Complex Riemannian foliations of Kähler manifolds

Tommy Murphy

CSU Fullerton

Santiago de Compostela October 2019

Happy birthday!

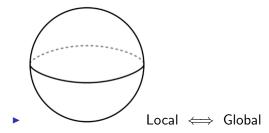
Riemannian foliations

► Given Data: (Mⁿ, g) Riemannian manifold of dimension n, connected.

 ${\mathcal F}$ is a Riemannian foliation: leaves are equidistant.

- Occurs: isometric group actions, Riemannian submersions, construction of distinguished metrics.
- ▶ **Global question** For a given (*M*, *g*), classify the Riemannian foliations whose leaves satisfy a natural geometric condition.
- Examples:
 - 1. For a space form, classify isoparametric foliations: regular leaves are CMC hypersurfaces.
 - 2. Taut foliations: Riemannian foliations of M^3 by minimal surfaces (Sullivan, Thurston, Gabai).
 - For a symmetric space, classify the isometric group actions of a given cohomogeneity (Kollross, Berndt and (many) coauthors).

- ► Local question: Classify submanifolds of *M* whose principal curvatures satisfy a natural geometric condition.
- Examples:
 - 1. Hypersurfaces of space forms with constant principal curvatures (Cartan, FKM, Cecil, Chi...),
 - 2. Minimal surfaces in \mathbb{S}^3 .
 - 3. Totally geodesic submanifolds of symmetric spaces (Cartan, Wolf, Chen-Nagano, Klein...),



Temporary Digression

- Conundrum (Spivak/Berger): "Everybody knows" that generic Riemannian manifolds do not admit any non-trivial totally geodesic submanifolds:
- yet nobody knows a single example of such a metric.
- Theorem

(M.-Wilhelm MMJ 2019.) Suppose dim_{\mathbb{R}}(M) \geq 4. For any finite $q \geq 2$, the set of Riemannian metrics on M with no nontrivial immersed totally geodesic submanifolds contains a set that is open and dense in the C^q- topology.

Theorem

Suppose $\dim_{\mathbb{R}}(M) \ge 8$. The set of Kähler metrics on M with no-nontrivial immersed **complex** totally geodesic submanifolds contains a set that is open and dense in the Kähler cone.

Complex Riemannian foliations of Kähler manifolds

- ► Take now a K\"ahler metric (g, J), and study when the leaves of F are complex.
- Occurs naturally:
 - 1. Twistor space of quaternionic Kähler metrics with positive scalar curvature.
 - 2. nearly Kähler metrics: (M, g^{nk}, J^{nk}) such that $(\nabla_X^{nk} J^{nk})X = 0$ for all $X \in \Gamma(TM)$.
 - 3. Given any complex, totally geodesic \mathcal{F} Eells–Sampson construction \implies

$$\begin{array}{l} g^{nk}\Big|_{\mathcal{V}} = \frac{1}{2}g\Big|_{\mathcal{V}}, \quad g^{nk}\Big|_{\mathcal{H}} = g\Big|_{\mathcal{H}}, \quad g^{nk}(\mathcal{H}, \mathcal{V}) = 0 \\ \\ J^{nk} = -J_{|\mathcal{V}} + J_{|\mathcal{H}}. \end{array}$$

Theorem

(Nagy 2002 JGA.) If M is closed, \mathcal{F} is either totally geodesic, or polar.

- Fixing (M, g) to be a Hermitian symmetric space, this tell us (in the compact case) the problem is similar to classifying (complex) totally geodesic submanifolds.
- ► Idea of proof: every holomorphic one-form is closed on a compact Kähler manifold. Adapt this to bundle-valued holomorphic forms on *M*, namely spaces of *V* and *H*-valued holomorphic one-forms.

General Structure Theorem

• Let $\mathcal V$ be the distribution associated to $\mathcal F$

Theorem

(M.–Nagy TAMS 2019.) Either \mathcal{F} is totally geodesic, or there is a subdistribution $\mathcal{V}_0 \subset \mathcal{V}$ which is polar.

Proof: Consider the Bott connection \$\overline{\nabla}\$ of \$\mathcal{F}\$. Set \$\mathcal{V}_1 = A_H\$ and split \$\mathcal{V} = \mathcal{V}_1 \oplus \mathcal{V}_0\$\$, and prove (i) \$\mathcal{V}_0\$ is integrable and (ii) \$\mathcal{V}_1 \oplus \$\mathcal{H}\$ is integrable and totally geodesic.

Sharpness of Theorem

Let $f : N \to \mathbb{U}$ be holomorphic, N admit a complex, totally geodesic Riemannian foliation $TN = \mathcal{V}_1 \oplus \mathcal{H}$, \mathcal{V}_0 denote the fibres of the projection $\mathbb{U} \times N \to N$. Fix g_N , J_N on N, and J_0 on $T\mathbb{U}$.

$$\Phi = \left(\begin{array}{cc} \operatorname{Re} f & \operatorname{Im} f \\ \operatorname{Im} f & -\operatorname{Re} f \end{array} \right).$$

Construct the metric

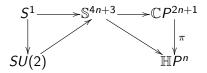
$$egin{aligned} g &= g_0igg((1+\Phi)^{-1}(1-\Phi)\cdot,\cdotigg) + g_N\ J &= (1-\Phi)^{-1}J_0(1+\Phi) + J_N \end{aligned}$$

Splitting, $\mathcal{V} \oplus \mathcal{H}$ of $\mathcal{T}(\mathbb{U} \times N)$, with \mathcal{V} equal to $\mathcal{V}_0 \oplus \mathcal{V}_1$, then $\mathbb{U} \times N$ admits a complex Riemannian foliation $(\mathcal{V}_0 + \mathcal{V}_1) \oplus \mathcal{H}$ which is neither totally geodesic nor polar.

Examples in Hermitian symmetric space

► Twistor space of $\mathbb{H}P^n$:

$$\mathbb{R}^{4n+4} = \mathbb{C}^{2n+2} = \mathbb{H}^{n+1}$$



• Twistor space of \mathbb{S}^{2n} :

$$H_n = SO_{2n+1}/U_n = SO_{2n+2}/U_{n+1}$$

and is given by the fibration

$$H_{n-1} \rightarrow H_n \rightarrow SO_{2n+1}/SO_{2n} = \mathbb{S}^{2n}$$

Classification

Theorem

(M.–Nagy, TAMS 2019). Let M be an open subset of an irreducible Hermitian symmetric space N and \mathcal{F} a complex Riemannian foliation on M.

- (i) If N has non-negative sectional curvature, then F is either the twistor fibration of ℍPⁿ restricted to M ⊂ ℂP²ⁿ⁺¹, or the twistor fibration of S²ⁿ restricted to M ⊂ SO_{2n+1}/U_n.
- (ii) If N has non-positive sectional curvature, then \mathcal{F} is polar.

Proof (compact case)

- Structure theorem $\implies \mathcal{F}$ is totally geodesic. Consider the Bott connection $\overline{\nabla}$.
- The canonical Hermitian connection for g^{nk}:

$$\overline{\nabla}g^{nk}=\overline{\nabla}J^{nk}=T^{(1,1)}_{\overline{\nabla}}=0.$$

$$\overline{\nabla} = \nabla^{nk} + \frac{1}{2} \left(\nabla^{nk} J^{nk} \right) J^{nk}.$$

• $\nabla R = 0 \implies \overline{\nabla} \overline{R} = 0$ and $\overline{\nabla} \overline{T} = 0$: i.e. $\overline{\nabla}$ is an Ambrose–Singer connection.

Study the associated infinitesimal model generated by

$$\mathfrak{h}_{nk} = \mathfrak{hol}(\overline{\nabla}).$$

► ⇒ Two descriptions of M as a locally homogeneous space $\mathbb{V} = T_p M = \mathfrak{p} = \mathfrak{p}_{nk}$, where

$$\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{p}$$

and

$$\mathfrak{g}_{nk}=\mathfrak{h}_{nk}\oplus\mathfrak{p}_{nk}$$

• $\mathfrak{h}_{nk} \subset \mathfrak{h}$ which implies $\mathfrak{g}_{nk} \subset \mathfrak{g}$.

$$\mathfrak{g} = \mathfrak{h} + \sigma(\mathfrak{g}_{nk})$$

where $\sigma : \mathfrak{g}_{nk} \to \mathfrak{g}, \ \sigma(\mathfrak{g}_{nk}) \neq \mathfrak{g}, \ \mathfrak{h}_{nk} = \mathfrak{h} \cap \sigma(\mathfrak{g}_{nk}).$

g	h	g _{nk}	\mathfrak{h}_{nk}
su(2 <i>n</i>)	$s(\mathfrak{u}(1)\oplus\mathfrak{u}(2n-1))$	$\mathfrak{sp}(n)$	$\mathfrak{sp}(n-1) \oplus \mathfrak{u}(1)$
$\mathfrak{so}(2n+2)$	$\mathfrak{u}(n+1)$	$\mathfrak{so}(2n+1)$	u(<i>n</i>)
so(7)	$\mathfrak{so}(2)\oplus\mathfrak{so}(5)$	\mathfrak{g}_2	u(2)

Future Directions

- Construct complex polar foliations on a wide variety of homogeneous manifolds
- ρ: L → V an irreducible representation: can produce foliations on L ⋊_ρ V