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HYPERPOLAR HOMOGENEOUS FOLIATIONS

ON SYMMETRIC SPACES OF NONCOMPACT TYPE

JÜRGEN BERNDT, JOSÉ CARLOS DÍAZ-RAMOS, AND HIROSHI TAMARU

Abstract. A foliation F on a Riemannian manifold M is hyperpolar if it admits a flat
section, that is, a connected closed flat submanifold of M that intersects each leaf of F
orthogonally. In this article we classify the hyperpolar homogeneous foliations on every
Riemannian symmetric space M of noncompact type.

These foliations are constructed as follows. Let Φ be an orthogonal subset of a set of
simple roots associated with the symmetric space M . Then Φ determines a horospherical
decomposition M = F

s

Φ
× E

rank M−|Φ| × NΦ, where F
s

Φ
is the Riemannian product of

|Φ| symmetric spaces of rank one. Every hyperpolar homogeneous foliation on M is
isometrically congruent to the product of the following objects: a particular homogeneous
codimension one foliation on each symmetric space of rank one in F

s

Φ
, a foliation by parallel

affine subspaces on the Euclidean space Erank M−|Φ|, and the horocycle subgroup NΦ of
the parabolic subgroup of the isometry group of M determined by Φ.

1. Introduction

Let M be a connected complete Riemannian manifold and H a connected closed subgroup
of the isometry group I(M) of M . Then each orbit H · p = {h(p) : h ∈ H}, p ∈ M , is
a connected closed submanifold of M . A connected complete submanifold S of M that
meets each orbit of the H-action and intersects the orbit H · p perpendicularly at each
point p ∈ S is called a section of the action. A section S is always a totally geodesic
submanifold of M (see e.g. [11]). In general, actions do not admit a section. The action of
H on M is called polar if it has a section, and it is called hyperpolar if it has a flat section.
For motivation and classification of polar and hyperpolar actions on Euclidean spaces
and symmetric spaces of compact type we refer to the papers by Dadok [7], Podestà and
Thorbergsson [23], and Kollross [18], [19]. If all orbits of H are principal, then the orbits
form a homogeneous foliationF on M . In general, a foliation F on M is called homogeneous
if the subgroup of I(M) consisting of all isometries preserving F acts transitively on each
leaf of F . Homogeneous foliations are basic examples of metric foliations. A homogeneous
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foliation is called polar resp. hyperpolar if its leaves coincide with the orbits of a polar
resp. hyperpolar action.

An action of the Euclidean space En is polar if and only if it is hyperpolar. An example
of a polar homogeneous foliation on En is the foliation given by the Euclidean subspace
E

k, 0 < k < n, and its parallel affine subspaces. A corresponding section is given by the
Euclidean space En−k which is perpendicular to Ek at the origin 0. In fact, every polar
homogeneous foliation on En is isometrically congruent to one of these foliations. The
main result of this paper is the classification of all hyperpolar homogeneous foliations on
Riemannian symmetric spaces of noncompact type. For codimension one foliations this
was already achieved by the first and third author in [4]. We mention that on symmetric
spaces of compact type every hyperpolar action has a singular orbit, and there is no relation
between such actions using duality between symmetric spaces of compact and noncompact
type. The methodology for the classification presented in this paper is significantly different
from the known methodologies in the compact case. Our methodology is conceptual and
based on structure theory of parabolic subalgebras of real semisimple Lie algebras which
is irrelevant in the compact case.

We will see that these foliations can be constructed from rather elementary foliations
on Euclidean spaces and the hyperbolic spaces over normed real division algebras. We
first describe these elementary foliations. Each Riemannian symmetric spaces of rank one
is a hyperbolic space FHn over a normed real division algebra F ∈ {R, C, H, O}, where
n ≥ 2, and n = 2 if F = O. It was proved in [5] that on each hyperbolic space FHn there
exist exactly two isometric congruency classes of homogeneous codimension one foliations.
One of these two classes is determined by the horosphere foliation on FHn. We denote by
Fn

F
a representative of the other congruency class, and refer to Section 4 for an explicit

description. If M = F1H
n1 × . . . × FkH

nk is the Riemannian product of k Riemannian
symmetric spaces of rank one, then Fn1

F1
× . . .×Fnk

Fk
is a hyperpolar homogeneous foliation

on M . If V is a linear subspace of Em, we denote by Fm
V the homogeneous foliation

on Em whose leaves are the affine subspaces of Em which are parallel to V . We will now
explain how these particular foliations lead to the classification of hyperpolar homogeneous
foliations on Riemannian symmetric spaces of noncompact type.

Let M = G/K be a Riemannian symmetric space of noncompact type, where G is the
connected component of the isometry group of M containing the identity transformation.
We denote by r the rank of M . The Lie algebra g of G is a semisimple real Lie algebra. Let
k be the Lie algebra of K, g = k⊕p be a Cartan decomposition of g, a be a maximal abelian
subspace of p, and g0⊕

(
⊕

λ∈Σ gλ

)

be the corresponding restricted root space decomposition
of g. The set Σ denotes the corresponding set of restricted roots. We choose a subset Λ ⊂ Σ
of simple roots and denote by Σ+ the resulting set of positive restricted roots in Σ. It is
well known that there is a one-to-one correspondence between the subsets Φ of Λ and the
conjugacy classes of parabolic subalgebras qΦ of g. Let Φ be a subset of Λ and consider the
Langlands decomposition qΦ = mΦ ⊕ aΦ ⊕ nΦ of the corresponding parabolic subalgebra
qΦ of g. This determines a corresponding Langlands decomposition QΦ = MΦAΦNΦ of
the parabolic subgroup QΦ of G with Lie algebra qΦ and a horospherical decomposition
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M = F s
Φ × Er−rΦ × NΦ of the symmetric space M . Here, rΦ is equal to the cardinality |Φ|

of the set Φ, F s
Φ = MΦ ·o is a semisimple Riemannian symmetric space of noncompact type

with rank equal to rΦ embedded as a totally geodesic submanifold in M , and Er−rΦ = AΦ ·o
is an (r − rΦ)-dimensional Euclidean space embedded as a totally geodesic submanifold
in M . Now assume that Φ is a subset of Λ with the property that any two roots in Φ
are not connected in the Dynkin diagram of the restricted root system associated with Λ.
We call such a subset Φ an orthogonal subset of Λ. Each simple root α ∈ Φ determines
a hyperbolic space FαHnα embedded in M as a totally geodesic submanifold, and F s

Φ is
isometric to the Riemannian product of rΦ Riemannian symmetric spaces of rank one,

F s
Φ
∼=
∏

α∈Φ

FαHnα.

We denote by FΦ the hyperpolar homogeneous foliation on this product of hyperbolic
spaces as described above, that is,

FΦ =
∏

α∈Φ

Fnα

Fα
.

We are now in a position to state the main result of this paper.

Main Theorem. Let M be a connected Riemannian symmetric space of noncompact type.

(i) Let Φ be an orthogonal subset of Λ and V be a linear subspace of Er−rΦ. Then

FΦ,V = FΦ ×F r−rΦ

V × NΦ ⊂ F s
Φ × E

r−rΦ × NΦ = M

is a hyperpolar homogeneous foliation on M .
(ii) Every hyperpolar homogeneous foliation on M is isometrically congruent to FΦ,V

for some orthogonal subset Φ of Λ and some linear subspace V of E
r−rΦ.

For Φ = ∅ the symmetric space F s
Φ consists of a single point and we need to assume

that dim V < r in this case to get a proper foliation. The foliation F∅,{0} is the horocycle
foliation on M .

We briefly describe how to construct a subgroup of G whose orbits form the foliation
FΦ,V . Since AΦ acts freely on M and Er−rΦ = AΦ · o, there is a canonical identification
of Er−rΦ with the Lie algebra aΦ ⊂ a. We define a nilpotent subalgebra n of g by n = n∅
and put a = a∅. Then the closed subgroup AN of G with Lie algebra a ⊕ n acts simply
transitively on M , and M is isometric to the solvable Lie group AN equipped with a
suitable left-invariant Riemannian metric. Let ℓΦ be an rΦ-dimensional linear subspace of
n such that dim(ℓΦ ∩ gα) = 1 for all α ∈ Φ. We denote by aΦ the orthogonal complement
of aΦ in a and by n ⊖ ℓΦ the orthogonal complement of ℓΦ in n. Here, the orthogonal
complement is taken with respect to the standard positive definite inner product on g

given by the Killing form on g and the Cartan involution on g determined by k. Then

sΦ,V = (aΦ ⊕ V ) ⊕ (n ⊖ ℓΦ) ⊂ a ⊕ n

is a subalgebra of a ⊕ n. Denote by SΦ,V the connected closed subgroup of AN with Lie
algebra sΦ,V . Then the action of SΦ,V on M is hyperpolar and the orbits of this action
form the hyperpolar homogeneous foliation FΦ,V on M . We will see later in this paper
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that for a given set Φ different choices of ℓΦ lead to isometrically congruent foliations on
M .

We now describe the contents of this paper in more detail. In Section 2 we show that all
homogeneous foliations on Hadamard manifolds can be produced by isometric actions of
solvable Lie groups all of whose orbits are principal. In Section 3 we present the aspects of
the general theory of symmetric spaces of noncompact type and of parabolic subalgebras
of real semisimple Lie algebras which are relevant for our paper. In Section 4 we prove a
necessary and sufficient Lie algebraic criterion for an isometric Lie group action inducing
a foliation on a symmetric space of noncompact type to be polar or hyperpolar. Using this
criterion we present examples of polar and of hyperpolar actions on symmetric spaces of
noncompact type. In this section we also prove part (i) of the main theorem, which is the
easiest part of the proof. Section 5 constitutes the main part of this paper and contains
the proof of part (ii) of the main theorem. Finally, in Section 6 we discuss aspects of the
geometry of the leaves of the hyperpolar homogeneous foliations on symmetric spaces of
noncompact type.

2. Homogeneous foliations on Hadamard manifolds

A simply connected complete Riemannian manifold with nonpositive sectional curvature
is called a Hadamard manifold.

Proposition 2.1. Let M be a Hadamard manifold and H be a connected closed subgroup
of I(M) whose orbits form a homogeneous foliation on M . Then each orbit of H is a
principal orbit.

Proof. Assume that there exists an exceptional orbit, that is, a non-principal orbit whose
dimension coincides with the dimension of the principal orbits. Let K be a maximal
compact subgroup of H . By Cartan’s Fixed Point Theorem (see e.g. [9], p. 21), K has a
fixed point o ∈ M . Since K is maximal compact, the orbit through o must be exceptional
and K = Ho. Then H · o = H/K is diffeomorphic to Rk, where k is the dimension of
the foliation (see for example [22, p. 148, Theorem 3.4]). Since the orbit H · o is simply
connected, the stabilizer K is connected. The cohomogeneity of the slice representation at
o coincides with the cohomogeneity of the action of H on M , and since all the orbits of
H have the same dimension it follows that the orbits of the slice representation at o are
zero-dimensional. Since K is connected, it follows that the orbits of the slice representation
at o are points. This means that K acts trivially on the normal space νo(H · o) of H · o at
o, which contradicts the assumption that the orbit H · o is exceptional. �

We will now use the previous result to show that every homogeneous foliation on a
Hadamard manifold can be realized as the orbits of the action of a closed solvable group
of isometries.

Proposition 2.2. Let M be a Hadamard manifold and let H be a connected closed subgroup
of I(M) whose orbits form a homogeneous foliation F on M . Then there exists a connected
closed solvable subgroup S of H such that the leaves of F coincide with the orbits of S.
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Proof. Consider a Levi-Malcev decomposition h = l A r (semidirect sum of Lie algebras)
of the Lie algebra h of H into the radical r of h and a Levi subalgebra l. The radical r is
the largest solvable ideal in h and l is a semisimple subalgebra. Let l = k ⊕ a ⊕ n (direct
sum of vector spaces) be an Iwasawa decomposition of l. Then a is an abelian subalgebra
of l, n is a nilpotent subalgebra of l, and d = a A n (semidirect sum of Lie algebras) is
a solvable subalgebra of l. Since the semidirect sum of two solvable Lie algebras is again
solvable, the subalgebra s = d A r (semidirect sum of Lie algebras) is a solvable subalgebra
of h, and we have h = k⊕ s (direct sum of vector spaces). Let S be the connected solvable
subgroup of H with Lie algebra s and let K be the connected subgroup of H with Lie
algebra k. Since M is a Hadamard manifold, Cartan’s Fixed Point Theorem implies that
the compact group K has a fixed point o ∈ M . Since H = SK, it follows that the orbits
H · o and S · o coincide.

By Proposition 2.1, the orbit H · o is a principal orbit of the H-action. Let p be a point
in M which does not lie on the principal orbit H · o. Since H · o is a closed subset of
M , there exists a point q ∈ H · o such that the distance t between p and q minimizes the
distance between p and H · o. Since M is complete there exists a geodesic joining q and
p, and a standard variational argument shows that this geodesic intersects the orbit H · o
perpendicularly. This proves that every orbit of H is of the form H · p with p = expo(ξ)
and ξ ∈ νo(H · o). Since H · o is a principal orbit of the H-action on M and S ⊂ H , the
slice representation at o of each of these two actions is trivial. This fact and H · o = S · o
imply

S · p = {s(expo(ξ)) : s ∈ S} = {exps(o)(s∗ξ) : s ∈ S}

= {exph(o)(h∗ξ) : h ∈ H} = {h(expo(ξ)) : h ∈ H} = H · p,

which shows that the actions of S and H are orbit equivalent.
Since S is solvable, its closure S̄ in I(M) is a closed solvable subgroup of I(M) (see e.g.

[21], p. 54, Theorem 5.3). Since the actions of S and H are orbit equivalent, the orbits of
S are closed, and hence by [8], the actions of S and S̄ are orbit equivalent. This finishes
the proof of the proposition. �

3. Riemannian symmetric spaces of noncompact type

In this section we present some material about Riemannian symmetric spaces of non-
compact type. We follow [13] for the theory of symmetric spaces and [15] for the theory of
semisimple Lie algebras.

Let M be a connected Riemannian symmetric space of noncompact type. We denote by
n the dimension of M and by r the rank of M . It is well known that M is a Hadamard
manifold and therefore diffeomorphic to Rn. Let G be the connected component of the
isometry group of M containing the identity transformation of M . We fix a point o ∈ M
and denote by K the isotropy subgroup of G at o. We identify M with the homogeneous
space G/K in the usual way and denote by g and k the Lie algebra of G and K, respectively.
Let B be the Killing form of g and define p as the orthogonal complement of k with respect
to B. Then g = k ⊕ p is a Cartan decomposition of g. If θ is the corresponding Cartan
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involution, we can define a positive definite inner product on g by 〈X, Y 〉 = −B(X, θY )
for all X, Y ∈ g. We identify p with ToM and we normalize the Riemannian metric on M
so that its restriction to ToM × ToM = p × p coincides with 〈 · , · 〉.

We now fix a maximal abelian subspace a ⊂ p and denote by a∗ the dual space of
a. For each λ ∈ a∗ we define gλ = {X ∈ g : ad(H)X = λ(H)X for all H ∈ a}. We
say that 0 6= λ ∈ a∗ is a restricted root if gλ 6= {0}, and we denote by Σ the set of
all restricted roots. Since a is abelian, ad(a) is a commuting family of self-adjoint linear
transformations of g. This implies that the subset Σ ⊂ a∗ of all restricted roots is nonempty,
finite and g = g0 ⊕ (

⊕

λ∈Σ gλ) is an orthogonal direct sum called the restricted root space
decomposition of g determined by a. Here, g0 = k0 ⊕ a, where k0 = Zk(a) is the centralizer
of a in k. For each λ ∈ a∗ let Hλ ∈ a denote the dual vector in a with respect to the Killing
form, that is, λ(H) = 〈Hλ, H〉 for all H ∈ a. This also defines an inner product on a∗ by
setting 〈λ, µ〉 = 〈Hλ, Hµ〉 for all λ, µ ∈ a∗.

We now introduce an ordering in Σ and denote by Σ+ the resulting set of positive roots.
We denote by Λ = {α1, . . . , αr} the set of simple roots of Σ+ in line with the notation used
in [15]. By {H1, . . . , Hr} ⊂ a we denote the dual basis of {α1, . . . , αr}, that is, αi(H

j) = δj
i ,

where δ is the Kronecker delta. Then each root λ ∈ Σ can be written as λ =
∑r

i=1 ciαi

where all the ci are integers, and they are all nonpositive or nonnegative depending on
whether the root is negative or positive. The sum

∑r
i=1 ci is called the level of the root.

The subspace n =
⊕

λ∈Σ+ gλ of g is a nilpotent subalgebra of g. Moreover, a ⊕ n is
a solvable subalgebra of g with [a ⊕ n, a ⊕ n] = n. We can write g as the direct sum of
vector subspaces g = k ⊕ a ⊕ n, the so-called Iwasawa decomposition of g. Let A, N and
AN be the connected subgroups of G with Lie algebra a, n and a ⊕ n, respectively. All
these subgroups are simply connected and G is diffeomorphic to the product K × A × N .
Moreover, the solvable Lie group AN acts simply transitively on M . Hence M is isometric
to the connected, simply connected solvable Lie group AN equipped with the left-invariant
Riemannian metric that is induced from the inner product 〈 · , · 〉. Consider X, Y, Z ∈ a⊕n

as left-invariant vector fields on M . If ∇ denotes the Levi-Civita covariant derivative of
M = AN , the equality 〈ad(X)Y, Z〉 = −〈ad(θX)Z, Y 〉 implies that the Koszul formula
can be written as

2〈∇XY, Z〉 = 〈[X, Y ] + (1 − θ)[θX, Y ], Z〉.

We will now associate to each subset Φ of Λ a parabolic subalgebra qΦ of g. Let Φ be a
subset of Λ. We denote by ΣΦ the root subsystem of Σ generated by Φ, that is, ΣΦ is the
intersection of Σ and the linear span of Φ, and put Σ+

Φ = ΣΦ ∩ Σ+. Let

lΦ = g0 ⊕

(

⊕

λ∈ΣΦ

gλ

)

and nΦ =
⊕

λ∈Σ+\Σ+

Φ

gλ.

Then lΦ is a reductive subalgebra of g and nΦ is a nilpotent subalgebra of g. Let

aΦ =
⋂

α∈Φ

ker α and aΦ = a ⊖ aΦ.

6



Then aΦ is an abelian subalgebra of g and lΦ is the centralizer and the normalizer of aΦ

in g. The abelian subalgebra aΦ is also known as the split component of the reductive Lie
algebra lΦ. Since [lΦ, nΦ] ⊂ nΦ,

qΦ = lΦ ⊕ nΦ

is a subalgebra of g, the so-called parabolic subalgebra of g associated with the subset Φ
of Λ. The subalgebra lΦ = qΦ ∩ θ(qΦ) is a reductive Levi subalgebra of qΦ and nΦ is the
unipotent radical of qΦ, and therefore the decomposition qΦ = lΦ ⊕ nΦ is a semidirect sum
of the Lie algebras lΦ and nΦ. The decomposition qΦ = lΦ ⊕ nΦ is known as the Chevalley
decomposition of the parabolic subalgebra qΦ.

We now define a reductive subalgebra mΦ of g by

mΦ = lΦ ⊖ aΦ = k0 ⊕ aΦ ⊕

(

⊕

λ∈ΣΦ

gλ

)

.

The subalgebra mΦ normalizes aΦ ⊕ nΦ, and

gΦ = [mΦ, mΦ] = [lΦ, lΦ]

is a semisimple subalgebra of g. The center zΦ of mΦ is contained in k0 and induces the
direct sum decomposition mΦ = zΦ ⊕ gΦ. The decomposition

qΦ = mΦ ⊕ aΦ ⊕ nΦ

is known as the Langlands decomposition of the parabolic subalgebra qΦ.
For Φ = ∅ we obtain l∅ = g0, m∅ = k0, a∅ = a and n∅ = n. In this case q∅ = k0 ⊕ a⊕ n =

g0 ⊕ n is a minimal parabolic subalgebra of g. For Φ = Λ we obtain lΛ = mΛ = g and
aΛ = nΛ = {0}. Each parabolic subalgebra of g is conjugate in g to qΦ for some subset Φ of
Λ. The set of conjugacy classes of parabolic subalgebras of g therefore has 2r elements. Two
parabolic subalgebras qΦ1

and qΦ2
of g are conjugate in the full automorphism group Aut(g)

of g if and only if there exists an automorphism F of the Dynkin diagram associated to Λ
with F (Φ1) = Φ2. Every parabolic subalgebra contains a minimal parabolic subalgebra.

Each parabolic subalgebra qΦ determines a gradation of g. For this we define HΦ =
∑

αi∈Λ\Φ H i and put gk
Φ =

⊕

λ∈Σ∪{0},λ(HΦ)=k gλ. Then g =
⊕

k∈Z
gk

Φ is a gradation of g with

g0
Φ = lΦ,

⊕

k>0 gk
Φ = nΦ and

⊕

k≥0 gk
Φ = qΦ. The vector HΦ ∈ a is called the characteristic

element of the gradation. The Cartan involution θ acts grade-reversing on the gradation,
that is, we have θgk

Φ = g−k
Φ for all k ∈ Z. Moreover, this gradation is of type α0, that

is, gk+1
Φ = [g1

Φ, gk
Φ] and g−k−1

Φ = [g−1
Φ , g−k

Φ ] holds for all k > 0 (see e.g. [14]). If λ is the
highest root in Σ and mΦ = λ(HΦ), we have gmΦ

Φ 6= {0} and gk
Φ = {0} for all k > mΦ. For

Φ = ∅ we have n∅ = n, and we also use the notation nk = gk
∅ for all k > 0. Thus we have

a gradation n =
⊕m∅

k=1 nk of n which is generated by n1. Note that m∅ is the level of the
highest root in Σ+. For each k > 0 we define

pk = p ∩
(

gk
∅ ⊕ g−k

∅
)

,

which gives a direct sum decomposition p = a ⊕
(
⊕m∅

k=1 pk
)

.
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For each λ ∈ Σ we define

kλ = k ∩ (gλ ⊕ g−λ) and pλ = p ∩ (gλ ⊕ g−λ).

Then we have pλ = p−λ, kλ = k−λ and pλ ⊕ kλ = gλ ⊕ g−λ for all λ ∈ Σ. It is easy to see
that the subspaces

pΦ = lΦ ∩ p = a ⊕

(

⊕

λ∈ΣΦ

pλ

)

and ps
Φ = mΦ ∩ p = gΦ ∩ p = aΦ ⊕

(

⊕

λ∈ΣΦ

pλ

)

are Lie triple systems in p. We define a subalgebra kΦ of k by

kΦ = qΦ ∩ k = lΦ ∩ k = mΦ ∩ k = k0 ⊕

(

⊕

λ∈ΣΦ

kλ

)

.

Then gΦ = (gΦ ∩ kΦ) ⊕ ps
Φ is a Cartan decomposition of the semisimple subalgebra gΦ of

g and aΦ is a maximal abelian subspace of ps
Φ. If we define (gΦ)0 = (gΦ ∩ k0) ⊕ aΦ, then

gΦ = (gΦ)0 ⊕
(
⊕

λ∈ΣΦ
gλ

)

is the restricted root space decomposition of gΦ with respect to

aΦ and Φ is the corresponding set of simple roots. Since mΦ = zΦ ⊕ gΦ and zΦ ⊂ k0, we see
that gΦ ∩ k0 = k0 ⊖ zΦ.

We now relate these algebraic constructions to the geometry of the symmetric space M .
Let Φ be a subset of Λ and rΦ = |Φ|. We denote by AΦ the connected abelian subgroup of
G with Lie algebra aΦ and by NΦ the connected nilpotent subgroup of G with Lie algebra
nΦ. The centralizer LΦ = ZG(aΦ) of aΦ in G is a reductive subgroup of G with Lie algebra
lΦ. The subgroup AΦ is contained in the center of LΦ. The subgroup LΦ normalizes NΦ

and QΦ = LΦNΦ is a subgroup of G with Lie algebra qΦ. The subgroup QΦ coincides with
the normalizer NG(lΦ ⊕ nΦ) of lΦ ⊕ nΦ in G, and hence QΦ is a closed subgroup of G. The
subgroup QΦ is the parabolic subgroup of G associated with the subsystem Φ of Λ.

Let GΦ be the connected subgroup of G with Lie algebra gΦ. Since gΦ is semisimple,
GΦ is a semisimple subgroup of G. The intersection KΦ of LΦ and K, i.e. KΦ = LΦ ∩ K,
is a maximal compact subgroup of LΦ and kΦ is the Lie algebra of KΦ. The adjoint group
Ad(LΦ) normalizes gΦ, and consequently MΦ = KΦGΦ is a subgroup of LΦ. One can show
that MΦ is a closed reductive subgroup of LΦ, KΦ is a maximal compact subgroup of MΦ,
and the center ZΦ of MΦ is a compact subgroup of KΦ. The Lie algebra of MΦ is mΦ and
LΦ is isomorphic to the Lie group direct product MΦ × AΦ, i.e. LΦ = MΦ × AΦ. For this
reason AΦ is called the split component of LΦ. The parabolic subgroup QΦ acts transitively
on M and the isotropy subgroup at o is KΦ, that is, M = QΦ/KΦ.

Since gΦ = (gΦ∩kΦ)⊕ps
Φ is a Cartan decomposition of the semisimple subalgebra gΦ, we

have [ps
Φ, ps

Φ] = gΦ ∩ kΦ. Thus GΦ is the connected closed subgroup of G with Lie algebra
[ps

Φ, ps
Φ] ⊕ ps

Φ. Since ps
Φ is a Lie triple system in p, the orbit F s

Φ = GΦ · o of the GΦ-action
on M containing o is a connected totally geodesic submanifold of M with ToF

s
Φ = ps

Φ. If
Φ = ∅, then F s

∅ = {o}, otherwise F s
Φ is a Riemannian symmetric space of noncompact type

and rank(F s
Φ) = rΦ, and

F s
Φ = GΦ · o = GΦ/(GΦ ∩ KΦ) = MΦ · o = MΦ/KΦ.

8



The submanifold F s
Φ is also known as a boundary component of M in the context of the

maximal Satake compactification of M (see e.g. [6]).
Clearly, aΦ is a Lie triple system as well, and the corresponding totally geodesic sub-

manifold is a Euclidean space
E

r−rΦ = AΦ · o.

Since the action of AΦ on M is free and AΦ is simply connected, we can identify Er−rΦ, AΦ

and aΦ canonically. This identification will be used throughout this paper.
Finally, pΦ = ps

Φ ⊕ aΦ is a Lie triple system, and the corresponding totally geodesic
submanifold FΦ is the symmetric space

FΦ = LΦ · o = LΦ/KΦ = (MΦ × AΦ)/KΦ = F s
Φ × E

r−rΦ.

The submanifolds FΦ and F s
Φ have a natural geometric interpretation. Denote by

C̄+(Λ) ⊂ a the closed positive Weyl chamber which is determined by the simple roots
Λ. Let Z be nonzero vector in C̄+(Λ) such that α(Z) = 0 for all α ∈ Φ and α(Z) > 0 for
all α ∈ Λ \ Φ, and consider the geodesic γZ(t) = Exp(tZ) · o in M with γZ(0) = o and
γ̇Z(0) = Z. The totally geodesic submanifold FΦ is the union of all geodesics in M which
are parallel to γZ , and F s

Φ is the semisimple part of FΦ in the de Rham decomposition of
FΦ (see e.g. [9], Proposition 2.11.4 and Proposition 2.20.10).

The group QΦ is diffeomorphic to the product MΦ ×AΦ ×NΦ. This analytic diffeomor-
phism induces an analytic diffeomorphism between F s

Φ × E
r−rΦ × NΦ and M known as a

horospherical decomposition of the symmetric space M .

4. Polar and hyperpolar foliations

We first prove an algebraic characterization of polar actions and of hyperpolar actions
on Riemannian symmetric spaces of noncompact type (see also Proposition 4.1 in [19]),
and then present some examples.

Theorem 4.1. Let M = G/K be a Riemannian symmetric space of noncompact type and
H be a connected closed subgroup of G whose orbits form a homogeneous foliation F on
M . Consider the corresponding Cartan decomposition g = k ⊕ p and define

h⊥
p = {ξ ∈ p : 〈ξ, Y 〉 = 0 for all Y ∈ h}.

Then the following statements hold:

(i) The action of H on M is polar if and only if h⊥
p is a Lie triple system in p and h

is orthogonal to the subalgebra [h⊥
p , h⊥

p ] ⊕ h⊥
p of g.

(ii) The action of H on M is hyperpolar if and only if h⊥
p is an abelian subspace of p.

In both cases, let H⊥
p be the connected subgroup of G with Lie algebra [h⊥

p , h⊥
p ] ⊕ h⊥

p . Then

the orbit S = H⊥
p · o is a section of the H-action on M .

Proof. Statement (ii) is an obvious consequence of statement (i). So we proceed with
proving (i).

If the action of H on M is polar, then h⊥
p is a Lie triple system by definition of a polar

action. We now assume that h⊥
p is a Lie triple system. We have to show that the action
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of H on M is polar if and only if h is orthogonal to [h⊥
p , h⊥

p ] ⊕ h⊥
p . Since h⊥

p is a Lie

triple system, the orbit S = H⊥
p · o is a connected complete totally geodesic submanifold

of M . Let p be a point in M which does not lie on the orbit H · o. Since H · o is a closed
submanifold of M , there exists a point q ∈ H · o such that the distance between p and q
is equal to the distance between p and H · o. Since M is complete, there exists a geodesic
in M from p to q such that the distance from p to q can be measured along this geodesic.
A standard variational argument shows that this geodesic intersects H · o perpendicularly.
It follows now easily that S intersects each orbit. Since H induces a foliation, it therefore
remains to show that Tp(H · p) and TpS are orthogonal for each p ∈ S if and only if h is
orthogonal to [h⊥

p , h⊥
p ] ⊕ h⊥

p .

Let γ be the geodesic in S with γ(0) = o and γ̇(0) = ξ ∈ h⊥
p , and assume that ξ 6= 0.

For X ∈ h and η ∈ h⊥
p we denote by X∗ and η∗ the Killing vector fields on M that are

induced from X and η, respectively. Then we have

Tγ(t)(H · γ(t)) = {X∗
γ(t) : X ∈ h} , Tγ(t)S = {η∗

γ(t) : η ∈ h⊥
p }.

The restrictions of two such Killing vector fields X∗ and η∗ to γ satisfy the equation

d

dt

∣

∣

∣

∣

t=0

〈X∗
γ(t), η

∗
γ(t)〉 = 〈[ξ∗, X∗]o, η

∗
o〉 + 〈X∗

o , [ξ
∗, η∗]o〉 = −2〈[ξ, η], X〉,

using the facts that [ξ∗, X∗] = −[ξ, X]∗ and [ξ∗, η∗] = −[ξ, η]∗, and that ad(ξ) is a self-
adjoint endomorphism on g. From this it easily follows that h is orthogonal to [h⊥

p , h⊥
p ]⊕h⊥

p

if Tp(H ·p) and TpS are orthogonal for each p ∈ S. Conversely, assume that h is orthogonal
to [h⊥

p , h⊥
p ] ⊕ h⊥

p . Then, for each X ∈ h, the restriction X∗
γ of the Killing vector field X∗

to γ is the Jacobi vector field along γ with initial values X∗
γ(0) = X∗

o = Xp ∈ hp and
(X∗

γ)′(0) = [ξ∗, X∗]o = −[ξ, X]∗o = −[ξ, X]p ∈ hp. Here the subscript indicates orthogonal
projection onto p. Since both initial values are in hp = νoS, it follows that X∗

γ takes
values in the normal bundle of S along γ. This implies that Tγ(t)(H · γ(t)) and Tγ(t)S
are orthogonal for each t ∈ R. Since this holds for each geodesic γ in S with γ(0) = o
and γ̇(0) = ξ ∈ h⊥

p , ξ 6= 0, we conclude that Tp(H · p) and TpS are orthogonal for each
p ∈ S. �

We will use the previous result to show polarity and hyperpolarity of certain actions.

Proposition 4.2. Let M be a Riemannian symmetric space of noncompact type and con-
sider a horospherical decomposition F s

Φ × Er−rΦ × NΦ of M . Let V be a linear subspace of
E

r−rΦ and assume that (Φ, V ) 6= (∅, Er). Then the action of V × NΦ ⊂ AΦ × NΦ on M is
polar and F s

Φ × (Er−rΦ ⊖ V ) is a section of this action. Moreover, the action of V ×NΦ on
M is hyperpolar if and only if Φ = ∅.

Proof. The subspace (V ⊕nΦ)⊥p = pΦ⊖V of p is a Lie triple system and F s
Φ×(Er−rΦ ⊖V ) is

the connected complete totally geodesic submanifold of M corresponding to pΦ⊖V . Next,
we have [(V ⊕ nΦ)⊥p , (V ⊕ nΦ)⊥p ] = [pΦ ⊖ V, pΦ ⊖ V ] ⊂ kΦ ⊂ mΦ, and since mΦ is orthogonal

to aΦ ⊕ nΦ, we see that V ⊕ nΦ is orthogonal to [(V ⊕ nΦ)⊥p , (V ⊕ nΦ)⊥p ]⊕ (V ⊕ nΦ)⊥p . Since
AΦ×NΦ acts freely on M , it is clear that V ×NΦ induces a foliation on M . From Theorem
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4.1 we conclude that the action of V × NΦ on M is polar and that F s
Φ × (Er−rΦ ⊖ V )

is a section of the action. The statement about hyperpolarity follows from the fact that
F s

Φ × (Er−rΦ ⊖ V ) is flat if and only if Φ = ∅. �

The previous result provides examples of polar actions which are not hyperpolar on
each Riemannian symmetric space of noncompact type with rank ≥ 2. It is worthwhile
to compare this with the results by Kollross [19] that in the compact case polar actions
are in general hyperpolar. Special cases of these actions on Hermitian symmetric spaces
of noncompact type have also been discussed by Kobayashi [16] in the context of strongly
visible actions on complex manifolds.

Remark 4.3. Let M be a symmetric space of noncompact type with the property that
its restricted root system contains two simple roots of the same length which are not
connected in the Dynkin diagram. The following example illustrates that the condition
in Theorem 4.1 (i) that h is orthogonal to [h⊥

p , h⊥
p ] ⊕ h⊥

p is necessary for polarity. Let us
consider h = (a ⊖ R(Hα − Hβ)) ⊕ (n ⊖ R(Xα + Xβ)), with α and β two simple roots of
the same length which are not connected in the Dynkin diagram, and Xα ∈ gα, Xβ ∈ gβ

unit vectors. In order to prove that this is indeed a subalgebra, by the properties of root
systems it suffices to show that [H, Xα − Xβ] ∈ h for any H ∈ a ⊖ R(Hα − Hβ) (because
〈Xα + Xβ, Xα −Xβ〉 = 0). However, if H ∈ a⊖R(Hα −Hβ) we have α(H) = β(H), which
implies [H, Xα − Xβ] = α(H)(Xα − Xβ) ∈ h as desired.

By construction we have h⊥
p = R(Hα − Hβ) ⊕ R(1 − θ)(Xα + Xβ). A simple calculation

using 〈α, α〉 = 〈β, β〉 and 〈α, β〉 = 0 shows that

[Hα − Hβ, (1 − θ)(Xα + Xβ)] = 〈α, α〉(1 + θ)(Xα − Xβ).

This implies in particular that h⊥
p is not abelian. Using again 〈α, α〉 = 〈β, β〉 and 〈α, β〉 = 0

we get
[Hα − Hβ, (1 + θ)(Xα − Xβ)] = 〈α, α〉(1 − θ)(Xα + Xβ),

and also using [Xα, Xβ] = 0 (because α and β are not connected in the Dynkin diagram)
we obtain

[(1 − θ)(Xα + Xβ), (1 + θ)(Xα − Xβ)] = −2(Hα − Hβ).

All in all this means that h⊥
p is a non-abelian Lie triple system. However, h cannot give

rise to a polar action because h is not perpendicular to [h⊥
p , h⊥

p ] = R(1 + θ)(Xα − Xβ).
This action has the interesting feature that it gives a homogeneous foliation with the

property that the normal bundle consists of Lie triple systems. It is easy to see that the
totally geodesic submanifold of M generated by any of these Lie triple systems is a real
hyperbolic plane. These real hyperbolic planes have the property that they do not intersect
orthogonally the other orbits. It is interesting to observe that the normal bundle is not
integrable, as otherwise the integral manifolds would provide sections and then the action
would be polar.

Remark 4.4. The hypothesis in Theorem 4.1 that H induces a foliation is necessary. For
example, in sl2(C) consider the usual Cartan decomposition sl2(C) = su2 ⊕ p, where p

denotes the real vector space of (2 × 2)-Hermitian matrices with trace zero. Let a be the
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subspace of diagonal matrices in sl2(C) with real coefficients and t the subspace of diagonal
matrices in sl2(C) with purely imaginary coefficients. Also, denote by n the set of strictly
upper triangular matrices in sl2(C). Then, su2 ⊕ a ⊕ n is an Iwasawa decomposition of
sl2(C) and t ⊕ a is a Cartan subalgebra of sl2(C). Consider the vectors

B =

(

1 i
0 −1

)

, X =

(

−i 1
0 i

)

, ξ =

(

1 −2i
−2i −1

)

and E =

(

0 i/2
0 0

)

.

Let h be the Lie subalgebra of t ⊕ a ⊕ n spanned by B and X. Then h⊥
p = Rξ is abelian

because it is one-dimensional. The connected closed subgroup H of SL2(C) with Lie algebra
h acts hyperpolarly on the real hyperbolic space RH3 = SL2(C)/SU2 but does not give rise
to a hyperpolar foliation. To see this let g = Exp(E). It is easy to verify that Ad(g)B ∈ a

and Ad(g)X ∈ t, and hence Ad(g)h = t ⊕ a. The corresponding connected subgroup of
SL2(C) acts with cohomogeneity one on RH3. This action has one singular orbit, a totally
geodesic RH1 ⊂ RH3, and the other orbits are the tubes around it. Obviously, the action
of H is orbit equivalent to this one.

We continue with a discussion of some further hyperpolar actions on Riemannian sym-
metric spaces of nonpositive curvature.

Example 4.5. (Polar and hyperpolar homogeneous foliations on Euclidean spaces.) Let m
be a positive integer. For each linear subspace V of the m-dimensional Euclidean space
Em we define a homogeneous hyperpolar foliation Fm

V on Em by

(Fm
V )p = p + V = {p + v | v ∈ V }

for all p ∈ E
m. Geometrically, the foliation Fm

V consists of the union of all affine subspaces
of Em which are parallel to V . It is obvious that Fm

V is a hyperpolar homogeneous foliation
on Em whenever 0 < dim V < m.

Indeed, any hyperpolar homogeneous foliation on a Euclidean space Em is isometrically
congruent to one of these examples. Assume that H acts isometrically on E

m and that its
orbits form a hyperpolar homogeneous foliation. Since the action of H is isometric and
gives a foliation on Em it suffices to prove that each orbit of H is totally geodesic.

On the contrary, assume that the orbit of H through o is not totally geodesic. Then,
there exist a nonzero vector v ∈ To(H · o) and a unit vector ξ ∈ νo(H · o) such that
Aξv = cv with c 6= 0, where Aξ denotes the shape operator of H · o with respect to ξ.
Since the orbit through o is principal, ξ induces an equivariant normal vector field on
H · o which we also denote by ξ. This vector field satisfies ξh(o) = h∗ξo for all h ∈ H .
Consider the point p = expo(

1
c
ξo). Since ξ is equivariant, the orbit of H through p is

H · p = {exph(o)(
1
c
ξh(o)) : h ∈ H}. Hence we can define the map F : H · o → H · p,

h(o) 7→ exph(o)(
1
c
ξh(o)) = h(o) + 1

c
ξh(o). Since the action of H is polar, the equivariant

vector field ξ is parallel with respect to the normal connection (see e.g. [2], p. 44, Corollary
3.2.5), and thus we get F∗ov = v − 1

c
Aξv = 0, which contradicts the fact that H gives a

foliation.
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Example 4.6. (Codimension one foliations on Riemannian manifolds.) Let M be a con-
nected complete Riemannian manifold and F be a homogeneous foliation on M with codi-
mension one. Then F is hyperpolar. In fact, consider a geodesic γ : R → M which is
parametrized by arc length and for which γ̇(0) is perpendicular to Fγ(0). Since M is con-
nected and complete, γ must intersect each leaf of F , and since F is homogeneous, the
geodesic intersects each leaf orthogonally. Therefore S = γ(R) is a section of F . Clearly,
S is a flat totally geodesic submanifold of M , and hence F is hyperpolar.

Example 4.7. (Hyperpolar homogeneous foliations on hyperbolic spaces.) Let M be a Rie-
mannian symmetric space of rank one, that is, M is a hyperbolic space FHn over a normed
real division algebra F ∈ {R, C, H, O}. Here n ≥ 2, and n = 2 if F = O. Using the
notations introduced in the previous section, we have

g =



















so1,n if F = R,

su1,n if F = C,

sp1,n if F = H,

f−20
4 if F = O.

The restricted root space decomposition of g is of the form

g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α,

where dim gα = dim g−α = (n − 1) dimR F, dim g2α = dim g−2α = dimR F − 1. Moreover,
we have g0 = k0 ⊕ a with a one-dimensional subspace a ⊂ p and

k0
∼=



















son−1 if F = R,

un−1 if F = C,

spn−1 ⊕ sp1 if F = H,

so7 if F = O.

Let ℓ be a one-dimensional linear subspace of gα and define

sℓ = a ⊕ (gα ⊖ ℓ) ⊕ g2α = a ⊕ (n ⊖ ℓ).

The subspace sℓ is a subalgebra of a ⊕ n of codimension one, and the corresponding
connected closed subgroup Sℓ of AN acts freely on FHn with cohomogeneity one. The
corresponding homogeneous foliation Fℓ on FHn is hyperpolar according to the previous
example. Since K0 acts transitively on the unit sphere in gα by means of the adjoint repre-
sentation, Fℓ and Fℓ′ are orbit equivalent for any two one-dimensional linear subspaces ℓ, ℓ′

of gα. We denote by Fn
F

a representative of the set of hyperpolar homogeneous foliations
of the form Fℓ on FHn. We mention that the leaf of Fn

F
containing o ∈ FHn is a minimal

hypersurface in FHn. If F = R, this leaf is a totally geodesic real hyperbolic hyperplane
RHn−1 ⊂ RHn. If F = C, this leaf is the minimal ruled real hypersurface in CHn which
is determined by a horocycle in a totally geodesic and totally real RH2 ⊂ CHn. For more
details on these foliations we refer to [1] and [3]. It was shown in [4] that apart from this
foliation and the horosphere foliation there are no other homogeneous hyperpolar foliations
on Riemannian symmetric spaces of rank one.
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Example 4.8. (Hyperpolar homogeneous foliations on products of hyperbolic spaces.) Let

M = F1H
n1 × . . . × FkH

nk

be the Riemannian product of k Riemannian symmetric spaces of rank one, where k is a
positive integer. Then

Fn1

F1
× . . . × Fnk

Fk

is a hyperpolar homogeneous foliation on M . This is an elementary consequence of the
previous example.

Example 4.9. (Hyperpolar homogeneous foliations on products of hyperbolic spaces and
Euclidean spaces.) Let

M = F1H
n1 × . . . × FkH

nk × E
m

be the Riemannian product of k Riemannian symmetric spaces of rank one and an m-
dimensional Euclidean space, where k and m are positive integers. Moreover, let V be a
linear subspace of Em. Then

Fn1

F1
× . . . × Fnk

Fk
×Fm

V

is a hyperpolar homogeneous foliation on M .

Example 4.10. (Homogeneous foliations on symmetric spaces of noncompact type.) Let M
be a Riemannian symmetric space of noncompact type and Φ be a subset of Λ with the
property that any two roots in Φ are not connected in the Dynkin diagram of the restricted
root system associated with Λ. We call such a subset Φ an orthogonal subset of Λ. Each
simple root α ∈ Φ determines a totally geodesic hyperbolic space FαHnα ⊂ M . In fact,
FαHnα ⊂ M is the orbit of the connected subgroup of G with Lie algebra g{α}. Then FΦ is
isometric to the Riemannian product of rΦ Riemannian symmetric spaces of rank one and
an (r − rΦ)-dimensional Euclidean space,

FΦ = F s
Φ × E

r−rΦ ∼=

(

∏

α∈Φ

FαHnα

)

× E
r−rΦ .

Note that Fα = R if α is reduced and Fα ∈ {C, H, O} if α is non-reduced (i.e., if 2α ∈ Σ
as well). Then

FΦ =
∏

α∈Φ

Fnα

Fα
.

is a hyperpolar homogeneous foliation on F s
Φ. Let V be a linear subspace of Er−rΦ . Then

FΦ,V = FΦ ×F r−rΦ

V × NΦ ⊂ F s
Φ × E

r−rΦ × NΦ = FΦ × NΦ
∼= M

is a homogeneous foliation on M . We will see below that it is hyperpolar.
Recall that each foliation Fnα

Fα
on FαHnα corresponds to a subalgebra of g{α} of the form

a{α}⊕(gα⊖ℓα)⊕g2α with some one-dimensional linear subspace ℓα of gα. Thus the foliation
FΦ on F s

Φ corresponds to the subalgebra aΦ⊕
(
⊕

α∈Φ ((gα ⊖ ℓα) ⊕ g2α)
)

= aΦ⊕(nΦ⊖ℓΦ) of
gΦ, where ℓΦ =

⊕

α∈Φ ℓα. Therefore the foliation FΦ,V on M corresponds to the subalgebra

sΦ,V = (aΦ ⊕ V ) ⊕ (nΦ ⊖ ℓΦ) = (aΦ ⊕ V ⊕ nΦ) ⊖ ℓΦ ⊂ a ⊕ nΦ
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of qΦ, where we identify canonically V ⊂ Er−rΦ = AΦ · o with the corresponding subspace
of aΦ.

It is easy to see from the arguments given above that different choices of ℓα and ℓ′α in
gα lead to isometrically congruent foliations FΦ and F ′

Φ on F s
Φ. However, it is not obvious

that different choices of ℓα and ℓ′α in gα lead to isometrically congruent foliations FΦ,V and
F ′

Φ,V on M . That this is in fact true follows from the following two facts. On a semisimple
symmetric space the holonomy algebra is isomorphic to the Lie algebra of the isotropy
subgroup of the isometry group. Moreover, on a simply connected symmetric space each
element of the holonomy group at a point o induces an isometry of the symmetric space
with fixed point o. Hence, different choices of ℓα and ℓ′α in gα lead to isometrically congruent
foliations FΦ,V and F ′

Φ,V on M .
We note that these homogeneous foliations on symmetric spaces of noncompact type

have also been discussed by Koike [17] in the context of his investigations about “complex
hyperpolar actions”.

We are now in the position to formulate the main result of this paper.

Theorem 4.11. Let M be a connected Riemannian symmetric space of noncompact type.

(i) Let Φ be an orthogonal subset of Λ and V be a linear subspace of Er−rΦ. Then

FΦ,V = FΦ ×F r−rΦ

V × NΦ ⊂ F s
Φ × E

r−rΦ × NΦ = M

is a hyperpolar homogeneous foliation on M .
(ii) Every hyperpolar homogeneous foliation on M is isometrically congruent to FΦ,V

for some orthogonal subset Φ of Λ and some linear subspace V of Er−rΦ.

Proof. We prove part (i) of the theorem here. Section 5 is devoted to the proof of part (ii).
According to Theorem 4.1 we have to prove that sΦ,V is a subalgebra and that (sΦ,V )⊥p =

{ξ ∈ p : 〈ξ, Y 〉 = 0 for all Y ∈ sΦ,V } is abelian. Assume that the one-dimensional linear
space ℓα = ℓΦ ∩ gα is generated by the nonzero vector Eα.

The fact that sΦ,V is a subalgebra follows from the elementary properties of root systems.
It is easy to see that

(sΦ,V )⊥p = (aΦ ⊖ V ) ⊕

(

⊕

α∈Φ

R((1 − θ)Eα)

)

.

We now check that (sΦ,V )⊥p is abelian.
If H, H ′ ∈ aΦ ⊖ V we obviously have [H, H ′] = 0. If H ∈ aΦ ⊖ V and α ∈ Φ we have

[H, (1 − θ)Eα] = α(H)(1 + θ)Eα = 0 by definition of aΦ. If α, β ∈ Φ with α 6= β, then
[(1 − θ)Eα, (1 − θ)Eβ] = (1 + θ)[Eα, Eβ] − (1 + θ)[Eα, θEβ ]. Now, [Eα, Eβ] ∈ gα+β = 0
because α + β is not a root (since α and β are not connected in the Dynkin diagram) and
[Eα, θEβ] ∈ gα−β = 0 as α − β is not a root (because both α and β are simple). �
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5. Classification

In this section we prove Theorem 4.11 (ii), thus settling the main result of this paper.
A subalgebra b of a Lie algebra g is called a Borel subalgebra if b is a maximal solvable

subalgebra of g. Borel subalgebras of real semisimple Lie algebras have been described
in [20]. Any such Borel subalgebra can be written as t ⊕ a ⊕ n, where h = t ⊕ a is a
Cartan subalgebra of g and n is nilpotent. The subspace t is called the toroidal part of h

and consists of all X ∈ h for which the eigenvalues of ad(X) are purely imaginary. The
subspace a is called the vector part of h and consists of all X ∈ h for which the eigenvalues
of ad(X) are real. There exists a Cartan decomposition g = k ⊕ p such that t ⊂ k and
a ⊂ p. We say that h or b is maximally noncompact if a is maximal abelian in p and
maximally compact if t is maximal abelian in k. We use this description for the following

Proposition 5.1. Let M = G/K be a symmetric space of noncompact type. Let S be a
closed subgroup of G which induces a hyperpolar foliation. Then the action of S is orbit
equivalent to the action of a closed solvable subgroup whose Lie algebra is contained in a
maximally noncompact Borel subalgebra.

Proof. By means of Proposition 2.2 we may assume that S is solvable and closed in I(M).
The Lie algebra s of S is contained in a Borel subalgebra b of g. As we explained above,
there exists a Cartan decomposition g = k ⊕ p such that b = t ⊕ ã ⊕ ñ with t ⊂ k and
ã ⊂ p. Since ã is abelian we have the decomposition g = g̃0 ⊕

(
⊕

λ̃∈Σ̃ g̃λ̃

)

, where Σ̃ is the

set of roots with respect to ã and g̃λ̃ = {X ∈ g : ad(H)X = λ̃(H)X for all H ∈ ã}. We

can choose an ordering in ã that induces a set of positive roots Σ̃+ in such a way that
ñ =

⊕

λ̃∈Σ̃+ g̃λ̃. It remains to prove that this Borel subalgebra is maximally noncompact,
that is, ã is maximal abelian in p.

On the contrary, assume that ã is not maximal abelian. Let a be a maximal abelian
subspace of p containing ã. Then we have the usual restricted root space decomposition
g = g0 ⊕

(
⊕

λ∈Σ gλ

)

. We choose an ordering of a compatible with that of ã and denote by
Σ+ the corresponding set of positive roots, and write n =

⊕

λ∈Σ+ gλ. We have the relations

ã =
⋂

λ∈Σ+

λ|ã=0

Ker λ, g̃0 = g0 ⊕

(

⊕

λ∈Σ+

λ|ã=0

gλ

)

, g̃λ̃ =
⊕

λ∈Σ+

λ|ã=λ̃

gλ.

Recall from Theorem 4.1 (ii) that S acts hyperpolarly on M if and only if s⊥p = {ξ ∈ p :

ξ ⊥ s} is abelian. Obviously, a⊖ ã ⊂ p and a⊖ ã is orthogonal to ñ, and so a⊖ ã ⊂ s⊥p . On

the other hand,
⊕

λ∈Σ+,λ|ã=0 gλ ⊂ g̃0 ⊂ n⊖ ñ, and so
⊕

λ∈Σ+,λ|ã=0 pλ ⊂ s⊥p . Altogether this

implies (a ⊖ ã) ⊕
(

⊕

λ∈Σ+,λ|ã=0 pλ

)

⊂ s⊥p . Now choose λ ∈ Σ+ with λ|ã = 0. By the first

relation above, we can choose H ∈ a ⊖ ã with λ(H) 6= 0. If Xλ ∈ gλ is a nonzero vector
then [H, (1 − θ)Xλ] = (1 + θ)λ(H)Xλ 6= 0, which contradicts the fact that s⊥p is abelian.
Hence, ã must be maximal abelian in p and the theorem follows. �
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We now prove that the foliations in Example 4.10 exhaust all the possibilities for hy-
perpolar homogeneous foliations up to orbit equivalence. Let S be a connected closed
subgroup of the isometry group inducing a hyperpolar homogeneous foliation on M . From
now on we fix a Cartan decomposition g = k ⊕ p and a maximally noncompact Borel
subalgebra t ⊕ a ⊕ n with t ⊂ k and a ⊂ p maximal abelian. According to Proposition 5.1
we may assume that the Lie algebra s of S is solvable and that s ⊂ t ⊕ a ⊕ n. The proof
goes as follows. First we classify the abelian subspaces of a ⊕ p1. A bit more work leads
to a description of all subalgebras s of t ⊕ a ⊕ n for which s⊥p is abelian and contained in

a⊕p1. Hence, the problem reduces to prove that, if s is a subalgebra of t⊕a⊕n for which
s⊥p is abelian and the corresponding connected subgroup of G with Lie algebra s induces a

foliation on M , then s⊥p ⊂ a⊕p1. We will consider an auxiliary subalgebra s̃ = s+(n ⊖ n1).

This subalgebra satisfies s̃⊥p ⊂ a⊕p1 and hence its projection onto a⊕n is one of the known

examples. Then s⊥p is contained in the centralizer of s̃⊥p in p. A bit more work allows us

to calculate s⊥p explicitly using the fact that s is a subalgebra. Then we will conclude that
the projection of s onto a⊕n is one of the known examples. The final step is to prove that
s induces the same orbits as its projection onto a ⊕ n.

In what follows (until Lemma 5.13 inclusive) we will work in a context slightly more
general than that described above. Let s be a subalgebra of t ⊕ a ⊕ n such that s⊥p is
abelian. Hence, it is not assumed that the orbits of the connected subgroup of G whose
Lie algebra is s form a foliation. Example 4.4 shows that this can happen. We first state
a few basic lemmas.

From now on, if v is a vector subspace of g, we denote by πv the orthogonal projection of
g onto v. Also, we denote by sn = πa⊕n(s) the projection of s onto a ⊕ n, the noncompact
part of t ⊕ a ⊕ n.

We will first derive some elementary results.

Lemma 5.2. Let λ ∈ Σ and X, Y ∈ gλ. Then (1 − θ)[θX, Y ] = 2〈X, Y 〉Hλ.

Proof. It follows from polarization of the identity [θ(X+Y ), X+Y ] = 〈X+Y, X+Y 〉Hλ. �

Lemma 5.3. Let α be a simple root and v ⊂ gα be a linear subspace such that [v, v] = {0}.
Then [v, θv] ⊂ a if and only if v is one-dimensional.

Proof. If v = RX with nonzero X ∈ gα, then [θX, X] = 〈X, X〉Hα ∈ a. For the converse,
assume that v has dimension greater than 1 and that [v, θv] ⊂ a. Let X, Y ∈ v be
two nonzero orthogonal vectors. By Lemma 5.2 and orthogonality of X and Y , (1 −
θ)[θX, Y ] = 2〈X, Y 〉Hα = 0, so [θX, Y ] ∈ k0 ∩ a = {0}. Now, 〈[θX, Y ], [θX, Y ]〉 =
−〈[X, [θX, Y ]], Y 〉 and using the Jacobi identity and the fact that [v, v] = {0} we get
[X, [θX, Y ]] = −[Y, [X, θX]] = 〈X, X〉[Y, Hα] = −〈α, α〉〈X, X〉Y . Altogether this implies
〈[θX, Y ], [θX, Y ]〉 = 〈α, α〉〈X, X〉〈Y, Y 〉 > 0, which gives a contradiction. �

Lemma 5.4. Let λ, µ ∈ Σ such that λ − µ 6∈ Σ. Let X ∈ gλ and Y ∈ gµ be nonzero
vectors. If [X, Y ] = 0 then λ + µ is not a root. In particular, if α, β ∈ Λ and X ∈ gα and
Y ∈ gβ are nonzero vectors, then [X, Y ] = 0 implies that α and β are not connected in the
Dynkin diagram.
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Proof. Assume that [X, Y ] = 0. Since [θY, X] ∈ gλ−µ = 0 we have, using the Jacobi
identity, that

0 = [[X, Y ], θY ] = −[[Y, θY ], X] = 〈Y, Y 〉[Hµ, X] = 〈Y, Y 〉〈λ, µ〉X.

Hence, 〈λ, µ〉 = 0. Since λ−µ 6∈ Σ and the corresponding Cartan integer satisfies Aµλ = 0,
we get that λ ± µ 6∈ Σ. For the second part, just note that α − β is not a root. �

Lemma 5.5. Let Ψ ⊂ Σ+. For each λ ∈ Ψ let vλ ⊂ gλ be a one-dimensional linear sub-
space. Then the linear subspace [k0, a⊕

(
⊕

λ∈Ψ vλ

)

] is orthogonal to a⊕
(
⊕

λ∈Ψ(1 − θ)vλ

)

⊕
(

⊕

λ∈Σ+\Ψ pλ

)

.

Proof. Obviously, [k0, a] = 0, so there is nothing to prove in this case. Assume that each
vλ is spanned by a corresponding vector Eλ. Let T ∈ k0. If H ∈ a then 〈[T, Eλ], H〉 =
−〈Eλ, [T, H ]〉 = 0. Since [k0, gλ] ⊂ gλ, for any µ ∈ Σ+ with µ 6= λ and any ξ ∈ pµ

we obviously have 〈[T, Eλ], ξ〉 = 0. Finally, since ad(T ) is skewsymmetric, 〈[T, Eλ], (1 −
θ)Eλ〉 = 〈[T, Eλ], Eλ〉 = 0, from where the result follows. �

We now proceed with the first step of the proof, which is describing abelian subspaces
of a ⊕ p1. Recall that p1 = p ∩

(

g1
∅ ⊕ g−1

∅
)

. First, we need the following lemma.

Lemma 5.6. Let q ⊂ a ⊕ p1 be an abelian subspace and define Ψ = {α ∈ Λ : πgα
(q) 6= 0}.

Then dim πgα
(q) = 1 for all α ∈ Ψ.

Proof. Assume the statement is not true. Any two vectors ξ, η ∈ q can be written as
ξ = ξ0 +

∑

α∈Ψ(1 − θ)ξα and η = η0 +
∑

α∈Ψ(1 − θ)ηα, with ξα, ηα ∈ gα. We denote by
Ψ′ ⊂ Ψ ⊂ Λ the subset of roots α ∈ Λ such that ξα and ηα are linearly independent. If the
statement of this lemma is not true, we can find ξ and η such that the corresponding Ψ′

is nonempty. An easy calculation taking into account that α − β is not a root if α, β ∈ Λ
yields

0 = [ξ, η] =
∑

α

(1 + θ)(α(ξ0)ηα − α(η0)ξα) −
∑

α

(1 + θ)[ξα, θηα] +
∑

α,β

(1 + θ)[ξα, ηβ].

Then it follows in particular that
∑

α(1 + θ)[ξα, θηα] = 0, [ξα, ηα] = 0 for all α ∈ Ψ and
[ξα, ηβ] + [ξβ, ηα] = 0 for all α, β ∈ Ψ with α 6= β.

By Lemma 5.2, (1 − θ)[θξα, ηα] = 2〈ξα, ηα〉Hα, which implies

0 =
∑

α∈Ψ

(1 + θ)[ξα, θηα] = 2
∑

α∈Ψ

([ξα, θηα] + 〈ξα, ηα〉Hα) = 2
∑

α∈Ψ′

([ξα, θηα] + 〈ξα, ηα〉Hα),

the last equality following from the fact that [θξα, ξα] = 〈ξα, ξα〉Hα.
For α ∈ Ψ′, using [ξα, ηα] = 0 and [θξα, ξα] = 〈ξα, ξα〉Hα, we get

[[ξα, θηα], θξα] = −[[θηα, θξα], ξα] − [[θξα, ξα], θηα] = 〈α, α〉〈ξα, ξα〉θηα.

Now choose α, β ∈ Ψ′ with β 6= α. Since β − α is not a root and [θηβ , θξα] = θ[ηβ , ξα] =
θ[ξβ, ηα] = [θξβ, θηα] we obtain

[[ξβ, θηβ], θξα] = −[[θηβ , θξα], ξβ] − [[θξα, ξβ], θηβ]] = −[[θξβ , θηα], ξβ]

= [[θηα, ξβ], θξβ] + [[ξβ, θξβ], θηα] = 〈α, β〉〈ξβ, ξβ〉θηα.
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Taking into account the last two displayed equations we conclude

[[ξβ, θηβ], θξα] = 〈α, β〉〈ξβ, ξβ〉θηα, for all α, β ∈ Ψ′.

Therefore, for arbitrary α ∈ Ψ′, the identity
∑

β∈Ψ′([ξβ, θηβ] + 〈ξβ, ηβ〉Hβ) = 0 yields

0 =

[

∑

β∈Ψ′

([ξβ, θηβ ] + 〈ξβ, ηβ〉Hβ), θξα

]

=
∑

β∈Ψ′

([[ξβ, θηβ], θξα] + 〈ξβ, ηβ〉[Hβ, θξα])

=
∑

β∈Ψ′

(〈α, β〉〈ξβ, ξβ〉θηα − 〈α, β〉〈ξβ, ξβ〉θξα)

=

(

∑

β∈Ψ′

〈α, β〉〈ξβ, ξβ〉

)

θηα −

(

∑

β∈Ψ′

〈α, β〉〈ξβ, ξβ〉

)

θξα.

Since α ∈ Ψ′, θηα and θξα are linearly independent, the only way the above equality
can hold is when the coefficients of θηα and θξα are simultaneously zero. In particular,
∑

β∈Ψ′〈α, β〉〈ξβ, ξβ〉 = 0. Hence,
∑

β∈Ψ′〈ξβ, ξβ〉β is orthogonal to span Ψ′. Since it is also a

vector in span Ψ′ and the simple roots are linearly independent, it follows that 〈ξβ, ξβ〉 = 0
for all β ∈ Ψ′, contradiction. �

We say that a subset Φ ⊂ Λ is connected if the subdiagram of the Dynkin diagram deter-
mined by the roots of Φ is connected. We say that two subsets Φ, Φ′ ⊂ Λ are disconnected
or orthogonal if for any α ∈ Φ and any β ∈ Φ′, α and β are not connected in the Dynkin
diagram (that is, α + β is not a root).

Proposition 5.7. Let q ⊂ a ⊕ p1 be an abelian subspace and Ψ = {α ∈ Λ : πgα
(q) 6= 0}.

This set can be decomposed as Ψ =
⋃k

i=1 Ψi with Ψi ⊂ Λ connected, and Ψi and Ψj

disconnected whenever i 6= j. Then there exists a map c : Ψ → R, α 7→ cα, and vectors
Ei ∈

⊕

α∈Ψi
gα, i ∈ {1, . . . , k}, with πgα

(Ei) 6= 0 for all α ∈ Ψi, such that q is a linear
subspace of

vq = aΨ ⊕

(

k
⊕

i=1

R

(

∑

α∈Ψi

cαHα + (1 − θ)Ei

))

.

Proof. Using the fact that the sets Ψi are disconnected, it is easy to see that a subalgebra
vq as considered above is abelian. Hence, in order to prove the proposition, it suffices to
take an abelian subalgebra q ⊂ a⊕p1 and prove that it can be realized as a subspace of one
of the Lie subalgebras vq as defined above. For that, consider Ψ = {α ∈ Λ : πgα

(q) 6= 0}

and write Ψ =
⋃k

i=1 Ψi with Ψi ⊂ Λ connected, and Ψi and Ψj disconnected whenever
i 6= j. Our first assertion is that for each i ∈ {1, . . . , k} there exists a nonzero vector

Ei ∈
⊕

α∈Ψi
gα such that any vector ξ ∈ q can be written as ξ = ξ0 +

∑k
i=1 xi(1− θ)Ei for

certain ξ0 ∈ a and xi ∈ R.
We fix i ∈ {1, . . . , k}. From Lemma 5.6 it follows that dim πgα

(q) = 1 for all α ∈ Ψ.
Hence, for each α ∈ Ψ we can choose a nonzero vector Eα ∈ gα such that any vector ξ ∈ q

can be written as ξ = ξ0 +
∑

α∈Ψ aα(1 − θ)Eα for certain ξ0 ∈ a and aα ∈ R. If, on the
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contrary, the previous assertion is not true, we can find ξ = ξ0 +
∑

α aα(1 − θ)Eα ∈ q

and η = η0 +
∑

α bα(1 − θ)Eα ∈ q such that for some α, β ∈ Ψi connected in the Dynkin
diagram the vectors (aα, aβ), (bα, bβ) ∈ R2 are linearly independent. Since q is abelian, we
have

0 = [ξ, η] =
∑

α

(α(ξ0)bα − α(η0)aα)(1 + θ)Eα +
∑

α,β

aαbβ(1 + θ)[Eα, Eβ].

In particular, taking the gα+β component we get aαbβ − aβbα = 0 by Lemma 5.4, which
contradicts the fact that (aα, aβ) and (bα, bβ) are linearly independent.

Therefore, we have proved our assertion, that is, any vector ξ ∈ q can be written as
ξ = ξ0 +

∑k

i=1 xi(1− θ)Ei for certain ξ0 ∈ a, xi ∈ R and Ei ∈
⊕

α∈Ψi
gα. By the definition

of Ψ, it is obvious that πgα
(Ei) 6= 0 for all α ∈ Ψi, and indeed we can write Ei =

∑

α∈Ψi
Eα

with suitable Eα ∈ gα (note that these might be different from the above Eα’s). Since Ψi

and Ψj are disconnected if i 6= j, it is clear that [Ei, Ej ] = 0 for all i, j ∈ {1, . . . , k}.

We choose such a vector ξ = ξ0 +
∑k

j=1 xj(1− θ)Ej and assume xi = 0. By definition of

Ψ there certainly exists η = η0 +
∑k

j=1 yj(1 − θ)Ej ∈ q with yi 6= 0. Hence,

0 = [ξ, η] =

k
∑

j=1

(1 + θ)





∑

α∈Ψj

(yjα(ξ0) − xjα(η0))Eα



 ,

and taking the gα-component for any α ∈ Ψi we get α(ξ0) = 0 because xi = 0 and yi 6= 0.
This implies that for each ξ ∈ q and each α ∈ Ψi we can write 〈ξ, Hα〉 = cα(ξ)〈α, α〉xi (if
xi = 0 any cα(ξ) will do). The next step is to prove that we can choose the same cα for all
ξ ∈ q.

Assume that we cannot choose the cα’s in such a way. Then there would be ξ = ξ0 +
∑k

j=1 xj(1− θ)Ej ∈ q and η = η0 +
∑k

j=1 yj(1− θ)Ej ∈ q such that cα(ξ) 6= cα(η) for some
α ∈ Ψi. This of course implies that xi, yi 6= 0. Taking the corresponding gα-component of
[ξ, η] as in the previous displayed formula we get

0 = yiα(ξ0) − xiα(η0) = yi〈ξ, Hα〉 − xi〈η, Hα〉 = xiyi〈α, α〉(cα(ξ) − cα(η)),

which leads to a contradiction. Hence we can choose the cα independently of ξ ∈ q, which
allows us to define a function c : Ψ → R by 〈ξ, Hα〉 = cα〈α, α〉xi, with the notation as
above.

Finally, if ξ = ξ0+
∑k

i=1 xi(1−θ)Ei ∈ q we can write ξ0 = ξ′0+
∑

α∈Ψ aαHα with ξ′0 ∈ aΨ =

a ⊖
(
⊕

α∈Ψ RHα

)

and aα ∈ R. Here, the aα must satisfy cα〈α, α〉xi = 〈ξ, Hα〉 = aα〈α, α〉,
so q is contained in one of the model spaces in the statement of the proposition. �

The following lemma is useful to understand how s and s⊥p are related.

Lemma 5.8. If s ⊂ t⊕a⊕n is a subalgebra and s⊥p = {ξ ∈ p : ξ ⊥ s}, then sn = πa⊕n(s) =

{X ∈ a ⊕ n : X ⊥ s⊥p }.

Proof. If X ∈ s, then for all ξ ∈ s⊥p we have 〈X, ξ〉 = 0 by definition. Since k and p are

orthogonal, πa⊕n(X) ⊥ s⊥p .
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Conversely, let X ∈ a⊕n such that X ⊥ s⊥p , and choose Y ∈ (a⊕n)⊖ sn. We may write
Y = H +

∑

λ∈Σ+ Yλ with H ∈ a and Yλ ∈ gλ. Clearly, Y −
∑

λ∈Σ+ θYλ = H +
∑

λ∈Σ+(1 −
θ)Yλ ∈ p, and if Z ∈ s we have 〈Y −

∑

λ∈Σ+ θYλ, Z〉 = 〈Y, Z〉 −
∑

λ∈Σ+〈θYλ, Z〉 = 0,
because Y and Z are perpendicular and so are g−λ and t ⊕ a ⊕ n. This proves that
Y −

∑

λ∈Σ+ θYλ ∈ s⊥p . By assumption we have X ⊥ s⊥p , and so 0 = 〈X, Y −
∑

λ∈Σ+ θYλ〉 =
〈X, Y 〉 −

∑

λ∈Σ+〈X, θYλ〉 = 〈X, Y 〉, again because g−λ and a ⊕ n are perpendicular. Since
Y ∈ (a ⊕ n) ⊖ s is arbitrary, we conclude that X ∈ (a ⊕ n) ⊖ ((a ⊕ n) ⊖ sn) = sn. �

Proposition 5.7 and Lemma 5.8 allow us to conclude the first step of the proof of our
classification.

Theorem 5.9. Let s ⊂ t ⊕ a ⊕ n be a subalgebra such that s⊥p ⊂ a ⊕ p1 is abelian. Then
there are an orthogonal subset Φ ⊂ Λ, numbers aα ∈ R and nonzero vectors Eα ∈ gα for
each α ∈ Φ, and a linear subspace V ⊂ aΦ such that

sn = (V ⊕ aΦ ⊕ n) ⊖

(

⊕

α∈Φ

R(aαHα + Eα)

)

.

Proof. Since s⊥p ⊂ a⊕p1 is abelian, by Proposition 5.7 we have that s⊥p is a linear subspace
of

q = aΦ ⊕

(

k
⊕

i=1

R

(

∑

α∈Φi

aαHα + (1 − θ)Ei

))

.

Here, as usual, Φ = {α ∈ Λ : πgα
(s⊥p ) 6= 0} =

⋃k

i=1 Φi, with Φi connected, and Φi

disconnected to Φj whenever i 6= j, Ei ∈
⊕

α∈Φi
gα with πgα

(Ei) 6= 0 for all α ∈ Φi, and
a : Φ → R a real-valued function. Our first step is to prove that each Φi consists of exactly
one root.

Fix i ∈ {1, . . . , k} and assume that Φi has more than one root. We may write Ei =
∑

α∈Φi
Eα with Eα ∈ gα. Also, take ξ = ξ0 +

∑

j yj(
∑

α∈Φj
aαHα + (1 − θ)Ej) ∈ s⊥p with

yi 6= 0. Since dim
(
⊕

α∈Φi
REα

)

> 1, there exists a nonzero vector X ∈
⊕

α∈Φi
REα such

that X is orthogonal to Ei (or equivalently, to (1−θ)Ei, or to ξ, or to s⊥p ). By Lemma 5.8,
there exists S ∈ t such that S +X ∈ s. We write X =

∑

α∈Φi
xαEα. Now, for each α ∈ Φi,

and again for dimension reasons we can find a vector Zα = Hα +
∑

β∈Φi
zαβEβ such that

Zα is orthogonal to ξ (and hence to s⊥p ). Lemma 5.8 ensures that there exists Tα ∈ t such
that Tα + Zα ∈ s for each α ∈ Φi. By Lemma 5.5 we get 〈[Tα, X], ξ〉 = 〈[S, Zα], ξ〉 = 0.
Since s is a subalgebra and [Eβ, Eγ] ∈ n2, we have

0 = 〈[Tα + Zα, S + X], ξ〉 = 〈[Hα, X], ξ〉 = 〈
∑

β∈Φi

xβ〈α, β〉Eβ, ξ〉 = yi

∑

β∈Φi

〈α, β〉xβ〈Eβ, Eβ〉

for each α ∈ Φi. Putting Aβα = 2〈α,β〉
〈α,α〉 and taking into account that yi 6= 0, the previous

equation is equivalent to
∑

β∈Φi
Aβαxβ〈Eβ, Eβ〉 = 0. Of course, (Aβα) is the Cartan matrix

of the Dynkin subdiagram associated with Φi. Cartan matrices are known to be nonsingular
(see for example [15, Proposition 2.52 (e)]) which means that xβ〈Eβ, Eβ〉 = 0 for all β ∈ Φi.
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This contradicts the fact that X is a nonzero vector and proves that Φi has exactly one
root.

Thus from now one we can assume that s⊥p is a linear subspace of

q = aΦ ⊕

(

⊕

α∈Φ

R (aαHα + (1 − θ)Eα)

)

,

with Eα ∈ gα and Φ an orthogonal subset of Λ. We have to prove that
⊕

α∈Φ R(aαHα+(1−
θ)Eα) ⊂ s⊥p . Consider a vector ξ = ξ0 +

∑

α∈Φ xα(aαHα + (1− θ)Eα) ∈ q orthogonal to s⊥p ,

with ξ0 ∈ aΦ and xα ∈ R. Since ξ is orthogonal to s⊥p , by Lemma 5.8 we can find S ∈ t such
that the vector X = S+ξ0+

∑

α∈Φ xα(aαHα+Eα) is in s. On the other hand, it is clear, using
again Lemma 5.8, that there exists Tα ∈ t such that Zα = Tα + 〈Eα, Eα〉Hα − cα〈α, α〉Eα

is a vector in s. Since s is a subalgebra, [Zα, X] ∈ s for each α ∈ Φ. A calculation using
the facts that t ⊕ a is abelian, ξ0 ∈ aΦ and α + β 6∈ Σ if α, β ∈ Φ and α 6= β, gives

[Zα, X] = xα〈α, α〉(〈Eα, Eα〉 + a2
α〈α, α〉)Eα + [Tα,

∑

β∈Φ

xβEβ] + [S, aα〈α, α〉Eα].

Lemma 5.5 implies that the last two addends above are orthogonal to s⊥p . Since [Zα, X] is

orthogonal to s⊥p , the first addend must be orthogonal to s⊥p as well. By definition of s⊥p ,
the only way this can happen is when xα = 0 for all α ∈ Φ. This implies ξ = ξ0 ∈ aΦ and
proves

⊕

α∈Φ R(aαHα + (1− θ)Eα) ⊂ s⊥p . Now the theorem follows after a straightforward
application of Lemma 5.8. �

Motivated by Theorem 5.9 we introduce the following notation. Let a : Φ → R be a
map and define aα = a(α) for all α ∈ Φ. Furthermore, for each α ∈ Φ we choose a nonzero
vector Eα ∈ ℓΦ ∩ gα. Consider

sΦ,V,a = (V ⊕ aΦ ⊕ n) ⊖

(

⊕

α∈Φ

R(aαHα + Eα)

)

.

As above we will see in Proposition 5.10 that this does not depend on the particular choice
of ℓΦ. We obviously have sΦ,V,0 = sΦ,V for the zero map 0 : Φ → R.

Proposition 5.10. We have Ad(g)sΦ,V,a = sΦ,V with g = Exp(−
∑

α∈Φ aαEα) ∈ N if
Φ 6= ∅ and g = idG if Φ = ∅. In particular, sΦ,V,a is a subalgebra of a ⊕ n. Moreover,
the corresponding connected subgroup SΦ,V,a is conjugate to SΦ,V and induces a hyperpolar
homogeneous foliation. We also have

(sΦ,V,a)
⊥
p = (aΦ ⊖ V ) ⊕

(

⊕

α∈Φ

R(aαHα + (1 − θ)Eα)

)

.

Proof. We define ξα = aαHα + Eα for α ∈ Φ. Then the subalgebra sΦ,V,a can equivalently
be written as sΦ,V,a = (V ⊕aΦ⊕n)⊖

(
⊕

α∈Φ Rξα

)

. Let gα = Exp(−aαEα) and g =
∏

α∈Φ gα.
Since α and β are not connected in the Dynkin diagram, we have [Eα, Eβ] = 0, and so
g = Exp(−

∑

α∈Φ aαEα). Our aim is to prove that Ad(g)sΦ,V,a = sΦ,V .

22



We introduce the following notation:

sα = (V ⊕ aΦ ⊕ n) ⊖ REα, ŝα = (V ⊕ aΦ ⊕ n) ⊖ Rξα.

First we prove that Ad(gα)ŝα = sα for each α ∈ Φ. Note that, since −aαEα ∈ a ⊕ n,
it follows that Ad(gα)(a ⊕ n) = a ⊕ n. Now let X ∈ ŝα. Since Eα is a unit vector and
X ∈ a ⊕ n, we have

〈Ad(gα)X, Eα〉 = 〈X, Ad(Exp(aαθEα))Eα〉 = 〈X, eaα ad(θEα)Eα〉

= 〈X, Eα + aαHα +
a2

α

2
|α|2θEα〉 = 〈X, ξα〉 = 0.

Also, if H ∈ aΦ ⊖ V then α(H) = 0 for each α ∈ Φ, so

〈Ad(gα)X, H〉 = 〈X, Ad(Exp(aαθEα))H〉 = 〈X, eaα ad(θEα)H〉

= 〈X, H + aαα(H)θEα〉 = 〈X, H〉 = 0.

Altogether this proves that Ad(gα)ŝα = sα.
Now let α, β ∈ Φ with α 6= β. We prove that Ad(gα)ŝβ = ŝβ. Since α and β are simple

roots, β − mα is not a root for m ≥ 1. Hence,

Ad(Exp(tθEα))Eβ = et ad(θEα)Eβ =

∞
∑

m=0

tm

m!
ad(θEα)mEβ = Eβ .

If H ∈ a we also get

Ad(Exp(tθEα))H = et ad(θEα)H = H + tα(H)θEα.

Now, let X ∈ ŝβ. Using the previous equations we obtain

〈Ad(gα)X, ξβ〉 = 〈X, Ad(Exp(aαθEα))ξβ〉 = 〈X, ξβ〉 + aα〈α, β〉〈X, θEα〉 = 0.

Also, if H ∈ aΦ ⊖ V we get

〈Ad(gα)X, H〉 = 〈X, Ad(Exp(aαθEα))H〉 = 〈X, H〉 + aαα(H)〈X, θEα〉 = 0.

Altogether this proves Ad(gα)ŝβ = ŝβ . A similar argument shows also that Ad(gα)sβ = sβ.
However, since sΦ,V,a =

⋂

α∈Φ ŝα and sΦ,V =
⋂

α∈Φ sα, using the previous two equalities and
a simple induction argument, we get Ad(g)sΦ,V,a = (

∏

α∈Φ Ad(gα))sΦ,V,a = sΦ,V . �

This is a good point to recall the contents of Theorem 5.9, which says that if s ⊂ t⊕a⊕n

is a subalgebra such that s⊥p ⊂ a⊕p1 is abelian, then there are an orthogonal subset Φ ⊂ Λ,
numbers aα ∈ R and nonzero vectors Eα ∈ gα for each α ∈ Φ, and a linear subspace V ⊂ aΦ

such that sn = sΦ,V,a.

Proposition 5.11. Let s ⊂ t ⊕ a ⊕ n be a subalgebra such that

sn = sΦ,V,a = (V ⊕ aΦ ⊕ n) ⊖

(

⊕

α∈Φ

R(aαHα + Eα)

)

with Φ a subset of orthogonal simple roots, Eα ∈ gα nonzero vectors, V a linear subspace
of aΦ and aα ∈ R, and define E = −

∑

α∈Φ aαEα and g = Exp(E). Then the following
statements hold:
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(i) Ad(g)s is a subalgebra of t ⊕ a ⊕ n and (Ad(g)s)n ⊂ Ad(g)sn = sΦ,V .
(ii) For each α ∈ Φ the projection of (t ⊕ a ⊕ (n ⊖ gα)) ∩ s onto t centralizes Eα.
(iii) V ⊂ (Ad(g)s)n.
(iv) Assume that λ ∈ Σ+ \Φ satisfies λ + α 6∈ Σ for each α ∈ Φ. Then gλ ⊂ (Ad(g)s)n.

In addition, assume that the orbits of the connected subgroup S of G whose Lie algebra is
s form a homogeneous foliation. Then the following further statements hold:

(v) (Ad(g)s)n = Ad(g)sn = sΦ,V .
(vi) Denote by sc the projection of s onto t. Then sc is an abelian subalgebra that

centralizes each Eα. In particular, [sc, s
⊥
p ] = 0.

(vii) With the notation as in (vi), let Sc be the connected subgroup of G whose Lie algebra
is sc. Then Sc acts trivially on νo(S · o).

Remark 5.12. Remark 4.4 shows that the hypothesis that the orbits of S form a homoge-
neous foliation is necessary in Proposition 5.11 (v), (vi) and (vii).

Proof. (i) First note that since n is an ideal of t⊕a⊕n we have Ad(g)(t⊕a⊕n) ⊂ t⊕a⊕n

and Ad(g)s ⊂ t ⊕ a ⊕ n. Proposition 5.10 implies that Ad(g)sn = sΦ,V . We have to prove
that (Ad(g)s)n ⊂ sΦ,V . Let T + H + X ∈ s with T ∈ t, H ∈ a and X ∈ n. We already
have Ad(g)(H +X) ∈ Ad(g)sn = sΦ,V , so it suffices to prove that the projection of Ad(g)T
onto a ⊕ n is in sΦ,V . Since n is an ideal of t ⊕ a ⊕ n this projection is Ad(g)T − T =
∑∞

k=1
1
k!

ad(E)kT ∈ n. We have to prove that 〈Ad(g)T − T, Eα〉 = 0 for all α ∈ Φ. Since

[E, T ] ∈ n and n is nilpotent it follows that ad(E)kT ∈ n⊖ n1 for all k ≥ 2, and for k = 1,
we have 〈[E, T ], Eα〉 = 0 for all α ∈ Φ by Lemma 5.5. Hence, (Ad(g)s)n ⊂ sΦ,V = Ad(g)sn.

(ii) Let α ∈ Φ and T be in the image of the projection of (t ⊕ a ⊕ (n ⊖ gα)) ∩ s onto t.
Note that [T, Eα] ∈ gα ⊖REα since ad(T ) preserves each root space and is skewsymmetric.
Hence, we only have to show that 〈gα⊖REα, [T, Eα]〉 = 0. Let X ∈ gα⊖REα be arbitrary.
Since X ∈ sn, there exists SX ∈ t such that SX + X ∈ s. By definition of T , there
exist H ∈ a and Y ∈ n ⊖ gα such that T + H + Y ∈ s. As s is a subalgebra we have
[SX , Y ] + [X, T ] + [X, H ] + [X, Y ] = [SX + X, T + H + Y ] ∈ s. Since [SX , Y ] ∈ n ⊖ gα,
[X, H ] = −α(H)X ∈ gα ⊖ REα and [X, Y ] ∈ n ⊖ n1, the definition of sn yields

0 = 〈[SX + X, T + H + Y ], aαHα + (1 − θ)Eα〉 = 〈[X, T ], Eα〉 = −〈X, [T, Eα]〉,

which completes the proof of (ii).
(iii) Let H ∈ V ⊂ aΦ. Since H ∈ sn there is TH ∈ t such that TH + H ∈ s. By (ii)

we have [TH , E] = 0 and by definition α(H) = 0 for all α ∈ Φ, so Ad(g−1)(TH + H) =
e− ad(E)(TH + H) = TH + H ∈ s. Hence TH + H ∈ Ad(g)s and H ∈ (Ad(g)s)n.

(iv) Assume λ ∈ Σ+ \ Φ and λ + α 6∈ Σ for any α ∈ Φ. Take X ∈ gλ and TX ∈ t such
that TX + X ∈ s. By (ii) we have [TX , E] = 0. Since λ + α 6∈ Σ for any α ∈ Φ, we also
have [X, E] = 0. Hence, Ad(g−1)(TX +X) = e− ad(E)(TX +X) = TX +X ∈ s. This implies
TX + X ∈ Ad(g)s and X ∈ (Ad(g)s)n, so (iv) follows.

(v) By (i) we already know (Ad(g)s)n ⊂ Ad(g)sn = sΦ,V . We prove the equality by
showing that dim(Ad(g)s)n = dim Ad(g)sn.

By hypothesis and Proposition 2.1, all the orbits of S are principal and the same is true
of Ig(S). Hence the isotropy groups So = S ∩ K and Ig(S)o = Ig(S) ∩ K are conjugate.
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Their Lie algebras are s∩ t and (Ad(g)s)∩ t, respectively. By (ii) we have [s∩ t, E] = 0 so
Ad(g) = ead(E) acts as the identity on s ∩ t. Hence s ∩ t ⊂ (Ad(g)s) ∩ t and thus equality
follows by hypothesis. This implies dim(Ad(g)s)n = dim Ad(g)s − dim(Ad(g)s) ∩ t =
dim s − dim s ∩ t = dim sn = dim Ad(g)sn.

(vi) Obviously, sc is an abelian subalgebra because t is abelian. For the second part, we
assume first that sn = sΦ,V . Fix α ∈ Φ and let X ∈ gα ⊖ REα be arbitrary. Then there
exists SX ∈ t such that SX + X ∈ s. Since Hα ∈ aΦ ⊂ sn, there exists THα

∈ t such that
THα

+Hα ∈ s. As s is a subalgebra we have [THα
+Hα, SX +X] = (ad(THα

)+〈α, α〉1gα
)X ∈

gα ∩ s ⊂ gα ⊖ REα, where 1gα
is the identity transformation of gα. Since 〈α, α〉 6= 0,

ad(THα
) + 〈α, α〉1gα

is an isomorphism. Thus, the previous equality implies gα ⊖REα ∈ s.
This implies SX ∈ s ∩ t and thus [SX , Eα] = 0 by (ii). Also according to (ii), and since
α ∈ Φ is arbitrary, (vi) follows when sn = sΦ,V .

Now we finish the proof of (vi). Let s ⊂ t ⊕ a ⊕ n be a subalgebra such that sn = sΦ,V,a

and assume that all the orbits of the corresponding connected subgroup S of G whose Lie
algebra is s are principal. By (v) we get (Ad(g)s)n = sΦ,V . Take an element T +H +X ∈ s

with T ∈ t, H ∈ a and X ∈ n. Since H+X ∈ sn, it follows that Ad(g)(H+X) ∈ Ad(g)sn =
sΦ,V by Proposition 5.10. Hence, the projection of Ad(g)(T +H +X) onto t is the same as
the projection of Ad(g)T onto t, and as g ∈ N , that projection is T . Now, since (Ad(g)s)n =
sΦ,V , applying the argument in the previous paragraph to the subalgebra Ad(g)s we get
[T, Eα] = [πt(Ad(g)(T +H+X)), Eα] = 0 for all α ∈ Φ. This already implies [E, T ] = 0 and
thus Ad(g)T = T , so Ad(g)(T +H +X) = T +Ad(g)(H +X) and Ad(g)(H +X) ∈ a⊕n.
Since [t, a] = 0, we obtain [T, (aΦ⊖V )⊕

(
⊕

α∈Φ R(aαHα + (1 − θ)Eα)
)

] = 0 and the result
follows.

(vii) Let t ∈ Sc and ξ ∈ νo(S · o). Since s⊥p ⊂ p we may identify s⊥p and νo(S · o). By

(vi), sc centralizes s⊥p , so with the above identification we get t∗ξ = Ad(t)ξ = ξ. �

We will need the following result:

Lemma 5.13. Let s be a subalgebra of t ⊕ a ⊕ n and sn its projection onto a ⊕ n. Let λ
and µ be two positive roots (not necessarily different). If gλ + gµ ⊂ sn, then gλ+µ ⊂ sn.

Proof. We may assume that λ + µ is a root; otherwise there is nothing to prove. Let
X ∈ gλ and Y ∈ gµ. By definition there exist S, T ∈ t such that S + X, T + Y ∈ s. Then,
[S + X, T + Y ] = [S, Y ] − [T, X] + [X, Y ] ∈ s. Recall that [k0, gν ] ⊂ gν for any ν ∈ Σ. The
vector [S, Y ]− [T, X]+ [X, Y ] is in n and hence in sn. On the other hand, [S, Y ]− [T, X] ∈
gµ + gλ ⊂ sn, so [X, Y ] ∈ sn. Since, X and Y are arbitrary, gλ+µ = [gλ, gµ] ⊂ sn. �

We now drop the assumption s⊥p ⊂ a ⊕ p1.

Let s be a subalgebra of t ⊕ a ⊕ n such that s⊥p is abelian. From now on we assume
that the orbits of the connected closed subgroup S of G whose Lie algebra is s form a
homogeneous foliation on M . As usual, we denote by sn = πa⊕n(s) the projection of s onto
the noncompact part of t ⊕ a ⊕ n.

We define s̃ = s+(n2 ⊕· · ·⊕nm) = s+(n⊖n1) where m = m∅ is the level of the highest
root of Σ. Since n⊖ n1 is an ideal of t⊕ a⊕ n it follows that s̃ is a subalgebra of t⊕ a⊕ n.
Also, s ⊂ s̃ and thus s̃⊥p ⊂ s⊥p , which means that s̃⊥p is also an abelian subspace of p.
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It is obvious by definition that s̃⊥p ⊂ a ⊕ p1. Hence Theorem 5.9 implies that s̃n :=
πa⊕n(s̃) = sΦ,V,a with Φ ⊂ Λ a subset of orthogonal simple roots, aα ∈ R, 0 6= Eα ∈ gα and
V ⊂ aΦ as usual. By Proposition 5.10, there exists g ∈ N such that Ad(g)s̃n = sΦ,V . This
element can be taken to be g = Exp(E) with E = −

∑

α∈Φ aαEα.

We define ŝ = Ad(g)s. The subgroup of G whose Lie algebra is ŝ is Ŝ = Ig(S). Ob-

viously, Ŝ induces a hyperpolar homogeneous foliation on M . By Proposition 5.11 (i)
we get ŝn := πa⊕n(ŝ) ⊂ (Ad(g)s̃)n ⊂ Ad(g)s̃n = sΦ,V . Then it follows that (aΦ ⊖ V ) ⊕
(
⊕

α∈Φ R(1 − θ)Eα

)

⊂ ŝ⊥p . Since ŝ⊥p is abelian, we have that ŝ⊥p must be contained in the

centralizer Zp((aΦ ⊖ V ) ⊕
(
⊕

α∈Φ R(1 − θ)Eα)
)

of (aΦ ⊖ V ) ⊕
(
⊕

α∈Φ R(1 − θ)Eα

)

in p.
Our first aim is essentially to calculate this centralizer. Eventually, this will allow us to
determine ŝn and later sn.

We start with
⊕

α∈Φ R(1 − θ)Eα where the situation is a bit more involved. We deal
with this in a series of lemmas.

Lemma 5.14. Let α ∈ Φ and let ξ ∈ p be written as ξ = ξ0 +
∑

λ∈Σ+(1− θ)ξλ with ξ0 ∈ a

and ξλ ∈ gλ for each λ ∈ Σ+. Then ξ is in the centralizer Zp(R(1 − θ)Eα) of R(1 − θ)Eα

in p if and only if ξ0 ∈ a{α}, ξα ∈ REα, ξ2α = 0 and [ξλ−α, Eα] = [ξλ+α, θEα] for all
λ ∈ Σ+ \ {α, 2α}.

Proof. If the vector ξ commutes with (1 − θ)Eα a simple calculation yields

0 = [ξ, (1 − θ)Eα] = (1 + θ)







α(ξ0)Eα +
∑

λ∈Σ+

[ξλ, Eα] −
∑

λ∈Σ+\Λ
[θξλ, Eα] − [θξα, Eα]







.

The above vector is zero if and only if each of its components in kλ, λ ∈ Σ+ ∪ {0}, is zero.
The k0-component is zero if and only if [θξα, Eα] ∈ a, and the k2α-component is zero if

and only if [ξα, Eα] = 0. Denote by v the vector subspace of gα spanned by Eα and ξα. The
above two conditions imply [v, θv] ⊂ a and [v, v] = 0. Since α is a simple root, Lemma 5.3
implies that v is 1-dimensional and hence ξα ∈ REα.

The kα-component vanishes if and only if α(ξ0)Eα− [ξ2α, θEα] = 0. Taking inner product
with Eα yields

0 = 〈α(ξ0)Eα − [ξ2α, θEα], Eα〉 = α(ξ0)〈Eα, Eα〉 − 〈ξ2α, [Eα, Eα]〉 = α(ξ0)〈Eα, Eα〉.

Hence, ξ0 ∈ a{α} = a ⊖ RHα. Taking into account the above equation, this also implies
[ξ2α, θEα] = 0. Using the Jacobi identity we get

0 = [[ξ2α, θEα], Eα] = −[[θEα, Eα], ξ2α] = −〈Eα, Eα〉[Hα, ξ2α] = −2〈α, α〉〈Eα, Eα〉ξ2α,

which implies ξ2α = 0.
Finally, if λ ∈ Σ+ \ {α, 2α}, the kλ-component is (1 + θ)([ξλ−α, Eα] − [ξλ+α, θEα]). This

vanishes if and only if [ξλ−α, Eα] − [ξλ+α, θEα] = 0 because gλ and g−λ are linearly inde-
pendent. Since the “only if ” part is elementary, the result follows. �

Lemma 5.15. Let α ∈ Φ and λ ∈ Σ+ \ {α, 2α}, and assume that the α-string of λ has
length greater than one. Then

⊕

m∈Z
gλ+mα ⊂ ŝn.
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Proof. Since (1 − θ)Eα ∈ ŝ⊥p and ŝ⊥p is abelian, we have ŝ⊥p ⊂ Zp(R(1 − θ)Eα). Let ξ ∈ ŝ⊥p
and write as usual ξ = ξ0 +

∑

λ∈Σ+(1 − θ)ξλ with ξ0 ∈ a and ξλ ∈ gλ for each λ ∈ Σ+.
Lemma 5.14 already implies that ξ0 ∈ a{α}, ξα ∈ REα and ξ2α = 0. We have to prove that
ξλ+mα = 0 for all m ∈ Z. We prove this assertion depending on the whether the length of
the α-string of λ is 2, 3 or 4. Note that λ 6∈ Φ.

Assume that the length of the α-string of λ is 2. In this case we may assume λ−α, λ+2α 6∈
Σ+ and λ, λ + α ∈ Σ+ (switch to λ − α if necessary). Then α and λ span a root system
of type A2. Since λ + 2α 6∈ Σ+, Lemma 5.14 implies [ξλ, Eα] = [ξλ+2α, θEα] = 0. Since
λ − α 6∈ Σ and λ + α ∈ Σ we get from Lemma 5.4 that ξλ = 0. Similarly, by Lemma
5.14 we have [ξλ+α, θEα] = [ξλ−α, Eα] = 0. Since λ + α − (−α) = λ + 2α 6∈ Σ and
λ + α + (−α) = λ ∈ Σ, Lemma 5.4 yields ξλ+α = 0 which finishes the proof in this case.

Assume that the α-string of λ has length 3. In this case we may assume λ−α, λ+3α 6∈ Σ+

and λ, λ + α, λ + 2α ∈ Σ+. Then, λ and α span a root system of type B2 or BC2. First
we claim that ξλ+α ∈ [gα ⊖ REα, gλ]. Since the root system spanned by λ and α is of
type B2 or BC2, λ + α and α are orthogonal and have the same length. This implies that
there exists an element of the Weyl group that maps α to λ + α. Hence gλ+α and gα have
the same dimension. By Lemma 5.4, for any nonzero Zλ ∈ gλ, ad(Zλ) : gα → gλ+α is
injective, hence bijective. We write ξλ+α = [Zλ, cEα + Zα] with c ∈ R and Zα ∈ gα ⊖REα.
Since 〈Zα, Eα〉 = 0, Lemma 5.2 yields (1− θ)[θEα, Zα] = 0 and thus [θEα, Zα] ∈ k0. Hence
ad([θEα, Zα]) is skewsymmetric. Lemma 5.14 implies [ξλ+α, θEα] = [ξλ−α, Eα] = 0. Then,
using the Jacobi identity, we get

0 = 〈[ξλ+α, θEα], Zλ〉 = 〈[[Zλ, cEα + Zα], θEα], Zλ〉

= −c〈[[Eα, θEα], Zλ], Zλ〉 − 〈[[Zα, θEα], Zλ], Zλ〉

= c〈λ, α〉〈Eα, Eα〉〈Zλ, Zλ〉 − 〈ad([Zα, θEα])Zλ, Zλ〉 = c〈λ, α〉〈Eα, Eα〉〈Zλ, Zλ〉.

Hence c = 0 and our assertion follows.
Now we claim that gλ ⊕ gλ+2α ⊂ ŝn. By Lemma 5.14 we have

Zpλ⊕pλ+2α
(R(1 − θ)Eα) = {(1 − θ)(ηλ + ηλ+2α) ∈ pλ ⊕ pλ+2α : [ηλ, Eα] = [ηλ+2α, θEα]},

whose dimension coincides with dim pλ. Note that ηλ+2α is uniquely determined by ηλ since

[[ηλ, Eα], Eα] = [[ηλ+2α, θEα], Eα] = −[[θEα, Eα], ηλ+2α] = −〈Eα, Eα〉〈α, λ + 2α〉ηλ+2α.

Since Hα ∈ ŝn, by Lemma 5.14 there exists S ∈ t such that S + Hα ∈ ŝ. We prove
that Zpλ⊕pλ+2α

(R(1 − θ)Eα) is invariant under ad(S). Let X ∈ gα ⊖ REα. Then there
exists T ∈ t such that T + X ∈ ŝ by Lemmas 5.8 and 5.14. Hence, [S + Hα, T + X] =
(ad(S) + 〈α, α〉1gα

)X ∈ ŝ ∩ gα ⊂ ŝn. Using again Lemma 5.14 we get 0 = 〈(ad(S) +
〈α, α〉1gα

)X, (1− θ)Eα〉 = −〈X, ad(S)Eα〉. Since X ∈ gα ⊖REα and ad(S)Eα ∈ gα ⊖REα

(because ad(S) is skewsymmetric), the above equation implies [S, Eα] = 0. Note that
[S, θEα] = θ[S, Eα] = 0. Now assume that (1 − θ)(ηλ + ηλ+2α) ∈ Zpλ⊕pλ+2α

(R(1 − θ)Eα).
We have to show that (1 − θ)([S, ηλ] + [S, ηλ+2α]) ∈ Zpλ⊕pλ+2α

(R(1 − θ)Eα). Indeed, using
the Jacobi identity and [S, Eα] = 0 we get

[[S, ηλ], Eα] = −[[ηλ, Eα], S] = −[[ηλ+2α, θEα], S] = [[S, ηλ+2α], Eα].
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This proves that Zpλ⊕pλ+2α
(R(1 − θ)Eα) is invariant under ad(S).

Let Zλ ∈ gλ. Then there exists Zλ+2α ∈ gλ+2α such that Zλ + Zλ+2α is perpendicular
to Zpλ⊕pλ+2α

(R(1 − θ)Eα). Thus Lemma 5.8 yields that Zλ + Zλ+2α ∈ ŝn, and so there
exists T ∈ t such that T + Zλ + Zλ+2α ∈ ŝ. Hence [S + Hα, T + Zλ + Zλ+2α] = [S, Zα +
Zλ+2α] + 〈λ, α〉Zλ + 〈λ + 2α, α〉Zλ+2α ∈ ŝ ∩ (gλ ⊕ gλ+2α). As Zλ + Zλ+2α is perpendicular
to Zpλ⊕pλ+2α

(R(1 − θ)Eα) and Zpλ⊕pλ+2α
(R(1 − θ)Eα) is ad(S)-invariant, it follows that

[S, Zλ +Zλ+2α] is also perpendicular to Zpλ⊕pλ+2α
(R(1− θ)Eα), and so [S, Zλ +Zλ+2α] ∈ ŝn

by Lemma 5.5. Hence, 〈λ, α〉Zλ + 〈λ + 2α, α〉Zλ+2α ∈ ŝn. Since λ and α span a root
system of type B2 or BC2 we know that 〈λ, α〉 < 0 and 〈λ + 2α, α〉 > 0. Therefore we
have Zλ ∈ ŝn, which implies gλ ⊂ ŝn. Similarly, one can show gλ+2α ⊂ ŝn, which proves
our claim. Hence, ξλ, ξλ+2α = 0.

We have that (gα ⊖ REα) ⊕ gλ ⊂ ŝn. Let X ∈ gα ⊖ REα and Y ∈ gλ. There exist
S, T ∈ t such that S + X, T + Y ∈ ŝ. Hence, [S + X, T + Y ] = [S, Y ] − [T, X] + [X, Y ] ∈
ŝ∩(gα⊕gλ⊕gα+λ) ⊂ ŝn. Then, by Lemma 5.8, the right-hand side of the previous equation
is orthogonal to (1 − θ)Eα so [T, X] ∈ gα ⊖ REα ⊂ ŝn. Since [S, Y ] ∈ gλ ⊂ ŝn we conclude
[X, Y ] ∈ ŝn. As X and Y are arbitrary, ξλ+α ∈ [gα ⊖REα, gλ] ⊂ ŝn. This implies ξλ+α = 0
and finishes the proof for α-strings of λ of length 3.

Finally, assume that the length of the α-string of λ is 4. In this case we may assume
λ − α, λ + 4α 6∈ Σ+ and λ, λ + α, λ + 2α, λ + 3α ∈ Σ+. Then α and λ span a root system
of type G2. A consequence of this fact is that all four restricted root spaces have the same
dimension. Now, by Lemma 5.4, the linear map ad(Eα) : gλ → gλ+α is injective, and hence
bijective. Thus, we can write ξλ+α = [Eα, Xλ] with Xλ ∈ gλ. We get from Lemma 5.14
that

0 = [ξλ−α, Eα] = [ξλ+α, θEα] = [[Eα, Xλ], θEα] = −[[θEα, Eα], Xλ] = −〈λ, α〉〈Eα, Eα〉Xλ.

Since 〈λ, α〉 6= 0, this implies Xλ = 0, and hence ξλ+α = 0. Since λ + 3α − (−α) 6∈ Σ and
λ + 3α + (−α) ∈ Σ, Lemma 5.4 and [ξλ+3α, θEα] = [ξλ+α, Eα] = 0 imply ξλ+3α = 0.

Another application of Lemma 5.4 implies that ad(θEα) : gλ+3α → gλ+2α is injective
and hence bijective. A similar argument as before writing ξλ+2α = [θEα, Xλ+3α] with
Xλ+3α ∈ gλ+3α yields, using Lemma 5.14,

0 = [ξλ+4α, θEα] = [ξλ+2α, Eα] = [[θEα, Xλ+3α], Eα]

= −[[Eα, θEα], Xλ+3α] = 〈λ + 3α, α〉〈Eα, Eα〉Xλ+3α.

Hence, Xλ+3α = 0 and ξλ+2α = 0 because 〈λ + 3α, α〉 6= 0. Since λ−α 6∈ Σ and λ + α ∈ Σ,
Lemma 5.4 and [ξλ, Eα] = [ξλ+2α, θEα] = 0 imply ξλ = 0. �

We define Ψ = {γ ∈ Λ : 〈γ, α〉 = 0 for all α ∈ Φ}. The root subsystem of Σ generated
by Ψ is denoted by ΣΨ. We also denote by 2Φ the set of roots of the form 2α with α ∈ Φ.
Of course, the number of elements of 2Φ is at most the number of irreducible components
of Σ. The root subsystem generated by Ψ ∪ Φ is ΣΨ ∪ Φ ∪ 2Φ.
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Lemma 5.16. We have

ŝ⊥p ⊂ aΦ ⊕

(

⊕

α∈Φ

R(1 − θ)Eα

)

⊕ (pΨ ⊖ a) .

Proof. If Φ = ∅ then Ψ = Λ and ΣΨ = Σ, and so the assertion is that ŝ⊥p ⊂ p and there
is nothing to prove in that case. Hence, we may assume that Φ 6= ∅. It can happen
that Φ ∪ Ψ = Λ. By definition of Ψ this implies that Σ is reducible, and in fact it is the
direct sum of two root systems, one generated by Ψ and the other one generated by Φ.
Moreover, each element of Φ is in an irreducible component of rank one of Σ. In that case,
ΣΨ = Σ \ (Φ ∪ 2Φ) and the result follows readily from Lemma 5.14. Hence, we may also
assume that Φ ∪ Ψ 6= Λ.

Let Z = HΦ∪Ψ be the characteristic element in a of the gradation g =
⊕

k∈Z
gk

Φ∪Ψ of g

corresponding to the parabolic subalgebra qΦ∪Ψ. We claim that if λ ∈ Σ+ and λ(Z) = 1
then there exists α ∈ Φ such that λ + α ∈ Σ+ or λ − α ∈ Σ+.

In order to prove this, let λ ∈ Σ+ be such that λ(Z) = 1. If 〈λ, α〉 6= 0 for some
α ∈ Φ, then Aλα 6= 0, where Aλα is the corresponding Cartan integer. This clearly implies
our claim. Thus we may assume 〈λ, α〉 = 0 for all α ∈ Φ. Write λ =

∑

γ∈Λ nγγ with

nγ ≥ 0. Then by hypothesis, 1 = λ(Z) =
∑

γ∈Λ\(Φ∪Ψ) nγ . Since nγ ≥ 0 we can then

write λ =
∑

α∈Φ nαα + β + µ, where β ∈ Λ \ (Φ ∪ Ψ) and µ ∈ span Ψ. Now, since Φ
consists of orthogonal roots, for each α ∈ Φ we have 0 = 〈λ, α〉 = nα〈α, α〉 + 〈β, α〉 =
(nα + Aβα/2)〈α, α〉 so the Cartan integer satisfies Aβα = −2nα. It cannot happen that
nα = 0 for all α ∈ Φ because in that case the previous equality implies 〈β, α〉 = 0 for all
α ∈ Φ and hence β ∈ Ψ, contradiction. Therefore we can find α ∈ Φ such that nα > 0.
We will see that λ ± α ∈ Σ+, from where the claim will follow.

By the properties of Cartan integers, the equation Aβα = −2nα can only hold when
nα = 1 and {α, β} spans a root system of type B2 (or BC2). It is also obvious that λ
must be a root of the root subsystem of Σ determined by the irreducible component where
both α and β lie. Hence, the connected component of α and β in the Dynkin diagram of
the original root system Σ has a double arrow pointing to α. Therefore, this connected
component is one of Br, Cr, BCr or F4. Relabel the corresponding reduced Dynkin diagram
as indicated in the following figure:

��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

α1 α2 αl−2 β α αl+1

+3

According to this labeling µ ∈ span{α1, . . . , αl−2, αl+2, . . . } (whenever the corresponding
simple roots exist). However, since αi is orthogonal to α and β for i ≥ l +2, it follows that
λ can be a root only if µ ∈ span{α1, . . . , αl−2}, so the problem reduces to studying a root

of the form λ =
∑l

i=1 niαi in a root system of type Bl or BCl with the labeling as above
and with nl−1 = 1, nl ≥ 1. By the description of all roots for these root systems, λ must
be of the form λ = αi + · · · + αl or λ = αi + · · · + αl−1 + 2αl. Only the first of these two
possibilities can be orthogonal to α, and in that case it follows that λ ± α ∈ Σ+.
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Therefore, if λ ∈ Σ+ and λ(Z) = 1 there exists α ∈ Φ such that λ + α ∈ Σ+ or
λ − α ∈ Σ+. Since λ 6= α, 2α, we can now apply Lemma 5.15 to obtain that g1

Φ∪Ψ ⊂ ŝn.
Since the gradation is of type α0, it follows from Lemma 5.13 that

⊕

k≥1 gk
Φ∪Ψ ⊂ ŝn. This

implies that ŝ⊥p is contained in the projection of g0 onto p. Obviously λ(Z) = 0 if and only
if λ ∈ ΣΨ ∪ Φ ∪ 2Φ. Combining this with Lemma 5.14 we get the result. �

Now we turn our attention to the a-part of ŝ⊥p and define Σ̄ = {λ ∈ Σ : λ(aΦ⊖V ) = 0} =

{λ ∈ Σ : Hλ ∈ V ⊕aΦ}. It is obvious that Σ̄ is a (possibly empty) root subsystem of Σ. We
denote by Σ̄+ a set of positive roots with respect to an ordering consistent with that of Σ.
We define Π = Λ ∩ Σ̄ and denote by ΣΠ the corresponding root subsystem of Σ generated
by Π. Consider in ΣΠ an ordering compatible with that of Σ so that Σ+

Π = ΣΠ ∩ Σ+.

Lemma 5.17. We have

ŝ⊥p ⊂ aΦ ⊕

(

⊕

α∈Φ

R(1 − θ)Eα

)

⊕ (pΠ ⊖ a) .

Proof. Write ξ ∈ p as ξ = ξ0 +
∑

λ∈Σ+(1 − θ)ξλ with ξ0 ∈ a and ξλ ∈ gλ for each λ ∈ Σ+.
Given H ∈ aΦ⊖V we get [H, ξ] = (1+θ)

∑

λ∈Σ+ λ(H)ξλ, which implies that the centralizer

of aΦ ⊖ V in p is Zp(aΦ ⊖ V ) = a ⊕
(
⊕

λ∈Σ̄+ pλ

)

.
For any α ∈ Φ it is obvious that α(aΦ ⊖ V ) = 0, and so Φ ⊂ Σ̄. Using Lemma 5.16 and

Zp(aΦ ⊖ V ) = a ⊕
(
⊕

λ∈Σ̄+ pλ

)

we easily get

ŝ⊥p ⊂ aΦ ⊕

(

⊕

α∈Φ

R(1 − θ)Eα

)

⊕





⊕

λ∈Σ+

Ψ
∩Σ̄

pλ



 .

This implies that for any λ ∈ Σ+ \ (Φ ∪ (ΣΨ ∩ Σ̄)) we have gλ ∈ ŝn. We will use this fact
several times during this proof.

Let Z = HΛ\(Ψ\Π) be the characteristic element in a of the gradation g =
⊕

k∈Z
gk

Λ\(Ψ\Π)

of g corresponding to the parabolic subalgebra qΛ\(Ψ\Π). Let λ ∈ Σ+
Ψ be written as λ =

∑

γ∈Ψ nγγ and assume λ(Z) = 1. Then 1 = λ(Z) =
∑

γ∈Ψ\Π nγ , so we can write λ = α+µ,

where α ∈ Ψ \Π and µ ∈ span Π. By definition of µ it is obvious that µ(aΦ ⊖ V ) = 0, and
by definition of α it is clear that λ(aΦ⊖V ) = α(aΦ⊖V ) 6= 0, that is, λ 6∈ Σ̄. Thus we have
gλ ⊂ ŝn. On the other hand, assume λ ∈ Σ+ \ Σ+

Ψ satisfies λ(Z) = 1. Then we conclude
gλ ⊂ ŝn unless λ ∈ Φ. The latter case is not possible since Φ ⊂ Λ \Ψ ⊂ Λ \ (Ψ \Π), which
would imply λ(Z) = 0. Hence, the conclusion is that for any λ ∈ Σ+ satisfying λ(Z) = 1
we have gλ ⊂ ŝn. This implies that g1

Λ\(Ψ\Π) ⊂ ŝn, and hence, by Lemma 4.13 we have
⊕

k≥1 gk
Λ\(Ψ\Π) ⊂ ŝn. Combining this with the above inclusion for ŝ⊥p implies the result. �

We are now ready to determine sn.

Lemma 5.18. We have sn = sΦ,V,a.

Proof. Fix α ∈ Π. Since α ∈ Σ̄ we have α(aΦ ⊖ V ) = 0 and hence Hα ∈ V ⊕ aΦ. On the
other hand, α ∈ Σ+

Ψ so Hα ∈ aΦ. Since aΦ ∩ aΦ = {0}, Proposition 5.11 (iii) applied to s̃
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implies Hα ∈ V ⊂ (Ad(g)s̃)n. Thus there exists S ∈ t such that S + Hα ∈ Ad(g)s̃. Let
X ∈ gα. By definition of Π and Proposition 5.11 (iv) we get gα ⊂ (Ad(g)s̃)n. Then there
exists T ∈ t such that T + X ∈ Ad(g)s̃. Since Ad(g)s̃ is a Lie algebra and [t, gα] ⊂ gα

we have [S + Hα, T + X] = [S, X] + [Hα, X] = (ad(S) + 〈α, α〉1gα
)X ∈ (Ad(g)s̃) ∩ gα,

where 1gα
is the identity of gα. Since the linear map ad(S) is skewsymmetric, it follows

that ad(S) + 〈α, α〉1gα
: gα → gα is an isomorphism. However, X ∈ gα is arbitrary, and

so gα ⊂ Ad(g)s̃. Since α ∈ Π is also arbitrary it follows that for all α ∈ Π we have
gα ⊂ Ad(g)s̃.

Let us denote by n̄s = ns ∩ nΠ the direct sum of root spaces associated with roots of Σ+
Π

of level s (note that the level of a root in Σ+
Π coincides with the level of this root as a root

of Σ). The previous argument shows that n̄1 ⊂ Ad(g)s̃. Choose a basis {E1, . . . , Ek} of
n̄1. Since g ∈ N it follows that Ad(g)(n⊖ n1) ⊂ n⊖ n1, and as Ad(g) is an automorphism
equality holds. Hence, by definition of s̃ and ŝ it is obvious that Ad(g)s̃ = ŝ + (n ⊖ n1).
Therefore, for each i, there exists Xi ∈ n ⊖ n1 such that Ei + Xi ∈ ŝ.

We introduce the following notation. Define [Y1, Y2, . . . , Yl] = [Y1, [Y2, . . . , Yl]] induc-
tively, being [Y1, Y2] the usual Lie bracket. Denote by k the level of the highest root of Σ+

Π.
Let s be the smallest integer for which n̄s ⊕ · · · ⊕ n̄k ⊂ ŝn. Our aim is to prove s = 1.

First we prove s ≤ k, that is, n̄k ⊂ ŝn. Since [na, nb] ⊂ na+b and n⊖(n1⊕n̄2⊕· · ·⊕n̄k) ⊂ ŝn

by Lemma 5.17, we have [Ei1 +Xi1 , . . . , Eik +Xik ] ≡ [Ei1 , . . . , Eim] mod ŝn. Here we have
used the fact that the level of a root in Σ+

Π is the same as the level of that root as a root
of Σ+. The brackets of k vectors in the right-hand side of the previous formula span n̄k

whereas the brackets on the left-hand side belong to ŝ ∩ n because ŝ ∩ n is a subalgebra.
Since ŝ ∩ n ⊂ ŝn, this implies n̄k ⊂ ŝn.

Now assume s > 1. Hence n̄s ⊕· · ·⊕ n̄k ⊂ ŝn but n̄s−1 6⊂ ŝn. We use again [na, nb] ⊂ na+b

and n⊖ (n1 ⊕ n̄2 ⊕· · ·⊕ n̄s−1) ⊂ ŝn, which follows from Lemma 5.17 and the definition of s.
Thus we get [Ei1 + Xi1, . . . , Eis−1

+ Xis−1
] ≡ [Ei1 , . . . , Eis−1

] mod ŝn. Again, the brackets
in the right-hand side of the congruency span n̄s−1 whereas the brackets in the left-hand
side belong to ŝ ∩ n ⊂ ŝn. Then we get n̄s−1 ⊂ ŝn, which is a contradiction. Therefore
s = 1 and thus n̄1 ⊕ · · · ⊕ n̄k ⊂ ŝn. Altogether this implies

(aΦ ⊖ V ) ⊕

(

⊕

α∈Φ

R(1 − θ)Eα

)

⊂ ŝ⊥p ⊂ aΦ ⊕

(

⊕

α∈Φ

R(1 − θ)Eα

)

.

Since V ⊂ (Ad(g)s̃)n by Proposition 5.11 (iii) and n⊖ n1 ⊂ ŝn by the above equation, it
follows from Ad(g)s̃ = ŝ + (n ⊖ n1) that ŝn = sΦ,V .

Let T +H+X ∈ ŝ with T ∈ t, H ∈ a and X ∈ n. By hypothesis, the connected subgroup
Ŝ of G with Lie algebra ŝ induces a hyperpolar foliation. Let E = −

∑

α∈Φ aαEα and
g = Exp(E). It follows from Proposition 5.11 (vi) that [ŝc, E] = 0, and hence Ad(g−1)(T +
H + X) = T + Ad(g−1)(H + X). Proposition 5.10 shows that Ad(g−1)sΦ,V = sΦ,V,a. Since
s = Ad(g−1)ŝ, the result follows. �

To conclude our proof we need to prove the following result:
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Proposition 5.19. Let t⊕ a⊕ n be a maximally noncompact Borel subalgebra of g. Let s

be a subalgebra of t ⊕ a ⊕ n such that sn = πa⊕n(s) = sΦ,V,a with some orthogonal subset Φ
of Λ. Assume that the orbits of the connected subgroup S of G whose Lie algebra is s form
a homogeneous foliation on M . Then the actions of S and SΦ,V are orbit equivalent.

Proof. First, assume s is a subalgebra of t ⊕ a ⊕ n such that sn = sΦ,V . Certainly, sn is
a subalgebra of a ⊕ n. Denote by S and Sn the corresponding connected subgroups of G.
Also, denote by N̄ the connected subgroup of G whose subalgebra is n⊖ (

⊕

α∈Φ REα). We
prove that S and Sn have the same orbits.

Assume that T + H ∈ s with H ∈ a and t ∈ t. Let X ∈ n ⊖
(
⊕

α∈Φ REα

)

. By
definition, there exists R ∈ s such that R + X ∈ s. As t ⊕ a is abelian, [T + H, X] =
[T + H, R + X] ∈ s∩ n. Hence, if tan ∈ S, there exists n′ ∈ N̄ such that tan = n′ta. Since
t ⊕ a is abelian we have ta = at, and since a normalizes n ⊖

(
⊕

α∈Φ REα

)

, there exists

n′′ ∈ N̄ such that n′a = an′′. Altogether this implies tan = n′ta = n′at = an′′t. Thus,
tan(o) = an′′t(o) = an′′(o) and hence S · o ⊂ Sn · o. Since both orbits S · o and Sn · o have
the same dimension and are connected and complete we conclude S · o = Sn · o. Now, let
p = expo(ξ) with ξ ∈ νo(S · o). Using the fact that S acts isometrically on M and that
t∗ξ = ξ by Proposition 5.11 (vii) we get

tan(p) = tan(expo(ξ)) = exptan(o)((tan)∗ξ) = expan′′(o)((an′′)∗ξ) = an′′(expo(ξ)) = an′′(p).

Hence, S · p ⊂ Sn · p, and thus equality holds. Since the action of S is hyperpolar, all the
orbits can be obtained in this way, and so S and Sn have the same orbits as claimed above.

Now we deal with the general case, that is, sn = sΦ,V,a. Let S be the connected subgroup
of G with Lie algebra s. By Proposition 5.11 (v), there exists g ∈ N such that (Ad(g)s)n =
Ad(g)sn = sΦ,V . The subgroup Ig(Sn) whose Lie algebra is Ad(g)sn = (Ad(g)s)n has the
same orbits as Ig(S) by the previous argument. Then Ig(Sn) and S have the same orbits
and hence the theorem follows. �

Now we finish the proof of Theorem 4.11 (ii). Let H be a closed subgroup of the isometry
group of M inducing a hyperpolar homogeneous foliation on M . By Proposition 5.1, the
action of H is orbit equivalent to the action of a closed solvable subgroup S whose Lie
algebra s is contained in a maximally noncompact Borel subalgebra. Then, there exists a
Cartan decomposition of g = k ⊕ p and a root space decomposition g = g0 ⊕

(
⊕

λ∈Σ gλ

)

with respect to a maximal abelian subspace a of p such that the projection of s onto a⊕ n

is given by sn = sΦ,V,a by Lemma 5.18. Proposition 5.19 then implies that the actions of
the connected subgroups of G with Lie algebras s and sΦ,V,a are orbit equivalent. Hence,
the action of H is orbit equivalent to the action of SΦ,V on M , which concludes the proof
of Theorem 4.11.

6. Geometry of the leaves of hyperpolar homogeneous foliations

In this section we study the extrinsic geometry of the leaves of hyperpolar homogeneous
foliations on noncompact symmetric spaces.
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Proposition 6.1. The orbit SΦ,V · p is isometrically congruent to SΦ,V,a · o for some a :
Φ → R.

Proof. Let D be the left-invariant distribution on M determined by (a⊖V )⊕ℓΦ. Obviously,
(a ⊖ V ) ⊕ ℓΦ is a subalgebra of a ⊕ n, and since AN is simply connected, the leaf of D
through o is Do = Exp((a⊖V )⊕ℓΦ) ·o. We prove that D is autoparallel. Using the formula
for the Levi-Civita connection it is easy to obtain ∇HH ′ = ∇HEα = 0, ∇Eα

H = −α(H)Eα

and ∇Eα
Eβ = 〈Eα, Eβ〉Hα for any H, H ′ ∈ a ⊖ V and α, β ∈ Φ.

In particular, the leaf Do is totally geodesic in M and since νo(SΦ,V · o) = (aΦ ⊖V )⊕ ℓΦ,
it contains the section of SΦ,V through o. Since a section of SΦ,V intersects all the orbits,
we may assume that p lies in that section and so, the point p can be written as p = g(o)
with g = Exp(X) and X ∈ (a⊖ V )⊕ ℓΦ. Hence, SΦ,V · p = g(g−1SΦ,V g) · o = gIg(SΦ,V ) · o.
Since g is an isometry of M , the orbit SΦ,V · p is isometrically congruent to Ig(SΦ,V ) · o.
We will now prove that Ig(SΦ,V ) = SΦ,V,a for some a : Φ → R, and for that we will show
that Ad(g)sΦ,V = sΦ,V,a.

Let H ∈ a. We show that Ad(Exp H)sΦ,V = sΦ,V . First notice that Ad(Exp H)sΦ,V ⊂
a ⊕ n, so it suffices to prove that Ad(Exp H)sΦ,V is orthogonal to (aΦ ⊖ V ) ⊕ ℓΦ. Let
X ∈ sΦ,V , H ′ ∈ aΦ ⊖ V and α ∈ Φ. Then our assertion follows from 〈Ad(Exp H)X, H ′〉 =
〈X, Ad(Exp(−θH))H ′〉 = 〈X, ead(H)H ′〉 = 〈X, H ′〉 = 0, and

〈Ad(Exp H)X, Eα〉 = 〈X, ead(H)Eα〉 =
∞
∑

k=0

α(H)k

k!
〈X, Eα〉 = eα(H)〈X, Eα〉 = 0.

Write X = H+
∑

α∈Φ(xαHα+yαEα) with H ∈ aΦ⊖V and xα, yα ∈ R. Since RHα⊕REα

is a subalgebra, there exist constants aα, bα ∈ R such that Exp(aαEα) · Exp(bαHα) =
Exp(xαHα + yαEα). This equation and [aΦ, gΦ] = [g{α}, g{β}] = {0} for any α, β ∈ Φ,
α 6= β, imply

g =

(

∏

α∈Φ

Exp(xαHα + yαEα)

)

Exp H =

(

∏

α∈Φ

Exp(aαEα) Exp(bαHα)

)

Exp H

= Exp

(

∑

α∈Φ

aαEα

)

Exp

(

∑

α∈Φ

bαHα

)

Exp H.

Hence, the equality Ad(Exp H ′)sΦ,V = sΦ,V for any H ′ ∈ a and Proposition 5.10 imply

Ad(g)sΦ,V = Ad

(

Exp

(

∑

α∈Φ

aαEα

))

Ad

(

Exp

(

∑

α∈Φ

bαHα

))

Ad(Exp H)sΦ,V = sΦ,V,a,

where a : Φ → R, α 7→ aα. This concludes the proof. �

In view of Proposition 6.1, in order to calculate the geometry of the orbits of SΦ,V , it
suffices to study the geometry of the orbit through the origin o of SΦ,V,a, where Φ is an
orthogonal subset of Λ, V is a linear subspace of aΦ and a : Φ → R is a function. Hence,
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we consider

sΦ,V,a = (V ⊕ aΦ ⊕ n) ⊖

(

⊕

α∈Φ

R(aαHα + Eα)

)

,

for certain aα ∈ R and nonzero Eα ∈ gα. Note that,

sΦ,V,a = V ⊕

(

⊕

α∈Φ

RXα

)

⊕

(

⊕

α∈Φ

((gα ⊖ REα) ⊕ g2α)

)

⊕





⊕

λ∈Σ+\(Φ∪2Φ)

gλ



 ,

where Xα = 1
|α|2 Hα − aαEα. We denote by 2Φ the set of roots of the form 2α with α ∈ Φ.

Let X ∈ sΦ,V,a and ξ ∈ (a⊕n)⊖ sΦ,V,a. Using the formula for the Levi-Civita connection
with respect to left-invariant vector fields we easily obtain

AξX =
1

2
[(1 − θ)ξ, X]sΦ,V,a

,

where the subscript denotes orthogonal projection onto sΦ,V,a.
Assume first that ξ ∈ aΦ ⊖ V . If X ∈ V , then AξX = [ξ, X] = 0. Since ξ ∈ aΦ we

also have AξXα = [ξ, Xα]sΦ,V,a
= −aαα(ξ)(Eα)sΦ,V,a

= 0. Analogously, if X ∈ gα ⊖ REα

then AξX = α(ξ)X = 0, and similarly, if X ∈ g2α then also AξX = 0. Finally, if
X ∈ gλ with λ ∈ Σ+ \ (Φ ∪ 2Φ), then AξX = [ξ, X]sΦ,V,a

= λ(ξ)X. In particular, trAξ =
∑

λ∈Σ+\(Φ∪2Φ)(dim gλ)λ(ξ) = 2δ(ξ), where as usual δ = 1
2

∑

λ∈Σ+(dim gλ)λ (see [15, p.

329]).
Now let ξ = aαHα + Eα for some α ∈ Φ. If X ∈ V , then it follows easily that

Aξα
X =

1

2
[(1 − θ)ξ, X]sΦ,V,a

= −
1

2
α(X)((1 + θ)ξ)sΦ,V,a

= 0.

For β ∈ Φ we calculate

AξXβ =

(

−aαaβ〈α, β〉Eβ −
1

2|αβ|2
〈α, β〉(1 + θ)Eα +

1

2
aβ[θEα, Eβ]

)

sΦ,V,a

.

If α 6= β, we have as usual that α and β are orthogonal and hence AξXβ = 0. If α = β, we
can write the above expression in terms of ξ and Xα to get

AξXα =

(

aα|α|
2Xα −

1

2
ξ −

1

2
θEα

)

sΦ,V,a

= aα|α|
2Xα.

Assume now that X ∈ gβ ⊖ REβ with β ∈ Φ and α 6= β. Since α and β are orthogonal
we get [(1 − θ)ξ, X] = 2aα〈α, β〉X + [Eα, X] − [θEα, X] = 0, and thus AξX = 0. One can
prove in a similar way that AξX = 0 if X ∈ g2β with β ∈ Φ and α 6= β.

Now we turn our attention to the subspace (gα ⊖ Rξ)⊕ g2α. Let X ∈ gα ⊖ Rξ. Clearly,
[θEα, X] ∈ g0 and 〈[θEα, X], H〉 = −α(H)〈X, Eα〉 = 0 for all H ∈ a. Then we get

AξX =

[

aαHα +
1

2
Eα −

1

2
θEα, X

]

sΦ,V,a

= aα|α|
2X +

1

2
[Eα, X].

34



On the other hand, if Y ∈ g2α we have 〈[θEα, Y ], ξ〉 = aα〈α, α〉〈Y, Eα〉 = 0, and so

AξY =

[

aαHα +
1

2
Eα −

1

2
θEα, Y

]

sΦ,V,a

= 2aα|α|
2Y −

1

2
[θEα, Y ].

It is then clear that Aξ leaves the subspace (gα ⊖ Rξ) ⊕ g2α invariant. Moreover, since
for all Y ∈ g2α we have [Eα, [θEα, Y ]] = −[Y, [Eα, θEα]] = −2|α|2Y , the linear map
ad(Eα)| ad(θEα)(g2α) : ad(θEα)(g2α) → g2α is an isomorphism. From here we obtain the
decomposition gα = Ker(ad(Eα)|gα)⊕ad(θEα)(g2α). Hence, if X ∈ Ker(ad(Eα)|gα) we get
from the previous expression that AξX = aα|α|

2X, so Aξ restricted to Ker(ad(Eα)|gα) is
aα|α|

21gα
and the multiplicity is dim gα −dim g2α −1. On the other hand, for nonzero Y ∈

g2α define X = [θEα, Y ] ∈ gα. Then the previous formulas read AξX = aα|α|
2X − |α|2Y

and AξY = −1
2
X + 2aα|α|

2Y . The eigenvalues of the matrix
(

aα|α|
2 −1

2
−|α|2 2aα|α|

2

)

are |α|
2

(

3aα|α| ±
√

2 + a2
α|α|

2
)

.

Before continuing we need the following (recall that ξ = ξ = aαHα + Eα)

Lemma 6.2. ad((1 − θ)ξ)
(

n ⊖
(

⊕

γ∈Φ(gγ ⊕ g2γ)
))

⊂ n ⊖
(

⊕

γ∈Φ(gγ ⊕ g2γ)
)

.

Proof. Let Y ∈ n ⊖
(

⊕

γ∈Φ(gγ ⊕ g2γ)
)

. By the properties of root systems, it is clear that

ad((1 − θ)ξ)Y ⊂ n. For β ∈ Φ and Z ∈ gβ we calculate

〈ad((1 − θ)ξ)Y, Z〉 = 〈ad((1 − θ)ξ)Z, Y 〉 = 2aα〈α, β〉〈Z, Y 〉 + 〈[Eα, Z], Y 〉 − 〈[θEα, Z], Y 〉.

By assumption we have 〈Z, Y 〉 = 0. Now, if α 6= β, [Eα, Z] ∈ gα+β = 0 and [θEα, Z] ∈
gβ−α = 0. If α = β, [Eα, Z] ∈ g2α and so 〈[Eα, Z], Y 〉 = 0, and [θEα, Z] ∈ g0, and so
〈[θEα, Z], Y 〉 = 0. In any case, 〈ad((1 − θ)ξ)Y, Z〉 = 0.

If Z ∈ g2β a similar calculation shows 〈ad((1 − θ)ξ)Y, Z〉 = 〈[Eα, Z], Y 〉 − 〈[θEα, Z], Y 〉.
If α 6= β, [Eα, Z] ∈ gα+2β = 0 and [θEα, Z] ∈ g2β−α = 0. If α = β, [Eα, Z] ∈ g3α = 0 and
[θEα, Z] ∈ gα so 〈[θEα, Z], Y 〉 = 0. In any case, 〈ad((1 − θ)ξ)Y, Z〉 = 0 and the result is
proved. �

Now define φ = Exp( π√
2|α|(1 + θ)Eα)) for α ∈ Φ. It is well known that φ ∈ NK(a).

Moreover, we have

Lemma 6.3. Ad(φ)
(

n ⊖
(

⊕

γ∈Φ(gγ ⊕ g2γ)
))

⊂ n ⊖
(

⊕

γ∈Φ(gγ ⊕ g2γ)
)

.

Proof. The argument given in the proof of the previous lemma can be applied here to

show that ad((1+ θ)ξ)
(

n ⊖
(

⊕

γ∈Φ(gγ ⊕ g2γ)
))

⊂ n⊖
(

⊕

γ∈Φ(gγ ⊕ g2γ)
)

. Since Ad(φ) =
∑∞

m=1
1

m!
( π√

2|α|)
m ad((1 + θ)ξ)m, the result follows. �
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Finally, let X ∈ gλ with λ ∈ Σ+ \Φ. Then, using the previous two lemmas, Ad(φ)Hα =
−Hα and Ad(φ)((1 − θ)Eα) = −(1 − θ)Eα we get

Aξ Ad(φ)X =

[

1 − θ

2
ξ, Ad(φ)X

]

=
1

2
Ad(φ)[Ad(φ−1)(1 − θ)ξ, X]

=
1

2
Ad(φ)

[

Ad(φ−1) (2aαHα + (1 − θ)Eα) , X
]

=
1

2
Ad(φ)

[

−2aαHα − (1 − θ)Eij , X
]

= Ad(φ)

[

−
1 − θ

2
ξij , X

]

= −Ad(φ)AξX.

In particular this implies trAξ = aα|α|
2(dim gα + 2 dim g2α).

We summarize all these calculations in the following

Proposition 6.4. Let SΦ,V,a be the connected subgroup of G whose Lie algebra is sΦ,V,a.
Let us write Xα = 1

|α|2 Hα − aαEα and denote by Aξ the shape operator of SΦ,V,a · o with

respect to a normal vector ξ ∈ (a ⊕ n) ⊖ sΦ,V,a. We have:

(1) If ξ ∈ aΦ⊖V , then the restriction of Aξ to V ⊕
(

⊕

γ∈ΦRXγ

)

⊕
(

⊕

γ∈Φ(gγ ⊖ REγ)
)

⊕
(

⊕

γ∈Φg2γ

)

is zero and the restriction of Aξ to gλ for λ ∈ Σ+ \ (Φ∪2Φ) is λ(ξ)1gλ
.

(2) If ξ = aαHα + Eα we have:

(a) The restriction of Aξ to V ⊕
(

⊕

γ∈Φ\{α}RXγ

)

⊕
(

⊕

γ∈Φ\{α}(gγ ⊖ REγ)
)

⊕
(

⊕

γ∈Φ\{α} g2γ

)

is zero.

(b) AξXα = aα|α|
2Xα.

(c) We can decompose gα as gα = Ker(ad(Eα)|gα)⊕ad(θEα)(g2α). The restriction
of Aξ to Ker(ad(Eα)|gα)⊖REα is aα|α|

21Ker(ad(Eα)|gα)⊖REα
and the dimension of

Ker(ad(Eα)|gα)⊖REα is dim gα−dim g2α−1. The subspace ad(θEα)(g2α)⊕g2α

is invariant under Aξ and Aξ acts with eigenvalues

|α|

2

(

3aα|α| ±
√

2 + a2
α|α|

2
)

whose multiplicities are dim g2α.

(d) If φ = Exp
(

π√
2|α|(1 + θ)Eα)

)

∈ NK(a) then n⊖
(

⊕

γ∈Φ(gγ ⊕ g2γ)
)

is invariant

by Aξ and Ad(φ), and Aξ Ad(φ) = −Ad(φ)Aξ. In particular, if AξX = cX,
then Aξ Ad(φ)X = −c Ad(φ)X.

The mean curvature vector H, defined with respect to an orthonormal basis {ei} as
H =

∑

i II(ei, ei), is in our case

H = 2πaΦ⊖V (Hδ) −
∑

α∈Φ

aα|α|
2(dim gα + 2 dim g2α)(aαHα + Eα),

where as usual πaΦ⊖V denotes orthogonal projection onto aΦ ⊖ V .
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We recall that the horocycle foliation is induced by the group N , the action of the
nilpotent part of some Iwasawa decomposition. In this case we have:

Corollary 6.5. The orbits of the horocycle foliation are isometrically congruent to each
other and their shape operator with respect to a vector ξ ∈ a is given by Aξ = ad(ξ)|n =
⊕

λ∈Σ+ λ(ξ)1gλ
.

Remark 6.6. Let M be a symmetric space of rank one. Assume that Λ = {α}. There are
up to congruency two possible hyperpolar homogeneous foliations, namely, the horosphere
foliation, which is the same as the horocycle foliation in this case, and the solvable foliation,
where Φ = {α}. In both cases the foliation is by homogeneous hypersurfaces.

All the leaves of the horosphere foliation are congruent. The principal curvatures of
horospheres are |α| and 2|α| with multiplicities dim gα and dim g2α respectively.

Now we consider the solvable foliation, whose leaves are the orbits of the group S{α},{0}.
If γ is a geodesic parametrized by unit speed such γ(0) = o and γ̇(0) is orthogonal to
S{α},{0} · o, then the path of γ is a section of this hyperpolar foliation. The principal
curvatures of the orbit S{α},{0} · γ(r) are

−|α| tanh(|α|r), −
3|α|

2
tanh(|α|r) ±

|α|

2

√

2 − tanh(|α|r),

with multiplicities dim gα, dim g2α and dim g2α, respectively.
For cohomogeneity one homogeneous foliations see [4].
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