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POLAR ACTIONS ON THE COMPLEX HYPERBOLIC PLANE

JÜRGEN BERNDT AND JOSÉ CARLOS DÍAZ-RAMOS

Abstract. We classify the polar actions on the complex hyperbolic plane CH2 up to
orbit equivalence. Apart from the trivial and transitive polar actions, there are five polar
actions of cohomogeneity one and four polar actions of cohomogeneity two.

1. Introduction

Let M be a Riemannian manifold and denote by I(M) its isometry group. A connected
closed subgroup G of I(M) is said to act polarly on M if there exists a connected closed
submanifold Σ of M that intersects all the orbits of G orthogonally. Thus, for each p ∈ M
the intersection of Σ and the orbit G · p of G containing p is nonempty, and for all p ∈ Σ
the tangent space TpΣ of Σ at p is contained in the normal space νp(G · p) of G · p at p.
The submanifold Σ is called a section of the action.

Polar actions on Riemannian symmetric spaces of compact type are understood reason-
ably well, see [8], [9] and [11] for more details. On the other hand, due to the possible
noncompactness of the groups, polar actions on Riemannian symmetric spaces of noncom-
pact type are not understood except for the real hyperbolic spaces. The purpose of this
paper is to classify the polar actions on the complex hyperbolic plane CH2 up to orbit
equivalence. This is the first complete such classification on a nontrivial Riemannian sym-
metric space of noncompact type. We hope that this investigation will provide further
insight into the structure theory of polar actions.

The complex hyperbolic plane is a Riemannian symmetric space of noncompact type,
namely CH2 = G/K with G = SU(1, 2) and K = S(U(1)U(2)). Denote by o ∈ CH2 the
unique fixed point of the K-action on CH2 and by g = k ⊕ p the corresponding Cartan
decomposition of the Lie algebra g of G. Denote by θ ∈ Aut(g) the corresponding Cartan
involution. Let a be a maximal abelian subspace of p and g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α
the corresponding restricted root space decomposition of g. The root space g0 decomposes
into g0 = k0⊕a, where k0 is the centralizer of k in a. The complex structure on CH2 leaves
the root space gα invariant, and therefore gα ∼= C. By gRα we denote a real form of gα, that
is, a real one-dimensional linear subspace of gα.

The subalgebra n = gα⊕g2α is nilpotent and the action of the connected closed subgroup
N of G with Lie algebra n on CH2 induces a foliation of CH2 by horospheres. On a
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horosphere there are two distinguished types of horocycles, those which are generated by
a real form gRα and those which are generated by g2α. In the first case the horocycle lies in
a totally geodesic real hyperbolic plane RH2 ⊂ CH2, and in the second case the horocycle
lies in a totally geodesic complex hyperbolic line CH1 ⊂ CH2. We call such horocycles
real and complex, respectively. The subalgebra n is isomorphic to the Heisenberg algebra,
and every horosphere in CH2 with the induced metric is isometric to the 3-dimensional
Heisenberg group with a suitable left-invariant Riemannian metric. The subalgebra gRα⊕g2α
of n is abelian and the orbit through o of the corresponding connected closed subgroup of
N is a Euclidean plane E

2 embedded in the horosphere as a non-totally geodesic minimal
surface.

Main Theorem. For each of the subalgebras h of su(1, 2) listed below the connected closed

subgroup H of SU(1, 2) with Lie algebra h acts polarly on CH2:

(i) Actions of cohomogeneity one - the section Σ is a totally geodesic real hyperbolic line

RH1 ⊂ CH2:

(a) h = k = s(u(1)⊕u(2)) ∼= u(2); the orbits are {o} and the distance spheres centered

at o;
(b) h = g−2α ⊕ g0 ⊕ g2α = s(u(1, 1)⊕ u(1)) ∼= u(1, 1); the orbits are a totally geodesic

complex hyperbolic line CH1 ⊂ CH2 and the tubes around CH1;

(c) h = θ(gRα)⊕a⊕gRα
∼= so(1, 2); the orbits are a totally geodesic real hyperbolic plane

RH2 ⊂ CH2 and the tubes around RH2;

(d) h = k0⊕gα⊕g2α or h = gα⊕g2α; the orbits form a foliation of CH2 by horospheres;

(e) h = a ⊕ gRα ⊕ g2α; the orbits form a foliation of CH2; one of its leaves is the

minimal ruled real hypersurface of CH2 generated by a real horocycle in CH2,

and the other leaves are the equidistant hypersurfaces.

(ii) Actions of cohomogeneity two - the section Σ is a totally geodesic real hyperbolic plane

RH2 ⊂ CH2:

(a) h = k ∩ (g−2α ⊕ g0 ⊕ g2α) = s(u(1) ⊕ u(1) ⊕ u(1)) ∼= u(1) ⊕ u(1); the orbits are

obtained by intersecting the orbits of the two cohomogeneity one actions (a) and
(b) in (i): the action has one fixed point o, and on each distance sphere centered at

o the orbits are two circles as singular orbits and 2-dimensional tori as principal

orbits;

(b) h = g0; the action leaves a totally geodesic CH1 ⊂ CH2 invariant. On this CH1

the action induces a foliation by a totally geodesic real hyperbolic line RH1 ⊂ CH1

and its equidistant curves in CH1. The other orbits are 2-dimensional cylinders

whose axis is one of the curves in that CH1;

(c) h = k0 ⊕ g2α; the orbits are obtained by intersecting the orbits of the two cohomo-

geneity one actions (b) and (d) in (i): the action leaves a horosphere foliation

invariant, and on each horosphere the orbits consist of a complex horocycle and

the tubes around it;

(d) h = gRα ⊕ g2α; the orbits are obtained by intersecting the orbits of the two coho-

mogeneity one actions (d) and (e) in (i): the action leaves a horosphere foliation
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invariant, and on each horosphere the action induces a foliation for which the min-

imally embedded Euclidean plane E2 and its equidistant surfaces are the leaves.

Every polar action on CH2 is either trivial, transitive, or orbit equivalent to one of the

polar actions described above.

The paper is organized as follows. In Section 2 we summarize some basic material, and
in Section 3 we present the proof of the Main Theorem. The only two interesting cases arise
for cohomogeneity one and cohomogeneity two. The cohomogeneity one case was settled
in [4], and the cohomogeneity two case for actions without singular orbits in [2]. The main
contribution of this paper to the classification is the analysis of the cohomogeneity two
case with singular orbits.

2. Preliminaries

We refer to [6] for more information. We denote by CH2 = SU(1, 2)/S(U(1)U(2))
the complex hyperbolic plane with constant holomorphic sectional curvature −1. Define
G = SU(1, 2) and denote by K ∼= S(U(1)U(2)) the isotropy group of G at some point
o ∈ CH2. The Cartan decomposition of g with respect to o is g = k ⊕ p, where g and k

are the Lie algebras of G and K respectively, and p is the orthogonal complement of k in
g with respect to the Killing form B of g. Let θ be the corresponding Cartan involution.
Then 〈X, Y 〉 = −B(θX, Y ) defines a positive definite inner product on g that satisfies
〈ad(X)Y, Z〉 = −〈Y, ad(θX)Z〉 for all X , Y , Z ∈ g. As usual, ad and Ad will denote the
adjoint maps of g and G, respectively. It is customary to identify p with the tangent space
ToCH

2.
A maximal abelian subspace a of p is 1-dimensional and induces a restricted root space

decomposition g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α, where gλ = {X ∈ g : ad(H)X =
λ(H)X for all H ∈ a}. Recall that [gλ, gµ] = gλ+µ, θgλ = g−λ, and g0 = k0 ⊕ a, where
k0 = g0 ∩ k. Note that k0 is isomorphic to u(1) and g2α is 1-dimensional. Let n = gα ⊕ g2α,
which is a nilpotent subalgebra of g isomorphic to the 3-dimensional Heisenberg algebra.
Then g = k ⊕ a ⊕ n is an Iwasawa decomposition of g and the connected subgroup AN
of G whose Lie algebra is a ⊕ n acts simply transitively on CH2. We endow AN , and
hence a ⊕ n, with the left-invariant metric 〈 · , · 〉AN , and the complex structure J that
make CH2 and AN isometric. This implies that 〈X, Y 〉AN = 〈Xa, Ya〉 +

1

2
〈Xn, Yn〉 for

X, Y ∈ a ⊕ n ∼= T1AN , where the subscript means orthogonal projection. The complex
structure J on a⊕n satisfies that Jgα = gα and Ja = g2α. Let B be a unit vector in a and
define Z = JB ∈ g2α. Note that 〈B,B〉 = 〈B,B〉AN = 1, whereas 〈Z,Z〉 = 2〈Z,Z〉AN = 2.
Then

[aB + U + xZ, bB + V + yZ] = −
b

2
U +

a

2
V +

(

−bx + ay +
1

2
〈JU, V 〉

)

Z,

where a, b, x, y ∈ R, and U , V ∈ gα. Finally, we define pλ = (1 − θ)gλ ⊂ p. Then,
p = a ⊕ pα ⊕ p2α, pα is complex, and p2α is one-dimensional. If i denotes the complex
structure of p, we have iB = 1

2
(1− θ)Z, and i(1− θ)U = (1− θ)JU .



4 J. BERNDT AND J. C. DÍAZ-RAMOS

3. Proof of the Main Theorem

For a Riemannian manifold M we denote by I(M) the isometry group of M and by
TpM the tangent space of M at p ∈ M . If Σ is a submanifold of M , we denote by νpΣ the
normal space of Σ at p ∈ Σ. For a subgroup H ⊂ I(M) we denote by H · p the orbit of
the H-action on M containing p. We first recall a result from [7].

Proposition 3.1. Let M be a complete connected Riemannian manifold and Σ be a con-

nected totally geodesic embedded submanifold of M . A closed subgroup H of I(M) acts

polarly on M with section Σ if and only if there exists a point o ∈ M such that

(a) ToΣ ⊂ νo(H · o),
(b) the slice representation of Ho on νo(H · o) is polar and ToΣ is a section,

(c) ∇vX
∗ ∈ νoΣ for all v ∈ ToΣ and all X ∈ h, where X∗ denotes the smooth vector field

on M defined by X∗
p = d

dt |t=0
Exp(tX)(p) for each p ∈ M .

We will use a refinement of this result for symmetric spaces of noncompact type. Let
M = G/K be a Riemannian symmetric space of noncompact type, where G = Io(M) is
the connected component of I(M) containg the identity transformation of M and K is the
isotropy subgroup of G at o ∈ M . Let g be the Lie algebra of G, B the Killing form of g,
and θ the Cartan involution of the Cartan decomposition g = k ⊕ p. The inner product
defined by 〈X, Y 〉 = −B(X, θY ) for all X, Y ∈ g is positive definite. We identify ToM
with p in the usual way.

Corollary 3.2. Let M = G/K be a Riemannian symmetric space of noncompact type,

and let Σ be a connected totally geodesic submanifold of M with o ∈ Σ. A connected closed

subgroup H of I(M) acts polarly on M with section Σ if and only if ToΣ ⊂ νo(H · o), ToΣ
is a section of the slice representation of Ho on νo(H · o), and

〈[v, w], X〉 = −B([v, w], θX) = 0 for all v, w ∈ ToΣ ⊂ p and all X ∈ h.

Proof. Every totally geodesic submanifold in G/K is embedded. Conditions (a) and (b)
of Proposition 3.1 are satisfied by hypothesis, so we only have to check condition (c). Let
v ∈ ToΣ and X ∈ h. Then, v can be considered as a vector in p ⊂ g, and hence we have
∇vX

∗ = [v∗, X∗]o = −[v,X ]∗o = −[v,X ]p, where the subscript means orthogonal projection
onto p (see for example [12, § IV.6]). Therefore, ∇vX

∗ ∈ νoΣ if and only if for each
w ∈ ToΣ ⊂ p we have 0 = 〈∇vX

∗, w〉 = −〈[v,X ]p, w〉 = 〈X, [v, w]〉. �

Assume that H is a connected closed subgroup of SU(1, 2) acting polarly on CH2, and
let Σ be a section of the action of H . Since Σ is totally geodesic, it is congruent to a
point, a geodesic which we can view as a totally geodesic RH1, a totally geodesic complex
hyperbolic line CH1, a totally geodesic real hyperbolic plane RH2, or the whole complex
hyperbolic plane CH2. Clearly, if Σ is a point, then the action of H is transitive, and if Σ
is the entire space, then the action is trivial. So the only possibilities left are RH1, RH2,
and CH1.

If Σ = RH1, then the action of H is of cohomogeneity one (and also hyperpolar).
Cohomogeneity one actions on complex hyperbolic spaces were classified in [4]. A more
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geometric classification in terms of the constancy of the principal curvatures of a real
hypersurface in CH2 can be found in [1]. This corresponds to item (i) of the Main Theorem.

Therefore, the only remaining possibility for Σ is to be an RH2 or a CH1, which both have
dimension 2. Hence, from now on we assume that H acts on CH2 with cohomogeneity 2.

If all the orbits of the action ofH have the same dimension, then there are no exceptional
orbits and H induces a homogeneous polar foliation of CH2 [3]. Homogeneous polar folia-
tions of complex hyperbolic spaces were classified by the authors in [2]. This corresponds
to case (iid) of the Main Theorem.

Thus we can assume from now on that the action ofH has a singular orbit. For dimension
reasons, this orbit can only be 0-dimensional or 1-dimensional. Assume first that there is
a 0-dimensional orbit, that is, there is a point o ∈ CH2 that is fixed by the action of H . In
this case the group H has to be compact. Indeed, let {hn} be a sequence contained in H .
Since H fixes o, we have that {hn(o)} converges to o. Since the group is closed in SU(1, 2),
the action of H is proper and hence, by definition of proper action, {hn} has a convergent
subsequence. This shows that H is compact. In any case, polar actions with a fixed point
on CH2 have been classified in [7, Proposition 12 (ii)]. There are exactly three possibilities
up to orbit equivalence: the trivial action, the isotropy action of S(U(1)U(2)) (which is
of cohomogeneity one), and the action of S(U(1)U(1)U(1)) ∼= U(1) · U(1), which is of
cohomogeneity two and corresponds to case (iia) of the Main Theorem. It is worthwhile
to point out at this stage that polar actions with a fixed point in CH2 correspond to polar
actions in CP 1. The only nontrivial and nontransitive polar action on CP 1 up to orbit
equivalence is the isotropy action of U(1) ∼= S(U(1)U(1)), which has two fixed points as
singular orbits; the rest of the orbits are principal, and in particular one of its orbits is
a totally geodesic RP 1 in CP 1. This action is orbit equivalent to the action of SO(2) on
CP 1.

Finally, let us assume that H has a singular orbit of dimension 1 and no fixed points.
Let h be the Lie algebra of H . Let l be a proper maximal subalgebra of su(1, 2) containing
h. It is known that l is either reductive or parabolic (see [10] or [5, Theorem 3.2] for a
more detailed proof).

Assume first that l is reductive. Then, up to conjugation, l is s(u(1, 1)⊕u(1)) ∼= su(1, 1),
so(1, 2), or s(u(1) ⊕ u(2)) ∼= u(2). The last possibility corresponds to a compact group
and hence H ⊂ S(U(1)U(2)) would have a fixed point by Cartan’s fixed point theorem,
contradicting our assumption. Then l = su(1, 1) or l = so(1, 2). In both cases l has
dimension 3, and the action of L, the connected Lie subgroup of SU(1, 2) whose Lie
algebra is l, is of cohomogeneity one. Thus, dim h < 3. By the classification of Lie
algebras of low dimension, this implies that h is solvable, and hence it is contained in a
Borel subalgebra b, that is, a maximal solvable subalgebra of su(1, 2). There are, up to
conjugation, exactly two types of Borel subalgebras in su(1, 2): of maximally compact type,
and of maximally noncompact type. Again, h cannot be contained in a Borel subalgebra of
maximally compact type, because such a subalgebra b is compact and hence H would have
a fixed point by Cartan’s fixed point theorem. Hence h is contained in a Borel subalgebra
of maximally noncompact type. Then, with respect to a suitable Cartan decomposition
su(1, 2) = k⊕p, and a suitable maximal abelian subspace a of p, we have b = t⊕a⊕gα⊕g2α.
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Here t⊕a is a Cartan subalgebra of su(1, 2); a ⊂ p is called is vector part, and t ⊂ k is called
the toroidal part. It is easy to see in this case that t = k0. Hence, b = k0 ⊕ a ⊕ gα ⊕ g2α
turns out to be a parabolic subalgebra. Thus, we may assume from now on that the
maximal subalgebra l containing h is parabolic. Write, as before, this parabolic subalgebra
as l = k0 ⊕ a⊕ gα ⊕ g2α.

Since a subgroup of SU(1, 2) whose Lie algebra is contained in a ⊕ gα ⊕ g2α induces
a foliation on CH2, we conclude that the orthogonal projection of h onto k0 is nonzero.
Moreover, we know that k0 is 1-dimensional, and that the orbit of H through the origin o is
at most 2-dimensional, which implies that the orthogonal projection of h onto a⊕ gα⊕ g2α
is at most 2-dimensional. Therefore, h can be written as h = k0 ⊕ Rξ ⊕ Rη, where ξ,
η ∈ a ⊕ gα ⊕ g2α are linearly independent vectors, or h = R(T + ξ) ⊕ Rη, with T ∈ k0,
T 6= 0, and ξ, η ∈ a⊕ gα ⊕ g2α. We analyze both possibilities.

Assume first that h = k0 ⊕Rξ ⊕ Rη, where ξ, η ∈ a⊕ gα ⊕ g2α are linearly independent
vectors. It follows from the properties of root spaces, the fact that h is a Lie algebra,
and the skew-symmetry of the elements of ad(k0), that ad(k0)ξ ∈ gα ∩ (h ⊖ Rξ) = Rη,
ad(k0)η ∈ gα ∩ (h⊖ Rη) = Rξ. Since 〈ad(T )ξ, η〉 = −〈ad(T )η, ξ〉 for each T ∈ k0, ad(k0)ξ
and ad(k0)η are both zero, or both nonzero. If ad(k0)ξ = ad(k0)η = 0, we conclude that
ξ, η ∈ a⊕ g2α, so h = k0 ⊕ a⊕ g2α. This is not possible because the corresponding group
H would act with cohomogeneity one. Let us assume then that ad(k0)ξ and ad(k0)η are
both nonzero. Hence, Rξ ⊕ Rη ⊂ gα, and since they are linearly independent and gα is
2-dimensional, it follows that h = k0 ⊕ gα. This is not possible because k0 ⊕ gα is not a Lie
algebra.

In order to deal with the second possibility we start first with

Lemma 3.3. Assume h = R(T + ξ)⊕Rη, with 0 6= T ∈ k0 and ξ, η ∈ a⊕ gα ⊕ g2α. Then

h can be written in one of the following forms:

(a) 0 6= ξ ∈ gα and 0 6= η ∈ g2α, or

(b) ξ = 0 and 0 6= η ∈ a⊕ g2α, or

(c) ξ = [T, Y ] + Z and η = 2B + Y + dZ, where d ∈ R and 0 6= Y ∈ gα such that

[[T, Y ], Y ] = 2Z.

Proof. Write ξ = aB +X + bZ, and η = cB + Y + dZ, with a, b, c, d ∈ R, and X , Y ∈ gα.
We may assume that 〈X, Y 〉 = 0.

First of all, by the algebraic properties of root spaces, [T + ξ, η] ∈ (gα ⊕ g2α) ∩ h ⊂ Rη.
We can therefore write λη = [T + ξ, η] for some λ ∈ R. Inserting the above expressions for
ξ and η, and taking the components of the resulting expression in a, gα and g2α we get

λc = 0,(1)

λY =
a

2
Y −

c

2
X + [T, Y ],(2)

λd = ad− bc +
1

2
〈[X, Y ], Z〉.(3)

We consider the two cases Y = 0 and Y 6= 0 separately.
Case 1: Y = 0.



POLAR ACTIONS ON THE COMPLEX HYPERBOLIC PLANE 7

If λ = 0, Equation (3) with Y = 0 says that ad− bc = 0, and hence the vectors aB + bZ
and cB + dZ are linearly dependent, so we can write h = R(T +X)⊕ R(cB + dZ). Now,
from (2) we get cX = 0. If c = 0 then h = R(T +X)⊕ g2α and we are in case (a), whereas
if X = 0 we are in case (b).

If λ 6= 0, we get c = 0 from (1) and therefore we can write h = R(T + aB +X)⊕ g2α. It
is obvious that in this case the orbit H · o is 2-dimensional. Hence, if Σ is a section of the
action with o ∈ Σ, we must have ToΣ = {v ∈ p : 〈v, ξ〉 = 〈v, η〉 = 0}. For X = 0 we have
ToΣ = pα, and Corollary 3.2 implies 0 = 〈Z, [(1− θ)U, (1− θ)JU ]〉 = 〈Z, [U, JU ]〉 = ‖U‖2

for all U ∈ gα, which is impossible. Therefore we must have X 6= 0, and then ToΣ =
R((1 − θ)JX) ⊕ R(−‖X‖2B + a(1 − θ)X). Since Σ is totally geodesic, ToΣ is either real
or complex, and this can happen only if a = 0, which implies case (a).

Case 2: Y 6= 0.
As X and Y are orthogonal and [T, Y ] is orthogonal to Y , Equation (2) implies λ = a

2

and [T, Y ] = c
2
X . Since the connected subgroup K0

∼= U(1) of S(U(1)U(2)) with Lie
algebra k0 acts transitively on the unit circle in gα, it follows that [T, Y ] 6= 0 and hence
also c 6= 0 and X 6= 0. From (1) we get λ = 0 (which implies that h is abelian) and thus
also a = 0, and from (3) we then get 〈[X, Y ], Z〉 = 2bc. Since X, Y 6= 0 and dim gα = 2 we
also get b 6= 0. Finally, since b, c 6= 0 we can renormalize T and Y so that b = 1 and c = 2,
thus getting (c). �

The next step is to show that the actions arising from Lemma 3.3 are orbit equivalent to
the actions described in items (iib) or (iic) of the Main Theorem. We have three different
possibilities:

(a) h = R(T +X)⊕ g2α with 0 6= T ∈ k0 and 0 6= X ∈ gα.

Since T 6= 0 and ad(T ) is skewsymmetric, we have [T, [T,X ]] = −ρX for some ρ > 0.
We define g = Exp(−1

ρ
[T,X ]) ∈ G. Then we get Ad(g)Z = Z and, since [[T,X ], T +X ] =

ρX + [[T,X ], X ],

Ad(g)(T +X) = T +X −X −
1

ρ
[[T,X ], X ] +

1

2ρ
[[T,X ], X ] = T −

1

2ρ
[[T,X ], X ].

Since [[T,X ], X ] ∈ g2α this implies Ad(g)(h) = k0 ⊕ g2α. It follows that the action is
conjugate to the one in (iic) of the Main Theorem.

(b) h = k0 ⊕ R(aB + bZ) with a, b ∈ R, a 6= 0 or b 6= 0.
If a = 0 we get h = k0 ⊕ g2α, which is case (iic) of the Main Theorem. Thus we

can assume a 6= 0. In this case we define g = Exp( b
a
Z). Since [k0, g2α] = 0 we get

Ad(g)k0 = k0, and since [B,Z] = Z we get Ad(g)(aB + bZ) = aB. Altogether this implies
Ad(g)h = k0 ⊕ a = g0, and therefore the action is conjugate to the one in (iib) of the Main
Theorem.

(c) h = R(T + [T, Y ] +Z)⊕R(2B + Y + dZ) with d ∈ R, 0 6= T ∈ k0 and 0 6= Y ∈ gα such

that [[T, Y ], Y ] = 2Z.



8 J. BERNDT AND J. C. DÍAZ-RAMOS

We define g = Exp(Y + d
2
Z). Then

Ad(g)(T + [T, Y ] + Z) = T + [T, Y ] + Z + [Y, T ] + [Y, [T, Y ]] +
1

2
[Y, [Y, T ]] = T,

Ad(g)(B + Y + dZ) = 2B + Y + dZ + 2[Y,B] + d[Z,B] = 2B,

and therefore Ad(g)h = k0 ⊕ a = g0. Consequently the action is conjugate to the one
in (iib) of the Main Theorem.

Altogether we have proved

Proposition 3.4. Assume that H acts polarly and without fixed points on CH2 with co-

homogeneity 2 and with a 1-dimensional singular orbit. Then the Lie algebra of H is

conjugate to g0 or k0 ⊕ g2α.

In order to finish the proof of the Main Theorem if remains to show that the actions of
the groups whose Lie algebras are g0 or k0 ⊕ g2α are indeed polar. We use the criterion
given in Corollary 3.2.

Case 1: H is the connected Lie subgroup of SU(1, 2) whose Lie algebra is h = g0.

We consider the submanifold Σ = expo(s) with s = (1−θ)(gRα⊕g2α). Here, expo denotes
the exponential map ToCH

2 → CH2, and we are identifying ToCH
2 with p as usual. It is

clear that s is a real subspace of p, and hence Σ is a totally geodesic real hyperbolic plane
RH2 ⊂ CH2.

Obviously, ToΣ = s ⊂ pα ⊕ p2α = νo(H · o). If K0
∼= U(1) denotes the connected

Lie group of SU(1, 2) whose Lie algebra is k0 ∼= u(1), the slice representation of H at o
is the representation of K0 on pα ⊕ p2α, which is equivalent to the sum of the standard
representation of U(1) on pα ∼= C, and the trivial representation on p2α ∼= R. Thus s is
a section of the slice representation. Since [s, s] = (1 + θ)[θgRα, g2α] ⊂ g−α ⊕ gα, which
obviously is perpendicular to g0 = h, it now follows from Corollary 3.2 that the action of
H on CH2 is polar.

Case 2: H is the connected Lie subgroup of SU(1, 2) whose Lie algebra is h = k0 ⊕ g2α.

In this case we consider Σ = expo(s) with s = a⊕(1−θ)(gRα). Again, s is a real subspace of
p and Σ is a totally geodesic RH2 ⊂ CH2. Moreover, we have ToΣ = s ⊂ a⊕pα = νo(H ·o),
and the slice representation of H at o is the representation of K0 on a ⊕ pα, which is
equivalent to the sum of the standard representation of U(1) on pα ∼= C, and the trivial
representation on a ∼= R. Therefore s is a section of the slice representation. Finally,
[s, s] = (1 + θ)gRα ⊂ g−α ⊕ gα is orthogonal to h = k0 ⊕ g2α, and thus it follows from
Corollary 3.2 that the action of H on CH2 is polar.

Altogether we have proved the Main Theorem.
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