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Introduction

@ Homogeneous (sub)manifolds: provide a manifold with several geometric
structures and properties.
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Introduction

@ Homogeneous (sub)manifolds: provide a manifold with several geometric
structures and properties.
» Classifications of cohomogeneity one actions in symmetric spaces:
Hsiang-Lawson, Takagi, lwata, Kollross, Berndt-Tamaru...

@ Lagrangian submanifolds: an object in symplectic geometry.
> A submfd L in a symplectic mfd (M,w) with w|, =0 & dimL = 1dimM.
» A widely-studied class of higher codimentional submfds by motivations related
to Riemannian & Symplectic geometry.
» Homogeneous Lagrangian submfds provide nice examples of Lag submfd.
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Introduction

@ Homogeneous (sub)manifolds: provide a manifold with several geometric
structures and properties.
» Classifications of cohomogeneity one actions in symmetric spaces:
Hsiang-Lawson, Takagi, lwata, Kollross, Berndt-Tamaru...

@ Lagrangian submanifolds: an object in symplectic geometry.
> A submfd L in a symplectic mfd (M,w) with w|, =0 & dimL = 1dimM.
» A widely-studied class of higher codimentional submfds by motivations related
to Riemannian & Symplectic geometry.
» Homogeneous Lagrangian submfds provide nice examples of Lag submfd.

@ Problem: Construct and classify homogeneous Lagrangian submanifolds in a
specific Kihler manifold (e.g. Hermitian symmetric spaces).
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Introduction

If (M,w,J) is a Khler manifold, we define

Definition

A submanifold L in (M, w, J) is called homogeneous if L is obtained by an orbit
H - p of a connected Lie subgroup H of Aut(M,w,J). Furthermore, if we take H
to be a compact subgroup, we say L = H - p is compact homogeneous.
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A submanifold L in (M, w, J) is called homogeneous if L is obtained by an orbit
H - p of a connected Lie subgroup H of Aut(M,w,J). Furthermore, if we take H
to be a compact subgroup, we say L = H - p is compact homogeneous.

We are interested in homogeneous Lagrangian submfd.

e.g. T -orbits in a toric Kdhler manifold, real forms in cplx flag mfds, Gauss images in
Gra(R™2) of homog. hypersurfaces in a sphere... etc.
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Introduction

If (M,w,J) is a Khler manifold, we define

Definition

A submanifold L in (M, w, J) is called homogeneous if L is obtained by an orbit
H - p of a connected Lie subgroup H of Aut(M,w,J). Furthermore, if we take H
to be a compact subgroup, we say L = H - p is compact homogeneous.

We are interested in homogeneous Lagrangian submfd.

e.g. T -orbits in a toric Kdhler manifold, real forms in cplx flag mfds, Gauss images in
Gra(R™2) of homog. hypersurfaces in a sphere... etc.

Classification results (of actions admitting Lag orbits):
@ M =CP" & H is a cpt simple Lie group [Bedulli-Gori 08]. (Note that 3 1-1
correspondence btw cpt homog Lag in CP" and the ones in C™™ via Hopf fibration).
o M = Gry(R"2) ~ @,(C) [Ma-Ohnita 09]
Note: so far, we do not know any comprehensive method to classify homog Lag even for
Hermitian symmetric spaces...
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Cpt homg Lag in HSS of non-compact type

Consider the case when M = Hermitian symmetric space of non-compact type:
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Cpt homg Lag in HSS of non-compact type

Consider the case when M = Hermitian symmetric space of non-compact type:

Theorem (cf. McDuff 88, Deltour 13)

Let M = G/K be a Hermitian symmetric space of non-compact type, and
g =t + p the Cartan decomposition. Then, there exists a K-equivariant
symplectic diffeomorphism & : (M,w) — (p, wo).

(Remark: this result is just an existence theorem, although they proved for more general
setting [McDuff 88, Deltour 13])
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Cpt homg Lag in HSS of non-compact type

Consider the case when M = Hermitian symmetric space of non-compact type:

Theorem (cf. McDuff 88, Deltour 13)

Let M = G/K be a Hermitian symmetric space of non-compact type, and
g =t + p the Cartan decomposition. Then, there exists a K-equivariant
symplectic diffeomorphism & : (M,w) — (p, wo).

(Remark: this result is just an existence theorem, although they proved for more general
setting [McDuff 88, Deltour 13])

eg. M=CH" ~ B".

[ 1
©:B">C"~p, z— 1_7|Z|2.z

is a K-equivariant symplectic diffeomorphism (not holomorphic).
(Remark: [Di Scala-Loi 08] gives an explicit construction of ¢ for any Hermitian
symmetric space of non-cpt type.)
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Cpt homg Lag in HSS of non-compact type

(continued) Since ® : M — p is K-equivariant and K is a maximal compact
subgroup of G, 3 a map

{cpt homog Lag in M = G/K} — {cpt homog Lag in p ~ C"}.

In this sense, the classification problem of cpt homog Lag in M is reduced to find
an H C Ad(K) admitting a Lag orbit in p ~ C".
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Cpt homg Lag in HSS of non-compact type

(continued) Since ® : M — p is K-equivariant and K is a maximal compact
subgroup of G, 3 a map

{cpt homog Lag in M = G/K} — {cpt homog Lag in p ~ C"}.
In this sense, the classification problem of cpt homog Lag in M is reduced to find
an H C Ad(K) admitting a Lag orbit in p ~ C".
For example, if M is rank 1, we see Ad(K) = U(n), and it turns out that

Theorem (Hashinaga-K. 17, Ohnita)

Suppose M = CH" and let L' be any cpt homog Lag in p ~ C". Then,
L:=®"(L') is a cpt homog Lag in CH". In particular, any cpt homog Lag in
CH" (up to congruence) is obtained in this way.

A geometric interpretation: (CH",w) Symp_®difreo_ (C", wo)
U U
C(K)=S'nL — szt % $2"(sinh r)
D sy sty
L/S' = CP"MNzir) = CP"™Mrs)

Toru Kajigaya joint work with Takahiro Hashinaga (ISome homogeneous Lagrangian submanifolds in com)



Non-cpt homg Lag in HSS of non-cpt type

Since Aut(M,w, J) of HSS of non-cpt type M is non-cpt, there exist several types
of non-cpt group actions:
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of non-cpt group actions:

eg. M =CH! ~ B!
Le—or‘bits (A-orbits) L“/zfor‘bits (N-orbits)
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Non-cpt homg Lag in HSS of non-cpt type

Since Aut(M,w, J) of HSS of non-cpt type M is non-cpt, there exist several types

of non-cpt group actions:

eg. M =CH! ~ B!
LQ—or‘bits (A-orbits) L“/zfor‘bits (N-orbits)

(Note: Since ® : M — p is a symplectic diffeo, we have a correspondence
{Lag submfd in HSS of non-cpt type M} <— {Lag submfd in p ~ C"}.

Thus, a construction of (homog) Lag submfd in M provides a way of constructing (new
example of) a Lag submfd in C".)
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Non-cpt homg Lag in HSS of non-cpt type

We shall generalize the previous examples to higher dimension by using the
solvable model of M:
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Non-cpt homg Lag in HSS of non-cpt type

We shall generalize the previous examples to higher dimension by using the
solvable model of M:

Let M = G/K be an irreducible HSS of non-cpt type.
g = £+ p: the Cartan decomposition.
a C p: a maximal abelian subspace of p.

g =00+ ) ,cy O the restricted root decomposition w.r.t. a.

Letting n := ZAE& g, We obtain the Iwasawa decomposition

g=t®adn,

and s := a + n is so called the solvable part of the lwasawa decomposition.
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Non-cpt homg Lag in HSS of non-cpt type

We shall generalize the previous examples to higher dimension by using the
solvable model of M:

Let M = G/K be an irreducible HSS of non-cpt type.

g = £+ p: the Cartan decomposition.

a C p: a maximal abelian subspace of p.

g =00+ ) ,cy O the restricted root decomposition w.r.t. a.

Letting n := ZAE& g, We obtain the Iwasawa decomposition

g=tDadn,
and s := a + n is so called the solvable part of the lwasawa decomposition.

Fact Let S be a connected subgroup of G whose Lie algebra is 5. Then, S acts on
M simply transitively.
Hence, we obtain an identification M ~ S (as a Kahler mfd), and this is so
called the solvable model of M.
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Non-cpt homg Lag in HSS of non-cpt type

Let us consider a connected subgroup S’ of S admitting a Lag orbit.
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Non-cpt homg Lag in HSS of non-cpt type

Let us consider a connected subgroup S’ of S admitting a Lag orbit.

Since S acts on M simply transitively, the classification of non-cpt homog Lag in
M obtained by a subgroup S’ of S is reduced to classify Lagrangian subalgebras of
s, that is, Lie subalgebra I of s satisfying Lagrangian condition i.e., w|; = 0 and
diml = %dims.

In [Hashinga-K. 17], we completely classify the Lagrangian subalgebra of s when
M = CH", and give the details of Lagrangian orbits.
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Non-cpt homg Lag in CH”"

(The construction) Assume M = CH". Then
5=0® ga ® g2a = (4D g2a) D ga-

Both subspaces a @ go and g. are symplectic (complex) subspace of dimc(a @ gao) =1
and dimcga = n — 1, hence, taking Lagrangian subspaces [ C (a ® g2o) and 2 C ga,

[=L1D

is a Lagrangian subspace of s.
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Non-cpt homg Lag in CH”"

(The construction) Assume M = CH". Then
5=0® ga ® g2a = (4D g2a) D ga-

Both subspaces a @ go and g. are symplectic (complex) subspace of dimc(a @ gao) =1
and dimcga = n — 1, hence, taking Lagrangian subspaces [ C (a ® g2o) and 2 C ga,

[=L1D

is a Lagrangian subspace of s.

For X, Y €elh Ca®goa and U,V € [o C ga, the bracket relation of s implies

X+U, Y+ V]=aU+ oV +{w(X,Y)+ws(U,V)}Z
=aU+aVel

for some ci, c2. Hence, [ is a subalgebra of s.
(Remark: This construction is partially generalized to higher rank case [Hashinaga 18])
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Non-cpt homg Lag in CH”"

(continued) Conversely, we proved the following:

Let 5" be any Lagrangian subalgebra of 5. Then, s’ splits into a direct sum
s’ =1 & [, of two Lagrangian subspaces |y C a ® go, and [ C gg.
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Non-cpt homg Lag in CH”"

(continued) Conversely, we proved the following:

Let 5" be any Lagrangian subalgebra of 5. Then, s’ splits into a direct sum
s’ =1 & [, of two Lagrangian subspaces |y C a ® go, and [ C gg.

Actually, s’ = [; @ [, is isomorphic to the canonical Lagrangian subalgebra in s
lp = spang{cos @A + sin0Z} ® spanp{ X1, -, X,—1} for 6§ € [0, 7/2].

(where a = spang{A}, g2« = spang{Z} and X; € gao s.t. [Xi, JXi]] =Z.)
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Non-cpt homg Lag in CH”"

(continued) Conversely, we proved the following:

Let 5" be any Lagrangian subalgebra of 5. Then, s’ splits into a direct sum
s' =1 ® I of two Lagrangian subspaces |1 C a & go,, and I C gq.

Actually, s’ = [; @ [, is isomorphic to the canonical Lagrangian subalgebra in s
lp = spang{cos @A + sin0Z} ® spanp{ X1, -, X,—1} for 6§ € [0, 7/2].

(where a = spang{A}, g2 = spang{Z} and X; € g, s.t. [X;, JXj]] = Z.)

Denote the connected subgroup of S whose Lie algebra [y by Ly. Lemma implies
any Lag orbit S - o for S’ C S is isometric to some Ly - 0. By computing the
mean curvature, we see Lg - 0 is not isometric to Ly - 0 if 6 £ 6’. Namely,
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Non-cpt homg Lag in CH”"

(continued) Conversely, we proved the following:

Let 5" be any Lagrangian subalgebra of s. Then, s’ splits into a direct sum
s' =1 ® I of two Lagrangian subspaces |1 C a & go,, and I C gq.

Actually, s’ = [; @ [, is isomorphic to the canonical Lagrangian subalgebra in s
lp = spang{cos @A + sin0Z} ® spanp{ X1, -, X,—1} for 6§ € [0, 7/2].

(where a = spang{A}, g2 = spang{Z} and X; € g, s.t. [X;, JXj]] = Z.)

Denote the connected subgroup of S whose Lie algebra [y by Ly. Lemma implies
any Lag orbit S - o for S’ C S is isometric to some Ly - 0. By computing the
mean curvature, we see Lg - 0 is not isometric to Ly - 0 if 6 £ 6’. Namely,

Theorem (Hashinaga-K. 17)

The set C(S) consisting of congruence classes of Lagrangian orbits obtained by
connected subgroups of S is parametrized by 6 € [0,7/2], and Ly - o represents
each congruence class.
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Non-cpt homg Lag in CH”"

Furthermore, we determined the orbit equivalence class:

Theorem (Hashinaga-K. 17)

Let S’ be a connected Lie subgroup of S ~ CH". I[f S’ ~ CH" admits a
Lagrangian orbit, then the S’'-action is orbit equivalent to either Ly or L, /2-action.
Here,
@ Lo-action yields a 1-parameter family of Lag orbit including all congruence
classes in C(S) except [L /> - o] (3unique totally geodesic orbit Lo-0 ~ RH").
o Every L, j>-orbits is Lagrangian and congruent to each other (each orbit is
contained in a horosphere).

Lo-orbits (A-orbits) L,/p-orbits (N-orbits)
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Non-cpt homg Lag in CH”"

Furthermore, we determined the orbit equivalence class:

Theorem (Hashinaga-K. 17)

Let S’ be a connected Lie subgroup of S ~ CH". I[f S’ ~ CH" admits a
Lagrangian orbit, then the S’'-action is orbit equivalent to either Ly or L, J2-action.
Here,

@ Lo-action yields a 1-parameter family of Lag orbit including all congruence
classes in C(S) except [L, /> - o] (Junique totally geodesic orbit Lo- 0 ~ RH").

o Every L, j>-orbits is Lagrangian and congruent to each other (each orbit is
contained in a horosphere).

Note: The orbit space of Lagrangian orbits can be described by the moment map
p: CH" — (s')*:
@ (roughly speaking)
{Lag S’-orbits} 3 u'(c) +— ce3((s))={ce(s) :Ad"(g)c=cVge S}

@ For example, if S’ = Lo, then 3((s")*) = RA*. Thus, taking y(t) € S ~ CH" s.t.
u(vy(t)) = tA*, y(t) intersects to every Lag Lo-orbits.
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