfrak{X}(M))$

Aim of this talk

- $G_2^*(\mathbb{R}^{n+2})\cong Q^{n*}(:$ noncompact dual of complex quadric)
- homogeneous contact real hypersurfaces with constant mean curvature in Q^{n*} have been classified by Berndt-Suh:

Theorem (Berndt-Suh, 2015)

M: a connected orientable real hypersurface with constant mean curvature in Q^{n*} $(n \ge 3)$.

- M is a contact real hypersurface
- $\Longleftrightarrow M$ is congruent to an open part of one of the following:
 - ullet a tube around the totally geodesic Q^{n-1*}
 - a "certain horosphere"
 - ${\scriptstyle \bullet}$ a tube around the totally real ${\mathbb R} H^n$

Aim of this talk:

Roughly speaking, above homogeneous contact real hypersurfaces in Q^{n*} satisfy (κ,μ) condition:

$$R(X,Y)\xi = (\kappa I + \mu h)(\eta(Y)X - \eta(X)Y), \quad (\forall X,Y \in \mathfrak{X}(M))$$

- M: a (2n-1) dimensional manifold,
- η : a 1-form on M,
- ξ : a vector field on M,
- arphi:a (1,1)-tensor field on M
- g: a Riemannian metric on M

 (M,η,ξ,φ,g) is said to be an almost contact metric manifold If the following conditions hold:

$$\eta(\xi)=1, \quad arphi^2 X=-X+\eta(X)\xi \quad (orall X\in\mathfrak{X}(M)).$$

 $g(\varphi X,\varphi Y)=g(X,Y)-\eta(X)\eta(Y)\quad (\forall X,Y\in\mathfrak{X}(M)).$

• $\Phi(X,Y):=g(X,\varphi Y) \quad (X,Y\in\mathfrak{X}(M))$: 2-form on M.

Definition

 $(M,\eta,\xi,arphi,g)$ is called a contact metric manifold if $\Phi=d\eta$ holds.

(日) (周) (三) (三)

- M: a (2n-1) dimensional manifold,
- η : a 1-form on M,
- ξ : a vector field on M,
- arphi:a (1,1)-tensor field on M
- g: a Riemannian metric on M

 (M,η,ξ,φ,g) is said to be an almost contact metric manifold If the following conditions hold:

$$\eta(\xi) = 1, \quad \varphi^2 X = -X + \eta(X)\xi \quad (\forall X \in \mathfrak{X}(M)).$$

 $g(\varphi X,\varphi Y)=g(X,Y)-\eta(X)\eta(Y)\quad (\forall X,Y\in\mathfrak{X}(M)).$

• $\Phi(X,Y) := g(X,\varphi Y) \quad (X,Y \in \mathfrak{X}(M))$: 2-form on M.

Definition

 $(M,\eta,\xi,arphi,g)$ is called a contact metric manifold if $\Phi=d\eta$ holds.

イロト イポト イヨト イヨト

A contact metric manifold $(M, \eta, \xi, \varphi, g)$ with $\Phi = d\eta$ is called a (κ, μ) -space if the Riemannian curavture tensor R satisfies

 $R(X,Y)\xi = (\kappa I + \mu h)(\eta(Y)X - \eta(X)Y), \quad (\forall X,Y \in \mathfrak{X}(M))$

where I denotes the identity transformation and $h := (1/2)\mathcal{L}_{\xi}\varphi$ is the Lie derivative of φ along ξ .

Remark

- (κ,μ) -spaces satisfy the inequality $\kappa\leq 1$.
- If $\kappa=1$, then h=0, (κ,μ) -spaces are Sasakian.
- If $\kappa \neq 1$, then (κ, μ) -spaces are non-Sasakian. Ex.: the unit tangent sphere bundles of a Riemannian manifold with constant sectional curvature $c \neq 1$ are non-Sasakian (c(2-c), -2c)-spaces.

・ロト ・個ト ・ヨト ・ヨト

A contact metric manifold $(M, \eta, \xi, \varphi, g)$ with $\Phi = d\eta$ is called a (κ, μ) -space if the Riemannian curavture tensor R satisfies

$$R(X,Y)\xi = (\kappa I + \mu h)(\eta(Y)X - \eta(X)Y), \quad (\forall X,Y \in \mathfrak{X}(M))$$

where I denotes the identity transformation and $h := (1/2)\mathcal{L}_{\xi}\varphi$ is the Lie derivative of φ along ξ .

Remark

- (κ,μ) -spaces satisfy the inequality $\kappa\leq 1.$
- If $\kappa = 1$, then h = 0, (κ, μ) -spaces are Sasakian.

• If $\kappa \neq 1$, then (κ, μ) -spaces are non-Sasakian. Ex.: the unit tangent sphere bundles of a Riemannian manifold with constant sectional curvature $c \neq 1$ are non-Sasakian (c(2-c), -2c)-spaces.

 (κ,μ) -spaces have fruitful geometric properties:

- the class of (κ, μ) -spaces is invariant under D-homothetic transformations.
- (κ, μ) -spaces have strongly pseudo-convex CR-structure.
- For non-Sasakian (κ, μ) -spaces, Boeckx proved that
 - every non-Sasakian (κ, μ) -space is a locally homogeneous.
 - Local geometry of non-Sasakian (κ, μ) -space is completely determined by the dimension and the numbers (κ, μ) .
 - For non-Sasakian (κ, μ) -space M (note that M satisfies $\Phi = \mathbf{1} \cdot d\eta$), he defined invarinat

$$I_M = \frac{1 - (\mu/2)}{\sqrt{1 - \kappa}} \tag{1}$$

・ロト ・四ト ・ヨト ・ヨト

- Two non-Sasakian (κ, μ) -spaces M_1 and M_2 are locally isometric as contact metric manifolds up to a *D*-homothetic transformation if and only if their Boeckx invariant agree $I_{M_1} = I_{M_2}$.
- Up to D-homothetic transformation, the local model of non-Sasakian (κ, μ) -spaces have been decided.

 (κ,μ) -spaces have fruitful geometric properties:

• the class of (κ, μ) -spaces is invariant under D-homothetic transformations.

• (κ, μ) -spaces have strongly pseudo-convex CR-structure. For non-Sasakian (κ, μ) -spaces, Boeckx proved that

- every non-Sasakian (κ,μ) -space is a locally homogeneous.
- Local geometry of non-Sasakian (κ, μ) -space is completely determined by the dimension and the numbers (κ, μ) .
- For non-Sasakian (κ, μ) -space M (note that M satisfies $\Phi = \mathbf{1} \cdot d\eta$), he defined invarinat

$$I_M = \frac{1 - (\mu/2)}{\sqrt{1 - \kappa}} \tag{1}$$

- Two non-Sasakian (κ, μ) -spaces M_1 and M_2 are locally isometric as contact metric manifolds up to a *D*-homothetic transformation if and only if their Boeckx invariant agree $I_{M_1} = I_{M_2}$.
- Up to D-homothetic transformation, the local model of non-Sasakian (κ,μ) -spaces have been decided.

Local models of non-Sasakian (κ, μ) -spaces

Local model of (κ, μ) -spaces	Boeckx Invariant
unit tangent speher bundle of	$-1 < I = rac{1+c}{ 1-c }$
Riemannian manifolds with $c eq 1$	
$G_{lpha,eta}$,	$I = \frac{c-1}{ c+1 } \le -1$
tangent hyperquadric bundle of	
Lorentzian manifolds with $c eq -1$	

- Boeckx Invariants of the unit tangent sphere bundle T_1M of a Riemannian manifold (M,g) with constant sectioanl curvature $c \neq 1$ are given by $I = \frac{1+c}{|1-c|} > -1$.
- For the case of $I \leq -1$, Boeckx constructed examples of non-Sasakian (κ, μ) -spaces for any odd dimension and any value $I \leq -1$. as non-unimodular Lie groups $G_{\alpha,\beta}$ $(\beta > \alpha \geq 0)$ with certain left-invariant contact metric structure
- Loiudice and Lotta constructs non-Sasakian (κ, μ) -spaces with $I \leq -1$ as tangent hyperquadric bundle $T_{-1}M$ of a Lorentzian manifold (M,g) with constant sectioanl curvature $c \neq -1$

・ロト ・ 四ト ・ ヨト ・ ヨト

Local models of non-Sasakian (κ, μ) -spaces

Local model of (κ, μ) -spaces	Boeckx Invariant
unit tangent speher bundle of	$-1 < I = \frac{1+c}{ 1-c }$
Riemannian manifolds with $c eq 1$	12 01
$G_{lpha,eta}$,	$I = rac{c-1}{ c+1 } \le -1$
tangent hyperquadric bundle of	
Lorentzian manifolds with $c eq -1$	

- Boeckx Invariants of the unit tangent sphere bundle T_1M of a Riemannian manifold (M,g) with constant sectioanl curvature $c \neq 1$ are given by $I = \frac{1+c}{|1-c|} > -1$.
- For the case of $I \leq -1$, Boeckx constructed examples of non-Sasakian (κ, μ) -spaces for any odd dimension and any value $I \leq -1$. as non-unimodular Lie groups $G_{\alpha,\beta}$ $(\beta > \alpha \geq 0)$ with certain left-invariant contact metric structure

• Loiudice and Lotta constructs non-Sasakian (κ, μ) -spaces with $I \leq -1$ as tangent hyperquadric bundle $T_{-1}M$ of a Lorentzian manifold (M,g) with constant sectioanl curvature $c \neq -1$

・日・・四・・日・・日・

Local models of non-Sasakian (κ, μ) -spaces

Local model of (κ, μ) -spaces	Boeckx Invariant
unit tangent speher bundle of	$-1 < I = rac{1+c}{ 1-c }$
Riemannian manifolds with $c eq 1$	
$G_{lpha,eta}$,	$I = \frac{c-1}{ c+1 } \le -1$
tangent hyperquadric bundle of	
Lorentzian manifolds with $c eq -1$	

- Boeckx Invariants of the unit tangent sphere bundle T_1M of a Riemannian manifold (M,g) with constant sectioanl curvature $c \neq 1$ are given by $I = \frac{1+c}{|1-c|} > -1$.
- For the case of $I \leq -1$, Boeckx constructed examples of non-Sasakian (κ, μ) -spaces for any odd dimension and any value $I \leq -1$. as non-unimodular Lie groups $G_{\alpha,\beta}$ $(\beta > \alpha \geq 0)$ with certain left-invariant contact metric structure
- Loiudice and Lotta constructs non-Sasakian (κ, μ) -spaces with $I \leq -1$ as tangent hyperquadric bundle $T_{-1}M$ of a Lorentzian manifold (M,g) with constant sectioanl curvature $c \neq -1$

・ロン ・四 と ・ ヨン ・ ヨン

Boeckx defined a real (2n + 1)-dimensional Lie algebra $\mathfrak{g}_{\alpha,\beta}$ with basis $\{\xi, X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n\}$ whose bracket products are given by

$$\begin{split} [\xi, X_1] &= -(1/2)\alpha\beta X_2 - (1/2)\alpha^2 Y_1, \qquad [\xi, X_2] = (1/2)\alpha\beta X_1 - (1/2)\alpha^2 Y_2, \\ [\xi, X_i] &= -(1/2)\alpha^2 Y_i (i \neq 1, 2), \qquad [\xi, Y_1] = (1/2)\beta^2 X_1 - (1/2)\alpha\beta Y_2, \\ [\xi, Y_2] &= (1/2)\beta^2 X_2 + (1/2)\alpha\beta Y_1, \qquad [\xi, Y_i] = (1/2)\beta^2 X_i (i \neq 1, 2), \\ [X_1, X_i] &= \alpha X_i (i \neq 1), \qquad [X_i, X_j] = 0 (i, j \neq 1), \\ [Y_2, Y_i] &= \beta Y_i (i \neq 2), \qquad [Y_i, Y_j] = 0 (i, j \neq 2), \\ [X_1, Y_1] &= -\beta X_2 + 2\xi, \qquad [X_1, Y_i] = 0 (i \neq 1), \\ [X_2, Y_1] &= \beta X_1 - \alpha Y_2, \qquad [X_2, Y_2] = \alpha Y_1 + 2\xi, \\ [X_2, Y_i] &= \beta X_i (i \neq 1, 2), \qquad [X_i, Y_1] = -\alpha Y_i (i \neq 1, 2), \\ [X_i, Y_2] &= 0 (i \neq 1, 2), \qquad [X_i, Y_j] = \delta_{ij} (-\beta X_2 + \alpha Y_1 + 2\xi) (i, j \neq 1, 2) \end{split}$$

 $G_{\alpha,\beta}$: the simply-connected Lie group with Lie algebra $\mathfrak{g}_{\alpha,\beta}$.

- g: the Riemannain metric so that the above basis is orthonormal,
 the characteristic vector field is given by ξ,
- the 1-form η is the metric dual of ξ , that is, $\eta(X)=g(X,\xi)$,
- the (1,1)-tensor field φ is defined by $\varphi(\xi) = 0, \quad \varphi(X_i) = Y_i, \quad \varphi(Y_i) = -X_i.$

・ロト ・個ト ・ヨト ・ヨト

Boeckx defined a real (2n + 1)-dimensional Lie algebra $\mathfrak{g}_{\alpha,\beta}$ with basis $\{\xi, X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n\}$ whose bracket products are given by

$$\begin{split} [\xi, X_1] &= -(1/2)\alpha\beta X_2 - (1/2)\alpha^2 Y_1, \qquad [\xi, X_2] = (1/2)\alpha\beta X_1 - (1/2)\alpha^2 Y_2, \\ [\xi, X_i] &= -(1/2)\alpha^2 Y_i (i \neq 1, 2), \qquad [\xi, Y_1] = (1/2)\beta^2 X_1 - (1/2)\alpha\beta Y_2, \\ [\xi, Y_2] &= (1/2)\beta^2 X_2 + (1/2)\alpha\beta Y_1, \qquad [\xi, Y_i] = (1/2)\beta^2 X_i (i \neq 1, 2), \\ [X_1, X_i] &= \alpha X_i (i \neq 1), \qquad [X_i, X_j] = 0 (i, j \neq 1), \\ [Y_2, Y_i] &= \beta Y_i (i \neq 2), \qquad [Y_i, Y_j] = 0 (i, j \neq 2), \\ [X_1, Y_1] &= -\beta X_2 + 2\xi, \qquad [X_1, Y_i] = 0 (i \neq 1), \\ [X_2, Y_1] &= \beta X_1 - \alpha Y_2, \qquad [X_2, Y_2] = \alpha Y_1 + 2\xi, \\ [X_2, Y_i] &= \beta X_i (i \neq 1, 2), \qquad [X_i, Y_1] = -\alpha Y_i (i \neq 1, 2), \\ [X_i, Y_2] &= 0 (i \neq 1, 2), \qquad [X_i, Y_j] = \delta_{ij} (-\beta X_2 + \alpha Y_1 + 2\xi) (i, j \neq 1, 2) \end{split}$$

 $G_{\alpha,\beta}$: the simply-connected Lie group with Lie algebra $\mathfrak{g}_{\alpha,\beta}$.

- g: the Riemannain metric so that the above basis is orthonormal,
- the characteristic vector field is given by ξ ,
- the 1-form η is the metric dual of ξ , that is, $\eta(X) = g(X,\xi)$,
- the (1,1)-tensor field φ is defined by $\varphi(\xi) = 0, \quad \varphi(X_i) = Y_i, \quad \varphi(Y_i) = -X_i.$

イロト 不得下 イヨト イヨト 二日

Realization problem of non-Sasakian $(\kappa,\mu)\text{-spaces}$ Motivations:

I am interested in the realization problem of (κ,μ) -space

- In CR geometry: realization problem of strongly pseudo-convex CR-mfd as real hypersurfaces in complex manifolds
- In Submfd geometry: ∀ real hypersurfaces in Kähler manifolds are almost contact metric mfds.

It would be natural question which is contact? or (κ,μ) -space?

Known results:

- Berndt proved that Sasakian space forms are realized as specific homogeneous hypersurfaces in non-flat complex space forms.
- For non-Sasakian cases, Cho-Inoguchi proved that

(κ,μ)	real hypersurface	Boeckx Inv.
$(-rac{c}{4},-rac{\sqrt{c}}{2})\ (c>0)$	a tube of rad. $r=r(c)$ around Q^{n-1} in $\mathbb{C}P^n(c)$	1 < I
$ \begin{array}{c} (\frac{3c}{4}, -\frac{\sqrt{c}}{2}) \\ (-4 < c < 0) \end{array} $		0 < I < 1

・ロト ・個ト ・ヨト ・ヨト

Realization problem of non-Sasakian (κ, μ) -spaces Motivations:

I am interested in the realization problem of (κ,μ) -space

- In CR geometry: realization problem of strongly pseudo-convex CR-mfd as real hypersurfaces in complex manifolds
- In Submfd geometry: ∀ real hypersurfaces in Kähler manifolds are almost contact metric mfds.

It would be natural question which is contact? or (κ, μ) -space? Known results:

- Berndt proved that Sasakian space forms are realized as specific homogeneous hypersurfaces in non-flat complex space forms.
- For non-Sasakian cases, Cho-Inoguchi proved that

(κ,μ)	real hypersurface	Boeckx Inv.
$\left(-\frac{c}{4},-\frac{\sqrt{c}}{2}\right)$	a tube of rad. $r=r(c)$	1 < I
$(-\frac{1}{4}, -\frac{1}{2})$ (c > 0)	around Q^{n-1} in $\mathbb{C}P^n(c)$	
$\left(\frac{3c}{4},-\frac{\sqrt{c}}{2}\right)$	a tube of rad. $r=r(c)$	0 < I < 1
(-4 < c < 0)	around $\mathbb{R}H^n(\frac{c}{4})$ in $\mathbb{C}H^n(c)$	

• $Q^{n*}(c)$: noncompact complex quadric with min. sec. curv. -c

<u>Main results</u>(Cho-Kubo-Taketomi-Tamaru-H., \cdots): $\forall \mu \in \mathbb{R}$, $(0, \mu)$ -spaces can be realized as homogeneous real hypersurfaces in $Q^{n*}(c)$ with some min. sec. curv. -c.

• In [Cho–Kubo-Taketomi-Tamaru-H.] we first realized (0, 4)-space, by investigating Lie structure of Boeckx's Lie algebra $g_{\alpha,\beta}$

Theorem (Cho-Kubo-Taketomi-Tamaru-H. 2018)

• (0, 4)-space can be realized as a horosphere (whose center at infinity is the equivalence class of an A-principal) in $Q^{n*}(-8)$

• The Boeckx invariant of (0,4)-space is I=-1

Remark

- In order to calculate *I*, we define (κ, μ) -space as a contact metric mfd($\Phi = d\eta$) satifying (κ, μ) condition.
- ullet min. sec. curv. $c=-8 \Longleftrightarrow (0,4)$ -space satisfies $\Phi=d\eta$

• $Q^{n*}(c)$: noncompact complex quadric with min. sec. curv. -c

<u>Main results</u>(Cho-Kubo-Taketomi-Tamaru-H., \cdots): $\forall \mu \in \mathbb{R}$, $(0, \mu)$ -spaces can be realized as homogeneous real hypersurfaces in $Q^{n*}(c)$ with some min. sec. curv. -c.

• In [Cho–Kubo-Taketomi-Tamaru-H.] we first realized (0, 4)-space, by investigating Lie structure of Boeckx's Lie algebra $\mathfrak{g}_{\alpha,\beta}$

Theorem (Cho-Kubo-Taketomi-Tamaru-H. 2018)

- (0, 4)-space can be realized as a horosphere (whose center at infinity is the equivalence class of an \mathcal{A} -principal) in $Q^{n*}(-8)$
- The Boeckx invariant of (0, 4)-space is I = -1

Remark

- In order to calculate *I*, we define (κ, μ) -space as a contact metric mfd($\Phi = d\eta$) satifying (κ, μ) condition.
- ullet min. sec. curv. $c=-8 \Longleftrightarrow (0,4)$ -space satisfies $\Phi=d\eta$

• $Q^{n*}(c)$: noncompact complex quadric with min. sec. curv. -c

<u>Main results</u>(Cho-Kubo-Taketomi-Tamaru-H., \cdots): $\forall \mu \in \mathbb{R}$, $(0, \mu)$ -spaces can be realized as homogeneous real hypersurfaces in $Q^{n*}(c)$ with some min. sec. curv. -c.

• In [Cho–Kubo-Taketomi-Tamaru-H.] we first realized (0, 4)-space, by investigating Lie structure of Boeckx's Lie algebra $\mathfrak{g}_{\alpha,\beta}$

Theorem (Cho-Kubo-Taketomi-Tamaru-H. 2018)

- (0, 4)-space can be realized as a horosphere (whose center at infinity is the equivalence class of an \mathcal{A} -principal) in $Q^{n*}(-8)$
- The Boeckx invariant of (0, 4)-space is I = -1

Remark

- In order to calculate *I*, we define (κ, μ) -space as a contact metric mfd($\Phi = d\eta$) satifying (κ, μ) condition.
- ullet min. sec. curv. $c=-8 \Longleftrightarrow (0,4)$ -space satisfies $\Phi=d\eta$

Theorem (Kubo-Taketomi-Tamaru-H.)

- $\forall c < -8$, $(0, -\frac{c}{2})$ -space can be realized as a tube of radius r = r(c) around Q^{n-1*} in $Q^{n*}(c)$.
- The Boeckx invariants of $(0, -rac{c}{2})$ -spaces are I < -1

Remark

• radius r = r(c) is decided s.t. $(0, -\frac{c}{2})$ -space satisfies $\Phi = d\eta$

- Recently, Cho proved that $(0, -\frac{c}{2})$ -space (c > -8) can be realized as a tube of radius r = r(c) around $\mathbb{R}H^n$ in $Q^{n*}(c)$.
- Klein-Suh calculated principal curvatures of contact real hypersurfaces with constant mean curvature in Q^{n*}
- ullet By using their results, Cho checked (κ,μ) condition directly

イロン イヨン イヨン イヨン 三日

Theorem (Kubo-Taketomi-Tamaru-H.)

- $\forall c < -8$, $(0, -\frac{c}{2})$ -space can be realized as a tube of radius r = r(c) around Q^{n-1*} in $Q^{n*}(c)$.
- The Boeckx invariants of $(0, -rac{c}{2})$ -spaces are I < -1

Remark

- ${\scriptstyle \bullet}$ radius r=r(c) is decided s.t. $(0,-\frac{c}{2}){\scriptstyle -}{\rm space}$ satisfies $\Phi=d\eta$
- Recently, Cho proved that $(0, -\frac{c}{2})$ -space (c > -8) can be realized as a tube of radius r = r(c) around $\mathbb{R}H^n$ in $Q^{n*}(c)$.
- Klein-Suh calculated principal curvatures of contact real hypersurfaces with constant mean curvature in Q^{n*}
- By using their results, Cho checked (κ,μ) condition directly

Summary

(κ,μ)	real hypersurface	Boeckx Inv.
$(0,-rac{c}{2})$	a tube around $\mathbb{R} H^n$ in $Q^{n*}(c)$	-1 < I < 1
(c > -8)		
(0,4)	a horoshpere in $Q^{nst}(-8)$	I = -1
$(0,-\frac{c}{2})$	a tube around Q^{n-1st} in $Q^{nst}(c)$	I < -1
(c < -8)		

Thank you for your kind attention!

・ロト ・回ト ・ヨト ・ヨト

Summary

(κ,μ)	real hypersurface	Boeckx Inv.
$(0,-rac{c}{2})$	a tube around $\mathbb{R} H^n$ in $Q^{n*}(c)$	-1 < I < 1
(c > -8)		
(0,4)	a horoshpere in $Q^{nst}(-8)$	I = -1
$(0,-\frac{c}{2})$	a tube around Q^{n-1st} in $Q^{nst}(c)$	I < -1
(c < -8)		

Thank you for your kind attention!

・ロト ・回ト ・ヨト ・ヨト