Jacobi relations on naturally reductive spaces

Tillmann Jentsch (joint work with Gregor Weingart)

Celebrating the 60th birthday of Prof. Jürgen Berndt Santiago de Compostela, 28.10.2019

囯 T. Jentsch, G. Weingart:
Jacobi relations on naturally reductive spaces, arXiv:1909.04764.

A distinguished class of naturally reductive homogeneous spaces

Let V be a Euclidean vector space and $\sigma: V \times V \times V \rightarrow \mathbb{R}$ be an alternating 3-tensor. For each $x \in V$ we denote by σ_{x} the skew-symmetric endomorphism defined by $\left\langle\sigma_{x} y, z\right\rangle:=\sigma(x, y, z)$.

Definition

σ is a vector cross product in the sense of A. Gray if $\left|\sigma_{x}(y)\right|^{2}=\|x \wedge y\|^{2}$ for all $x, y \in V$.

There are only the following two examples:

- In three dimensions there exists the well-known vector product which measures the directed area of two vectors.
- The octonionic multiplication on \mathbb{R}^{8} yields a vector cross product on \mathbb{R}^{7}. Its stabilizer defines the exceptional Riemannian holonomy group G_{2} as a subgroup of the orthogonal group $\mathrm{O}(7)$.
A. Gray:

Vector cross products on Manifolds, T. Am. Math. Soc. 141, 465 - 504 (1969),

In order to understand the following definition, note that σ is a vector cross product if and only if σ_{x} is a Hermitian structure (i.e. $\sigma_{x}^{2}=-\mathrm{Id}$) on the orthogonal complement x^{\perp} for every unit vector $x \in V$. In particular $\sigma_{x_{1}}$ and $\sigma_{x_{2}}$ are conjugate in $\mathrm{O}(V)$ for all unit vectors x_{1} and x_{2}.

Definition (M. Barberis, A. Moroianu, U. Semmelmann)

Let V be a Euclidean vector space. An alternating 3-tensor τ is called a generalized vector cross product if $\tau \neq 0$ and $\tau_{x_{1}}$ is conjugate to $\tau_{x_{2}}$ in $\mathrm{O}(V)$ for all unit vectors x_{1} and x_{2}.

A different characterization of a generalized vector cross product is the following: Let τ be a 3 -form and $x_{0} \in V$ with $\left\|x_{0}\right\|=1$. Let $\lambda_{1}>\lambda_{2}>\cdots>$ denote the different eigenvalues of the square $\tau_{x_{0}}^{2}$ on $T_{p} M$. In general these define continuous functions $\lambda_{i}(x)$ in a small neighbourhood of x_{0}. Then τ is a generalized vector cross product if and only if the λ_{i} are constant on the unit sphere $S^{1}(V)$.

Theorem (M. Barberis, A. Moroianu, U. Semmelmann)
Let V be a Euclidean vector space of dimension n.
(1) If $n=2 m+1$ is odd, then every generalized vector cross product on V is, up to constant rescaling, a standard vector cross product. Hence $n=3$ or $n=7$.

- M. Barberis, A. Moroianu, U. Semmelmann

Generalized vector cross products and Killing forms on negatively curved manifolds, Geom Dedicata DOI:10.1007/s10711-019-00467-9 (2019).

Theorem (M. Barberis, A. Moroianu, U. Semmelmann)

Let V be a Euclidean vector space of dimension n.
(1) If $n=2 m+1$ is odd, then every generalized vector cross product on V is, up to constant rescaling, a standard vector cross product. Hence $n=3$ or $n=7$.
(2) If $n=2 m+2$ and there exists a generalized vector cross
 the vector cross product on $\mathbb{R}^{7}=V \oplus \mathbb{R}$.

- M. Barberis, A. Moroianu, U. Semmelmann

Generalized vector cross products and Killing forms on negatively curved manifolds,
Geom Dedicata DOI:10.1007/s10711-019-00467-9 (2019).

Theorem (M. Barberis, A. Moroianu, U. Semmelmann)

Let V be a Euclidean vector space of dimension n.
(1) If $n=2 m+1$ is odd, then every generalized vector cross product on V is, up to constant rescaling, a standard vector cross product. Hence $n=3$ or $n=7$.
(2) If $n=2 m+2$ and there exists a generalized vector cross
 the vector cross product on $\mathbb{R}^{7}=V \oplus \mathbb{R}$.
(3) In dimension $n=4 m$ there exists no generalized vector cross product.

囦 M. Barberis, A. Moroianu, U. Semmelmann
Generalized vector cross products and Killing forms on negatively curved manifolds,
Geom Dedicata DOI:10.1007/s10711-019-00467-9 (2019).

Recall that a naturally reductive (homogeneous) space is a triple ($M, g, \bar{\nabla}$) where (M, g) is a Riemannian manifold and $\bar{\nabla}$ is an Ambrose-Singer connection whose torsion tensor τ is a 3-form. Since τ is parallel with respect to the Ambrose-Singer connection, its algebraic type is pointwise the same. Hence we will say that τ is a generalized vector cross product if τ_{p} has this property at some $p \in M$.

Theorem (-,G. Weingart)

The torsion tensor of a naturally reductive space M is a generalized vector cross product if and only if:
(1) $\operatorname{dim}(M)=3$;

Recall that a naturally reductive (homogeneous) space is a triple ($M, g, \bar{\nabla}$) where (M, g) is a Riemannian manifold and $\bar{\nabla}$ is an Ambrose-Singer connection whose torsion tensor τ is a 3-form. Since τ is parallel with respect to the Ambrose-Singer connection, its algebraic type is pointwise the same. Hence we will say that τ is a generalized vector cross product if τ_{p} has this property at some $p \in M$.

Theorem (-,G. Weingart)

The torsion tensor of a naturally reductive space M is a generalized vector cross product if and only if:
(1) $\operatorname{dim}(M)=3$;
(2) $\operatorname{dim}(M)=6$ and M is a nearly Kähler 3-symmetric space;

Recall that a naturally reductive (homogeneous) space is a triple $(M, g, \bar{\nabla})$ where (M, g) is a Riemannian manifold and $\bar{\nabla}$ is an Ambrose-Singer connection whose torsion tensor τ is a 3-form. Since τ is parallel with respect to the Ambrose-Singer connection, its algebraic type is pointwise the same. Hence we will say that τ is a generalized vector cross product if τ_{p} has this property at some $p \in M$.

Theorem (-,G. Weingart)

The torsion tensor of a naturally reductive space M is a generalized vector cross product if and only if:
(1) $\operatorname{dim}(M)=3$;
(2) $\operatorname{dim}(M)=6$ and M is a nearly Kähler 3-symmetric space;
(3) $\operatorname{dim}(M)=7$ and M is a normal homogeneous nearly parallel G_{2}-space.

Theorem

A six-dimensional Riemannian space M is a nearly Kähler 3-symmetric space if and only if M is a standard normal space from the following list:

- the round sphere $\mathrm{S}^{6}=\mathrm{G}_{2} / \mathrm{SU}(3)$ realized as the purely imaginary octonions of unit length and with the nearly Kähler structure coming from the octonionic multiplication,

圊 J.-B. Butruille:
Homogeneous nearly Kähler manifolds, arXiv:math/0612655

Theorem

A six-dimensional Riemannian space M is a nearly Kähler 3-symmetric space if and only if M is a standard normal space from the following list:

- the round sphere $\mathrm{S}^{6}=\mathrm{G}_{2} / \mathrm{SU}(3)$ realized as the purely imaginary octonions of unit length and with the nearly Kähler structure coming from the octonionic multiplication,
- the complex flag manifold $F(1,2)=\mathrm{SU}(3) / \mathrm{U}(1) \times \mathrm{U}(1)$,

圊 J.-B. Butruille:
Homogeneous nearly Kähler manifolds, arXiv:math/0612655

Theorem

A six-dimensional Riemannian space M is a nearly Kähler 3-symmetric space if and only if M is a standard normal space from the following list:

- the round sphere $\mathrm{S}^{6}=\mathrm{G}_{2} / \mathrm{SU}(3)$ realized as the purely imaginary octonions of unit length and with the nearly Kähler structure coming from the octonionic multiplication,
- the complex flag manifold $F(1,2)=\mathrm{SU}(3) / \mathrm{U}(1) \times \mathrm{U}(1)$,
- the complex projective space $\mathbb{C P}^{3}=\mathrm{SO}(5) / \mathrm{SU}(2) \times \mathrm{U}(1)$,

嗇 J.-B. Butruille:
Homogeneous nearly Kähler manifolds, arXiv:math/0612655

Theorem

A six-dimensional Riemannian space M is a nearly Kähler 3-symmetric space if and only if M is a standard normal space from the following list:

- the round sphere $\mathrm{S}^{6}=\mathrm{G}_{2} / \mathrm{SU}(3)$ realized as the purely imaginary octonions of unit length and with the nearly Kähler structure coming from the octonionic multiplication,
- the complex flag manifold $F(1,2)=\mathrm{SU}(3) / \mathrm{U}(1) \times \mathrm{U}(1)$,
- the complex projective space $\mathbb{C P}^{3}=\mathrm{SO}(5) / \mathrm{SU}(2) \times \mathrm{U}(1)$,
- the product space $\mathrm{S}^{3} \times \mathrm{S}^{3}=\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2) / \mathrm{SU}(2)$ with the 3-symmetric structure onconstructed by Ledger-Obata.

嗇 J.-B. Butruille:
Homogeneous nearly Kähler manifolds, arXiv:math/0612655

Theorem

Normal homogeneous nearly parallel G_{2}-spaces are standard normal spaces of positive sectional curvature. They are from the following list:

- The round sphere $S^{7}=\operatorname{Spin}(7) / \mathrm{G}_{2}$,

Theorem

Normal homogeneous nearly parallel G_{2}-spaces are standard normal spaces of positive sectional curvature. They are from the following list:

- The round sphere $S^{7}=\operatorname{Spin}(7) / \mathrm{G}_{2}$,
- the squashed sphere $\operatorname{Sp}(2) \times \operatorname{Sp}(1) / \operatorname{Sp}(1) \times \operatorname{Sp}(1)$,

Theorem

Normal homogeneous nearly parallel G_{2}-spaces are standard normal spaces of positive sectional curvature. They are from the following list:

- The round sphere $\mathrm{S}^{7}=\operatorname{Spin}(7) / \mathrm{G}_{2}$,
- the squashed sphere $\operatorname{Sp}(2) \times \operatorname{Sp}(1) / \mathrm{Sp}(1) \times \operatorname{Sp}(1)$,
- Berger's manifold $V_{1}=\mathrm{SO}(5) / \mathrm{SO}(3)$,

Theorem

Normal homogeneous nearly parallel G_{2}-spaces are standard normal spaces of positive sectional curvature. They are from the following list:

- The round sphere $\mathrm{S}^{7}=\operatorname{Spin}(7) / \mathrm{G}_{2}$,
- the squashed sphere $\operatorname{Sp}(2) \times \operatorname{Sp}(1) / \mathrm{Sp}(1) \times \operatorname{Sp}(1)$,
- Berger's manifold $V_{1}=\mathrm{SO}(5) / \mathrm{SO}(3)$,
- Wilking's manifold $V_{3}=\mathrm{SO}(3) \times \mathrm{SU}(3) / \mathrm{U}^{\bullet}(2)$.

图 T. Friedrich, I. Kath, A. Moroianu, U. Semmelmann:
On nearly parallel G_{2}-structures,
J. Geom. Phys. 23, $259-286$ (1997).

图 R. Storm:
The classification of 7 - and 8-dimensional naturally reductive spaces,
Canad. J. Math. DOI:10.4153/S0008414X19000300 (2019).
(B. Wilking, W. Ziller:
Revisiting homogeneous spaces with positive curvature, J. reine angew. Math. 738, 313 - 328 (2018).

Jacobi relations on Riemannian manifolds

Motivation: It is known that Riemannian symmetric spaces are characterized by the condition $\nabla R=0$. What other equations satisfies the curvature tensor of some (homogeneous) Riemannian manifold?

Fact: $\nabla^{k} R=0$ for $k \geq 2$ on a (complete) Riemannian manifold implies that $\nabla R=0$. In order to address non-symmetric Riemannian spaces we hence need a better idea.
囯 K. Nomizu, H. Ozeki:
A theorem on curvature tensor fields
Proc. Natl. Acad. Sci. U.S.A. 48 no. 2, 206 - 207.

Let M be a Riemannian manifold with Levi Civita connection ∇ and Riemannian curvature tensor R. For every geodesic γ let $\mathcal{R}_{\gamma}: x \mapsto R(x, \dot{\gamma}, \dot{\gamma})$ denote the Jacobi operator and $\mathcal{R}_{\gamma}^{i}=\frac{\nabla^{i}}{\mathrm{~d} t^{i}} \mathcal{R}_{\gamma}$ the i-fold iterated covariant derivative.

Definition

A linear Jacobi relation of (even) order k is a linear dependence relation

$$
\begin{equation*}
\mathcal{R}_{\gamma}^{k+1}=a_{1} \mathcal{R}_{\gamma}^{k-1}+a_{2} \mathcal{R}_{\gamma}^{k-3}+\cdots+a_{k+1} \mathcal{R}_{\gamma} \tag{1}
\end{equation*}
$$

for all unit-speed geodesics with real numbers a_{i} that can be choosen independently of γ.

Every Riemannian symmetric space satisfies a linear Jacobi relation of order zero and vice versa. More interesting examples of linear Jacobi relations are provided by the naturally reductive spaces whose torsion tensor is a generalized vector cross product.

Theorem (-,G. Weingart)

(1) For a three-dimensional naturally reductive space with the Berger metric $g_{\kappa, \tau}$ we have

$$
\begin{equation*}
\mathcal{R}_{\gamma}^{3}=-\tau^{2} \mathcal{R}_{\gamma}^{1} . \tag{2}
\end{equation*}
$$

Theorem (-,G. Weingart)

(1) For a three-dimensional naturally reductive space with the Berger metric $g_{\kappa, \tau}$ we have

$$
\begin{equation*}
\mathcal{R}_{\gamma}^{3}=-\tau^{2} \mathcal{R}_{\gamma}^{1} \tag{2}
\end{equation*}
$$

(2) For a six-dimensional nearly Kähler 3-symmetric space with scalar curvature scal $=30$ we have

$$
\begin{equation*}
\mathcal{R}_{\gamma}^{5}=-\frac{5}{4} \mathcal{R}_{\gamma}^{3}-\frac{1}{4} \mathcal{R}_{\gamma}^{1} . \tag{3}
\end{equation*}
$$

Theorem (-,G. Weingart)

(1) For a three-dimensional naturally reductive space with the Berger metric $g_{\kappa, \tau}$ we have

$$
\begin{equation*}
\mathcal{R}_{\gamma}^{3}=-\tau^{2} \mathcal{R}_{\gamma}^{1} . \tag{2}
\end{equation*}
$$

(2) For a six-dimensional nearly Kähler 3-symmetric space with scalar curvature scal $=30$ we have

$$
\begin{equation*}
\mathcal{R}_{\gamma}^{5}=-\frac{5}{4} \mathcal{R}_{\gamma}^{3}-\frac{1}{4} \mathcal{R}_{\gamma}^{1} \tag{3}
\end{equation*}
$$

(3) For a naturally reductive nearly-parallel G_{2}-manifold with scal $=\frac{21}{8}$ we have

$$
\begin{equation*}
\mathcal{R}_{\gamma}^{3}=-\frac{1}{36} \mathcal{R}_{\gamma}^{1} \tag{4}
\end{equation*}
$$

Proof of the previous Theorem

Let $(M, g, \bar{\nabla})$ be a naturally reductive space whose torsion 3-form τ is a generalized vector cross product. For every unit-speed geodesic $\gamma: \mathbb{R} \rightarrow M$ let $\operatorname{Sym}^{2}\left(\dot{\gamma}^{\perp}\right)$ denote the vector bundle of symmetric 2 -tensors on the orthogonal complement of $\dot{\gamma}$.
Furthermore we consider the skew-symmetric endomorphism field defined by $\tau_{\gamma}:=\tau(\dot{\gamma}, \cdot, \cdot)$ and set

$$
\begin{align*}
& \mathcal{T}_{\gamma}: \operatorname{Sym}^{2}\left(\dot{\gamma}^{\perp}\right) \rightarrow \operatorname{Sym}^{2}\left(\dot{\gamma}^{\perp}\right), \beta \mapsto \mathcal{T}_{\gamma} \beta \\
& \mathcal{T}_{\gamma} \beta(u, v):=\frac{1}{2}\left(\beta\left(\tau_{\gamma} u, v\right)+\beta\left(u, \tau_{\gamma} v\right)\right) \tag{5}
\end{align*}
$$

for all $(u, v) \in \dot{\gamma}^{\perp} \times_{\mathbb{R}} \dot{\gamma}^{\perp}$. Thus $-2 \mathcal{T}_{\gamma}$ is the standard action of τ_{γ} on symmetric 2-tensors.

Let $p_{\min }(\lambda)$ denote the minimal polynomial of \mathcal{T}_{γ}. Since τ_{γ} is parallel along γ with respect to the Ambrose-Singer connection, the coefficients of $p_{\min }(\lambda)$ are constant along γ. Since τ is a generalized vector cross product, these coefficients do also not depend on γ. Moreover the theorem of Cayley-Hamilton implies that $p_{\min }\left(\mathcal{T}_{\gamma}\right)=0$, in particular $p_{\min }\left(\mathcal{T}_{\gamma}\right) \mathcal{R}_{\gamma}=0$. We claim that this yields already a linear Jacobi relation: In fact, the Riemannian curvature tensor R is parallel with respect to the Ambrose-Singer connection $\bar{\nabla}=\nabla+\frac{1}{2} \tau$. Thus we have

$$
\begin{equation*}
\mathcal{T}_{\gamma} \mathcal{R}_{\gamma}^{k}=\mathcal{R}_{\gamma}^{k+1} \tag{6}
\end{equation*}
$$

Therefore the polynomial algebraic identity $p_{\min }\left(\mathcal{T}_{\gamma}\right) \mathcal{R}_{\gamma}=0$ yields a Jacobi relation where the numbers a_{i} are the same as the coefficients of $p_{\text {min }}$. This will also become clear from the examples.

- It suffices to study two cases anyway. Suppose that $\tau=c \sigma$ where c is a constant and $\sigma \in \Omega^{3} M$ is pointwise a classical vector cross product. Then the eigenvalues of $\frac{\tau_{\gamma}}{2}$ on $\dot{\gamma}^{\perp}$ are $\left\{ \pm \frac{c}{2} i\right\}$ for every unit-geodesic γ. Thus the eigenvalues of \mathcal{T}_{γ} on $\operatorname{Sym}^{2}\left(\dot{\gamma}^{\perp}\right)$ are $\{0, \pm c i\}$ and the minimal polynomial is given by

$$
\begin{equation*}
p(\lambda):=\lambda\left(\lambda^{2}+c^{2}\right) . \tag{7}
\end{equation*}
$$

For $c^{2}=\tau^{2}$ or $c^{2}=\frac{1}{36}$ this yields (2) and (4).

- It suffices to study two cases anyway. Suppose that $\tau=c \sigma$ where c is a constant and $\sigma \in \Omega^{3} M$ is pointwise a classical vector cross product. Then the eigenvalues of $\frac{\tau_{\gamma}}{2}$ on $\dot{\gamma}^{\perp}$ are $\left\{ \pm \frac{c}{2} i\right\}$ for every unit-geodesic γ. Thus the eigenvalues of \mathcal{T}_{γ} on $\operatorname{Sym}^{2}\left(\dot{\gamma}^{\perp}\right)$ are $\{0, \pm c i\}$ and the minimal polynomial is given by

$$
\begin{equation*}
p(\lambda):=\lambda\left(\lambda^{2}+c^{2}\right) . \tag{7}
\end{equation*}
$$

For $c^{2}=\tau^{2}$ or $c^{2}=\frac{1}{36}$ this yields (2) and (4).

- In a similar way, if $\operatorname{dim}(M)=6$, then the eigenvalues of $\frac{\tau_{\gamma}}{2}$ on $\dot{\gamma}^{\perp}$ are $\left\{0, \pm \frac{1}{2} i\right\}$. Thus the eigenvalues of \mathcal{T}_{γ} on $\operatorname{Sym}^{2}\left(\dot{\gamma}^{\perp}\right)$ are $\left\{0, \pm \frac{1}{2} i, \pm i\right\}$ and the minimal polynomial is

$$
\begin{equation*}
p(\lambda):=\lambda\left(\lambda^{2}+\frac{1}{4}\right)\left(\lambda^{2}+1\right)=\lambda^{5}+\frac{5}{4} \lambda^{3}+\frac{1}{4} \lambda . \tag{8}
\end{equation*}
$$

This establishes (3).

Ti. T. Arias-Marco, A. Arvanitoyeorgos, A. Naveira:
Constancy of Jacobi osculating rank of g.o. spaces of compact and non-compact type,
A. M. RACSAM 105, 207 - 221 (2011).
T. Arias-Marco, A. Naveira:

Constant Jacobi osculating rank of a g.o. space.
A method to obtain explicitly the Jacobi operator.
Publ. Math. Debrecen bf 74 no. 1-2, 135 - 157 (2009).
T. Arias-Marco:

Constant Jacobi osculating rank of
$\mathrm{U}(3) /(\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1))$,
Arch. Math. (Brno) 45 no. 4, 241 - 254 (2009).
(J. C. Gonzàlez-Dàvila:
Jacobi osculating rank and isotropic geodesics on naturally reductive 3-manifolds,
Diff. Geom. Appl. 27, 482 - 495 (2009).

嗇 J. C. Gonzàlez-Dàvila, A. M. Naveira:
Jacobi fields and osculating rank of the Jacobi operator in some special classes of homogeneous Riemannian spaces, Note Mat. 28 Suppl. 1, 191 - 208 (2008).
E. Macías-Virgós, A. M. Naveira, A. Tarrío: The constant osculating rank of the Wilking manifold V_{3}, C. R. Math. Acad. Sci. Paris 346 no. 1-2, 67-70 (2008).

围 A. M. Naveira, A. Tarrío:
A method for the resolution of the Jacobi equation $\mathbf{Y}^{\prime \prime}+\mathbf{R Y}=\mathbf{0}$ on the manifold $\operatorname{Sp}(\mathbf{2}) / \mathrm{SU}(\mathbf{2})$, Monatsh. Math. 154 no. 3, 231 - 246 (2008).

