Some homogeneous Lagrangian submanifolds in complex hyperbolic spaces

Toru Kajigaya joint work with Takahiro Hashinaga (NIT, Kitakyushu-College)

Tokyo Denki University

Oct. 29. 2019 Symmetry and Shape University of Santiago de Compostera

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Homogeneous (sub)manifolds: provide a manifold with several geometric structures and properties.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

- Homogeneous (sub)manifolds: provide a manifold with several geometric structures and properties.
 - Classifications of cohomogeneity one actions in symmetric spaces: Hsiang-Lawson, Takagi, Iwata, Kollross, Berndt-Tamaru...

- Homogeneous (sub)manifolds: provide a manifold with several geometric structures and properties.
 - Classifications of cohomogeneity one actions in symmetric spaces: Hsiang-Lawson, Takagi, Iwata, Kollross, Berndt-Tamaru...
- Lagrangian submanifolds: an object in symplectic geometry.
 - ▶ A submfd *L* in a symplectic mfd (M, ω) with $\omega|_L = 0$ & dim $L = \frac{1}{2}$ dimM.
 - A widely-studied class of <u>higher codimentional</u> submfds by motivations related to Riemannian & Symplectic geometry.
 - Homogeneous Lagrangian submfds provide nice examples of Lag submfd.

- Homogeneous (sub)manifolds: provide a manifold with several geometric structures and properties.
 - Classifications of cohomogeneity one actions in symmetric spaces: Hsiang-Lawson, Takagi, Iwata, Kollross, Berndt-Tamaru...
- Lagrangian submanifolds: an object in symplectic geometry.
 - ▶ A submfd L in a symplectic mfd (M, ω) with $\omega|_L = 0$ & dim $L = \frac{1}{2}$ dimM.
 - A widely-studied class of <u>higher codimentional</u> submfds by motivations related to Riemannian & Symplectic geometry.
 - Homogeneous Lagrangian submfds provide nice examples of Lag submfd.
- Problem: Construct and classify homogeneous Lagrangian submanifolds in a specific Kähler manifold (e.g. Hermitian symmetric spaces).

Introduction

If (M, ω, J) is a Kähler manifold, we define

Definition

A submanifold L in (M, ω, J) is called *homogeneous* if L is obtained by an orbit $H \cdot p$ of a connected Lie subgroup H of $Aut(M, \omega, J)$. Furthermore, if we take H to be a compact subgroup, we say $L = H \cdot p$ is compact homogeneous.

イロン 人間と イヨン イヨン

Introduction

If (M, ω, J) is a Kähler manifold, we define

Definition

A submanifold L in (M, ω, J) is called *homogeneous* if L is obtained by an orbit $H \cdot p$ of a connected Lie subgroup H of $Aut(M, \omega, J)$. Furthermore, if we take H to be a compact subgroup, we say $L = H \cdot p$ is compact homogeneous.

We are interested in homogeneous Lagrangian submfd:

e.g. T^n -orbits in a toric Kähler manifold, real forms in cplx flag mfds, Gauss images in $\tilde{G}r_2(\mathbb{R}^{n+2})$ of homog. hypersurfaces in a sphere... etc.

・ロッ ・雪 ・ ・ ヨ ・ ・ ・ ・

Introduction

If (M, ω, J) is a Kähler manifold, we define

Definition

A submanifold L in (M, ω, J) is called *homogeneous* if L is obtained by an orbit $H \cdot p$ of a connected Lie subgroup H of $Aut(M, \omega, J)$. Furthermore, if we take H to be a compact subgroup, we say $L = H \cdot p$ is compact homogeneous.

We are interested in homogeneous Lagrangian submfd:

e.g. T^n -orbits in a toric Kähler manifold, real forms in cplx flag mfds, Gauss images in $\tilde{G}r_2(\mathbb{R}^{n+2})$ of homog. hypersurfaces in a sphere... etc.

Classification results (of actions admitting Lag orbits):

M = CPⁿ & H is a cpt simple Lie group [Bedulli-Gori 08]. (Note that ∃ 1-1 correspondence btw cpt homog Lag in CPⁿ and the ones in Cⁿ⁺¹ via Hopf fibration).
M = G̃r₂(Rⁿ⁺²) ≃ Q_n(C) [Ma-Ohnita 09]

Note: so far, we do not know any comprehensive method to classify homog Lag even for Hermitian symmetric spaces...

◆□> ◆□> ◆三> ◆三> ・三 のへで

Consider the case when M = Hermitian symmetric space of non-compact type:

Consider the case when M = Hermitian symmetric space of non-compact type:

Theorem (cf. McDuff 88, Deltour 13)

Let M = G/K be a Hermitian symmetric space of non-compact type, and $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ the Cartan decomposition. Then, there exists a K-equivariant symplectic diffeomorphism $\Phi : (M, \omega) \to (\mathfrak{p}, \omega_o)$.

(Remark: this result is just an existence theorem, although they proved for more general setting [McDuff 88, Deltour 13])

Consider the case when M = Hermitian symmetric space of non-compact type:

Theorem (cf. McDuff 88, Deltour 13)

Let M = G/K be a Hermitian symmetric space of non-compact type, and $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ the Cartan decomposition. Then, there exists a K-equivariant symplectic diffeomorphism $\Phi : (M, \omega) \to (\mathfrak{p}, \omega_o)$.

(Remark: this result is just an existence theorem, although they proved for more general setting [McDuff 88, Deltour 13])

e.g.
$$M = \mathbb{C}H^n \simeq B^n$$
.

$$\Phi: B^n o \mathbb{C}^n \simeq \mathfrak{p}, \quad z \mapsto \sqrt{rac{1}{1-|z|^2}} \cdot z$$

is a *K*-equivariant symplectic diffeomorphism (not holomorphic). (Remark: [Di Scala-Loi 08] gives an explicit construction of Φ for any Hermitian symmetric space of non-cpt type.)

(continued) Since $\Phi: M \to \mathfrak{p}$ is *K*-equivariant and *K* is a maximal compact subgroup of *G*, \exists a map

{cpt homog Lag in M = G/K} \longrightarrow {cpt homog Lag in $\mathfrak{p} \simeq \mathbb{C}^n$ }.

In this sense, the classification problem of cpt homog Lag in M is reduced to find an $H \subset Ad(K)$ admitting a Lag orbit in $\mathfrak{p} \simeq \mathbb{C}^n$.

(continued) Since $\Phi : M \to \mathfrak{p}$ is *K*-equivariant and *K* is a maximal compact subgroup of *G*, \exists a map

 $\{ \operatorname{cpt} \text{ homog Lag in } M = G/K \} \longrightarrow \{ \operatorname{cpt} \text{ homog Lag in } \mathfrak{p} \simeq \mathbb{C}^n \}.$

In this sense, the classification problem of cpt homog Lag in M is reduced to find an $H \subset Ad(K)$ admitting a Lag orbit in $\mathfrak{p} \simeq \mathbb{C}^n$.

For example, if M is rank 1, we see Ad(K) = U(n), and it turns out that

Theorem (Hashinaga-K. 17, Ohnita)

Suppose $M = \mathbb{C}H^n$ and let L' be any cpt homog Lag in $\mathfrak{p} \simeq \mathbb{C}^n$. Then, $L := \Phi^{-1}(L')$ is a cpt homog Lag in $\mathbb{C}H^n$. In particular, any cpt homog Lag in $\mathbb{C}H^n$ (up to congruence) is obtained in this way.

Since $Aut(M, \omega, J)$ of HSS of non-cpt type M is <u>non-cpt</u>, there exist several types of non-cpt group actions:

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Since $Aut(M, \omega, J)$ of HSS of non-cpt type M is <u>non-cpt</u>, there exist several types of non-cpt group actions:

e.g. $M = \mathbb{C}H^1 \simeq B^1$

ヘロト ヘヨト ヘヨト ヘヨト

Since $Aut(M, \omega, J)$ of HSS of non-cpt type M is <u>non-cpt</u>, there exist several types of non-cpt group actions:

e.g. $M = \mathbb{C}H^1 \simeq B^1$

(Note: Since $\Phi: M \to \mathfrak{p}$ is a symplectic diffeo, we have a correspondence

{Lag submfd in HSS of non-cpt type M} \longleftrightarrow {Lag submfd in $\mathfrak{p} \simeq \mathbb{C}^n$ }.

Thus, a construction of (homog) Lag submfd in M provides a way of constructing (new example of) a Lag submfd in \mathbb{C}^n .)

イロト 不得 トイヨト イヨト 二日

We shall generalize the previous examples to higher dimension by using the solvable model of M:

э

・ロト ・四ト ・ヨト ・ヨト

We shall generalize the previous examples to higher dimension by using the solvable model of M:

Let M = G/K be an irreducible HSS of non-cpt type.

- $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$: the Cartan decomposition.
- $\mathfrak{a} \subset \mathfrak{p}$: a maximal abelian subspace of \mathfrak{p} .
- $\mathfrak{g} = \mathfrak{g}_0 + \sum_{\lambda \in \Sigma} \mathfrak{g}_{\lambda}$: the restricted root decomposition w.r.t. \mathfrak{a} .
- Letting $\mathfrak{n} := \sum_{\lambda \in \Sigma_+} \mathfrak{g}_{\lambda}$, we obtain the *Iwasawa decomposition*

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n},$

and $\mathfrak{s} := \mathfrak{a} + \mathfrak{n}$ is so called the solvable part of the lwasawa decomposition.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○日 ● のへの

We shall generalize the previous examples to higher dimension by using the solvable model of M:

Let M = G/K be an irreducible HSS of non-cpt type.

- $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$: the Cartan decomposition.
- $\mathfrak{a} \subset \mathfrak{p}$: a maximal abelian subspace of \mathfrak{p} .
- $\mathfrak{g} = \mathfrak{g}_0 + \sum_{\lambda \in \Sigma} \mathfrak{g}_{\lambda}$: the restricted root decomposition w.r.t. \mathfrak{a} .
- Letting $\mathfrak{n} := \sum_{\lambda \in \Sigma_+} \mathfrak{g}_{\lambda}$, we obtain the *Iwasawa decomposition*

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n},$

and $\mathfrak{s} := \mathfrak{a} + \mathfrak{n}$ is so called the solvable part of the lwasawa decomposition.

Fact Let S be a connected subgroup of G whose Lie algebra is \mathfrak{s} . Then, S acts on M simply transitively. Hence, we obtain an identification $M \simeq S$ (as a Kähler mfd), and this is so called the solvable model of M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let us consider a connected subgroup S' of S admitting a Lag orbit.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

Let us consider a connected subgroup S' of S admitting a Lag orbit.

Since S acts on M simply transitively, the classification of non-cpt homog Lag in M obtained by a subgroup S' of S is reduced to classify Lagrangian subalgebras of \mathfrak{s} , that is, Lie subalgebra \mathfrak{l} of \mathfrak{s} satisfying Lagrangian condition i.e., $\omega|_{\mathfrak{l}} = 0$ and $\dim \mathfrak{l} = \frac{1}{2}\dim \mathfrak{s}$.

In [Hashinga-K. 17], we completely classify the Lagrangian subalgebra of \mathfrak{s} when $M = \mathbb{C}H^n$, and give the details of Lagrangian orbits.

<ロト <回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(The construction) Assume $M = \mathbb{C}H^n$. Then

$$\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{g}_{lpha} \oplus \mathfrak{g}_{2lpha} = (\mathfrak{a} \oplus \mathfrak{g}_{2lpha}) \oplus \mathfrak{g}_{lpha}.$$

Both subspaces $\mathfrak{a} \oplus \mathfrak{g}_{2\alpha}$ and \mathfrak{g}_{α} are symplectic (complex) subspace of $\dim_{\mathbb{C}}(\mathfrak{a} \oplus \mathfrak{g}_{2\alpha}) = 1$ and $\dim_{\mathbb{C}}\mathfrak{g}_{\alpha} = n - 1$, hence, taking Lagrangian subspaces $\mathfrak{l}_1 \subset (\mathfrak{a} \oplus \mathfrak{g}_{2\alpha})$ and $\mathfrak{l}_2 \subset \mathfrak{g}_{\alpha}$,

 $\mathfrak{l}:=\mathfrak{l}_1\oplus\mathfrak{l}_2$

is a Lagrangian subspace of \mathfrak{s} .

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

(The construction) Assume $M = \mathbb{C}H^n$. Then

$$\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{g}_{lpha} \oplus \mathfrak{g}_{2lpha} = (\mathfrak{a} \oplus \mathfrak{g}_{2lpha}) \oplus \mathfrak{g}_{lpha}.$$

Both subspaces $\mathfrak{a} \oplus \mathfrak{g}_{2\alpha}$ and \mathfrak{g}_{α} are symplectic (complex) subspace of $\dim_{\mathbb{C}}(\mathfrak{a} \oplus \mathfrak{g}_{2\alpha}) = 1$ and $\dim_{\mathbb{C}}\mathfrak{g}_{\alpha} = n - 1$, hence, taking Lagrangian subspaces $\mathfrak{l}_1 \subset (\mathfrak{a} \oplus \mathfrak{g}_{2\alpha})$ and $\mathfrak{l}_2 \subset \mathfrak{g}_{\alpha}$,

 $\mathfrak{l}:=\mathfrak{l}_1\oplus\mathfrak{l}_2$

is a Lagrangian subspace of \mathfrak{s} .

For $X, Y \in \mathfrak{l}_1 \subset \mathfrak{a} \oplus \mathfrak{g}_{2\alpha}$ and $U, V \in \mathfrak{l}_2 \subset \mathfrak{g}_{\alpha}$, the bracket relation of \mathfrak{s} implies

$$[X + U, Y + V] = c_1 U + c_2 V + \{\omega_{\mathfrak{s}}(X, Y) + \omega_{\mathfrak{s}}(U, V)\}Z$$
$$= c_1 U + c_2 V \in \mathfrak{l}_2$$

for some c_1, c_2 . Hence, l is a subalgebra of \mathfrak{s} . (Remark: This construction is partially generalized to higher rank case [Hashinaga 18])

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

(continued) Conversely, we proved the following:

Lemma (H-K)

Let \mathfrak{s}' be any Lagrangian subalgebra of \mathfrak{s} . Then, \mathfrak{s}' splits into a direct sum $\mathfrak{s}' = \mathfrak{l}_1 \oplus \mathfrak{l}_2$ of two Lagrangian subspaces $\mathfrak{l}_1 \subset \mathfrak{a} \oplus \mathfrak{g}_{2\alpha}$ and $\mathfrak{l}_2 \subset \mathfrak{g}_{\alpha}$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

(continued) Conversely, we proved the following:

Lemma (H-K)

Let \mathfrak{s}' be any Lagrangian subalgebra of \mathfrak{s} . Then, \mathfrak{s}' splits into a direct sum $\mathfrak{s}' = \mathfrak{l}_1 \oplus \mathfrak{l}_2$ of two Lagrangian subspaces $\mathfrak{l}_1 \subset \mathfrak{a} \oplus \mathfrak{g}_{2\alpha}$ and $\mathfrak{l}_2 \subset \mathfrak{g}_{\alpha}$.

Actually, $\mathfrak{s}'=\mathfrak{l}_1\oplus\mathfrak{l}_2$ is isomorphic to the canonical Lagrangian subalgebra in \mathfrak{s}

 $\mathfrak{l}_{\theta} = \operatorname{span}_{\mathbb{R}} \{ \cos \theta A + \sin \theta Z \} \oplus \operatorname{span}_{\mathbb{R}} \{ X_1, \cdots, X_{n-1} \} \text{ for } \theta \in [0, \pi/2].$

(where $\mathfrak{a} = \operatorname{span}_{\mathbb{R}} \{A\}$, $\mathfrak{g}_{2\alpha} = \operatorname{span}_{\mathbb{R}} \{Z\}$ and $X_i \in \mathfrak{g}_{\alpha}$ s.t. $[X_i, JX_i] = Z$.)

(continued) Conversely, we proved the following:

Lemma (H-K)

Let \mathfrak{s}' be any Lagrangian subalgebra of \mathfrak{s} . Then, \mathfrak{s}' splits into a direct sum $\mathfrak{s}' = \mathfrak{l}_1 \oplus \mathfrak{l}_2$ of two Lagrangian subspaces $\mathfrak{l}_1 \subset \mathfrak{a} \oplus \mathfrak{g}_{2\alpha}$ and $\mathfrak{l}_2 \subset \mathfrak{g}_{\alpha}$.

Actually, $\mathfrak{s}' = \mathfrak{l}_1 \oplus \mathfrak{l}_2$ is isomorphic to the *canonical Lagrangian subalgebra* in \mathfrak{s}

 $\mathfrak{l}_{\theta} = \operatorname{span}_{\mathbb{R}} \{ \cos \theta A + \sin \theta Z \} \oplus \operatorname{span}_{\mathbb{R}} \{ X_1, \cdots, X_{n-1} \} \text{ for } \theta \in [0, \pi/2].$

(where $\mathfrak{a} = \operatorname{span}_{\mathbb{R}}\{A\}$, $\mathfrak{g}_{2\alpha} = \operatorname{span}_{\mathbb{R}}\{Z\}$ and $X_i \in \mathfrak{g}_{\alpha}$ s.t. $[X_i, JX_i] = Z$.) Denote the connected subgroup of S whose Lie algebra \mathfrak{l}_{θ} by L_{θ} . Lemma implies any Lag orbit $S' \cdot o$ for $S' \subset S$ is isometric to some $L_{\theta} \cdot o$. By computing the mean curvature, we see $L_{\theta} \cdot o$ is not isometric to $L_{\theta'} \cdot o$ if $\theta \neq \theta'$. Namely,

▲日▶ ▲□▶ ▲三▶ ▲三▶ 三日 りんの

(continued) Conversely, we proved the following:

Lemma (H-K)

Let \mathfrak{s}' be any Lagrangian subalgebra of \mathfrak{s} . Then, \mathfrak{s}' splits into a direct sum $\mathfrak{s}' = \mathfrak{l}_1 \oplus \mathfrak{l}_2$ of two Lagrangian subspaces $\mathfrak{l}_1 \subset \mathfrak{a} \oplus \mathfrak{g}_{2\alpha}$ and $\mathfrak{l}_2 \subset \mathfrak{g}_{\alpha}$.

Actually, $\mathfrak{s}' = \mathfrak{l}_1 \oplus \mathfrak{l}_2$ is isomorphic to the *canonical Lagrangian subalgebra* in \mathfrak{s}

 $\mathfrak{l}_{\theta} = \operatorname{span}_{\mathbb{R}} \{ \cos \theta A + \sin \theta Z \} \oplus \operatorname{span}_{\mathbb{R}} \{ X_1, \cdots, X_{n-1} \} \text{ for } \theta \in [0, \pi/2].$

(where $\mathfrak{a} = \operatorname{span}_{\mathbb{R}}\{A\}$, $\mathfrak{g}_{2\alpha} = \operatorname{span}_{\mathbb{R}}\{Z\}$ and $X_i \in \mathfrak{g}_{\alpha}$ s.t. $[X_i, JX_i] = Z$.) Denote the connected subgroup of S whose Lie algebra \mathfrak{l}_{θ} by L_{θ} . Lemma implies any Lag orbit $S' \cdot o$ for $S' \subset S$ is isometric to some $L_{\theta} \cdot o$. By computing the mean curvature, we see $L_{\theta} \cdot o$ is not isometric to $L_{\theta'} \cdot o$ if $\theta \neq \theta'$. Namely,

Theorem (Hashinaga-K. 17)

The set C(S) consisting of congruence classes of Lagrangian orbits obtained by connected subgroups of S is parametrized by $\theta \in [0, \pi/2]$, and $L_{\theta} \cdot o$ represents each congruence class.

Furthermore, we determined the orbit equivalence class:

Theorem (Hashinaga-K. 17)

Let S' be a connected Lie subgroup of $S \simeq \mathbb{C}H^n$. If $S' \curvearrowright \mathbb{C}H^n$ admits a Lagrangian orbit, then the S'-action is orbit equivalent to either L_0 or $L_{\pi/2}$ -action. Here,

- L₀-action yields a 1-parameter family of Lag orbit including all congruence classes in C(S) except [L_{π/2} · o] (∃unique totally geodesic orbit L₀ · o ≃ ℝHⁿ).
- Every L_{π/2}-orbits is Lagrangian and congruent to each other (each orbit is contained in a horosphere).

Furthermore, we determined the orbit equivalence class:

Theorem (Hashinaga-K. 17)

Let S' be a connected Lie subgroup of $S \simeq \mathbb{C}H^n$. If $S' \curvearrowright \mathbb{C}H^n$ admits a Lagrangian orbit, then the S'-action is orbit equivalent to either L_0 or $L_{\pi/2}$ -action. Here,

- L₀-action yields a 1-parameter family of Lag orbit including all congruence classes in C(S) except [L_{π/2} · o] (∃unique totally geodesic orbit L₀ · o ≃ ℝHⁿ).
- Every L_{π/2}-orbits is Lagrangian and congruent to each other (each orbit is contained in a horosphere).

Note: The orbit space of Lagrangian orbits can be described by the moment map $\mu : \mathbb{C}H^n \to (\mathfrak{s}')^*$:

• (roughly speaking)

$$\{\mathsf{Lag}\; \mathsf{S}'\mathsf{-orbits}\} \ni \mu^{-1}(c) \; \longleftrightarrow \; c \in \mathfrak{z}((\mathfrak{s}')^*) = \{c \in (\mathfrak{s}')^* : \mathrm{Ad}^*(g)c = c \; \forall g \in \mathsf{S}'\}$$

• For example, if $S' = L_0$, then $\mathfrak{z}((\mathfrak{s}')^*) = \mathbb{R}A^*$. Thus, taking $\gamma(t) \in S \simeq \mathbb{C}H^n$ s.t. $\mu(\gamma(t)) = tA^*$, $\gamma(t)$ intersects to every Lag L_0 -orbits.