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HOMOGENEOUS HYPERSURFACES
IN COMPLEX HYPERBOLIC SPACES

JÜRGEN BERNDT, JOSÉ CARLOS DÍAZ-RAMOS

Abstract. We study the geometry of homogeneous hypersurfaces and their focal sets in
complex hyperbolic spaces. In particular, we provide a characterization of the focal set
in terms of its second fundamental form and determine the principal curvatures of the
homogeneous hypersurfaces together with their multiplicities.

1. Introduction

An s-representation is the isotropy representation of a semisimple Riemannian symmetric
space. A result by Hsiang and Lawson [10] implies that a hypersurface in the Riemannian
sphere Sm is homogeneous if and only if it is a principal orbit of the s-representation of
an (m + 1)-dimensional semisimple Riemannian symmetric space G/K of rank two. The
classification of homogeneous hypersurfaces in Sm can therefore be easily deduced from
Cartan’s classification of Riemannian symmetric spaces.

If G/K is Hermitian symmetric, then m is odd, say m = 2n+1, and the s-representation
induces an action on the corresponding complex projective space CP n via the Hopf map
S2n+1 → CP n. Takagi [12] showed in 1973 that a real hypersurface in CP n is homoge-
neous if and only if it is a principal orbit of an action that is induced in this way from the
s-representation of a semisimple Hermitian symmetric space of rank two. Thus the classifi-
cation of homogeneous hypersurfaces in CP n can easily be deduced from the classification
of Hermitian symmetric spaces.

A remarkable consequence of Takagi’s result is that each homogeneous hypersurface in
CP n is a Hopf hypersurface. A real hypersurface M of an almost Hermitian manifold
M̄ is a Hopf hypersurface if the one-dimensional foliation on M induced by the rank one
distribution J(νM) is totally geodesic, where νM is the normal bundle of M and J is
the complex structure on M̄ . In 1989 the first author classified in [1] the homogeneous
Hopf hypersurfaces in the complex hyperbolic space CHn. Any such Hopf hypersurface is
either a horosphere in CHn, or a tube around a totally geodesic RHn or CHk for some
k ∈ {0, . . . , n − 1}.

For some time it was believed that, as is the case for CP n, every homogeneous hyper-
surface in CHn was a Hopf hypersurface. It came as a kind of surprise when Lohnherr [11]
constructed in 1998 a counterexample: the ruled real hypersurface W 2n−1 in CHn which is
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determined by a horocycle in a totally geodesic RH2 ⊂ CHn is a non-Hopf homogeneous
real hypersurface. Recently the first author and Tamaru [7] obtained the classification of
homogeneous hypersurfaces in CHn. A connected real hypersurface in CHn, n ≥ 2, is
homogeneous if and only if it is holomorphically congruent to

(A) a tube around a totally geodesic CHk for some k ∈ {0, . . . , n − 1}, or
(B) a tube around a totally geodesic RHn, or
(H) a horosphere in CHn, or
(S) the ruled real hypersurface W 2n−1 or one of its equidistant hypersurfaces, or

(W) a tube around the minimal ruled submanifold W 2n−k
ϕ for some ϕ ∈ (0, π/2] and

k ∈ {2, . . . , n − 1}, where k is even if ϕ 6= π/2.

The construction of the minimal ruled submanifolds W 2n−k
ϕ will be described later in this

article. We just mention here that the normal bundle of W 2n−k
ϕ has rank k and constant

Kähler angle ϕ.
The hypersurfaces of type (A), (B) and (H) are Hopf hypersurfaces and their geometry

is well understood. The first author gave in [2] a Lie theoretic construction of the homo-
geneous hypersurfaces of type (S) and investigated their geometry. The aim of this paper
is to investigate the geometry of the other homogeneous hypersurfaces and their focal sets
W 2n−k

ϕ .
The motivation for our investigations originates from the question: Is every real hyper-

surface with constant principal curvatures in a complex hyperbolic space CHn an open
part of a homogeneous hypersurface? Élie Cartan [9] gave an affirmative answer for the
corresponding question in real hyperbolic space. Some time ago the first author demon-
strated in [1] that for CHn the answer is yes within the class of Hopf hypersurfaces. For
arbitrary real hypersurfaces, we obtained recently an affirmative answer in [6] in case of
CH2, and for n ≥ 3 we obtained an affirmative answer in [5] provided that the number g
of distinct principal curvatures satisfies g ≤ 3. It is a well-established fact that the classi-
fication problem of hypersurfaces with constant principal curvatures is intimately related
to the understanding of the geometric structure of their focal sets. Therefore the next step
is to understand more thoroughly the geometry of the homogeneous hypersurfaces in CHn

and their focal sets. The two main results of this paper are as follows. (1) We determine
explicitly the principal curvatures and their multiplicities for all homogeneous hypersur-
faces in CHn. A consequence is that g ∈ {2, 3, 4, 5} for any such hypersurface. (2) We give
a characterization of the non-totally geodesic focal sets of homogeneous hypersurfaces in
CHn in terms of their second fundamental form.

We now describe the contents of this paper. In Section 2 we summarize some basic
material about the complex hyperbolic space. In Section 3 we characterize the minimal
ruled submanifolds W 2n−k

ϕ in terms of the second fundamental form. More precisely, we
prove

Theorem (Rigidity of the submanifold W 2n−k
ϕ ). Let M be a (2n−k)-dimensional connected

submanifold in CHn, n ≥ 2, with normal bundle νM ⊂ TCHn of constant Kähler angle

ϕ ∈ (0, π/2]. Assume that there exists a unit vector field Z tangent to the maximal complex

distribution on M such that the second fundamental form II of M is given by the trivial
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symmetric bilinear extension of

2II(Z, Pξ) = sin2(ϕ) ξ

for all ξ ∈ νM , where Pξ is the tangential component of Jξ. Then M is holomorphically

congruent to an open part of the ruled minimal submanifold W 2n−k
ϕ . Conversely, the second

fundamental form of W 2n−k
ϕ is of this form.

This shows that the minimal ruled submanifold W 2n−k
ϕ has three distinct constant prin-

cipal curvatures sin(ϕ)/2, − sin(ϕ)/2 and 0 with multiplicities 1, 1 and 2n − k − 2 with
respect to each unit normal vector. In Section 4 we determine the principal curvatures of
the tubes around W 2n−k

ϕ together with their multiplicities. A table containing the principal
curvatures and their multiplicities of all homogeneous hypersurfaces in CHn is given at the
end of the paper.

The investigation of the geometry of the tubes around W 2n−k
ϕ for 0 < ϕ < π/2 can be

reduced to the one of the tubes around W 4
ϕ in CH3. In the final part of the paper we derive

some geometric information about these particular tubes in terms of some autoparallel
distributions of their tangent bundles.

The second author has been supported by project BFM 2003-02949 (Spain) and an
EMBARK postdoctoral fellowship from the Irish Research Council for Science, Engineering
and Technology.

2. Preliminaries

In this section we summarize some basic facts about the complex hyperbolic space. For
details we refer to [8].

Let CHn, n ≥ 2, be the n-dimensional complex hyperbolic space equipped with the
Fubini-Study metric 〈·, ·〉 of constant holomorphic sectional curvature −1. The Riemannian
curvature tensor R̄ on CHn is given by

4R̄(X, Y )Z = 〈X, Z〉Y − 〈Y, Z〉X + 〈JX, Z〉JY − 〈JY, Z〉JX + 2〈JX, Y 〉JZ,

where J is the complex structure on CHn.
We denote by CHn(∞) the ideal boundary of CHn. Each element x of CHn(∞) is an

equivalence class of asymptotic geodesics in CHn. We equip CHn ∪ CHn(∞) with the
cone topology. Then CHn ∪ CHn(∞) is homeomorphic to a closed ball in the Euclidean
space R2n. For each o ∈ CHn and each x ∈ CHn(∞) there exists a unique geodesic
γox : R → CHn such that ‖γ̇ox‖ = 1, γox(0) = o and limt→∞ γox(t) = x.

The connected component of the isometry group of CHn is the special unitary group
G = SU(1, n). We fix a point o ∈ CHn and denote by K the isotropy subgroup of G at o.
Then K is isomorphic to S(U(1)×U(n)) ⊂ SU(1, n) and (G, K) is a symmetric pair. Let
g = k + p be the corresponding Cartan decomposition of the Lie algebra g of G. As usual
we identify ToCHn with p.

We now fix a point x ∈ CHn(∞) and denote by a the one-dimensional linear subspace
of p spanned by γ̇ox(0) ∈ ToCHn ∼= p. As the rank of CHn is one, a is a maximal abelian
subspace of p. Let g = g−2α + g−α + g0 + gα + g2α be the root space decomposition of g
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induced by a. Then n = gα + g2α is a 2-step nilpotent subalgebra of g which is isomorphic
to the (2n − 1)-dimensional Heisenberg algebra. The center of n is the one-dimensional
subalgebra g2α. Moreover, g = k + a + n is an Iwasawa decomposition of g. We denote by
A and N the connected closed subgroup of G with Lie algebra a and n, respectively. The
orbit A ·o of A through o is just the path γox(R) of the geodesic γox in CHn, and the orbits
of N are the horospheres in CHn centered at x. The solvable subgroup AN ⊂ KAN = G
acts simply transitively on CHn. Thus we can identify a+n with ToCHn. The Riemannian
metric on CHn induces an inner product 〈·, ·〉 on a + n, and we may identify CHn with
the solvable Lie group AN equipped with the left-invariant Riemannian metric which is
induced from 〈·, ·〉.

The complex structure J on CHn induces a complex structure on the vector space a+n ∼=
ToCHn which we will also denote by J . We define B := γ̇ox(0) ∈ a and Z := JB ∈ g2α.
Note that gα is J-invariant. The Lie algebra structure on a + n is given by the trivial
skew-symmetric bilinear extension to (a + n) × (a + n) of the relations

[B, Z] = Z , 2[B, U ] = U , [U, V ] = 〈JU, V 〉Z (U, V ∈ gα). (1)

This shows that a+n is a semidirect sum of the two Lie algebras a and n. Let Exp
n

: n → N
be the Lie exponential map. The group structure on the semidirect product AN is given
by

(

a, Exp
n
(U + xZ)

)

·
(

b, Exp
n
(V + yZ)

)

=
(

a + b, Exp
n

(

U + ea/2V +
(

x + eay +
1

2
ea/2〈JU, V 〉

)

Z
)) (2)

for all a, b, x, y ∈ R and U, V ∈ gα. Here we identify the one-dimensional Lie group A in
the canonical way with R such that 1 ∈ R corresponds to Exp

a
(B) with the Lie exponential

map Exp
a

: a → A. Finally, the Lie exponential map Exp
a+n

: a + n → AN is given by

Exp
a+n

(

aB + U + xZ
)

=
(

a, Exp
n

(

ρ(a/2)U + ρ(a)xZ
))

(3)

for all a, x ∈ R and U ∈ gα, where the analytic function ρ : R → R is defined by

ρ(s) =







es − 1

s
, if s 6= 0,

1 , if s = 0.

The Lie exponential map Exp
a+n

is a diffeomeorphism. If V ∈ gα is a unit vector, then the
geodesic γ in CHn with γ(0) = o and γ̇(0) = V is given by

γ(t) = (ln sech2(t/2), Exp
n
(2 tanh(t/2)V )), (4)

and its tangent vector field γ̇ is given by

γ̇(t) = − tanh(t/2)B + sech(t/2)V. (5)

We denote by ∇̄ the Levi-Civita covariant derivative of CHn. The standard method for
calculating the Levi-Civita covariant derivative of a Lie group equipped with a left-invariant
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Riemannian metric yields

∇̄aB+U+xZ

(

bB + V + yZ
)

=
(1

2
〈U, V 〉 + x y

)

B − 1

2

(

bU + yJU + xJV
)

+
(1

2
〈JU, V 〉 − b x

)

Z,

(6)

where a, b, x, y ∈ R and U, V ∈ gα and all elements in a+ n are considered as left-invariant
vector fields on AN ∼= CHn.

3. The ruled submanifolds W 2n−k and W 2n−k
ϕ

The submanifolds W 2n−k and W 2n−k
ϕ were first constructed by the first author and Brück

in [3].
Let v be a linear subspace of gα. For each 0 6= v ∈ v the Kähler angle of v with respect

to v is the angle ϕ(v) ∈ [0, π/2] between v and the real span of Jv. Thus ϕ(v) ∈ [0, π/2]
is determined by requiring that cos(ϕ(v))‖v‖ is the length of the orthogonal projection of
Jv onto v. We say that v has constant Kähler angle ϕ if ϕ(v) = ϕ for all nonzero vectors
v ∈ v. The subspaces of gα with constant Kähler angle ϕ = 0 are precisely the complex
subspaces of gα, and the subspaces of gα with constant Kähler angle ϕ = π/2 are precisely
the real subspaces of gα.

Let w be a linear subspace of gα such that the orthogonal complement w⊥ = gα ⊖ w of
w in gα has constant Kähler angle ϕ ∈ [0, π/2]. Then s = a + w + g2α is a subalgebra of
a+n. Denote by S the connected closed subgroup of AN with Lie algebra s and by N0

K(S)
the identity component of the normalizer of S in K. Then N0

K(S)S ⊂ KAN acts on CHn

with cohomogeneity one. The orbit W 2n−k
ϕ = N0

K(S)S · o = S · o of this action containing

the point o is a (2n − k)-dimensional submanifold of CHn, where k = dim w⊥.
If ϕ = 0, that is, w⊥ is a complex subspace of gα, then W 2n−k

0 is a totally geodesic
complex hyperbolic subspace CHn−k′

, where k = 2k′.
If ϕ = π/2, then w⊥ is a k-dimensional real subspace of gα. If k = 1, then W 2n−1

π/2 is the

ruled real hypersurface W 2n−1 determined by a horocycle in a totally geodesic RH2 ⊂ CHn.
The orbits of N0

K(S)S form a homogeneous codimension one foliation on CHn whose
geometry has been investigated by the first author in [2]. If k > 1, then W 2n−k

π/2 is a

(2n−k)-dimensional homogeneous submanifold of CHn with totally real normal bundle of
rank k. We will sometimes use the notation W 2n−k := W 2n−k

π/2 .

If 0 < ϕ < π/2, then k is even and W 2n−k
ϕ is a (2n − k)-dimensional homogeneous

submanifold of CHn whose normal bundle has constant Kähler angle ϕ and rank k.
As CHn is a two-point homogeneous space, the construction of the submanifolds W 2n−k

and W 2n−k
ϕ does not depend on the choice of the two points o ∈ CHn and x ∈ CHn(∞),

or equivalently, on the choice of the Iwasawa decomposition of G. Our next aim is to
investigate the geometry of the submanifolds W 2n−k

ϕ , 0 < ϕ ≤ π/2.

Let Cw⊥ be the complex subspace of gα spanned by w⊥ and d = Cw⊥ ⊖ w⊥ be the
orthogonal complement of w⊥ in Cw⊥. As ϕ > 0, we have k = dimC Cw⊥ and hence
k = dim w⊥ = dim d. For each ξ ∈ w⊥ we decompose Jξ ∈ Cw⊥ = d + w⊥ into Jξ =
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Pξ + Fξ with Pξ ∈ d and Fξ ∈ w⊥. Since w⊥ has constant Kähler angle ϕ, we have
〈Fξ, Fξ〉 = cos2(ϕ)〈ξ, ξ〉 and hence 〈Pξ, P ξ〉 = sin2(ϕ)〈ξ, ξ〉. As ϕ > 0, the homomorphism
P : w⊥ → d is injective, and as dim w⊥ = dim d we see that P : w⊥ → d is an isomorphism.
From −ξ = JJξ = JPξ+JFξ = JPξ+PFξ+F 2ξ we see that the d-component (JPξ)d of
JPξ is equal to −PFξ, and hence 〈(JPξ)d, (JPξ)d〉 = 〈PFξ, PFξ〉 = sin2(ϕ)〈Fξ, Fξ〉 =
sin2(ϕ) cos2(ϕ)〈ξ, ξ〉 = cos2(ϕ)〈Pξ, P ξ〉. Since P : w⊥ → d is an isomorphism, this implies
that d has constant Kähler angle ϕ as well.

We denote by c the maximal complex subspace of s. Note that a+g2α ⊂ c, dimC c = n−k
and s = c + d. Then we have the orthogonal decomposition

a + n = c + d + w⊥.

We denote by A, C, D and W⊥ the left-invariant distributions on CHn along W 2n−k
ϕ which

are induced by a, c, d and w⊥, respectively. By construction, we have C + D = TW 2n−k
ϕ

and W⊥ = νW 2n−k
ϕ .

Proposition 3.1. The submanifold W 2n−k
ϕ , 0 < ϕ ≤ π/2, of CHn has the following

properties:

(i) The maximal holomorphic subbundle C of TW 2n−k
ϕ is autoparallel and the leaves of

the induced foliation on W 2n−k
ϕ are totally geodesic CHn−k ⊂ CHn. Hence W 2n−k

ϕ

is a ruled submanifold of CHn.

(ii) The following statements are equivalent:

(a) the distribution D on W 2n−k
ϕ is integrable;

(b) the distribution A + D on W 2n−k
ϕ is integrable;

(c) the normal bundle W⊥ is flat with respect to the normal connection;

(d) ϕ = π/2.
In this case the leaves of the foliation on W 2n−k

π/2 induced by A + D are totally

geodesic RHk+1 ⊂ CHn and the leaves of the foliation on W 2n−k
π/2 induced by D are

horospheres with center x in these totally geodesic RHk+1 ⊂ CHn.

(iii) For each 0 6= ξ ∈ w⊥ the left-invariant distribution A+RPξ on W 2n−k
ϕ is autoparal-

lel and the leaves of the induced foliation on W 2n−k
ϕ are totally geodesic RH2 ⊂ CHn.

(iv) For each 0 6= ξ ∈ w⊥ the left-invariant distribution RPξ on W 2n−k
ϕ is integrable

and the leaves of the induced foliation on W 2n−k
ϕ are horocycles with center x in the

totally geodesic RH2 ⊂ CHn given by the distribution A + RPξ.

Proof. (i) follows immediately from (6) and the fact that the only complex totally geodesic
submanifolds of CHn are complex hyperbolic spaces.

From (1) we see that 2[aB + U, bB + V ] = aV − bU + 2〈JU, V 〉Z for all a, b ∈ R and
U, V ∈ D. This shows that A + D is integrable if and only if D is integrable if and only if
D is real, that is, ϕ = π/2. On the other hand, (6) implies 2∇⊥

aB+U+xZξ = −xFξ for all
a, x ∈ R, U ∈ D and ξ ∈ W⊥. Hence, the normal bundle W⊥ is flat if and only if F = 0,
or equivalently, ϕ = π/2. In this case (6) yields

2∇̄aB+U (bB + V ) = 〈U, V 〉B − bU ∈ A + D
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for all a, b ∈ R and U, V ∈ D. This shows that A + D is autoparallel and its leaves are
totally geodesic real submanifolds of CHn. The only real totally geodesic submanifolds
of CHn are real hyperbolic spaces. Finally, for all U, V ∈ D we have 2∇̄UV = 〈U, V 〉B
and 2∇̄UB = −U , which implies that the leaves of D are spherical hypersurfaces of the
corresponding real hyperbolic subspaces. Since the sectional curvature of a totally geodesic
real hyperbolic subspace is −1/4, and the mean curvature vector field of any leaf of D is
(1/2)B, it follows that the leaves of D are horospheres centered at x in the real hyperbolic
subspaces. This finishes the proof of (ii).

For any aB+xPξ, bB+yPξ ∈ A+RPξ we get from (6) and using 〈Pξ, P ξ〉 = sin2(ϕ)〈ξ, ξ〉
that 2∇̄aB+xPξ(bB + yPξ) = xy sin2(ϕ)B − bxPξ ∈ A + RPξ. From this we easily get the
assertion (iii).

Finally, define Uξ = Pξ/ sin(ϕ). Then (6) implies 2∇̄Uξ
Uξ = B and 4∇̄Uξ

∇̄Uξ
Uξ =

−Uξ. Since the real hyperbolic planes in (iii) have constant sectional curvature −1/4, this
shows that the integral curves of Uξ are horocycles with center x in the corresponding real
hyperbolic planes. This proves (iv). �

The previous proposition implies a nice geometric construction of the ruled submanifolds
W 2n−k

ϕ ⊂ CHn.

Corollary 3.2. Let k ∈ {1, . . . , n − 1}, and fix a totally geodesic CHn−k ⊂ CHn and

points o ∈ CHn−k and x ∈ CHn−k(∞). Let KAN be the Iwasawa decomposition of

SU(1, n) with respect to o and x, and let H ′ be the subgroup of AN which acts simply

transitively on CHn−k. Next, let W be a subspace of νoCHn−k with constant Kähler angle

ϕ ∈ (0, π/2] such that CW = νoCHn−k. Left translation of W by H ′ to all points in CHn−k

determines a subbundle V of the normal bundle νCHn−k. At each point p ∈ CHn−k attach

the horocycles determined by x and the linear lines in Vp. The resulting subset M of CHn

is holomorphically congruent to the ruled submanifold W 2n−k
ϕ .

Proof. Let W 2n−k
ϕ be the ruled minimal submanifold of CHn constructed from the Iwasawa

decomposition KAN associated with o and x and from the choice of w⊥ = νoCHn−k ⊖W .
We use the above notations. We will show that M = W 2n−k

ϕ . Let p ∈ W 2n−k
ϕ . Then there

exists an isometry s ∈ S with p = s(o). There is a unique vector X in the Lie algebra s of S
such that s = Exp

a+n
(X). We can write X = aB+U +V +zZ with some U ∈ c⊖(a+g2α),

V ∈ d, and a, z ∈ R. Note that [V, U ] = 0 because they are complex orthogonal. We now
define g = Exp

a+n
(ρ(a/2)V ) and h = Exp

a+n
(aB + U + zZ). Note that h ∈ H ′. Using (2)

and (3) we get

gh = Exp
a+n

(

ρ
(a

2

)

V
)

Exp
a+n

(aB + U + zZ)

=
(

0, Exp
n

(

ρ
(a

2

)

V
))

·
(

a, Exp
n

(

ρ
(a

2

)

U + ρ(a)z Z
))

=
(

a, Exp
n

(

ρ
(a

2

)

(U + V ) + ρ(a)z Z
))

= Exp
a+n

(aA + U + V + zZ) = Exp
a+n

(X) = s.
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By construction, h(o) ∈ CHn−k, and s(o) = g(h(o)) is on the horocycle with center x
through h(o) tangent to RV . From this we conclude that W 2n−k

ϕ ⊂ M . From Proposition

3.1 we already know that M ⊂ W 2n−k
ϕ . Altogether this implies M = W 2n−k

ϕ . �

We now describe the geometry of W 2n−k
ϕ in terms of the second fundamental form.

Proposition 3.3. The second fundamental form II of W 2n−k
ϕ is given by

II
(

aB + U + Pξ + xZ, bB + V + Pη + yZ
)

=
sin2(ϕ)

2

(

yξ + xη
)

for all ξ, η ∈ w⊥, U, V ∈ c ⊖ (a + g2α) and a, b, x, y ∈ R. Thus II is given by the trivial

symmetric bilinear extension of 2II(Z, Pξ) = sin2(ϕ)ξ for all ξ ∈ w⊥.

Proof. We denote by (·)⊥ the orthogonal projection onto νW 2n−k
ϕ . The Gauß formula and

(6) imply

II
(

aB + U + Pξ + xZ, bB + V + Pη + yZ
)

=
(

∇̄aB+U+Pξ+xZ(bB + V + Pη + yZ)
)⊥

= −
(y

2
JPξ +

x

2
JPη

)⊥

=
sin2(ϕ)

2

(

yξ + xη
)

,

since (JPξ)⊥ = − sin2(ϕ)ξ, which follows from the fact that w⊥ has constant Kähler angle
ϕ. �

As an immediate consequence we get

Corollary 3.4. W 2n−k
ϕ is a minimal ruled submanifold of CHn.

For k > 1 the previous corollary follows also from the general fact that each singular
orbit of a cohomogeneity one action is a minimal submanifold. We will now show that the
above equation for the second fundamental form in fact characterizes the minimal ruled
submanifolds W 2n−k

ϕ in CHn.

Theorem 3.5 (Rigidity of the submanifold W 2n−k
ϕ ). Let M be a (2n − k)-dimensional

connected submanifold in CHn, n ≥ 2, with normal bundle νM ⊂ TCHn of constant

Kähler angle ϕ ∈ (0, π/2]. Assume that there exists a unit vector field Z tangent to the

maximal complex distribution on M such that the second fundamental form II of M is

given by the trivial symmetric bilinear extension of

2II(Z, Pξ) = sin2(ϕ) ξ (7)

for all ξ ∈ νM , where Pξ is the tangential component of Jξ. Then M is holomorphically

congruent to an open part of the ruled minimal submanifold W 2n−k
ϕ . Conversely, the second

fundamental form of W 2n−k
ϕ is of this form.
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Proof. The last statement is a consequence of Proposition 3.3. For the other part we use
Corollary 3.2.

We decompose the tangent bundle TM of M orthogonally into TM = C + D, where
C is the maximal complex subbundle of TM . For each ξ ∈ Γ(νM) we decompose Jξ
orthogonally into Jξ = Pξ + Fξ with Pξ ∈ Γ(D) and Fξ ∈ Γ(νM). As above one
can show that D has constant Kähler angle ϕ as well, and the bundle homomorphisms
P : νM → D and F : νM → νM are homomorphisms satisfying 〈Pξ, P ξ〉 = sin2(ϕ)〈ξ, ξ〉
and 〈Fξ, Fξ〉 = cos2(ϕ)〈ξ, ξ〉. Note that if ϕ = π/2 then F is trivial and P = J |νM ;
otherwise, P and F are isomorphisms.

For all U, V ∈ Γ(C) and ξ ∈ Γ(νM) we have, using (7) and ∇̄J = 0,

〈∇̄UV, ξ〉 = 〈II(U, V ), ξ〉 = 0

and
〈∇̄UV, Jξ〉 = −〈J∇̄UV, ξ〉 = −〈II(U, JV ), ξ〉 = 0.

This shows that C is an autoparallel subbundle of TM and each integral manifold is a
totally geodesic submanifold of CHn. As C is a complex subbundle of complex rank n− k,
each of these integral manifolds must be an open part of a totally geodesic CHn−k ⊂ CHn.

Let o ∈ M and Fo be the leaf of C through o, which is an open part of a totally geodesic
CHn−k ⊂ CHn. Let γ : I → Fo be a curve with γ(0) = o. We prove that the normal
spaces of M along γ are uniquely determined by the differential equation

2∇̄γ̇X + 〈γ̇, Z〉JX = 0 (8)

along γ∗νFo. Let X ∈ Γ(TM) and ξ ∈ Γ(νM). Using (7) we get

−〈∇̄γ̇ξ, X〉 = 〈II(γ̇, X), ξ〉 = 〈γ̇, Z〉〈X, Pξ〉〈II(Z, Pξ), ξ〉/〈Pξ, Pξ〉 =
1

2
〈γ̇, Z〉〈Pξ, X〉,

which implies

∇̄γ̇ξ = −1

2
〈γ̇, Z〉Pξ + ∇⊥

γ̇ ξ, (9)

where ∇⊥ is the normal connection of M . Now, let X be a vector field along γ with X0 ∈
νoM and satisfying (8). We may write X = U + Jη + ξ with U ∈ Γ(γ∗C), ξ, η ∈ Γ(γ∗νM)
and U0 = η0 = 0. Then, using (9) and ∇̄J = 0, we get

0 = 2∇̄γ̇X + 〈γ̇, Z〉JX

= 2∇̄γ̇U + 2J∇̄γ̇η + 2∇̄γ̇ξ + 〈γ̇, Z〉JU + 〈γ̇, Z〉J2η + 〈γ̇, Z〉Jξ

= 2∇̄γ̇U + 〈γ̇, Z〉JU + P
(

2∇⊥
γ̇ η + 〈γ̇, Z〉Fη

)

+2∇⊥
γ̇ ξ + 〈γ̇, Z〉Fξ + F

(

2∇⊥
γ̇ η + 〈γ̇, Z〉Fη

)

.

We have that 2∇̄γ̇U + 〈γ̇, Z〉JU is tangent to C because C is a complex autoparallel dis-
tribution. Hence, it follows that 2∇̄γ̇U + 〈γ̇, Z〉JU = 0. Since U0 = 0, the uniqueness of
solutions to ordinary differential equations implies Ut = 0 for all t and thus X is normal
to Fo along γ. Similarly, the component tangent to PνM yields 2∇⊥

γ̇ η + 〈γ̇, Z〉Fη = 0
and since η0 = 0 we have ηt = 0 for all t. Hence, Xt ∈ νγ(t)M for any t, which proves our
previous assertion.
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We define B := −JZ. The tangent vector Bo determines a point x ∈ CHn(∞), and thus,
o and x give rise to an Iwasawa decomposition of the Lie algebra of the isometry group
of CHn. Let us consider the ruled submanifold W 2n−k

ϕ determined by the above Iwasawa

decomposition and the normal space w⊥ = νoM of constant Kähler angle ϕ. The leaf Fo is
an open part of the totally geodesic CHn−k tangent to the maximal complex distribution of
W 2n−k

ϕ at o. We have just proved that (8) determines the normal bundle of a submanifold

satisfying all the hypotheses of Theorem 3.5, which implies νpM = νpW
2n−k
ϕ for all p ∈ Fo,

that is, νpM is obtained by left translation of νoM for all p ∈ Fo. According to Corollary
3.2 it just remains to prove that at any point p ∈ Fo the horocycles determined by x and
the linear lines in PνpM are contained in a neighborhood of p in M .

We now prove that the vector field B is a geodesic vector field and all its integral curves
are geodesics in CHn converging to the point x ∈ CHn(∞). Since B belongs to the maximal
complex distribution we have ∇̄BB ∈ Γ(C). Since B is a unit vector 〈∇̄BB, B〉 = 0. Let
X ∈ Γ(C⊖RB) and η ∈ Γ(νM) be a local unit normal vector field of M . Using the explicit
expression for R̄, the Codazzi equation, (7) and ∇̄J = 0 we get

0 = 2R̄BPηJXη = 2〈(∇⊥
BII)(Pη, JX)− (∇⊥

PηII)(B, JX), η〉
= −2〈II(Pη,∇BJX), η〉 = −2〈∇BJX, Z〉〈II(Pη, Z), η〉
= − sin2(ϕ)〈∇̄BJX, Z〉 = sin2(ϕ)〈∇̄BB, X〉.

This implies 〈∇̄BB, X〉 = 0 and therefore ∇̄BB = 0, which means that the integral curves
of B are geodesics in CHn.

Now let X ∈ Γ(TM ⊖ RB) and γ an integral curve of X. We consider the geodesic
variation F (s, t) = expγ(s)(tBγ(s)) of α(t) = F (0, t), the geodesic in CHn with initial
condition α̇(0) = Bo. We prove that d(α(t), F (s, t)) tends to 0 as t goes to infinity, where
d is the Riemannian distance function of CHn.

The transversal vector field of the geodesic variation F , ζ(t) = (∂F/∂s)(0, t), is a Jacobi
field along α (thus, 4ζ ′′ − ζ − 3〈ζ, Z〉Z = 0) with initial conditions ζ(0) = Xγ(0), ζ ′(0) =
∇̄Xγ(0)

B. Hence, we need to calculate ∇̄XB.

Let η ∈ Γ(νM) be a local unit vector field. Using (7) we have 〈∇̄XB, η〉 = 〈II(X, B), η〉 =
0. We also have 〈∇̄XB, B〉 = 0. Now, using (7) we get

2〈∇̄XB, Pη〉 = −2〈∇̄XJZ, Jη − Fη〉 = −2〈II(X, Z), η〉 − 2〈II(X, B), Fη〉
= −2〈X, Pη〉〈II(Pη, Z), η〉/ sin2(ϕ) = −〈X, Pη〉. (10)

Next, let Y ∈ Γ(C ⊖ RB) and assume that X ∈ Γ(C ⊖ RB). Given ξ ∈ Γ(νM) we have
〈∇PηJY, Pξ〉 = 〈II(Pη, Y ), ξ〉− 〈II(Pη, JY ), F ξ〉 = 1

2
〈Y, Z〉〈Pη, Pξ〉. This, the expression

for R̄, the Codazzi equation, (7) and ∇̄J = 0 imply

− sin2(ϕ)〈X, Y 〉 = 4R̄XPηJY η = 4〈(∇⊥
XII)(Pη, JY ) − (∇⊥

PηII)(X, JY ), η〉
= −4〈II(Pη,∇XJY ), η〉 + 4〈II(X,∇PηJY ), η〉
= −4〈∇XJY, Z〉〈II(Pη, Z), η〉+ 4〈X, Z〉〈II(Z,∇PηJY ), η〉
= 2 sin2(ϕ)〈∇̄XB, Y 〉 + sin2(ϕ)〈X, Z〉〈Z, Y 〉.
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Hence, if X ∈ Γ(C ⊖ RB) we have, as ∇̄XB ∈ Γ(C), that 2∇̄XB = −X − 〈X, Z〉Z.
Now assume that X ∈ Γ(PνM) and write X = Pξ with ξ ∈ Γ(νM). We have

〈∇JY Pξ, Z〉 = −〈∇̄JY Z, Jξ − Fξ〉 = −〈II(JY, B), ξ〉 + 〈II(JY, Z), F ξ〉 = 0. This, to-
gether with the explicit expression for R̄, the Codazzi equation, (7) and ∇̄J = 0 implies

0 = 2R̄PξJY Pξξ = 2〈(∇⊥
PξII)(JY, Pξ)− (∇⊥

JY II)(Pξ, P ξ), ξ〉
= −2〈II(∇PξJY, Pξ), ξ〉+ 4〈II(∇JY Pξ, P ξ), ξ〉
= −2〈∇PξJY, Z〉〈II(Z, Pξ), ξ〉+ 4〈∇JY Pξ, Z〉〈II(Z, Pξ), ξ〉
= − sin2(ϕ)〈∇̄PξJY, Z〉 = sin2(ϕ)〈∇̄PξB, Y 〉.

Thus we get 〈∇̄PξB, Y 〉 = 0, and as a consequence, we get 2∇̄PξB = −Pξ using (10).
All in all, this implies

∇̄XB = −1

2
X − 1

2
〈X, Z〉Z for all X ∈ Γ(TM ⊖ RB). (11)

Therefore, if X ∈ Tα(0)M⊖RBα(0) is a unit vector and BX denotes ∇̄-parallel translation
of X along α, we get

ζ(t) = e−t/2BX(t) + (e−t − e−t/2)〈X, Zα(0)〉Zα(t).

Note that Zα(t) is a parallel vector field along α since Z ′
α(t) = ∇̄Bα(t)

Z = J∇̄Bα(t)
B =

0. We easily see that limt→∞‖ζ(t)‖ = 0, which implies limt→∞ d(α(t), F (s, t)) = 0 as
d(α(t), F (s, t)) ≤ s‖ζ(t)‖. Altogether this shows that the integral curves of B are asymp-
totic geodesics corresponding to the point x ∈ CHn(∞).

Now let p ∈ Fo and ξp ∈ νpM be a unit vector. The theorem now follows if we prove that
the horocycle determined by Pξp/ sin(ϕ) and the point x ∈ CHn(∞) is locally contained
in M . To achieve this we will construct a unit local vector field ξ ∈ Γ(νM) such that the
previous horocycle is an integral curve of Pξ/ sin(ϕ).

Let γ : I → M be a curve in M satisfying the differential equation

∇γ̇ γ̇ =
1

2
〈γ̇, γ̇〉B, γ̇(0) = Pξp/ sin(ϕ). (12)

We first prove that γ is parametrized by arc length and that it remains tangent to PνM .
Write γ̇ = aB + xZ + X + Pη for some differentiable functions a, x : I → R , and vector

fields X ∈ Γ(γ∗(C ⊖ (RB + RZ))) and η ∈ Γ(γ∗νM). Since Z = JB, the definition of γ
and (11) show

dx

dt
=

d

dt
〈γ̇, Z〉 = 〈∇γ̇ γ̇, Z〉 + 〈∇γ̇Z, γ̇〉 = 〈xB − 1

2
JX − 1

2
JPη, γ̇〉 = ax.

Since x(0) = 0, the uniqueness of solutions to ordinary differential equations implies that
x(t) = 0 for all t.

Let Y ∈ Γ(RB + PνM) and ζ ∈ Γ(νM). Then, (7) yields 〈∇̄Y X, ζ〉 = 〈II(Y, X), ζ〉 = 0
and 〈∇̄Y X, Jζ〉 = −〈II(Y, JX), ζ〉 = 0. Moreover, since ∇̄Y B ∈ Γ(PνM) by (11) we
have 〈∇̄Y X, B〉 = −〈∇̄Y B, X〉 = 0. Also, 2〈∇̄XX, B〉 = −2〈∇̄XB, X〉 = 〈X, X〉 and
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〈∇̄XX, Pη〉 = −〈II(X, JX), η〉 − 〈II(X, X), Fη〉 = 0. Hence,

d

dt
〈X, X〉 =

d

dt
〈γ̇, X〉 = 〈∇γ̇ γ̇, X〉 + 〈∇γ̇X, γ̇〉

= a〈∇̄γ̇X, B〉 + 〈∇̄γ̇X, X〉 + 〈∇̄γ̇X, Pη〉 = 〈∇̄γ̇X, X〉 + a〈∇̄XX, B〉

= 〈∇γ̇X, X〉 +
a

2
〈X, X〉 =

1

2

d

dt
〈X, X〉 +

a

2
〈X, X〉.

This yields (d/dt)〈X, X〉 = a〈X, X〉 and since 〈X(0), X(0)〉 = 0 we obtain 〈X(t), X(t)〉 = 0
for all t and thus X = 0.

Using the definition of γ we obtain

d

dt
〈γ̇, γ̇〉 = 2〈∇γ̇ γ̇, γ̇〉 = a〈γ̇, γ̇〉.

The definition of γ, the fact that B is geodesic and (11) yield

da

dt
=

d

dt
〈γ̇, B〉 = 〈∇γ̇ γ̇, B〉 + 〈∇γ̇B, γ̇〉 =

1

2
〈γ̇, γ̇〉 − 1

2
〈Pη, γ̇〉 =

1

2
〈γ̇, γ̇〉 − 1

2
〈Pη, Pη〉.

Now we calculate (d/dt)〈Pη, Pη〉. Let ξ, ζ ∈ Γ(νM) and Y ∈ Γ(C). Since C is autoparal-
lel, we have 〈∇̄BPξ, Y 〉 = 0. Using (7) we obtain 〈∇̄BPξ, ζ〉 = 〈II(B, Pξ), ζ〉 = 0. On the
other hand we have JPξ = −ξ − PFξ − F 2ξ = −PFξ − sin2(ϕ)ξ, which gives, using (7),

〈∇̄BPξ, P ζ〉 = 〈∇̄BPξ, Jζ − Fζ〉 = −〈∇̄BJPξ, ζ〉 − 〈II(B, Pξ), F ζ〉
= 〈II(B, PFξ), ζ〉+ sin2(ϕ)〈∇⊥

Bξ, ζ〉 = 〈P∇⊥
Bξ, P ζ〉.

This readily implies,

∇̄BPξ = P∇⊥
Bξ for all ξ ∈ Γ(νM). (13)

Using again (7) we get

2〈∇̄PξPξ, Y 〉 = −2〈∇̄PξY, Jξ − Fξ〉 = 2〈JY, Z〉〈II(Pξ, Z), ξ〉+ 2〈Y, Z〉〈II(Pξ, Z), F ξ〉
= − sin2(ϕ)〈JZ, Y 〉〈ξ, ξ〉+ sin2(ϕ)〈Y, Z〉〈ξ, F ξ〉 = 〈Pξ, P ξ〉〈B, Y 〉.

Clearly, equation (7) implies 〈∇̄PξPξ, ζ〉 = 〈II(Pξ, P ξ), ζ〉 = 0. Using (7) and the fact
that JPξ = −PFξ − sin2(ϕ)ξ we obtain

〈∇̄PξPξ, P ζ〉 = 〈∇̄PξPξ, Jζ − Fζ〉 = −〈∇̄PξJPξ, ζ〉 − 〈II(Pξ, P ξ), F ζ〉
= 〈II(Pξ, PFξ), ζ〉+ sin2(ϕ)〈∇̄Pξξ, ζ〉 = 〈P∇⊥

Pξξ, P ζ〉.

Altogether this implies,

∇̄PξPξ =
1

2
〈Pξ, P ξ〉B + P∇⊥

Pξξ for all ξ ∈ Γ(νM). (14)
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Finally, equations (13) and (14) yield

d

dt
〈Pη, Pη〉 =

d

dt
〈γ̇, P η〉 = 〈∇γ̇ γ̇, P η〉+ 〈∇γ̇Pη, γ̇〉

=
a

2
〈Pη, Pη〉+ a〈P∇⊥

Bη, Pη〉+ 〈P∇⊥
Pηη, Pη〉

=
a

2
〈Pη, Pη〉+ 〈P∇⊥

γ̇ η, Pη〉 =
a

2
〈Pη, Pη〉+

1

2

d

dt
〈Pη, Pη〉.

and hence
d

dt
〈Pη, Pη〉 = a〈Pη, Pη〉.

Putting b = 〈γ̇, γ̇〉 and c = 〈Pη, Pη〉 we then have the initial value problem:

a′ =
1

2
(b − c), b′ = ab, c′ = ac, a(0) = 0, b(0) = c(0) = 1.

Again, the uniqueness of solutions to differential equations yields a(t) = 0, b(t) = c(t) = 1
for all t. Therefore, 〈γ̇(t), γ̇(t)〉 = 1 and γ̇(t) ∈ PνM for all t as desired.

Let us assume then that γ : I → M is a curve satisfying equation (12). There exists a
unit normal vector field η of M in a neighborhood of p such that γ̇(t) = Pηγ(t)/ sin(ϕ) for all
sufficiently small t. Since B is nonsingular and γ is normal to B, there exists a hypersurface
N in M containing γ and transversal to B in a neighborhood of p. The restriction of η to
N is a smooth unit normal vector field along N . We define ξ as the unit normal vector field
on a neighborhood of p satisfying ξ = η on N and such that ξ is obtained by ∇⊥-parallel
translation along the integral curves of B. The smooth dependance on initial conditions
of ordinary differential equations implies that ξ is smooth. Also, note that ∇⊥

Bξ = 0 and
that ξ is a local unit vector field extending ξp ∈ νpM .

The definition of ξ and equations (11) and (13) yield [B, Pξ] = ∇̄BPξ − ∇̄PξB = 1
2
Pξ,

and hence the distribution generated by B and Pξ is integrable. Let U denote the integral
submanifold through p. We prove that U is an open part of a totally geodesic RH2 ⊂ CHn.

Since B is geodesic we have ∇̄BB = 0. Equation (11) implies 2∇̄PξB = −Pξ, and
by definition of ξ we have using (13) that ∇̄BPξ = P ∇̄⊥

Bξ = 0. Now we prove that
2∇̄PξPξ = 〈Pξ, P ξ〉B.

Let η ∈ νM and denote by Sη the shape operator of M with respect to the normal
vector η. Equation (7) implies that SηB = 0 for all η, and thus, for any η, ζ ∈ νM the
Ricci equation of M reads

〈R⊥
BPξη, ζ〉 = 〈R̄(B, Pξ)η, ζ〉+ 〈[Sη,Sζ ]B, Pξ〉 = 0,

where R⊥ denotes the curvature tensor of the normal connection ∇⊥. The previous equa-
tion, 2[B, Pξ] = Pξ, and the definition of ξ imply

0 = R⊥
BPξξ = ∇⊥

B∇⊥
Pξξ −∇⊥

Pξ∇⊥
Bξ −∇⊥

[B,Pξ]ξ = ∇⊥
B∇⊥

Pξξ −
1

2
∇⊥

Pξξ,

that is,

2∇⊥
B∇⊥

Pξξ = ∇⊥
Pξξ. (15)
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By definition of ξ, we have along γ that 2∇̄PξPξ = 2 sin2(ϕ)∇̄γ̇ γ̇ = 2 sin2(ϕ)∇γ̇ γ̇ =
〈Pξ, P ξ〉B. On the other hand, (14) yields 2∇̄PξPξ = 〈Pξ, P ξ〉B + 2P∇⊥

Pξξ, and hence

∇⊥
Pξξ = 0 along γ. Now, let us take α an integral curve of B through α(0) = γ(s). We have

just seen that ∇⊥
Pξξ |α(0)

= ∇⊥
Pξξ |γ(s)

= 0. Moreover, using (15) and the fact that SηB = 0
for any η ∈ νM , we obtain

2∇̄α̇∇⊥
Pξξ |t = 2∇⊥

B∇⊥
Pξξ |α(t)

− 2S∇⊥

PξξB |α(t)
= ∇⊥

Pξξ |α(t)
.

Therefore, by the uniqueness of solutions to differential equations we get ∇⊥
Pξξ |α(t)

= 0

for all t, and as a consequence 2∇̄PξPξ = 〈Pξ, P ξ〉B along the integral submanifold U .
Hence, U is an open part of a totally geodesic RH2 ⊂ CHn.

We define P̄ ξ = Pξ/‖Pξ‖ = Pξ/ sin(ϕ) along U . From (14) we obtain 2∇̄P̄ ξP̄ ξ = B
since ξ is unit normal. Using this and (11) we get

∇̄P̄ ξ∇̄P̄ ξP̄ ξ + 〈∇̄P̄ ξP̄ ξ, ∇̄P̄ ξP̄ ξ〉P̄ ξ =
1

2
∇̄P̄ ξB +

1

4
〈B, B〉P̄ ξ = 0.

From this we see that the integral curves of P̄ ξ are horocycles with center x at infinity
contained in an open part of a totally geodesic real hyperbolic plane contained in CHn.
Corollary 3.2, the rigidity of totally geodesic submanifolds of Riemannian manifolds (see
e.g. [4], p. 230), and of horocycles in real hyperbolic planes (see e.g. [4], pp. 24-26), then
imply the assertion. �

Remark 3.6. The proof shows that the differential equation (8) characterizes left translation
of the normal spaces by Sc.

4. The tubes around W 2n−k and W 2n−k
ϕ

To accomplish the task of investigating the geometry of orbits of the cohomogeneity one
actions on CHn we will deal with two different possibilities depending on the constant
Kähler angle ϕ ∈ (0, π/2) or ϕ = π/2 of w. For this we first we recall a few properties of
the solvable foliation already studied in [2].

4.1. The solvable foliation. The solvable foliation is the foliation on CHn arising from
k = 1. In this case ϕ = π/2 and the orbit S · o = W 2n−1 is a minimal homogeneous ruled
real hypersurface. Its principal curvatures are 1/2, −1/2 and 0 with multiplicities 1, 1 and
2n− 3. The following theorem shows that this eigenvalue structure is characteristic of this
orbit.

Theorem 4.1 (Rigidity of the submanifold W 2n−1). Let M be a connected real hypersurface

in CHn, n ≥ 2, with three distinct principal curvatures 1/2, −1/2 and 0 and multiplicities

1, 1 and 2n− 3, respectively. Then M is holomorphically congruent to an open part of the

minimal homogeneous ruled real hypersurface W 2n−1.

This result was proved in [5] for n ≥ 3. The analogous statement for n = 2 is more
involved and follows from the classification of real hypersurfaces with constant principal
curvatures in the complex hyperbolic plane [6]. Any other orbit of the action of S is an
equidistant hypersurface to this minimal one. Any two such orbits are congruent to each
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other if and only if their distance to S · o = W 2n−1 is the same. None of them is ruled by
a totally geodesic CHn−1. Let M(r) denote an orbit of S at a distance r > 0 from S · o.
The shape operator of M(r) has exactly three eigenvalues

λ1/2 =
3

4
tanh

(r

2

)

± 1

2

√

1 − 3

4
tanh2

(r

2

)

, λ3 =
1

2
tanh

(r

2

)

.

with corresponding multiplicities m1 = 1, m2 = 1 and m3 = 2n− 3. The Hopf vector field
Jξ has nontrivial projection onto the principal curvature spaces of λ1 and λ2.

The subspace a+w⊥+Jw⊥+g2α of a+n is a subalgebra of a+n, and the orbit through
o of the corresponding connected closed subgroup of AN is a totally geodesic CH2. The
action of the connected closed subgroup of S with Lie algebra a + Jw⊥ + g2α induces the
solvable foliation on this totally geodesic CH2. The relevant geometric information of the
solvable foliation on CHn is contained in the “slice” CH2. We describe in more detail the
geometry of the leaves of the solvable foliation on CH2 in what follows.

Let γ be the geodesic in CH2 determined by γ(0) = o and γ̇(0) = ξ, where ξ ∈ w⊥ is
a unit vector. Let r ∈ R and denote by M(r) the leaf of the solvable foliation containing
γ(r). According to (5) the tangent vector field γ̇ of the geodesic γ can be written with
respect to left-invariant vector fields as

γ̇(t) = − tanh(t/2)B + sech(t/2)ξ.

Then {Z, Jξ, sech(r/2)B + tanh(r/2)ξ} is an orthonormal basis of Tγ(r)M(r). The dis-
tribution on M(r) generated by Z and Jξ is integrable by (1). Moreover, using (6) we
get

∇̄ZZ = B , 2∇̄JξJξ = B , 2∇̄ZJξ = ξ , 2∇̄JξZ = ξ. (16)

Thus the shape operator of the leaf of this distribution containing γ(r) with respect to the
unit normal vector sech(r/2)Bγ(r) + tanh(r/2)ξγ(r) ∈ Tγ(r)M(r) is given by the matrix

1

2

(

2 sech
(

r
2

)

tanh
(

r
2

)

tanh
(

r
2

)

sech
(

r
2

)

)

with respect to the basis {Zγ(r), Jξγ(r)}. Using the Gauss equation and (16) we get that
the Gaussian curvature of the leaf through γ(r) is equal to zero. For topological reasons it
is clear that the leaf is a Euclidean plane R2.

On the other hand, using Lemma (6) we get

∇̄sech( r
2)B+tanh( r

2)ξ

(

sech
(r

2

)

B + tanh
(r

2

)

ξ
)

= −1

2
tanh

(r

2

)

γ̇(r).

Hence, every integral curve of sech(r/2)B + tanh(r/2)ξ is a geodesic in M(r).
All in all, this means

Theorem 4.2. The leaves of the solvable foliation on CH2 are diffeomorphic to R
3 and are

foliated orthogonally by a one-dimensional totally geodesic foliation and a two-dimensional

foliation whose leaves are Euclidean planes.
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4.2. Constant Kähler angle ϕ = π/2. In this case w⊥ has constant Kähler angle ϕ =
π/2, that is, w⊥ is real. This means that the normal bundle νW 2n−k of W 2n−k is totally
real. We recall that the second fundamental form of W 2n−k is given by the trivial symmetric
bilinear extension of II(Z, Jξ) = (1/2)ξ for all ξ ∈ νW 2n−k. Thus the eigenvalues of the
shape operator of W 2n−k with respect to any unit vector ξ ∈ νW 2n−k are 1/2, −1/2 and 0
with multiplicities 1, 1 and 2n− 2− k respectively. The corresponding principal curvature
spaces are R(Z + Jξ), R(Z − Jξ) and TW 2n−k ⊖ (RZ + RJξ) respectively.

The above information allows us to calculate the shape operator of the principal orbits
using Jacobi field theory. Every principal orbit of this action is a tube around W 2n−k.
We denote by M(r) the tube at distance r > 0 and fix o ∈ W 2n−k and a unit vector
ξ ∈ νoW

2n−k. Let γξ be the geodesic in CHn given by the initial conditions γξ(0) = o and
γ̇ξ(0) = ξ. We recall that the Jacobi equation in the complex hyperbolic space of constant
holomorphic sectional curvature −1 along γξ reads 4ζ ′′

X − ζX − 3〈Jγ̇ξ, ζX〉Jγ̇ξ = 0.
For any X ∈ ToCHn we denote by BX the parallel displacement of the vector X along γξ.

If X ∈ ToW
2n−k we denote by ζX the Jacobi field along γξ defined by the initial conditions

ζX(0) = X and ζ ′
X(0) = −Sξ(X). If X is a principal curvature vector, that is, SξX = λX

for some λ ∈ R, then the Jacobi equation can be solved explicitly to get

ζX(t) = fλ(t)BX(t) + 〈X, Jξ〉gλ(t)Jγ̇ξ(t)

with

fλ(t) = cosh
( t

2

)

− 2λ sinh
( t

2

)

, gλ(t) =

(

cosh
( t

2

)

− 1

)(

1 + 2 cosh
( t

2

)

− 2λ sinh
( t

2

)

)

.

If X ∈ νoW
2n−k ⊖ Rξ we define the Jacobi field ζX along γξ by the initial conditions

ζX(0) = 0 and ζ ′
X(0) = X. In this case we have

ζX(t) = p(t)BX(t) + 〈X, Jξ〉q(t)Jγ̇ξ(t)

with

p(t) = 2 sinh
( t

2

)

, q(t) = 2 sinh
( t

2

)

(

cosh
( t

2

)

− 1

)

.

Using the above formulas one easily gets

ζX(t) =















































cosh

(

t

2

)

BZ(t) − 1

2
sinh(t)BJξ(t) , if X = Z,

− sinh

(

t

2

)

BZ(t) + cosh(t)BJξ(t) , if X = Jξ,

cosh

(

t

2

)

BX(t) , if X ∈ TW 2n−k ⊖ (RZ + RJξ),

2 sinh

(

t

2

)

BX(t) , if X ∈ νW 2n−k ⊖ Rξ.

We define the endomorphism D(r) of Tγξ(r)M(r) ⊖ Rγ̇ξ(r) by D(r)BX(r) = ζX(r) for
all X ∈ ToCHn ⊖ Rξ. Jacobi field theory shows that the shape operator of M(r) at γξ(r)
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with respect to −γ̇(r) is given by S(r) = D′(r)D(r)−1. In our case S(r) is represented by
the matrix

S(r) =
1

2













tanh3
(

r
2

)

− sech3
(

r
2

)

− sech3
(

r
2

)

2
(

1 + 1
2
sech2

(

r
2

))

tanh
(

r
2

)

tanh
(

r
2

)

Id2n−2−k

coth
(

r
2

)

Idk−1













.

with respect to the orthogonal sum decomposition

Tγξ(r)M(r) = BRZ+RJξ(r) + BToW 2n−k⊖(RZ+RJξ)(r) + BνoW 2n−k⊖Rξ(r),

where BV denotes the parallel translation of any vector subspace V ⊂ ToCHn along γξ.
A straightforward calculation shows that M(r) has four principal curvatures

λ1 =
3

4
tanh

(r

2

)

− 1

2

√

1 − 3

4
tanh2

(r

2

)

, λ2 =
3

4
tanh

(r

2

)

+
1

2

√

1 − 3

4
tanh2

(r

2

)

,

λ3 =
1

2
tanh

(r

2

)

, λ4 =
1

2
coth

(r

2

)

with corresponding multiplicities m1 = m2 = 1, m3 = 2n − 2 − k and m4 = k − 1. The
Hopf vector field on M has nontrivial orthogonal projection onto the principal curvature
spaces of λ1 and λ2. A special situation occurs when r = ln(2 +

√
3). In this case we have

λ2 = λ4 and the principal curvatures are λ1 = 0, λ2 = λ4 =
√

3/2 and λ3 =
√

3/6 with
multiplicities 1, k and 2n − k − 2 respectively.

The previous calculations show that the interesting part of the shape operator of both
the singular orbit W 2n−k and the principal orbit M(r) concerns the vectors Z and Jξ. More
precisely, let ξ ∈ νoW

2n−k be a unit vector. Consider the subalgebra g̃ = a+Rξ+RJξ+g2α

of a + gα + g2α, and let G̃ be the connected closed subgroup of AN with Lie algebra g̃.
The orbit G̃ · o is a totally geodesic CH2 in CHn. This CH2 defines a “slice” of the action
of N0

K(S)S through o. Next, h̃ = s ∩ g̃ is a subalgebra of g̃ of codimension one. Let H̃ be

the connected closed subgroup of G̃ with Lie algebra h̃. Then H̃ acts on CH2 = G̃ · o with
cohomogeneity one and gives exactly the solvable foliation of CH2 described in Section
4.1. The orbits of the action of H̃ on CH2 are the equidistant hypersurfaces to the orbit
H̃ · o. On the other hand, the intersection of the orbits of the cohomogeneity one action
of N0

K(S)S on CHn with the slice CH2 also gives tubes around H̃ · o because CH2 = G̃ · o
is totally geodesic in CHn. Thus, the geometry of the orbits of the action of G on CHn in
the slice CH2 is exactly the geometry of the orbits of the action of H̃ on CH2. This study
was accomplished in the previous subsection.

4.3. Constant Kähler angle ϕ ∈ (0, π/2). Again, we assume the notation above, and
consider the singular orbit W 2n−k

ϕ of the cohomogeneity one action determined by the Lie

group N0
K(S)S, where S is the connected, simply connected Lie group whose Lie algebra

is s = a + w + g2α, where w⊥ has constant Kähler angle ϕ ∈ (0, π/2). In this case we
have that k is an even number. The second fundamental form of W 2n−k

ϕ is given by the
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trivial bilinear extension of II(Z, Pξ) = (sin2(ϕ)/2)ξ, for each unit ξ ∈ νW 2n−k
ϕ . Thus, the

eigenvalues of the shape operator with respect to ξ are sin(ϕ)/2, − sin(ϕ)/2 and 0, with
multiplicities 1, 1 and 2n − k − 2.

It is convenient to introduce the notation

P̄ ξ = Pξ/‖Pξ‖ = Pξ/ sin(ϕ) and F̄ ξ = Fξ/‖Fξ‖ = Fξ/ cos(ϕ)

for each unit vector ξ ∈ νW 2n−k
ϕ . Then, the eigenspaces of sin(ϕ)/2, − sin(ϕ)/2 and

0 of the shape operator of W 2n−k
ϕ with respect to ξ are R(Z + P̄ ξ), R(−Z + P̄ ξ) and

TW
2(n−k)
ϕ ⊖ (RZ + RP̄ ξ), respectively.

The shape operator of the principal orbits can be calculated using Jacobi field theory as
in the previous section. We delete the calculations, which are straightforward (although
long) and directly give the matrix representation of the shape operator S(r) in direction
−γ̇ξ(r) of the orbit at a distance r > 0 from W 2n−k

ϕ

S(r) =











s(r)

1
2
tanh

(

r
2

)

Id2n−k−2

1
2
coth

(

r
2

)

Idk−2











,

with respect to the direct sum decomposition

Tγξ(r)M(r) = BRZ+RP̄ ξ+RF̄ ξ(r) + BTW 2n−k
ϕ ⊖(RZ+RP̄ ξ)(r) + BνW 2n−k

ϕ ⊖(Rξ+RF̄ ξ)(r).

Here, s(r) is a symmetric 3×3 real matrix whose explicit entries we do not provide (they can
be obtained after some elementary but long calculations). The characteristic polynomial
of s(r) is

pr,ϕ(x) = −x3 +
1

2

{

csch
(r

2

)

sech
(r

2

)

+ 4 tanh
(r

2

)}

x2 − 1

4

{

2 sech2
(r

2

)

+ 5 tanh2
(r

2

)}

x

−1

8
csch

(r

2

)

sech3
(r

2

){

sin2(ϕ) − sinh2
(r

2

)

− 2 sinh4
(r

2

)}

.

If we introduce the variable 6x = coth(r/2) z − csch(r/2) sech(r/2) − 4 tanh(r/2), then
the polynomial equation pr,ϕ(x) = 0 transforms into z3 − 3z + βr,ϕ = 0, where βr,ϕ =
27 sin2(ϕ) tanh2(r/2) sech4(r/2) − 2. The discriminant of this cubic equation is ∆r,ϕ =
27(β2

r,ϕ − 4). It is easy to prove that ∆r,ϕ < 0 for all r > 0, which means that the above
cubic equation has exactly three distinct real roots for any r. They can be calculated
explicitly as follows. Let ui

r,ϕ, i ∈ {1, 2, 3}, denote each cubic root of the unit complex

number (βr,ϕ +
√

β2
r,ϕ − 4)/2. Then, −ui

r,ϕ − 1/ui
r,ϕ is a solution to z3 − 3z + βr,ϕ = 0 and

hence, the eigenvalues of s(r) are given by

λi(r) = −1

6

(

coth
(r

2

)(

ui
r,ϕ +

1

ui
r,ϕ

)

+ csch
(r

2

)

sech
(r

2

)

+ 4 tanh
(r

2

)

)

, i ∈ {1, 2, 3}.

On the other hand, pr,ϕ((1/2) tanh(r/2)) 6= 0 and pr,ϕ((1/2) coth(r/2)) 6= 0. Thus, neither
(1/2) tanh(r/2) nor (1/2) coth(r/2) are eigenvalues of s(r). This implies that M(r) has five
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distinct constant principal curvatures when k > 2 and four distinct principal curvatures
when k = 2.

Hereafter, we follow the procedure of the previous section and focus our study on the
non-trivial part of the shape operator of M(r). Let v0 ⊂ gα be a two-dimensional vector
subspace with constant Kähler angle ϕ. Then, g̃ = a + C v0 + g2α is a Lie subalgebra of
a + n. Let G̃ = Exp(g̃) be the connected, simply connected Lie subgroup of AN whose Lie
algebra is g̃. Then, G̃·o is a totally geodesic CH3 in CHn containing o. The vector subspace
h̃ = a + v0 + g2α is a Lie subalgebra of g̃ of codimension two. Denote by H̃ = Exp(h̃) the

connected, simply connected Lie subgroup of G̃ whose Lie algebra is h̃. We know that the
Lie group N0

K(H̃)H̃ acts on G̃ ·o with cohomogeneity one and its orbit through o is exactly

H̃ · o. This cohomogeneity one action is the one we have been describing throughout this
subsection. We are interested in this particular case because it is the simplest of all cases
containing all of the interesting geometry of the tubes.

Let M(r) denote the tube around W 4
ϕ ⊂ CH3 at distance r > 0. Then, M(r) is the

principal orbit of the action N0
K(H̃)H̃ at a distance r from the singular orbit H̃ · o = W 4

ϕ.

The normal exponential map exp⊥ : νW 4
ϕ → CH3 of W 4

ϕ is a diffeomorphism and hence

for each p ∈ M(r) there exists a unique unit vector ξ(p) ∈ νW 4
ϕ such that p = exp(r ξ(p)).

Clearly, the map p 7→ ξ(p) is differentiable. Let γξ(p)(t) = exp(t ξ(p)) be the unique
geodesic perpendicular to W 4

ϕ that joins W 4
ϕ and p. For any X ∈ Tγξ(p)(0)CH3 we denote by

Bp
X(r) the parallel displacement of X to the point p along the geodesic γξ(p). The smooth

dependence on initial conditions of the solution to ordinary differential equations implies
that BX(r) : p 7→ Bp

X(r) is a smooth vector field on CH3. Moreover, if X is tangent to W 4
ϕ,

then Bp
X(r) is tangent to M(r). We have

Theorem 4.3. The following two statements hold.

(i) Let D be the rank one distribution on M(r) defined by Bp
B(r), p ∈ M(r), and

denote by D⊥ the orthogonal complement of D in TM(r). Then both D and D⊥ are

integrable. Moreover, D is autoparallel, that is, each of its leaves is totally geodesic

in M(r). If p ∈ M(r) and RH2 is the totally geodesic real hyperbolic plane in CH3

which is determined by ξ(p) and Bo, where o ∈ W 4
ϕ is the footpoint of ξ(p), then

the leaf of D through p is parametrized by the parallel curve through p in RH2 of

the geodesic in RH2 through o and in direction Bo.

(ii) Let E be the rank two distribution on M(r) defined by RBp
B(r) + RBp

PFξ(p)(r).

Then E is autoparallel and each integral manifold has constant sectional curva-

ture −(1/4) sech(r/2). If p ∈ M(r) and RH3 is the totally geodesic real hyperbolic

3-space in CH3 which is determined by ξ(p), PFξ(p) and Bo, where o ∈ W 4
ϕ is the

footpoint of ξ(p), then the leaf of E through p is the parallel surface through p in

RH3 of the totally geodesic RH2 in RH3 through o determined by PFξ(p) and Bo.

Proof. Let p ∈ M(r) and o ∈ W 4
ϕ the footpoint of ξ(p). The vectors Bo and ξ(p) determine

a totally geodesic real hyperbolic plane RH2 ⊂ CH3 through o. Let p̃ ∈ M(r) ∩ RH2.
Since the normal exponential map of W 4

ϕ ⊂ CH3 is a diffeomorphism and W 4
ϕ ∩RH2 is the
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path of the geodesic determined by Bo we have that ξ(p̃) ∈ TõRH2, where õ ∈ W 4
ϕ ∩ RH2

is the footpoint of ξ(p̃). Since RH2 is totally geodesic, Bp̃
B(r) is tangent to M(r) ∩ RH2.

This proves that M(r) ∩ RH2 is an integral manifold of D through p. Moreover, if X ∈
Γ(T (M(r)∩RH2)) and ∇M(r) denotes the Levi-Civita connection of M(r), it is clear that

∇M(r)
X X ∈ Γ(TM(r)). On the other hand, since RH2 is totally geodesic, ∇̄XX ∈ Γ(TRH2)

and hence ∇M(r)
X X ∈ Γ(D), which proves that D is autoparallel and the first part of (i)

follows.
Similarly, let RH3 ⊂ CH3 be the totally geodesic real hyperbolic space determined by

Bo, ξ(p) and PFξ(p). Then the integral submanifold of E through p is M(r) ∩ RH3,
and since RH3 is totally geodesic and intersects M(r) perpendicularly, we see that E is
autoparallel. The curvature of the integral submanifolds of E is −(1/4) sech(r/2) as they
are equidistant to a totally geodesic RH2 ⊂ RH3 obtained as the intersection of W 4

ϕ and

RH3. This proves (ii).

Now we prove that D⊥ is integrable. We define the vector field ξ̃ along CH3 \ W 4
ϕ by

ξ̃exp(rη) = Lexp(rη)∗η for all unit vectors η ∈ νW 4
ϕ and r > 0.

Let η ∈ νW 4
ϕ be a unit vector and denote also by η the unit vector field on CH3 obtained

by left translation to all points of CH3. Let γη be the geodesic in CH3 such that γ̇η(0) = η.
According to (5) we have γ̇η(r) = − tanh(r/2)Bγη(r) + sech(r/2)ηγη(r) where B and η are
considered as left-invariant vector fields. Using (6) we get

∇̄γ̇η

(

sech
(r

2

)

B + tanh
(r

2

)

η
)

= −1

2
sech

(r

2

)

tanh
(r

2

)

B + sech
(r

2

)

∇̄γ̇ηB

+
1

2
sech2

(r

2

)

η + tanh
(r

2

)

∇̄γ̇ηη = 0.

This proves that

Bp
B(r) = sech

(r

2

)

Bp + tanh
(r

2

)

ξ̃p. (17)

Now, let p ∈ M(r). Let us assume without loss of generality that γξ(p)(0) = o and write
η = ξ(p) ∈ νoW

4
ϕ. The formulas for γ̇η(r) and Bp

B(r) show that D⊥
p is spanned by Zp, Pηp,

PFηp and Fηp. Let X, Y ∈ Γ(D⊥). Using (17) we get

〈∇̄XpY,Bp
B(r)〉 = −〈Yp, ∇̄XpBB(r)〉 = − sech

(r

2

)

〈Yp, ∇̄XpB〉 − tanh
(r

2

)

〈Yp, ∇̄Xp ξ̃〉.

The first term on the right-hand side of this equation may be calculated using (6) so we

turn our attention to ∇̄Xp ξ̃. Let χX be a curve such that χ̇X(0) = Xp. The curve χX can

be written as χX(t) = expgX(t)·o

(

sX(t)(jX(t)F̄ η + hX(t)η)
)

for certain smooth functions

gX : I → H̃ and sX , jX , hX : I → R satisfying sX(0) = r, jX(0) = 0, hX(0) = 1
and j2

X + h2
X = 1. Taking derivatives on the last equality we get h′

X(0) = 0. Since

ξ̃χX(t) = jX(t)F̄ ηχX(t) + hX(t)ηχX(t), (6) yields

∇̄χ̇X(0)ξ̃ = ∇̄χ̇X(0)

(

jX F̄ η + hXη
)

= j′X(0)F̄ ηp + ∇̄χ̇X(0)η.



HOMOGENEOUS HYPERSURFACES IN COMPLEX HYPERBOLIC SPACES 21

Again, the second term can be calculated using (6). All in all this means (interchanging
the roles of X and Y ) that

〈[X, Y ]p,Bp
B(r)〉 = 〈∇̄XpY − ∇̄YpX,Bp

B(r)〉 = − tanh
(r

2

)

〈j′X(0)Yp − j′Y (0)Xp, F̄ ηp〉.

Note that the vector fields Z, P ξ̃, PF ξ̃, F ξ̃ restricted to M(r) form a global frame field of

D⊥, and at the point p we have ξ̃p = ηp. Therefore it is clear that the result follows if we
prove j′X(0) = 0 for Xp ∈ {Zp, P ηp, PFηp}.

The curve α(t) = Exp
a+n

(tXo) is tangent to Xo for t = 0. Then, χX(t) = γη(r)α(t) is
tangent to Xp at t = 0. We define

UZ = sech2
(r

2

)

Z, UPη = sech
(r

2

)

Pη+sech
(r

2

)

tanh
(r

2

)

sin2(ϕ)Z, UPFη = sech
(r

2

)

PFη.

Using (2), (3) and (4) we get

χX(t) =
(

ln sech2
(r

2

)

, Exp
n

(

2 tanh
(r

2

)

η
))

·
(

0, Exp
n
(tX)

)

=
(

ln sech2
(r

2

)

, Exp
n

(

2 tanh
(r

2

)

η + tUX

))

.

On the other hand, we have χ(t) := χX(t) = expg(t)·o

(

s(t)(j(t)F̄ η +h(t)η)
)

. We may write
g(t) = (b(t), Exp

n
(x(t)Z + V (t)) for certain functions b, x : I → R and V : I → v0. Taking

into account that g(t) is an isometry, we get, using again (2) and (4),

χ(t) = expg(t)·o

(

s(t)(j(t)F̄ η + h(t)η)
)

= g(t) expo

(

s(t)(j(t)F̄ η + h(t)η)
)

= (b(t), Exp
n
(x(t)Z + V (t))) ·

(

ln sech2 s(t)

2
, Exp

n

(

2 tanh
s(t)

2
(j(t)F̄ η + h(t)η)

))

=
(

b(t) + ln sech2 s(t)

2
, Exp

n

(

V (t) + 2eb(t)/2 tanh
s(t)

2
(j(t)F̄ η + h(t)η)

+

{

x(t) + eb(t)/2 tanh
s(t)

2
〈JV (t), j(t)F̄ η + h(t)η〉

}

Z
))

.

As Exp
n

: n → N is a diffeomeorphism, we easily get j(t) tanh(s(t)/2) = 0 for all t from the
previous two equations by comparing the F̄ η-component. This eventually implies j′(0) = 0,
and finishes the proof for the second part of (i). �
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Homogeneous hypersurfaces in the complex hyperbolic space

Type Group acting Principal curvatures Multiplicities Comments

(A) S(U(1, k)U(n − k)) 1
2

tanh r
2

2(n − k − 1) Tubes around totally geodesic CHk,

1
2

coth r
2

2k 0 ≤ k ≤ n − 1.

coth r 1 Two principal curvatures if k ∈ {0, n − 1}.

(B) SO0(1, n) λ1 = 1
2

tanh r
2

n − 1 Tubes around totally geodesic RHn.

λ2 = 1
2

coth r
2

n − 1 If r = ln(2 +
√

3) then λ2 = λ3.

λ3 = tanh r 1

(H) N (nilpotent part of 1/2 2(n − 1) Horosphere foliation.

Iwasawa decomposition) 1 1

(S) S (Lie algebra of S: 3
4

tanh r
2

+ 1
2

q

1 − 3
4

tanh2 r
2

1 Solvable foliation.

s = a + w + g2α with 3
4

tanh r
2
− 1

2

q

1 − 3
4

tanh2 r
2

1

w hyperplane in gα) 1
2

tanh r
2

2n − 3

(W)π/2 N0
K(S)S (Lie algebra of S: λ1 = 3

4
tanh r

2
+ 1

2

q

1 − 3
4

tanh2 r
2

1 Tubes around W 2n−k
π/2 , 2 ≤ k ≤ n − 1.

s = a + w + g2α with λ2 = 3
4

tanh r
2
− 1

2

q

1 − 3
4

tanh2 r
2

1 If r = ln(2 +
√

3) then λ2 = λ4.

w such that gα ⊖ w is real) λ3 = 1
2

tanh r
2

2n − k − 2

λ4 = 1
2

coth r
2

k − 1

(W)ϕ N0
K(S)S (Lie algebra of S: − 1

6

“

coth r
2

“

u1
r,ϕ + 1

u1
r,ϕ

”

+ csch r
2

sech r
2

+ 4 tanh r
2

”

1 Tubes around W 2n−k
ϕ , 2 ≤ k ≤ n − 1,

s = a + w + g2α with − 1
6

“

coth r
2

“

u2
r,ϕ + 1

u2
r,ϕ

”

+ csch r
2

sech r
2

+ 4 tanh r
2

”

1 k even. The number ui
r,ϕ is the ith cubic

w such that gα ⊖ w has − 1
6

“

coth r
2

“

u3
r,ϕ + 1

u3
r,ϕ

”

+ csch r
2

sech r
2

+ 4 tanh r
2

”

1 root of (βr,ϕ +
p

β2
r,ϕ − 4)/2, where

constant Kähler angle 1
2

tanh r
2

2n − k − 2 βr,ϕ = 27 sin2(ϕ) tanh2(r/2) sech4(r/2) − 2.

0 < ϕ < π/2) 1
2

coth r
2

k − 2 Four principal curvatures if k = 2.
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