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REAL HYPERSURFACES

WITH CONSTANT PRINCIPAL CURVATURES

IN THE COMPLEX HYPERBOLIC PLANE

JÜRGEN BERNDT, JOSÉ CARLOS DÍAZ-RAMOS

1. Introduction

Élie Cartan classified in [6] all connected hypersurfaces M with constant principal cur-
vatures in the real hyperbolic space RHn, n ≥ 3. His classification exhibits two remarkable
features. Firstly, the number g of distinct principal curvatures has an upper bound indepen-
dent of the dimension n. In fact, Cartan showed that g ≤ 2. Secondly, every connected real
hypersurface with constant principal curvatures in RHn is an open part of a homogeneous
hypersurface. Therefore, assuming M is complete, the constancy of principal curvatures
is equivalent to the existence of a closed subgroup of the isometry group G of RHn such
that M is an orbit of G.

We are interested in the corresponding questions in the complex hyperbolic space CHn,
n ≥ 2. We summarize briefly the known facts so far. Cartan’s argument for g ≤ 2 in
RHn relies on the Gauß-Codazzi equations. The structure of these equations in CHn

is too complicated in general, but simplifies considerably for Hopf hypersurfaces. A real
hypersurface M in CHn is a Hopf hypersurface if the Hopf foliation on M is totally geodesic.
The Hopf foliation on M consists of the leaves of the one-dimensional distribution on M
that is obtained by rotating the normal bundle of M into the tangent bundle of M by
means of the complex structure J of CHn. If ξ is a unit normal vector field on M , then M
is a Hopf hypersurface if and only if Jξp is a principal curvature vector of M at each point
p ∈ M . The first author classified in [1] all connected Hopf hypersurfaces with constant
principal curvatures in CHn, n ≥ 2. It turns out that g ∈ {2, 3} and that M is an open
part of a homogeneous real hypersurface in CHn.

For some time it was believed that every homogeneous real hypersurface in CHn is a
Hopf hypersurface, a fact known to be true in the complex projective space CP n according
to Takagi’s classification in [9]. Surprisingly, Lohnherr [8] constructed in his PhD thesis
an example of a homogeneous real hypersurface W 2n−1 in CHn which is not a Hopf hy-
persurface. Consider a horocycle H in a totally geodesic RH2 ⊂ CH2 ⊂ CHn, and attach
to each point p ∈ H the totally geodesic CHn−1 ⊂ CHn which is perpendicular to H at p.
The resulting ruled real hypersurface W 2n−1 is a minimal homogeneous real hypersurface
in CHn. An alternative Lie theoretic construction of W 2n−1 has been presented by the
first author in [2].
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The first author and Brück constructed in [3] more examples of homogeneous real hyper-
surfaces in CHn which are not Hopf hypersurfaces. Recently, the first author and Tamaru
classified in [5] the cohomogeneity one actions on CHn up to orbit equivalence. This of
course provides the classification of homogeneous real hypersurfaces in CHn, and confirms
that there are no further homogeneous real hypersurfaces in CHn apart from the known
ones. Any such hypersurface has constant principal curvatures with g ∈ {2, 3, 4, 5}. The
authors classified in [4] all connected real hypersurfaces in CHn, n ≥ 3, with at most three
distinct constant principal curvatures. A consequence of this classification is that any such
hypersurface is an open part of a homogeneous real hypersurface in CHn. The methods
developed in [4] do not work for the case n = 2. The purpose of this paper is to settle this
remaining case by a different method.

Theorem 1.1. Let M be a connected real hypersurface in the complex hyperbolic plane

CH2. Then M has constant principal curvatures if and only if it is is an open part of a

homogeneous hypersurface in CH2, that is, M is an open part of

(i) a geodesic hypersphere in CH2, or

(ii) a horosphere in CH2, or

(iii) a tube around a totally geodesic CH1 ⊂ CH2, or

(iv) a tube around a totally geodesic RH2 ⊂ CH2, or

(v) a ruled minimal real hypersurface W 3 ⊂ CH2, or one of its equidistant hypersur-

faces.

The second author has been supported by grants from Ministerio de Ciencia y Tecnoloǵia
(BFM 2003-02949) and Xunta de Galicia (PGIDIT 04PXIC20701PN).

2. Preliminaries

Let CH2 be the complex hyperbolic plane equipped with the Fubini Study metric 〈·, ·〉
of constant holomorphic sectional curvature −1. We denote by ∇̄ and R̄ the Levi Civita
covariant derivative and the Riemannian curvature tensor of CH2, respectively, using the
sign convention R̄XY = [∇̄X , ∇̄Y ] − ∇̄[X,Y ]. Then

R̄XY Z = −1

4

(

〈Y, Z〉X − 〈X, Z〉Y + 〈JY, Z〉JX − 〈JX, Z〉JY − 2〈JX, Y 〉JZ
)

,

where J is the complex structure of CH2. We also write R̄XY ZW = 〈R̄XY Z, W 〉.
Let M be a connected real hypersurface of CH2. We denote by ∇ and R the Levi Civita

covariant derivative and the Riemannian curvature tensor of M , respectively. By TM and
νM we denote the tangent bundle and the normal bundle of M , and by Γ(TM) and Γ(νM)
we denote the module of all smooth vector fields tangent and normal to M , respectively.
Let X, Y, Z, W ∈ Γ(TM) and ξ ∈ Γ(νM) be a (local) unit normal vector field on M .

The Levi Civita covariant derivatives of M and CH2 are related by the Gauß formula

∇̄XY = ∇XY + 〈SX, Y 〉ξ,
where S is the shape operator of M with respect to ξ. The Weingarten formula is

∇̄Xξ = −SX.
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The fundamental equations of second order of interest to us are the Gauß equation

R̄XY ZW = RXY ZW − 〈SY, Z〉〈SX, W 〉+ 〈SX, Z〉〈SY, W 〉
and the Codazzi equation

R̄XY Zξ = 〈(∇XS)Y − (∇Y S)X, Z〉.
We assume from now on that M has constant principal curvatures. For each principal

curvature λ of M we denote by Tλ the distribution on M formed by the principal curvature
spaces of λ. By Γ(Tλ) we denote the set of all smooth sections in Tλ, that is, all smooth
vector fields on M satisfying SX = λX. The Codazzi equation readily implies

Lemma 2.1. For all X ∈ Γ(Tλi
), Y ∈ Γ(Tλj

) and Z ∈ Γ(Tλk
) we have

R̄XY Zξ = (λj − λk)〈∇XY, Z〉 − (λi − λk)〈∇Y X, Z〉.
Putting λi = λk in Lemma 2.1 and then interchanging Y and Z yields

Lemma 2.2. For all X, Y ∈ Γ(Tλi
) and Z ∈ Γ(Tλj

) with λi 6= λj we have

4(λj − λi)〈∇XY, Z〉 = 〈JY, Z〉〈X, Jξ〉+ 〈JX, Y 〉〈Z, Jξ〉+ 2〈JX, Z〉〈Y, Jξ〉.

3. The Classification

Let M be a connected real hypersurface of CH2 with constant principal curvatures.
Since our classification problem is of local nature, we can assume that M is orientable.
Let ξ be a global unit normal vector field on M and denote by g the number of distinct
constant principal curvatures of M . As an immediate consequence of Lemma 2.1 we have

Lemma 3.1. g ≥ 2.

Proof. Suppose that g = 1. Then Lemma 2.1 implies R̄XY Zξ = 0 for all X, Y, Z ∈ Γ(TM).
In particular, 0 = 4R̄JξY Zξ = 〈JY, Z〉 for all Y, Z ∈ Γ(TM), which means that M is
a totally real submanifold of CH2, and hence dim M ≤ 2, which is a contradiction to
dim M = 3. �

Proposition 3.2. If g = 2 then M is an open part of

(i) a geodesic hypersphere in CH2, or

(ii) a horosphere in CH2, or

(iii) a tube around a totally geodesic CH1 ⊂ CH2, or

(iv) a tube of radius r = ln(2 +
√

3) around a totally geodesic RH2 ⊂ CH2.

Proof. We denote by λi the principal curvature of M with multiplicity i ∈ {1, 2}. Suppose
there is a point p ∈ M such that Jξp is not a principal curvature vector. Then there exists
an open neighborhood N of p in M such that Jξ = b1U1 + b2U2 for some unit vector fields
Ui ∈ Γ(Tλi

) on N and smooth functions bi : N → R with bi(q) 6= 0 for all q ∈ N . As the
rank of the distribution Tλ2

is 2, there exists a nonzero vector field V ∈ Γ(Tλ2
) on N such

that 〈V, U2〉 = 0. By construction we have 〈JV, ξ〉 = −〈V, Jξ〉 = 0 and 〈JV, V 〉 = 0. From
Lemma 2.1 we get 0 = 4R̄U2V U2ξ = 3b2〈JV, U2〉. Thus we have 〈JV, U2〉 = 0 on N , and
hence b1〈JV, U1〉 = −〈V, b1JU1〉 = 〈V, ξ + b2JU2〉 = 0. This implies 〈JV, U1〉 = 0 on N
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as well. Altogether this shows that V = 0 on N , which is a contradiction. We conclude
that Jξp is a principal curvature vector of M at each point p ∈ M . The proposition then
follows from [1]. �

In view of the above results we can assume g = 3 from now on. The real hypersurfaces
with constant principal curvatures in CHn, n ≥ 3, have been classified by the authors in
[4]. Unfortunately, the proof in [4] does not work for n = 2. For this reason we need to
develop here a different method for n = 2.

We denote by λ1, λ2 and λ3 the three distinct principal curvatures of M . As dim M = 3,
each of these principal curvatures has multiplicity one. Let U1, U2, U3 be a local orthonormal
frame field on M with Ui ∈ Γ(Tλi

), that is SUi = λiUi. Since we are interested only in the
local structure of M , we can assume without loss of generality that U1, U2, U3 is a global
orthonormal frame field on M . Then we can write

Jξ = b1U1 + b2U2 + b3U3

with the smooth functions bi : M → R defined by bi = 〈Jξ, Ui〉, i ∈ {1, 2, 3}. Note that

b2
1 + b2

2 + b2
3 = 1.

In the following we assume that all indices are taken modulo 3. As

JUi = 〈JUi, Ui+1〉Ui+1 − 〈JUi+2, Ui〉Ui+2 − biξ,

we get

0 = 〈Ui, ξ〉 = 〈JUi, Jξ〉 = 〈JUi, Ui+1〉bi+1 − 〈JUi+2, Ui〉bi+2

This gives a system of three linear equations, and we easily see that the vector (b1, b2, b3)
is in the real span of (〈JU2, U3〉, 〈JU3, U1〉, 〈JU1, U2〉). From b2

1 + b2
2 + b2

3 = 1 we get

3 =
3

∑

i=1

〈Ui, Ui〉 =
3

∑

i=1

〈JUi, JUi〉 = 2
(

〈JU2, U3〉2 + 〈JU3, U1〉2 + 〈JU1, U2〉2
)

+ 1.

Thus (〈JU2, U3〉, 〈JU3, U1〉, 〈JU1, U2〉) is a unit vector in R
3, and hence we must have

(b1, b2, b3) = ±(〈JU2, U3〉, 〈JU3, U1〉, 〈JU1, U2〉). Without loss of generality we can assume
that we have the plus sign (otherwise replace ξ by −ξ). Thus we have proved

〈JUi, Ui+1〉 = bi+2. (1)

We now introduce the following notation:

di = λi+1 − λi+2 , xi = 〈∇Ui
Ui+1, Ui+2〉.

Putting X = Ui+1, Y = Ui+2 and Z = Ui in Lemma 2.1, and using (1) and b2
1 + b2

2 + b2
3 = 1,

we obtain

3b2
i = 1 + 4di+2xi+2 − 4di+1xi+1. (2)

As ∇Ui
Ui = 〈∇Ui

Ui, Ui+1〉Ui+1 + 〈∇Ui
Ui, Ui+2〉Ui+2, Lemma 2.2 and (1) imply

4∇Ui
Ui = −3bibi+2d

−1
i+2Ui+1 − 3bibi+1d

−1
i+1Ui+2. (3)
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We now calculate the differential dbi of the function bi = 〈Ui, Jξ〉. We have ∇̄Ui
Jξ =

J∇̄Ui
ξ = −λiJUi and hence 〈Ui, ∇̄Ui

Jξ〉 = 0. This implies dbi(Ui) = bi+1〈∇Ui
Ui, Ui+1〉 +

bi+2〈∇Ui
Ui, Ui+2〉, and using (3) we get

4dbi(Ui) = 3b1b2b3did
−1
i+1d

−1
i+2. (4)

Using (1) and (3) we get from

dbi(Ui+1) = bi+1〈∇Ui+1
Ui, Ui+1〉 + bi+2〈∇Ui+1

Ui, Ui+2〉 − λi+1〈Ui, JUi+1〉
= −bi+1〈∇Ui+1

Ui+1, Ui〉 − bi+2〈∇Ui+1
Ui+2, Ui〉 + λi+1〈JUi, Ui+1〉

that

4dbi(Ui+1) = bi+2(3b
2
i+1d

−1
i+2 + 4λi+1 − 4xi+1). (5)

In a similar way we obtain

4dbi(Ui+2) = bi+1(3b
2
i+2d

−1
i+1 − 4λi+2 + 4xi+2). (6)

From the Gauß equation and (1) we get

4RUiUi+1UiUi+1
= 1 − 4λiλi+1 + 3b2

i+2.

On the other hand, by definition,

RUiUi+1UiUi+1
= 〈∇Ui

∇Ui+1
Ui, Ui+1〉 − 〈∇Ui+1

∇Ui
Ui, Ui+1〉 − 〈∇[Ui,Ui+1]Ui, Ui+1〉.

The first term on the right-hand side can be calculated using (3), (5) and (6) as follows

16〈∇Ui
∇Ui+1

Ui, Ui+1〉

= 〈∇Ui
(12bi+1bi+2d

−1
i+2Ui+1 − 16xi+1Ui+2), Ui+1〉

= 12(dbi+1(Ui)bi+2 + bi+1dbi+2(Ui))d
−1
i+2 + 16xixi+1.

= 9(b2
i+1d

−1
i+1 + b2

i+2d
−1
i+2)b

2
i d

−1
i+2 + 12(xi − λi)(b

2
i+2 − b2

i+1)d
−1
i+2 + 16xixi+1.

The second and third term can be calculated in a similar way:

16〈∇Ui+1
∇Ui

Ui, Ui+1〉

= −12〈∇Ui+1
(bibi+2d

−1
i+2Ui+1 − bibi+1d

−1
i+1Ui+2, Ui+1〉

= −12(dbi(Ui+1)bi+2 + bidbi+2(Ui+1))d
−1
i+2 − 9b2

i b
2
i+1d

−1
i d−1

i+1

= −9(b2
i d

−1
i + b2

i+2d
−1
i+2)b

2
i+1d

−1
i+2 + 12(xi+1 − λi+1)(b

2
i+2 − b2

i )d
−1
i+2 − 9b2

i b
2
i+1d

−1
i d−1

i+1,

16〈∇[Ui,Ui+1]Ui, Ui+1〉

= −16〈∇Ui
Ui, Ui+1〉2 − 16〈∇Ui+1

Ui+1, Ui〉2 + 16xixi+2 + 16xi+1xi+2

= −9b2
i b

2
i+2d

−2
i+2 − 9b2

i+1b
2
i+2d

−2
i+2 + 16xixi+2 + 16xi+1xi+2.
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From the previous equations we get by a straightforward calculation

0 = 8λiλi+1 − 2 − 12b2
i+2 + 9d−2

i+2b
2
i+2(1 − b2

i+2) + 8(xixi+1 − xixi+2 − xi+1xi+2)

+6d−1
i+2

(

(b2
i+2 − b2

i+1)xi − (b2
i+2 − b2

i )xi+1 + b2
i+1λi − b2

i λi+1

)

.
(7)

The following proposition is the first crucial step towards the final classification.

Proposition 3.3. The functions b1, b2, b3 are constant.

Proof. Inserting b2
i , b

2
i+1, b

2
i+2 according to (2) into (7) gives

0 = 8didi+1d
−2
i+2(xi + xi+1)

2 + 2di(4 + 2λid
−1
i+2 − d−2

i+2)xi

−2di+1(4 − 2λi+1d
−1
i+2 − d−2

i+2)xi+1 − 4(λi + λi+1)xi+2 + d−2
i+2 − 2 + 4λiλi+1.

(8)

This leads to a system of three quadratic equations of the form

(x1 + x2)
2 + Λ11x1 + Λ12x2 + Λ13x3 = Ω1

(x1 + x3)
2 + Λ21x1 + Λ22x2 + Λ23x3 = Ω2

(x2 + x3)
2 + Λ31x1 + Λ32x2 + Λ33x3 = Ω3

with some real constants Λij and Ωi. We introduce new variables y1, y2, y3 by means of
xi = −yi + yi+1 + yi+2. Then the above system transforms into a system of three quadratic
equations of the form

4y2
i + Λ̄i1y1 + Λ̄i2y2 + Λ̄i3y3 = Ωi, i ∈ {1, 2, 3}.

This system has only finitely many solutions (see e.g. Corollary 7 on page 233 in [7]). It
follows that the system (8) has only finitely many solutions, and as the coefficients of the
system are constant, each solution must be constant. Thus the functions x1, x2, x3 are
constant. From (2) we see that b1, b2, b3 are constant. Finally, �

Corollary 3.4. There exists a principal curvature λi of M such that the orthogonal pro-

jection of Jξp onto Tλi
(p) is equal to zero for all p ∈ M .

Proof. As bi is constant, equation (4) shows that b1b2b3 = 0, which implies the assertion. �

In view of the previous corollary we may assume b3 = 0. Moreover, if b1 = 0 or b2 = 0,
then M is a Hopf hypersurface. In this case it follows from the classification of Hopf
hypersurfaces with constant principal curvatures in [1] that M is an open part of a tube of
radius r 6= ln(2 +

√
3) around a totally geodesic RH2 ⊂ CH2. Therefore we assume b1 6= 0

and b2 6= 0 from now on.
Differentiating the constant function b2 with respect to U3 gives

x3 = λ3 (9)

according to (5), and differentiating b3 = 0 with respect to U1 and U2 gives

4x1 = 4λ1 + 3d−1
2 b2

1 , 4x2 = 4λ2 − 3d−1
1 b2

2 (10)
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according to (5) and (6). Inserting these expressions for x1, x2, x3 into the two equations
for b2

1 and b2
2 in (2), and subtracting the two resulting equations gives

d−1
1 b2

2 − d−1
2 b2

1 = 4λ3. (11)

Together with the equation b2
1 + b2

2 = 1 this leads to

b2
1 = d2d

−1
3 (4d1λ3 − 1) , b2

2 = −d1d
−1
3 (4d2λ3 + 1). (12)

We now insert the expressions for x1 and x2 according to (10) and the ones for b2
1 and b2

2

according to (12) into the equation for b2
3 = 0 in (2), which gives

2d1λ1 − 2d2λ2 + 6(d2 − d1)λ3 + 1 = 0.

This equation is equivalent to

(λ1 − λ2)
2 − (λ1 + λ2 − 4λ3)

2 = 1 − 4λ2
3.

We now multiply equation (7) for i = 2 with d1 and equation (7) for i = 3 with d2, and
then subtract the two resulting equations, which gives

(10λ2
1 + 10λ2

2 + 6λ1λ2 + 1)λ3 = 2(λ1 + λ2)(4λ
2
3 + λ1λ2 + 1) + 6λ3

3.

We define x = λ1 −λ2 and y = λ1 +λ2 − 4λ3, which transforms the last two equations into

x2 − y2 − 1 + 4λ2
3 = 0 , x2(y + 11λ3) − y3 + λ3y

2 + 4(10λ2
3 − 1)y + 2λ3(34λ2

3 − 7) = 0.

If λ3 = 0 we immediately get λ1, λ2 ∈ {±1/2}. Hence, we assume λ3 6= 0. Inserting
x2 = y2 + 1 − 4λ2

3 into the second equation gives a quadratic equation in y, which easily
leads to the possible solutions

(x, y) =

(

±
√

1 − 3λ2
3 , −λ3

)

and (x, y) =

(

± 1

4λ3
,

1 − 8λ2
3

4λ3

)

,

where the first possibility only arises if 3λ2
3 ≤ 1. Taking into account that λ1 and λ2 are

different from λ3, this eventually implies

λ1 =
1

2

(

3λ3 −
√

1 − 3λ2
3

)

, λ2 =
1

2

(

3λ3 +
√

1 − 3λ2
3

)

, (13)

where we assume without loss of generality that λ1 < λ2. Obviously, we get a solution
only if 3λ2

3 ≤ 1. If |λ3| = 1/2 or |λ3| = 1/
√

3, then the three principal curvatures cannot
be different. Suppose that 1/2 < |λ3| < 1/

√
3. From (11) and (13) we get

b2
1

2λ3(λ3 −
√

1 − 3λ2
3)

+
b2
2

2λ3(λ3 +
√

1 − 3λ2
3)

= 1.

If 1/2 < |λ3| < 1/
√

3, elementary calculations show that 0 < 2λ3(λ3 −
√

1 − 3λ2
3) < 1

and 0 < 2λ3(λ3 +
√

1 − 3λ2
3) < 1. Therefore the last equation is the equation of an ellipse

centered at the origin and with axes of length less than 1. Obviously such an ellipse has
no points of intersection with the circle b2

1 + b2
2 = 1. This shows that |λ3| < 1/2.

Therefore, we have proved
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Proposition 3.5. Let M be a connected real hypersurface in CH2 with three distinct

constant principal curvatures λ1, λ2, λ3, and assume that M is not a Hopf hypersurface.

Then, with a suitable labelling of the principal curvatures, we have

2|λ3| < 1 , 2λ1 = 3λ3 −
√

1 − 3λ2
3 , 2λ2 = 3λ3 +

√

1 − 3λ2
3.

This result is the second crucial step towards the final classification. We will now use
Jacobi field theory to show that, under the assumptions of the Proposition 3.5, one of the
equidistant hypersurfaces to M is an open part of the ruled minimal real hypersurface W 3.

For r ∈ R we define the smooth map Φr : M → CH2, p 7→ Φr(p) = expp(rξp), where
expp is the exponential map of CH2 at p. Geometrically this means that we assign to
p the point in CH2 which is obtained by travelling for the distance r along the geodesic
cp(t) = expp(tξp) in direction of the normal vector ξp (for r > 0; for r < 0 one sets off in
direction −ξp; and for r = 0 there is no movement at all). For v ∈ TpM we denote by Bv

the parallel vector field along the geodesic cp with Bv(0) = v, and by ζv the Jacobi field
along cp with ζv(0) = v and ζ ′

v(0) = −Spv. Note that ζv is the unique solution of the linear
differential equation

4ζ ′′

v − ζv − 3〈ζv, Jċp〉Jċp = 0 , ζv(0) = v , ζ ′

v(0) = −Spv,

where ċp denotes the tangent vector field of cp and the prime ′ indicates the covariant
derivative of a vector field along cp. For v ∈ Tλi

(p) we have the explicit expression

ζv(t) = fi(t)Bv(t) + 〈v, Jξ〉gi(t)Jċp(t)

with
fi(t) = cosh(t/2) − 2λi sinh(t/2),

gi(t) = (cosh(t/2) − 1) (1 + 2 cosh(t/2) − 2λi sinh(t/2)) .

Finally, we define a vector field ηr along the map Φr by ηr
p = ċp(r). The relation between

the map Φr, the vector field ηr and the Jacobi field ζv is given by

ζv(r) = Φr
∗
v , ζ ′

v(r) = ∇̄vη
r,

where Φr
∗

denotes the differential of Φr. We will see that there exists a real number
r ∈ R such that the map Φr has constant rank 3 and the image is locally a minimal real
hypersurface W. We then use the equation ζ ′

v(r) = ∇̄vη
r to obtain some information about

the second fundamental form of W.
The following result was proved in [4] for n ≥ 3, but the same argument holds for n = 2.

Theorem 3.6. Let M be a 3-dimensional connected submanifold in CH2. Assume that

there exists a unit vector field Z tangent to the maximal holomorphic subbundle of TM ⊂
TCH2 such that the second fundamental form II of M is given by the trivial bilinear

extension of 2II(Z, Jξ) = ξ for all ξ ∈ Γ(νM). Then M is holomorphically congruent to

an open part of the ruled minimal submanifold W 3.

If λ3 = 0, then λ1 = −1/2 and λ2 = 1/2, and (12) implies 2b2
1 = 2b2

2 = 1. Thus, if we
define Z = −b1U1 + b2U2, we see from Theorem 3.6 that M is holomorphically congruent
to an open part of the ruled minimal hypersurface W 3.
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If λ3 6= 0, then 0 < 2|λ3| < 1 by Proposition 3.5. Thus we can write 2λ3 = tanh(r/2) with
some nonzero real number r. Using the equation Φr

∗
v = ζv(r) and the explicit expression

for the Jacobi fields, we obtain

Φr
∗
U3(p) = sech(r/2)BU3(p)(r)

and
(

Φr
∗
U1(p)

Φr
∗
U2(p)

)

= D(r)

(

BU1(p)(r)
BU2(p)(r)

)

with

D(t) =

(

f1(t) + b2
1g1(t) b1b2g1(t)

b1b2g2(t) f2(t) + b2
2g2(t)

)

for all p ∈ M . As det(D(r)) = sech3(r/2), we can now conclude that Φr
∗

has maximal rank
everywhere. This means that for every point in M there exists an open neighborhood V
around that point such that W = Φr(V) is an embedded real hypersurface of CH2 and
Φr : V → W is a diffeomorphism. Let V be such an open neighborhood. We fix a point
p ∈ V and define q = Φr(p) ∈ W. The tangent space TqW of W at q is obtained by
parallel translation of TpV along the geodesic cp from p = cp(0) to q = cp(r), and ηr

p is a
unit normal vector of W at q.

For the shape operator Sr of W we have Sr
ηr

p
Φr

∗
v = −∇̄vη

r = −ζ ′

v(r) for all v ∈ TpM .

Since f ′

3(r) = 0, we immediately get

Sr
ηr

p
BU3(p)(r) = 0, (14)

and by putting v = U1(p) and v = U2(p) we get
(

Sr
ηr

p
BU1(p)(r)

Sr
ηr

p
BU2(p)(r)

)

= C(r)

(

BU1(p)(r)
BU2(p)(r)

)

with C(r) = −D′(r)D(r)−1. A tedious calculation shows that det(D′(r)) = − sech3(r/2)/4
and (det(D))′(r) = 0, which implies

det(C(r)) =
det(D′(r))

det(D(r))
= −1

4
and tr(C(r)) = −(det(D))′(r)

det(D(r))
= 0.

From this we easily see that the eigenvalues of C(r) are ±1/2. Altogether we now get that
W has three distinct constant principal curvatures 0, +1/2 and −1/2. According to the
classification of real Hopf hypersurfaces in [1] we see that W cannot be a Hopf hypersurface.
As U3(p) belongs to the maximal holomorphic subspace of TpM and parallel translation in
CH2 along the geodesic cp commutes with the complex structure J , the vector BU3(p)(r)
belongs to the maximal holomorphic subspace of TqW. As we have seen above, BU3(p)(r)
is a principal curvature vector corresponding to the principal curvature 0. It follows that
we can write Jηr

p as a linear combination of principal curvature vectors corresponding to
the principal curvatures ±1/2. Applying (12) to W instead of M we see that we can write
Jηr = (X+ + X−)/

√
2 with suitable unit vector fields X+ and X− corresponding to the

principal curvatures +1/2 and −1/2, respectively. Defining Z = (X+ − X−)/
√

2 we get
that the second fundamental form of W satisfies the formula of Theorem 3.6. It follows
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that W is holomorphically congruent to an open part of the ruled real hypersurface W 3.
From this we eventually conclude that M is holomorphically congruent to an open part of
an equidistant hypersurface to W 3.

This finishes the proof of Theorem 1.1.
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