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POLAR ACTIONS ON COMPLEX HYPERBOLIC SPACES

JOSÉ CARLOS DÍAZ RAMOS, MIGUEL DOMÍNGUEZ VÁZQUEZ, AND ANDREAS KOLLROSS

Abstract. We classify polar actions on complex hyperbolic spaces up to orbit equivalence.

1. Introduction and main results

A proper isometric Lie group action on a Riemannian manifold is called polar if there
exists an immersed submanifold that meets every orbit orthogonally. Such a submanifold
is then called a section of the action. In the special case where the section is flat in its
induced Riemannian metric, the action is called hyperpolar. In this article, we classify
polar actions on complex hyperbolic spaces.

The motivation for our work can be traced back to the work of Dadok [12], who classified
polar representations on Euclidean spaces, and the paper of Palais and Terng [30], who
proved fundamental properties of polar actions on Riemannian manifolds. Several years
later, the problem of classifying hyperpolar actions on symmetric spaces of compact type
was posed in [18]. Hyperpolar actions on irreducible symmetric spaces of compact type
have been classified by the third-named author in [20]. The classification of polar actions
on compact symmetric spaces of rank one was obtained by Podestà and Thorbergsson [31].
This classification shows that there are finitely many examples of polar, non-hyperpolar
actions on each compact symmetric space of rank one.

After having completed the classification of polar actions on irreducible Hermitian sym-
metric spaces of compact type, Biliotti [11] formulated the following conjecture: a polar

action on an irreducible symmetric space of compact type and higher rank is hyperpolar.

The third author proved that the conjecture holds for symmetric spaces with simple isom-
etry group [21], and for the exceptional simple Lie groups [22]. In recent work, Lytchak [26]
obtained a decomposition theorem for the more general case of singular polar foliations
on nonnegatively curved, not necessarily irreducible, Riemannian symmetric spaces. In
particular, his result shows that polar actions on irreducible symmetric spaces of higher
rank are hyperpolar if the cohomogeneity is at least three. Kollross and Lytchak [24] then
completed the proof that Biliotti’s conjecture holds and hence, that the classification of
polar actions on irreducible symmetric spaces of compact type follows from [20] and [31].
Note that the classification of polar actions on reducible symmetric spaces cannot be ob-
tained from the corresponding classification in irreducible ones. However, by the structural
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result [25, Theorem 5.5], it now only remains to classify nondecomposable hyperpolar ac-
tions on reducible spaces in order to obtain a complete classification of polar actions on
symmetric spaces of compact type up to orbit equivalence.

But while polar actions on nonnegatively curved symmetric spaces are almost completely
classified, the situation in the noncompact case remains largely open. Wu [36] classified
polar actions on real hyperbolic spaces and showed that, up to orbit equivalence, they are
products of a noncompact factor (which is either the isometry group of a lower dimensional
real hyperbolic space or the nilpotent part of its Iwasawa decomposition) and a compact
factor (which comes from the isotropy representation of a symmetric space). In particular,
there are only finitely many examples of polar actions on a real hyperbolic space up to
orbit equivalence. Berndt and the first-named author obtained in [5] the classification of
polar actions on the complex hyperbolic plane CH2, showing that there are exactly nine
examples up to orbit equivalence. No other complete classification of polar actions was
previously known for the symmetric spaces of noncompact type. In this paper we present
the classification of polar actions on complex hyperbolic spaces of arbitrary dimension. It
is a remarkable consequence of Theorems A and B below that the cardinality of the set
of polar actions on a complex hyperbolic space CHn, n ≥ 3, is infinite, and hence the
methods used in [5] cannot be applied in this more general situation.

An important fact to bear in mind here is that, in general, the duality of Riemannian
symmetric spaces cannot be applied to derive classifications of polar actions on noncompact
symmetric spaces from the corresponding classifications in the compact setting. Neverthe-
less, there are certain situations where duality can be used to obtain partial classifications.
The first and the third authors derived in [16] the classification of polar actions with a
fixed point on symmetric spaces using this method. They have shown that a polar action
with a fixed point in a reducible symmetric space splits as a product of polar actions on
each factor. The third author explored this idea further and obtained a classification of
polar actions by algebraic reductive subgroups [23].

Berndt and Tamaru [8] classified cohomogeneity one actions on complex hyperbolic
spaces, the quaternionic hyperbolic plane, and the Cayley hyperbolic plane. The clas-
sification remains open in quaternionic hyperbolic spaces of higher dimension, where the
first and second authors have recently obtained new examples of such actions [15], and in
noncompact symmetric spaces of higher rank. See [9] for more information on cohomo-
geneity one actions on symmetric spaces of noncompact type.

A polar action on a symmetric space of compact type always has singular orbits. Mo-
tivated by this fact, Berndt, Tamaru and the first author studied hyperpolar actions on
symmetric spaces that have no singular orbits [7] and obtained a complete classification.
It was also shown in this paper that there are polar actions on symmetric spaces of non-
compact type and rank higher than one that are not hyperpolar, unlike in the compact
setting. This classification has been improved in complex hyperbolic spaces, where Berndt
and the first author classified polar homogeneous foliations [6]. The main result of this
paper contains [5], [6] and [8] as particular cases.
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Let CHn = G/K be the complex hyperbolic n-space, where G = SU(1, n) and K =
S(U(1)U(n)) is the isotropy group of G at some point o. Consider the Cartan decompo-
sition g = k ⊕ p with respect to o. Choose a maximal abelian subspace a of p and let
g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α be the root space decomposition with respect to a. Set
k0 = k∩g0 ∼= u(n−1). Since k0 acts on the root space gα, the center of k0 induces a natural
complex structure J on gα which makes it isomorphic to Cn−1. On the other hand, we call
a subset of gα a real subspace of gα if it is a linear subspace of gα, where gα is viewed as a
real vector space. Assume gα is endowed with the inner product given by the restriction
of the Killing form of g. A real subspace w of gα is said to be totally real if w ⊥ J(w).

In this paper, we prove the following classification result:

Theorem A. For each of the Lie algebras h below, the corresponding connected subgroup

of U(1, n) acts polarly on CHn:

(i) h = q⊕so(1, k) ⊂ u(n−k)⊕su(1, k), k ∈ {0, . . . , n}, where q is a subalgebra of u(n−k)
such that the corresponding subgroup Q of U(n − k) acts polarly with a totally real

section on Cn−k.

(ii) h = q⊕ b⊕w⊕ g2α ⊂ su(1, n), where b is a linear subspace of a, w is a real subspace

of gα, and q is a subalgebra of k0 which normalizes w and such that the connected

subgroup of SU(1, n) with Lie algebra q acts polarly with a totally real section on the

orthogonal complement of w in gα.

Conversely, every nontrivial polar action on CHn is orbit equivalent to one of the actions

above.

In case (i) of Theorem A, one orbit of the H-action is a totally geodesic RHk and the
other orbits are contained in the distance tubes around it. In case (ii), if b = a, one H-orbit
of minimum orbit type contains a geodesic line, while if b = 0, any H-orbit of minimum
orbit type is contained in a horosphere.

We would like to remark here that Theorem A actually provides many examples of polar
actions on CHn. Indeed, for every choice of a real subspace w in gα, there is at least one
polar action as described in part (ii) of Theorem A, see Section 3.

With the notation as in Theorem A, we can determine the orbit equivalence classes of
the polar actions given in the theorem above.

Theorem B. Let H1 and H2 be two subgroups of U(1, n) acting polarly on CHn as given

by Theorem A, and let h1 and h2 be their corresponding Lie algebras. Then the actions of

H1 and H2 are orbit equivalent if and only if one of the following conditions holds:

(a) hi = qi⊕so(1, k), i ∈ {1, 2}, and the actions of Q1 and Q2 on C
n−k are orbit equivalent.

(b) hi = qi ⊕ bi ⊕ wi ⊕ g2α, i ∈ {1, 2}, b1 = b2, there exists an element k ∈ K0 such that

w2 = Ad(k)w1, and the actions of Qi on the orthogonal complement of wi in gα are

orbit equivalent for i ∈ {1, 2}.

By means of the concept of Kähler angle, we can give an equivalent way of characterizing
the congruence of subspaces of gα by an element of K0 stated in Theorem B(b). A subspace
w of gα ∼= Cn−1 is said to have constant Kähler angle ϕ ∈ [0, π/2] if for each nonzero vector
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v ∈ w the angle between Jv and w is precisely ϕ. In Subsection 2.3 we show that any real
subspace w of gα admits a decomposition w = ⊕ϕ∈Φwϕ into subspaces of constant Kähler
angle, where Φ is the set of the different Kähler angles arising in this decomposition, and
wϕ has constant Kähler angle ϕ. This decomposition is unique up to the ordering of the
addends. Two subspaces w1 = ⊕ϕ∈Φ1

w1,ϕ and w2 = ⊕ϕ∈Φ2
w2,ϕ of gα are then congruent

by an element of K0
∼= U(n−1) if and only if Φ1 = Φ2 and dimw1,ϕ = dimw2,ϕ for each ϕ.

It follows in particular from Theorems A and B that the moduli space of polar actions on
CHn up to orbit equivalence is finite if n = 2, cf. [5], and uncountable infinite in case n ≥ 3.
Indeed, in dimension n ≥ 3 the action of the group U(n−1) on the set of real subspaces of
dimension k of Cn−1, with k ∈ {2, . . . , 2n− 4}, is not transitive. The orbits of this action
are determined by the decomposition of a real subspace into a sum of spaces of constant
Kähler angle, and the latter are parametrized by the set [0, π/2], which is uncountable
infinite. As a consequence, there are uncountably many polar, non-hyperpolar actions on
CHn, n ≥ 3, up to orbit equivalence.

This paper is organized as follows. In Section 2 we review the basic facts and notations
on complex hyperbolic spaces (§2.1), polar actions (§2.2), and real vector subspaces of
complex vector spaces (§2.3). The results of Subsection 2.3 will be crucial for the rest of
the paper. Section 3 is devoted to present the new examples that appear in Theorem A.
We also present here an outline of the proof of Theorem A. This proof has two main
parts depending on whether the group acting leaves a totally geodesic subspace invariant
(Section 4) or is contained in a maximal parabolic subgroup of SU(1, n) (Section 5). We
conclude in Section 6 with the proofs of Theorems A and B.

2. Preliminaries

In this section we introduce the main known results and notation used throughout this
paper. We would like to emphasize the importance of Subsection 2.3, which is pivotal in
the construction and classification of new examples of polar actions on complex hyperbolic
spaces.

As a matter of notation, if U1 and U2 are two linear subspaces of a vector space V ,
then U1⊕U2 denotes their (not necessarily orthogonal) direct sum. We will frequently use
the following notation for the orthogonal complement of a subspace of a real vector space
endowed with a scalar product, namely, by V ⊖ U we denote the orthogonal complement
of the linear subspace U in the Euclidean vector space V .

2.1. The complex hyperbolic space. In this subsection we recall some well-known facts
and notation on the structure of the complex hyperbolic space as a symmetric space. This
will be fundamental for the rest of the work. As usual, Lie algebras are written in gothic
letters.

We will denote by CHn the complex hyperbolic space with constant holomorphic sec-
tional curvature −1. As a symmetric space, CHn is the coset space G/K, where G =
SU(1, n), and K = S(U(1)U(n)) is the isotropy group at some point o ∈ CHn. Let
g = k ⊕ p be the Cartan decomposition of g with respect to o, where p is the orthogonal
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complement of k in g with respect to the Killing form B of g. Denote by θ the correspond-
ing Cartan involution, which satisfies θ|k = id and θ|p = − id. Note that the orthogonal
projections onto k and p are 1

2
(1 + θ) and 1

2
(1 − θ), respectively. Let ad and Ad be the

adjoint maps of g and G, respectively. It turns out that 〈X, Y 〉 = −B(θX, Y ) defines a
positive definite inner product on g satisfying the relation 〈ad(X)Y, Z〉 = −〈Y, ad(θX)Y 〉
for all X , Y , Z ∈ g. Moreover, we can identify p with the tangent space ToCH

n of CHn

at the point o.
Since CHn has rank one, any maximal abelian subspace a of p is 1-dimensional. For each

linear functional λ on a, define gλ = {X ∈ g : ad(H)X = λ(H)X for all H ∈ a}. Then
a induces the restricted root space decomposition g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α, which
is an orthogonal direct sum with respect to 〈·, ·〉 satisfying [gλ, gµ] = gλ+µ and θgλ = g−λ.
Moreover, g0 = k0 ⊕ a, where k0 = g0 ∩ k ∼= u(n− 1) is the normalizer of a in k. The root
space gα has dimension 2n− 2, while g2α is 1-dimensional, and both are normalized by k0.

We define n = gα ⊕ g2α, which is a nilpotent subalgebra of g isomorphic to the (2n− 1)-
dimensional Heisenberg algebra. The corresponding Iwasawa decomposition of g is g =
k ⊕ a ⊕ n. The connected subgroup of G with Lie algebra a ⊕ n acts simply transitively
on CHn. One may endow AN , and then a ⊕ n, with the left-invariant metric 〈·, ·〉AN

and the complex structure J that make CHn and AN isometric and isomorphic as Kähler
manifolds. Then 〈X, Y 〉AN = 〈Xa, Ya〉+

1
2
〈Xn, Yn〉 for X , Y ∈ a⊕ n; here subscripts mean

the a and n components respectively. The complex structure J on a⊕n leaves gα invariant,
turning gα into an (n− 1)-dimensional complex vector space Cn−1. Moreover, Ja = g2α.

Let B ∈ a be a unit vector and define Z = JB ∈ g2α. Then 〈B,B〉 = 〈B,B〉AN = 1 and
〈Z,Z〉 = 2〈Z,Z〉AN = 2. The Lie bracket of a⊕ n is given by

[aB + U + xZ, bB + V + yZ] = −
b

2
U +

a

2
V +

(

−bx + ay +
1

2
〈JU, V 〉

)

Z,

where a, b, x, y ∈ R, and U , V ∈ gα. Let us also define pλ = (1 − θ)gλ, the projection
onto p of the restricted root spaces. Then p = a⊕ pα ⊕ p2α. If the complex structure on p

is denoted by i, then we have that 2iB = (1 − θ)Z, and i(1 − θ)U = (1 − θ)JU for every
U ∈ gα.

We state now two lemmas that will be used frequently throughout the article.

Lemma 2.1. We have:

(a) [θX, Z] = −JX for each X ∈ gα.

(b) 〈T, (1 + θ)[θX, Y ]〉 = 2〈[T,X ], Y 〉, for any X, Y ∈ gα and T ∈ k0.

Proof. See [6, Lemma 2.1]. �

Lemma 2.2. The orthogonal projection map 1
2
(1− θ) : a⊕ gα⊕ g2α → a⊕ pα⊕ p2α defines

an equivalence between the adjoint K0-representation on a⊕ gα ⊕ g2α and the adjoint K0-

representation on p = a ⊕ pα ⊕ p2α. Moreover, this equivalence is an isometry between

(a⊕ gα ⊕ g2α, 〈·, ·〉AN) and (p, 〈·, ·〉), and 1
2
(1− θ) : gα → pα is a complex linear map.

Proof. The first part follows from the fact that θ is a K-equivariant, hence K0-equivariant,
map on g. The other claims follow from the facts stated above in this subsection. �
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2.2. Polar actions. Let M be a Riemannian manifold and I(M) its isometry group. It
is known that I(M) is a Lie group. Let H be a connected closed subgroup of I(M). The
action of H on M is called polar if there exists an immersed submanifold Σ of M such
that:

(1) Σ intersects all the orbits of the H-action, and
(2) for each p ∈ Σ, the tangent space of Σ at p, TpΣ, and the tangent space of the orbit

through p at p, Tp(H · p), are orthogonal.

In such a case, the submanifold Σ is called a section of the H-action. The action of H is
called hyperpolar if the section Σ is flat in its induced Riemannian metric.

Two isometric Lie group actions on two Riemannian manifolds M and N are said to
be orbit equivalent if there is an isometry M → N which maps connected components of
orbits onto connected components of orbits. They are said to be conjugate if there exists
an equivariant isometry M → N .

The final aim of our research is to classify polar actions on a given Riemannian manifold
up to orbit equivalence. In this paper we accomplish this task for complex hyperbolic
spaces. See the survey articles [33], [34] and [13] for more information and references on
polar actions.

Since CHn is of rank one, a polar action on CHn is hyperpolar if and only if it is of
cohomogeneity one, i.e. the orbits of maximal dimension are hypersurfaces. Conversely,
any action of cohomogeneity one on CHn (or any other Riemannian symmetric space) is
hyperpolar. Cohomogeneity one actions on complex hyperbolic spaces have been classified
by Berndt and Tamaru in [8].

From now on we focus on polar actions on complex hyperbolic spaces and recall or prove
some facts that will be used later in this article. We begin with a criterion that allows us
to decide whether an action is polar or not. The first such criterion of polarity is credited
to Gorodski [17].

Proposition 2.3. Let M = G/K be a Riemannian symmetric space of noncompact type,

and let Σ be a connected totally geodesic submanifold of M with o ∈ Σ. Let H be a closed

subgroup of I(M). Then H acts polarly on M with section Σ if and only if ToΣ is a section

of the slice representation of Ho on νo(H · o), and 〈h, ToΣ⊕ [ToΣ, ToΣ]〉 = 0.
In this case, the following conditions are satisfied:

(a) ToΣ⊕ [ho, ξ] = νo(H · o) for each regular normal vector ξ ∈ νo(H · o).
(b) ToΣ⊕ [ho, ToΣ] = νo(H · o).
(c) Ad(Ho)ToΣ = νo(H · o).

Proof. Follows from [5, Corollary 3.2] and from well-known facts on polar representations
of compact groups [12]. �

If N is a submanifold of CHn, then N is said to be totally real if for each p ∈ N the
tangent space TpN is a totally real subspace of TpCH

n, that is, JTpN is orthogonal to TpN .
See §2.3 for more information of totally real subspaces of complex vector spaces. The next
theorem shows that sections are necessarily totally real.
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Proposition 2.4. Let H act nontrivially, nontransitively, and polarly on the complex

hyperbolic space CHn, and let Σ be a section of this action. Then, Σ is a totally real

submanifold of CHn.

Proof. Since the action of H is polar, the section Σ is a totally geodesic submanifold of
CHn, hence Σ is either totally real or complex. Assume that Σ is complex.

Since all sections are of the form h(Σ), with h ∈ H , and the isometries of H are holo-
morphic, it follows that any principal orbit is almost complex. It is a well-known fact that
an almost complex submanifold in a Kähler manifold is Kähler. Since every H-equivariant
normal vector field on a principal orbit is parallel with respect to the normal connection [3,
Corollary 3.2.5], then this principal orbit is either a point or CHn (see for example [1]),
contradiction. Therefore Σ is totally real. �

2.3. The structure of a real subspace of a complex vector space. Let us denote
by J the complex structure of the complex vector space Cn. We view Cn as a Euclidean
vector space with the scalar product given by the real part of the standard Hermitian
scalar product. We define a real subspace of Cn to be an R-linear subspace of the real
vector space obtained from Cn by restricting the scalars to the real numbers. Let V be a
real subspace of Cn. We will denote by πV the orthogonal projection map onto V .

The Kähler angle of a nonzero vector v ∈ V with respect to V is defined to be the
angle between Jv and V or, equivalently, the value ϕ ∈ [0, π/2] such that 〈πV Jv, πV Jv〉 =
cos2(ϕ)〈v, v〉. We say that V has constant Kähler angle ϕ if the Kähler angle of every
nonzero vector v ∈ V with respect to V is ϕ. In particular, V is a complex subspace if
and only if it has constant Kähler angle 0; it is a totally real subspace if and only if it has
constant Kähler angle π/2.

Remark 2.5. If {e1, . . . , en} and {f1, . . . , fn} both are C-orthonormal bases of Cn, then the
real subspace Vϕ of C2n = Cn ⊕ Cn generated by

{cos(ϕ
2
)e1+sin(ϕ

2
)Jf1, cos(

ϕ
2
)Je1+sin(ϕ

2
)f1, . . . , cos(

ϕ
2
)en+sin(ϕ

2
)Jfn, cos(

ϕ
2
)Jen+sin(ϕ

2
)fn}

has constant Kähler angle ϕ ∈ [0, π/2). Conversely, any subspace of constant Kähler
angle ϕ ∈ [0, π/2) and dimension 2n of C2n can be constructed in this way, see [2]. In
particular, it follows that two real subspaces of Cn with the same dimension and the same
constant Kähler angle are congruent by an element of U(n).

For general real subspaces of a complex vector space, we have the following structure
result.

Theorem 2.6. Let V be any real subspace of Cn. Then V can be decomposed in a unique

way as an orthogonal sum of subspaces Vi, i = 1, . . . , r, such that:

(a) Each real subspace Vi of C
n has constant Kähler angle ϕi.

(b) CVi ⊥ CVj, for every i 6= j, i, j ∈ {1, . . . , r}.
(c) ϕ1 < ϕ2 < · · · < ϕr.

Proof. The endomorphism P = πV ◦ J of V is clearly skew-symmetric, i.e. 〈Pv, w〉 =
−〈v, Pw〉 for every v, w ∈ V . Then, there exists an orthonormal basis of V for which P
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takes a block diagonal form with 2×2 skew-symmetric matrix blocks, and maybe one zero
matrix block. Since P is skew-symmetric, its nonzero eigenvalues are imaginary. Assume
then that the distinct eigenvalues of P are ±iλ1, . . . ,±iλr (maybe one of them is zero).
We can and will further assume that |λ1| > · · · > |λr|.

Now consider the quadratic form Ψ: V → R defined by Ψ(v) = 〈Pv, Pv〉 = −〈P 2v, v〉
for v ∈ V . The matrix of this quadratic form Ψ (or of the endomorphism −P 2) with
respect to the basis fixed above is diagonal with entries λ2

1, . . . , λ
2
r. For each i = 1, . . . , r,

let Vi be the eigenspace of −P 2 corresponding to the eigenvalue λ2
i . Let v ∈ Vi be a unit

vector. Then
〈πVi

Jv, πVi
Jv〉 = 〈Pv, πVi

Jv〉 = 〈Pv, Pv〉 = Ψ(v) = λ2
i ,

where in the second and last equalities we have used that Pv ∈ Vi. This means that each
subspace Vi has constant Kähler angle ϕi, where ϕi is the unique value in [0, π

2
] such that

λ2
i = cos2(ϕi).
By construction, it is clear that Vi ⊥ Vj and JVi ⊥ JVj for i 6= j. Since for every v ∈ Vi

and w ∈ Vj , i 6= j, we have that 〈Jv, w〉 = 〈Pv, w〉 = 0, we also get that JVi ⊥ Vj if i 6= j.
Hence CVi ⊥ CVj if i 6= j.

Property (c) follows from the assumption that |λ1| > · · · > |λr|, and this also implies
the uniqueness of the decomposition. �

It is convenient to change the notation of Theorem 2.6 slightly. Let V be any real
subspace of Cn, and let V =

⊕

ϕ∈Φ Vϕ be the decomposition stated in Theorem 2.6, where

Vϕ has constant Kähler angle ϕ ∈ [0, π/2], and Φ is the set of all Kähler angles arising in
this decomposition. Note that according to Theorem 2.6, this decomposition is unique up
to the order of the factors. We agree to write Vϕ = 0 if ϕ /∈ Φ. The subspaces V0 and Vπ/2

(which can be zero) play a somewhat distinguished role in the calculations that follow, so
we will denote Φ∗ = {ϕ ∈ Φ : ϕ 6= 0, π/2}. Then, the above decomposition is written as

V = V0 ⊕

(

⊕

ϕ∈Φ∗

Vϕ

)

⊕ Vπ/2.

For each ϕ ∈ Φ∗ ∪ {0}, we define Jϕ : Vϕ → Vϕ by Jϕ = 1
cos(ϕ)

(πVϕ ◦ J). This is clearly

a skew-symmetric and orthogonal endomorphism of Vϕ (see the proof of Theorem 2.6).
Therefore (Vϕ, Jϕ) is a complex vector space for every ϕ ∈ Φ∗ ∪ {0}. Note that J0 = J |V0

.
Let U(Vϕ) be the group of all unitary transformations of the complex vector space (Vϕ, Jϕ).

Lemma 2.7. Let V be a real subspace of constant Kähler angle ϕ 6= 0 in Cn. Then the

real subspace CV ⊖ V of Cn has the same dimension as V and constant Kähler angle ϕ.

Proof. See for example [4, page 135]. �

Let V ⊥ = Cn ⊖ V , where as usual ⊖ denotes the orthogonal complement. Then,
Lemma 2.7 implies that the decomposition stated in Theorem 2.6 can be written as

V ⊥ = V ⊥
0 ⊕

(

⊕

ϕ∈Φ∗

V ⊥
ϕ

)

⊕ V ⊥
π/2, where CVϕ = Vϕ ⊕ V ⊥

ϕ for each ϕ ∈ Φ∗ ∪ {π/2}.
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We define mϕ = dimVϕ and m⊥
ϕ = dimV ⊥

ϕ . For every ϕ 6= 0 we have mϕ = m⊥
ϕ by

Lemma 2.7, but V0 and V ⊥
0 are both complex subspaces of Cn, possibly of different dimen-

sion.

Lemma 2.8. Let V be a real subspace of Cn. Let U(n)V be the subgroup of U(n) consisting
of all the elements A ∈ U(n) such that AV = V . Then, we have the canonical isomorphism

U(n)V ∼=





∏

ϕ∈Φ∗∪{0}

U(Vϕ)



×O(Vπ/2)× U(V ⊥
0 ).

where we assume that Vϕ, ϕ ∈ Φ∗ ∪ {0}, is endowed with the complex structure given

by Jϕ = 1
cos(ϕ)

(πVϕ ◦ J), and that V ⊥
0 is endowed with the complex structure given by the

restriction of J .

Proof. Let A ∈ U(n) be such that AV = V . Then A commutes with J and πV and hence
leaves the eigenspaces of −P 2 invariant (see the proof of Theorem 2.6). Thus AVϕ = Vϕ.
Since we also have AV ⊥ = V ⊥, it follows that AV ⊥

ϕ = V ⊥
ϕ .

Let ϕ ∈ Φ ∪ {0}. Since AVϕ = Vϕ and AV ⊥
ϕ = V ⊥

ϕ we have ACVϕ = CVϕ. Clearly,
A ◦ πVϕ |Vϕ = πVϕ ◦A|Vϕ , and A ◦ πVϕ |Cn⊖Vϕ = 0 = πVϕ ◦A|Cn⊖Vϕ . Hence, A ◦ πVϕ = πVϕ ◦A.
Since AJ = JA as well, we have that A◦Jϕ|Vϕ = Jϕ ◦A|Vϕ on Vϕ, and thus, A|Vϕ ∈ U(Vϕ).
If ϕ = π/2 then we have AVπ/2 = Vπ/2, and clearly, A|Vπ/2

is an orthogonal transformation

of Vπ/2. Moreover, we have A|V ⊥

0

∈ U(V ⊥
0 ). We define a map

F : U(n)V →





∏

ϕ∈Φ∗∪{0}

U(Vϕ)



× O(Vπ/2)× U(V ⊥
0 )

by requiring that the projection onto each factor is given by the corresponding restriction,
that is, the U(Vϕ)-projection of F (A) is given by A|Vϕ , the O(Vπ/2)-projection of F (A) is
A|Vπ/2

, and the U(V ⊥
0 )-projection of F (A) is A|V ⊥

0

.

Since every element in U(n)V leaves the subspaces Vϕ, ϕ ∈ Φ, and V ⊥
0 invariant, the map

thus defined is a homomorphism. Let us show injectivity and surjectivity. Let Aϕ ∈ U(Vϕ)
for each ϕ ∈ Φ∗∪{0}, let Aπ/2 ∈ O(Vπ/2), and let A⊥

0 ∈ U(V ⊥
0 ). If A ∈ U(n)V and v ∈ JVϕ

for ϕ ∈ Φ, then Av is determined by Aϕ and v, since Av = −AJ2v = −JAJv = −JAϕ(Jv).
Since we have the direct sum decomposition

C
n =

[

⊕

ϕ∈Φ

CVϕ

]

⊕ V ⊥
0 ,

it follows that the unitary map A on Cn is uniquely determined by the maps Aϕ, ϕ ∈ Φ,
and A⊥

0 . This shows injectivity.

Conversely, let A ∈
[

∏

ϕ∈Φ∗∪{0} U(Vϕ)
]

×O(Vπ/2)×U(V ⊥
0 ), and denote by Aϕ the U(Vϕ)-

projection, by Aπ/2 the O(Vπ/2)-projection, and by A⊥
0 the U(V ⊥

0 )-projection. Then, we
may construct a map A ∈ U(n)V be defining A(v + Jw) = Aϕv + JAϕw for all v, w ∈ Vϕ,
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ϕ ∈ Φ, Av = A⊥
0 v for v ∈ V ⊥

0 , and extending linearly. For the map A thus defined we have
A|Vϕ = Aϕ for ϕ ∈ Φ, and A|V ⊥

0

= A⊥
0 . This proves surjectivity. �

Remark 2.9. Let V and W be two real subspaces of Cn whose Kähler angle decompositions
have the same set of Kähler angles Φ and the same dimensions, that is, the decompositions
given by Theorem 2.6 are V = ⊕ϕ∈ΦVϕ and W = ⊕ϕ∈ΦWϕ, with dimVϕ = dimWϕ for
all ϕ ∈ Φ. Then, it follows from the results of this subsection that there exists a unitary
automorphism A of Cn such that AVϕ = Wϕ for all ϕ ∈ Φ, and in particular, AV = W .

3. New examples of polar actions

We will now construct new examples of polar actions on complex hyperbolic spaces. We
will use the notation from Subsection 2.1.

Recall that the root space gα is a complex vector space, which we will identify with Cn−1.
Let w be a real subspace of gα and

w =
⊕

ϕ∈Φ

wϕ = w0 ⊕

(

⊕

ϕ∈Φ∗

wϕ

)

⊕wπ/2

its decomposition as in Theorem 2.6, where Φ is the set of all possible Kähler angles of
vectors in w, Φ∗ = {ϕ ∈ Φ : ϕ 6= 0, π/2}, and wϕ has constant Kähler angle ϕ ∈ [0, π/2].
Similarly, define w⊥ = gα ⊖w and let

w⊥ = w⊥
0 ⊕

(

⊕

ϕ∈Φ∗

w⊥
ϕ

)

⊕w⊥
π/2

be the corresponding decomposition as in Theorem 2.6. We define mϕ = dimwϕ and
m⊥

ϕ = dimw⊥
ϕ , and recall that mϕ = m⊥

ϕ if ϕ ∈ (0, π/2]. Recall also that K0, the connected
subgroup of G = SU(1, n) with Lie algebra k0, is isomorphic to U(n − 1) and acts on
gα ∼= Cn−1 in the standard way. We denote by NK0

(w) the normalizer of w in K0, and by
nk0(w) the normalizer of w in k0. We know from Lemma 2.8 that

(1) NK0
(w) ∼=





∏

ϕ∈Φ∗∪{0}

U(wϕ)



× O(wπ/2)× U(w⊥
0 ).

This group leaves invariant each wϕ and each w⊥
ϕ , and acts transitively on the unit sphere of

these subspaces of constant Kähler angle. Moreover, it acts polarly on w⊥, see Remark 3.2
below.

The following result provides a large family of new examples of polar actions on CHn.

Theorem 3.1. Let w be a real subspace of gα and b a subspace of a. Let h = q⊕b⊕w⊕g2α,

where q is any Lie subalgebra of nk0(w) such that the corresponding connected subgroup

Q of K acts polarly on w⊥ with section s. Assume s is a totally real subspace of gα.

Then the connected subgroup H of G with Lie algebra h acts polarly on CHn with section

Σ = expo((a⊖ b)⊕ (1− θ)s).
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Proof. We have that ToΣ = (a⊖ b)⊕ (1− θ)s and νo(H · o) = (a⊖ b)⊕ (1− θ)w⊥. Since
s ⊂ w⊥, it follows that ToΣ ⊂ νo(H · o). The slice representation of Ho on νo(H · o) leaves
the subspaces a⊖b and (1−θ)w⊥ invariant. For the first one the action is trivial, while for
the second one the action is equivalent to the representation of Q on w⊥ (see Lemma 2.2),
which is polar with section s. Hence, the slice representation of Ho on νo(H · o) is polar
and ToΣ is a section of it. Let v, w ∈ s ⊂ w⊥. We have:

[(1− θ)v, (1− θ)w] = (1 + θ)[v, w]− (1 + θ)[θv, w] = −(1 + θ)[θv, w].

The last equality holds because v and w lie in s, which is a totally real subspace of gα,
and then [v, w] = 1

2
〈Jv, w〉Z = 0. Since v, w ∈ gα, then θv ∈ g−α and [θv, w] ∈ g0. Hence

−(1 + θ)[θv, w] ∈ k0. Let X = T + aB + U + xZ ∈ h, where T ∈ q, U ∈ w and a, x ∈ R.
Since k0 is orthogonal to a⊕ gα ⊕ g2α, we have:

〈[(1− θ)v, (1− θ)w], X〉 = −〈(1 + θ)[θv, w], T 〉 = −2〈[T, v], w〉 = −4〈[T, v], w〉AN = 0,

where in the last equality we have used that the action of Q on w⊥ is a polar representation
with section s. If b = a, the result then follows using the criterion in Proposition 2.3.

If b 6= a then b = 0. In this case, let v ∈ s and X = T + U + xZ ∈ h, where T ∈ q,
U ∈ w, x ∈ R. Then:

〈[B, (1− θ)v], X〉 = 〈(1 + θ)[B, v], X〉 =
1

2
〈(1 + θ)v, U〉 = 0.

Since [B,B] = 0, by linearity and the skew-symmetry of the Lie bracket, it follows that
〈[ToΣ, ToΣ], h〉 = 0. Again by Proposition 2.3, the result follows also in case b 6= a. �

Remark 3.2. In the special case Q = NK0
(w), we obtain a polar action on CHn, since

the whole normalizer NK0
(w) acts polarly on w⊥. Indeed, let sϕ be any one-dimensional

subspace of w⊥
ϕ if w⊥

ϕ 6= 0, and define s =
⊕

ϕ∈Φ∪{0} sϕ. Then s is a section of the action

of NK0
(w) on w⊥. The cohomogeneity one examples introduced in [2] correspond to the

case where w⊥ has constant Kähler angle, b = a and Q = NK0
(w).

Remark 3.3. It is straightforward to describe all polar actions of closed subgroups Q in
Theorem 3.1 up to orbit equivalence. In fact, the action of the group NK0

(w) is given
by the products of the natural representations of the direct factors in (1) on the spaces
w⊥

ϕ . By the main result of Dadok [12], a representation is polar if and only if it is orbit
equivalent to the isotropy representation of some Riemannian symmetric space. Therefore,
we obtain a representative for each orbit equivalence class of polar actions on w⊥ given by
closed subgroups of NK0

(w) in the following manner. Given w, for each ϕ ∈ Φ∪{0} choose
a Riemannian symmetric space Mϕ such that dimMϕ = dimw⊥

ϕ . In case π/2 ∈ Φ, choose
the symmetric spaces such that all of them except possibly Mπ/2 are Hermitian symmetric;
in case π/2 /∈ Φ, choose all these symmetric spaces to be Hermitian without exception.
Then the isotropy representation of

∏

ϕ∈Φ∪{0} Mϕ defines a closed subgroup of NK0
(w),

which acts polarly on w⊥ with a section s, which is a totally real subspace of gα, see [31].
This construction exhausts all orbit equivalent classes of closed subgroups in K0 leaving w

invariant and acting polarly on w⊥ with totally real section.
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Remark 3.4. There is a curious relation between some of the new examples of polar actions
in Theorem 3.1 and certain isoparametric hypersurfaces constructed by the first two authors
in [14]. The orbit H · o of any of the polar actions described in Theorem 3.1 with b = a is
always a minimal (even austere) submanifold of CHn that satisfies the following property:
the distance tubes around it are isoparametric hypersurfaces which are hence foliated by
orbits of the H-action. Moreover, these hypersurfaces have constant principal curvatures
if and only if they are homogeneous (i.e. they are the principal orbits of the cohomogeneity
one action resulting from choosing q = nk0(w) in Theorem 3.1); this happens precisely
when the real subspace w⊥ of gα has constant Kähler angle. See [14] for more details.

The rest of the paper will be devoted to the proof of the classification result stated in
Theorems A and B. In order to justify the content of the following sections, we will give
here a sketch of the proof of Theorem A, and leave the details for the following sections.

Assume thatH is a closed subgroup of SU(1, n) that acts polarly on CHn. Any subgroup
of SU(1, n) is contained in a maximal proper subgroup L of SU(1, n). We will see that
each maximal subgroup of SU(1, n) either leaves a totally geodesic proper subspace of
CHn invariant or it is a parabolic subgroup. In the first case, L leaves invariant a lower
dimensional complex hyperbolic space CHk, k ∈ {0, . . . , n− 1}, or a real hyperbolic space
RHn. The first possibility is tackled in Subsection 4.1, and it follows from this part of
the paper that, roughly, the action of H splits, up to orbit equivalence, as the product of
a polar action on the totally geodesic CHk, and a polar action with a fixed point on its
normal space. Hence, the problem is reduced to the classification of polar actions on lower
dimensional complex hyperbolic spaces, which will allow us to use an induction argument.
The second possibility is addressed in Subsection 4.2 where we show that the action of H
is orbit equivalent to the action of SO(1, n), which is a cohomogeneity one action whose
orbits are tubes around a totally geodesic RHn. If the group L is parabolic, then its Lie
algebra is of the form l = k0 ⊕ a⊕ gα ⊕ g2α, for some root space decomposition of su(1, n)
(see §2.1). We show in Section 5 that the Lie algebra of H (up to orbit equivalence) must
be of the form q⊕ b⊕w⊕ g2α, with q ⊂ k0, b ⊂ a, and w ⊂ gα, or of the form q⊕ a, with
q ⊂ k0. A bit more work leads us to the examples described in Theorem 3.1. Combining
the different cases, we will conclude in Section 6 the proofs of Theorems A and B.

4. Actions leaving a totally geodesic subspace invariant

The results in this section show that in order to classify polar actions leaving a totally
geodesic complex hyperbolic subspace invariant it suffices to study polar actions on the
complex hyperbolic spaces of lower dimensions. We will also show that actions leaving
a totally geodesic RHn invariant are orbit equivalent to the cohomogeneity one action of
SO(1, n). Note that if an isometric action leaves a totally geodesic RHk invariant, it also
leaves a totally geodesic CHk invariant.

The following is well known. Let H be closed connected subgroup of SU(1, n). If the
natural action of H on CHn leaves a totally geodesic proper submanifold of CHn invariant,
then there is an element g ∈ SU(1, n) such that gHg−1 is contained in one of the subgroups
S(U(1, k)U(n− k)) or SO(1, n) of SU(1, n).
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4.1. Actions leaving a totally geodesic complex hyperbolic space invariant. Let
L = S(U(1, k)U(n − k)) ⊂ G = SU(1, n). Let M1 be the totally geodesic CHk given by
the orbit L · o. Let M2 be the totally geodesic CHn−k which is the image of the normal
space νoM1 under the Riemannian exponential map expo. Let H be a closed connected
subgroup of L. Then the H-action on CHn leaves M1 invariant and the H-action on CHn

restricted to the isotropy subgroup Ho leaves M2 invariant. Let π1 : L → U(1, k) and
π2 : L → U(n− k) be the natural projections.

Theorem 4.1. Assume the H-action on CHn is nontrivial. Then it is polar if and only

if the following hold:

(i) The action of H on M1 is polar and nontrivial.

(ii) The action of Ho on M2 is polar and nontrivial.

(iii) The action of π1(H)× π2(Ho) on CHn is orbit equivalent to the H-action.

Proof. Assume first that the H-action on CHn is polar and Σ is a section. Let Σi be the
connected component of Σ ∩Mi containing o for i = 1, 2. Obviously, the H-orbits on M1

intersect Σ1 orthogonally. Let p be an arbitrary point in M1. Then the intersection of
the orbit H · p with Σ is non-empty. Let q ∈ (H · p) ∩ Σ. Since H leaves M1 invariant,
we have that q ∈ M1. Both the Riemannian exponential maps of M1 and of Σ at the
point o are diffeomorphisms by the Cartan-Hadamard theorem. Hence there is a unique
shortest geodesic segment β in Σ connecting o with q and there is also a unique shortest
geodesic segment γ in M1 connecting o with q. Since both Σ and M1 are totally geodesic
submanifolds of CHn it follows that β and γ are both also totally geodesic segments of CHn

connecting the points o and q and must coincide by the Cartan-Hadamard theorem. Hence
β = γ both lie in Σ1. This shows that Σ1 meets the H-orbit through p (namely, at the
point q) and completes the proof that (i) holds.

Obviously, the Ho-orbits on M2 intersect Σ2 orthogonally. Since ToM2 is a submodule
of the slice representation of Ho on νo(H · o), the linear Ho-action on ToM2 is polar with
section ToΣ2. The map expo : ToM2 → M2 is an Ho-equivariant diffeomorphism by the
Cartan-Hadamard theorem. In particular, it follows that Σ2 meets all Ho-orbits in M2,
since ToΣ2 meets all Ho-orbits in ToM2. Thus (ii) holds.

Consider the polar slice representation of Ho at ToCH
n with section ToΣ. By [12,

Theorem 4], it follows that ToΣ = ToΣ1 ⊕ ToΣ2. Since H ⊂ π1(H)× π2(H), it follows that
the actions of the two groups on CHn are orbit equivalent.

Now let us prove the other direction of the equivalence. Assume H ⊂ L is a closed
subgroup such that (i), (ii) and (iii) hold. Because of (iii) we may replace H by π1(H)×
π2(H). Let Σ1 be the section of the H-action on M1 and let Σ2 be the section of H-
action on M2. Then by Proposition 2.4, the tangent spaces ToΣ1 and ToΣ2 are totally real
subspaces of ToCH

n; moreover, CToΣ1 ⊥ CToΣ2. Thus the sum ToΣ1⊕ToΣ2 is totally real
Lie triple system in ToCH

n. Let Σ be the corresponding totally geodesic submanifold.
Using Proposition 2.3, we will show that the H-action on CHn is polar and Σ is a

section. Consider the Cartan decomposition g = k⊕ p with respect to o ∈ CHn. We have
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p = ToM1 ⊕ ToM2. Furthermore, the direct sum decomposition

(2) νo(H · o) = (νo(H · o) ∩ ToM1)⊕ ToM2

holds. The slice representation of the H-action on M1 at the point o is orbit equivalent
to the submodule νo(H · o) ∩ ToM1 of the slice representation of the H-action on CHn

at o. The slice representation of the Ho-action on M2 at the point o is orbit equivalent
to the submodule ToM2 of the slice representation of the H-action on CHn at o. By [12,
Theorem 4], we conclude that the slice representation of Ho on νo(H · o) is polar and a
section is ToΣ = ToΣ1 ⊕ ToΣ2. We have to show 〈[v, w], X〉 = −B([v, w], θ(X)) = 0 for all
v, w ∈ ToΣ ⊂ p and all X ∈ h. We may identify the tangent space ToCH

n = p with the
space of complex (n+ 1)× (n+ 1)-matrices of the form

(3)









0 z̄1 . . . z̄n
z1 0 . . . 0
...

...
...

zn 0 . . . 0









.

The subspace ToM1 is given by the matrices where zk+1 = . . . = zn = 0. On the other
hand, ToM2 consists of those matrices where z1 = . . . = zk = 0. Let v, w ∈ ToΣ1. Then
[v, w] is a matrix all of whose nonzero entries are located in the (k+1)× (k+1)-submatrix
in the upper left-hand corner, and it follows from (i) and Proposition 2.3 that all vectors
in h are orthogonal to [v, w]. Now assume v, w ∈ ToΣ2. Then [v, w] is a matrix all of whose
nonzero entries are located in the (n − k) × (n − k)-submatrix in the bottom right-hand
corner. It follows from (ii) and Proposition 2.3 that all vectors in h are orthogonal to
[v, w]. Finally assume v ∈ ToΣ1 and w ∈ ToΣ2. In this case, the bracket [v, w] is contained
in the orthogonal complement of the Lie algebra of L in su(1, n); in particular, [v, w] is
orthogonal to h. We conclude that the H-action on CHn is polar by Proposition 2.3. �

4.2. Actions leaving a totally geodesic real hyperbolic space invariant. Now we
assume that the polar action leaves a totally geodesic RHn invariant. We have:

Theorem 4.2. Assume that H is a closed subgroup of SO(1, n) ⊂ SU(1, n). If the H-

action on CHn is polar and nontrivial, then it is orbit equivalent to the SO(1, n)-action
on CHn; in particular, it is of cohomogeneity one.

Proof. This proof is divided in three steps.

Claim 1. The group H induces a homogeneous polar foliation on the totally geodesic
submanifold RHn given by the SO(1, n)-orbit through o.

Let M1 be the totally geodesic RHn given by the SO(1, n)-orbit through o. Obviously,
the H-action leaves M1 invariant. Assume the H-action on M1 has a singular orbit H · p,
where p = g(o) ∈ M1. Consider the action of H ′ on CHn, where H ′ is the conjugate
subgroup H ′ = gHg−1 of SU(1, n). The action of H ′ is conjugate to the H-action on CHn,
hence polar. We have the splitting (2) for the normal space of the H ′-orbit through o as
in the proof of Lemma 4.1, where in this case M2 is the totally geodesic RHn such that



POLAR ACTIONS ON COMPLEX HYPERBOLIC SPACES 15

ToM2 = i(ToM1). Since o is a singular orbit of the H
′-action onM1, the slice representation

of H ′
o on V = νo(H

′ · o) ∩ ToM1 is nontrivial. The space ToM1 consists of all matrices
in (3) where the entries z1, . . . , zn are real. Consequently, the space iV is contained in
the normal space νo(H

′ · o) and it follows that the slice representation of H ′
o with respect

to the H ′-action on CHn contains the submodule V ⊕ iV with two equivalent nontrivial
H ′

o-representations and is hence non-polar by [20, Lemma 2.9], a contradiction. Hence
the H-action on M1 does not have singular orbits, i.e. H induces a homogeneous foliation
on M1.

Claim 2. The homogeneous polar foliation induced on the invariant totally geodesic real
hyperbolic space consists of only one leaf or all the leaves are points.

Consider the point o ∈ M1 as in the proof of Claim 1. The tangent space of M1 at o
splits as

ToM1 = To(H · o)⊕ (νo(H · o) ∩ ToM1).

The action of the isotropy group Ho on ToM1 respects this splitting. Moreover, the action
is trivial on V = νo(H · o) ∩ ToM1, as this is a submodule of the slice representation at o,
which lies in a principal orbit of the H-action on M1. It follows that the action of Ho on
iV is trivial as well and the only possibly nontrivial submodule of the slice representation
at o is iW , where we define W = To(H · o). It follows that the action of the isotropy group
Ho on iW is polar by Proposition 2.3. Let Σ′ be a section of this action. Let Σ be a section
of the H-action on CHn. Then we have

ToΣ = V ⊕ iV ⊕ Σ′.

By Proposition 2.4, Σ is either totally real or Σ = CHn. In the first case, V must be 0, so
the action of H on M1 is transitive. In the second case, the action of H on CHn is trivial.

Claim 3. The H-action on CHn is orbit equivalent to the SO(1, n)-action.

Assume the H-action is nontrivial and polar with section Σ. We will use the notation
of Subsection 2.1. By Claim 2, H acts transitively on M1 = RHn. By Lemma 2.2, the
tangent space To(H · o) = ToM1 coincides with a ⊕ (1 − θ)gRα, where gRα is a totally real
subspace of the root space gα satisfying CgRα = gα. Moreover νoM1 = i(ToM1). The action
of the isotropy subgroup Ho = H ∩ K on νoM1 by the slice representation is polar with
section ToΣ. Since iB ∈ νoM1, by conjugating the section with a suitable element in Ho

we can then assume that iB ∈ ToΣ.
According to [7, Proposition 2.2], the group H contains a solvable subgroup S which

acts transitively on M1 = RHn. Since S is solvable, it is contained in a Borel subgroup
of SO(1, n). As shown in the proof of [6, Proposition 4.2], we may assume that the Lie
algebra of such a Borel subgroup is maximally noncompact, i.e. its Lie algebra is t⊕a⊕gRα,
where t is an abelian subalgebra of k ∩ so(n) such that t ⊕ a is a Cartan subalgebra of
so(1, n), see [28]. Note that the Cartan decomposition of so(1, n) with respect to the point
o ∈ M1 = RHn is so(1, n) = (k ∩ so(1, n))⊕ pR, where pR = a⊕ (1− θ)gRα

∼= ToM1, and gRα
is the only positive root space of so(1, n) with respect to the maximal abelian subalgebra
a of pR, for a fixed order in the roots.
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Now assume the H-action on CHn is not of cohomogeneity one. Then ToΣ ⊂ νoM1

is a Lie triple system containing iB and a nonzero vector iw such that iB, iw ∈ p are
orthogonal. By Lemma 2.2, there is a vector W ∈ gRα such that w = (1 − θ)W . Then,
using Lemma 2.1(a), we have

[iB, iw] =
1

2
[(1− θ)Z, (1− θ)JW ] =

1

2
(1 + θ)[θJW,Z] =

1

2
(1 + θ)W.

Since To(S · o) = ToM1, it follows that the orthogonal projection of the Lie algebra of S
onto p is pR = a⊕ (1− θ)gRα. This implies that a⊕ gRα is contained in the Lie algebra of S,
and hence, also in h. But then W ∈ h and

〈[iB, iw],W 〉 =
1

2
〈(1 + θ)W,W 〉 =

1

2
〈W,W 〉 6= 0,

so we have arrived at a contradiction with the criterion for polarity in Proposition 2.3. �

5. The parabolic case

As above, let G = SU(1, n) be the identity connected component of the isometry group
of CHn, and K = S(U(1)U(n)) the isotropy group at some point o. Let g = k ⊕ p be the
Cartan decomposition of the Lie algebra of G with respect to o, and choose a maximal
abelian subspace a of p. As usual we consider n = gα ⊕ g2α, where α is a simple positive
restricted root. The normalizer of n in k is denoted by k0. Then k0 ⊕ a ⊕ n is a maximal
parabolic subalgebra, and a maximal parabolic subgroup can be written as the semi-direct
product K0AN .

The aim of this section is to prove the following decomposition theorem.

Theorem 5.1. Let H be a connected closed subgroup of K0AN acting polarly and non-

trivially on CHn. Then the action of H is orbit equivalent to the action of a subgroup of

K0AN whose Lie algebra can be written as one of the following:

(a) q⊕ a, where q is a subalgebra of k0.

(b) q⊕ a⊕w⊕ g2α, where w is a subspace of gα, and q is a subalgebra of k0.

(c) q⊕w⊕ g2α, where w is a subspace of gα, and q is a subalgebra of k0.

Recall that an isometric action on a complete connected Riemannian manifold by a
closed subgroup of its isometry group is a proper action. In particular, this implies that
isotropy groups are compact, orbits are closed, and the orbit space is Hausdorff. One can
then talk about types of orbits: two orbits have the same type if the isotropy groups at
any given points of these orbits are conjugate. The set of conjugacy classes of isotropy
groups of orbits is a partially ordered set by inclusion. For a proper action there is always
a maximum orbit type, that is, a type of orbit whose isotropy groups are contained, up to
conjugacy, in the isotropy groups of any of the other orbits. Orbits belonging to this type
are called principal orbits. They have the maximum possible dimension, and their union
constitutes an open dense subset of the ambient manifold. Orbits that are not principal
but have maximum dimension are called exceptional. The rest of the orbits are said to be
singular. For proper isometric actions on Hadamard manifolds there is also a minimum
orbit type.
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Proposition 5.2. Let M be a Hadamard manifold and H a closed subgroup of its isometry

group acting on M . Then, there is a minimum orbit type, that is, there is an orbit type

whose isotropy groups contain, up to conjugation in H, the isotropy groups of any other

orbits.

Proof. Let Q be a maximal compact subgroup of H . Any two maximal compact subgroups
of a connected Lie group H are connected and conjugate by an element of H [29, p. 148–
149]. By Cartan’s fixed point theorem, Q fixes a point p ∈ M , and hence Q = Hp, the
isotropy group of H at p. If q ∈ M , then Hq is compact, and since all maximal compact
subgroups of H are conjugate it follows that there exists h ∈ H such that Hq ⊂ hQh−1.
Thus, the orbit through p is of the minimum orbit type. �

Coming back to the problem in CHn, consider from now on a connected closed subgroup
H of K0AN acting polarly and nontrivially on CHn. Proposition 5.2 and its proof assert
that there is a maximal compact subgroup Q of H with a fixed point p ∈ CHn. The
orbit through p is of minimum type, and Q = Hp. Since AN acts simply transitively on
CHn, we can take the unique element g in AN such that g(o) = p, and consider the group
H ′ = Ig−1(H) = g−1Hg, whose action on CHn is conjugate to the one of H . Moreover,
Q′ = Ig−1(Q) = g−1Qg fixes the point o. Since a⊕n normalizes k0⊕a⊕n, we get that AN
normalizes k0 ⊕ a ⊕ n. In particular, Ad(g−1)h ⊂ k0 ⊕ a ⊕ n, and therefore H ′ ⊂ K0AN .
Since we are interested in the study of polar actions up to orbit equivalence, it is not
restrictive to assume that the group H ⊂ K0AN acting polarly on CHn admits a maximal
connected compact subgroup Q that fixes the point o, and hence Q ⊂ K0. We will assume
this throughout this section.

As a matter of notation, given two subspaces m, l, and a vector v of g, by ml (resp. by
vl) we will denote the orthogonal projection of m (resp. of v) onto l.

The crucial part of the proof of Theorem 5.1 is contained in the following assertion:

Proposition 5.3. Let H be a connected closed subgroup of K0AN acting polarly on CHn.

Let Q be a maximal subgroup of H that fixes the point o ∈ CHn. Let b be a subspace of a,

w a subspace of gα, and r a subspace of g2α. Assume that ĥ = q⊕ b⊕w⊕ r is a subalgebra

of k0 ⊕ a ⊕ n, and let Ĥ be the connected subgroup of K0AN whose Lie algebra is ĥ. If

ha⊕n = b⊕w⊕ r, then the actions of H and Ĥ are orbit equivalent.

The proof of Proposition 5.3 is carried out in several steps. We start with a few basic
remarks.

Since a and g2α are one dimensional, b is either 0 or a, and r is either 0 or g2α. Moreover,
if r = 0 then w has to be a totally real subspace of the complex vector space gα ∼= C

n−1, so
that ĥ is a Lie subalgebra. Using the properties of the root space decomposition, it is then
easy to check that ĥ = q⊕ b⊕w⊕ r is a subalgebra of k0 ⊕ a⊕ n if and only if [q,w] ⊂ w.

Let Σ be a section of the action of H on CHn through o ∈ CHn, and let ToΣ be
its tangent space at o. The normal space of the orbit through the origin is νo(H · o) =
(a⊖ b)⊕ (pα ⊖ (1− θ)w)⊕ (p2α ⊖ (1− θ)r). Since [k0, a] = [k0, g2α] = 0, [k0, gα] = gα, and
νo(H · o) = ToΣ⊕ [q, ToΣ] (orthogonal direct sum of vector subspaces) by Proposition 2.3,
it follows that a ⊖ b ⊂ ToΣ and p2α ⊖ (1 − θ)r ⊂ ToΣ. Moreover, since sections are
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totally real by Proposition 2.4, we can write the tangent space at o of any section as
ToΣ = (a⊖ b)⊕ (1− θ)s⊕ (p2α ⊖ (1 − θ)r), where s is a totally real subspace of gα, with
s ⊂ gα ⊖ w. Furthermore, the fact that ToΣ is totally real, and ia = p2α (where i is the
complex structure on p), implies that a⊖b = 0 or p2α⊖ (1−θ)r = 0, or equivalently, b = a

or r = g2α (that is, a ⊂ ha⊕n or g2α ⊂ ha⊕n).
Let T + aB + U + xZ be an arbitrary element of h, with T ∈ hk0 , U ∈ w, and a, x ∈ R.

Let ξ, η be arbitrary vectors of s. By Proposition 2.3, and since s is totally real, we have,
using Lemma 2.1(b):

0 = 〈T + aB + U + xZ, [(1− θ)ξ, (1− θ)η]〉 = −〈T, (1 + θ)[θξ, η]〉 = −2〈[T, ξ], η〉,

from where it follows that [hk0 , s] ⊂ gα ⊖ s.
Moreover, if T ∈ q and SU ∈ hk0 , U ∈ w are such that SU+U ∈ h, then [T, SU ]+[T, U ] =

[T, SU + U ] ∈ h, so [T, U ] ∈ w. In particular, if ξ ∈ s, then 0 = 〈[T, U ], ξ〉 = −〈[T, ξ], U〉,
which proves [q, s] ⊂ gα ⊖ (w⊕ s).

Summarizing what we have obtained about sections we can state:

Lemma 5.4. If Σ is a section of the action of H on CHn through o, then

ToΣ = (a⊖ b)⊕ (1− θ)s⊕ (p2α ⊖ (1− θ)r),

where s ⊂ gα ⊖ w is a totally real subspace of gα, and b = a or r = g2α. Moreover,

[hk0 , s] ⊂ gα ⊖ s, and [q, s] ⊂ gα ⊖ (w⊕ s).

We will need to calculate the isotropy group at certain points.

Lemma 5.5. Let ξ ∈ gα and write g = Exp(λξ), with λ ∈ R. Then, the Lie algebra of the

isotropy group Hp of H at p = g(o) is hp = h ∩Ad(g)k = q ∩ ker ad(ξ).

Proof. First notice that h ∩ Ad(g)k is the Lie algebra of Hp = H ∩ Ig(K). Let v be the
unique element in p = ToCH

n such that expo(v) = p. We show that the isotropy group
Hp coincides with the isotropy group of the slice representation of Q at v, Qv. By [35,
§2] we know that the normal exponential map exp : ν(H · o) → CHn is an H-equivariant
diffeomorphism. Let h ∈ Hp. Since expo(v) = p = h(p) = h expo(v) = exph(o)(h∗ov), we
get that h(o) = o and h∗ov = v, and hence, h ∈ Qv. The H-equivariance of exp also shows
the converse inclusion. Therefore Hp = Qv.

We can write v = aB + b(1 − θ)ξ for certain a, b ∈ R. In fact, Exp(λξ)(o) belongs to
the totally geodesic RH2 given by expo(a⊕R(1− θ)ξ), and b 6= 0 if λξ 6= 0. Then, the Lie
algebra of Hp = Qv is {T ∈ q : [T, aB + b(1 − θ)ξ] = 0} = {T ∈ q : [T, ξ] = 0}, which is
q ∩ ker ad(ξ). �

By definition, we say that a vector ξ ∈ s is regular if [q, ξ] = gα ⊖ (w⊕ s). We have

Lemma 5.6. The set {ξ ∈ s : ξ is regular} is an open dense subset of s.

Proof. An element of ToΣ can be written, according to Lemma 5.4, as v = aB+(1− θ)ξ+
x(1− θ)Z where a, x ∈ R, and ξ ∈ s. We have [q, v] = (1− θ)[q, ξ] and νo(H · o)⊖ ToΣ =
(1− θ)(gα ⊖ (w⊕ s)). An element of ToΣ is regular (that is, belongs to a principal orbit of
the slice representation Q × νo(H · o) → νo(H · o)) if and only if [q, v] = νo(H · o) ⊖ ToΣ.
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The previous equalities, and the fact that (1− θ) : gα → pα is an isomorphism implies that
v is regular if and only if [q, ξ] = gα ⊖ (w⊕ s). Since the set of regular points of a section
is open and dense, the result follows. �

Lemma 5.7. For each regular vector ξ ∈ s we have [hk0 , ξ] = gα ⊖ (w⊕ s).

Proof. Let ξ ∈ s be a regular vector, that is, [q, ξ] = gα ⊖ (w ⊕ s). In order to prove the
lemma, it is enough to show that [hk0 , ξ] ⊂ gα ⊖ w, since q ⊂ hk0 and, by Lemma 5.4,
[hk0 , ξ] ⊂ gα ⊖ s.

First, consider the case r = 0. By Lemma 5.4, ToΣ = (1 − θ)s ⊕ R(1 − θ)Z for each
section Σ through o, where s is some totally real subspace of gα. By Proposition 2.3 we
have νo(H ·o) = Ad(Q)(ToΣ) and, thus, for any η ∈ gα⊖w we can find a section Σ through
o such that η ∈ s by conjugating by a suitable element in Q. Then using Lemma 2.1, we
have that (1 + θ)Jη = [(1 − θ)η, (1 − θ)Z] ∈ [ToΣ, ToΣ]. Let W ∈ w and TW ∈ hk0
be such that TW + W ∈ h. Since by Proposition 2.3 we have 〈h, [ToΣ, ToΣ]〉 = 0, then
0 = 〈TW +W, (1 + θ)Jη〉 = 〈W,Jη〉. We have then shown that J(gα ⊖w) is orthogonal to
w, that is, gα ⊖w is a complex subspace of gα. Since w is totally real, we deduce w = 0.
But then [hk0 , ξ] ⊂ gα ⊖w holds trivially.

For the rest of the proof, we assume that r = g2α.
Let TB ∈ hk0 and a ∈ R such that TB + aB ∈ h. Note that, if b = 0, then a = 0,

TB ∈ q and there is nothing to prove. For each U ∈ w take an SU ∈ hk0 with SU + U ∈ h.
Then [TB, SU ] + [TB, U ] + a

2
U = [TB + aB, SU + U ] ∈ h, so [TB, U ] + a

2
U ∈ w, from where

[TB, U ] ∈ w. Hence, 〈[TB, ξ], U〉 = −〈ξ, [TB, U ]〉 = 0, so we get [TB, ξ] ⊂ gα ⊖w.
Now let TZ ∈ hk0 and x ∈ Z with TZ + xZ ∈ h. For each U ∈ w take an SU ∈ hk0 with

SU +U ∈ h. Then [TZ , SU ] + [TZ , U ] = [TZ +Z, SU +U ] ∈ h, so [TZ , U ] ∈ w. As above, we
conclude [TZ , ξ] ⊂ gα ⊖w.

Finally, we have to prove that for each U ∈ w, if TU ∈ hk0 is such that TU +U ∈ h, then
[TU , ξ] ∈ gα ⊖w. This will require some effort.

Let U ∈ w and TU ∈ hk0 with TU + U ∈ h. By Lemma 5.4, [TU , ξ] ∈ gα ⊖ s =
w⊕ (gα⊖ (w⊕s)). Since [q, ξ] = gα⊖ (w⊕s), we can find an S ∈ q so that [TU +S, ξ] ∈ w.
Therefore we can define the map

Fξ : w → w, U 7→ [TU , ξ], where TU ∈ hk0 , TU + U ∈ h, and [TU , ξ] ∈ w.

The map Fξ is well-defined. Indeed, if TU , SU ∈ hk0, U ∈ w, TU + U , SU + U ∈ h, and
[TU , ξ], [SU , ξ] ∈ w, then TU − SU ∈ q, so [TU , ξ]− [SU , ξ] = [TU − SU , ξ] ∈ gα ⊖ (w ⊕ s),
and [TU , ξ]− [SU , ξ] ∈ w. Hence [TU , ξ] = [SU , ξ]. It is also easy to check that Fξ is linear.

Furthermore, Fξ is self-adjoint. To see this, let TU , SV ∈ hk0 , U , V ∈ w, with TU + U ,
SV + V ∈ h, and [TU , ξ], [SV , ξ] ∈ w. Then we have

0 = 〈[TU + U, SV + V ], ξ〉 = 〈[TU , V ], ξ〉 − 〈[SV , U ], ξ〉 = −〈V, [TU , ξ]〉+ 〈U, [SV , ξ]〉

= −〈Fξ(U), V 〉+ 〈Fξ(V ), U〉.

Assume now that Fξ 6= 0. Then Fξ admits an eigenvector U ∈ w with nonzero eigenvalue
λ ∈ R: Fξ(U) = λU 6= 0. We will get a contradiction with this.
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Let g = Exp(− 1
λ
ξ), and consider TU ∈ hk0 such that TU + U ∈ h and Fξ(U) = [TU , ξ] =

λU . We also consider an element S ∈ hk0 such that S+Z ∈ h and [S, ξ] = 0; this is possible
because [S, ξ] ∈ gα ⊖ (w⊕ s) = [q, ξ] and q ⊂ h. If we define R = TU − 1

4λ
〈Jξ, U〉S ∈ hk0 ,

then we have

Ad(g)R = e−
1

λ
ad(ξ)R = TU −

1

λ
[ξ, TU ] +

1

2λ2
[ξ, [ξ, TU ]]−

1

4λ
〈Jξ, U〉S

= (TU + U)−
1

4λ
〈Jξ, U〉(S + Z) ∈ h ∩Ad(g)(k).

However, Ad(g)R 6∈ q∩ker ad(ξ). By virtue of Lemma 5.5, this gives a contradiction. Thus
we must have Fξ = 0, from where the result follows. �

Lemma 5.8. The subspace hk0 is a subalgebra of k0 and [hk0 ,w] ⊂ w.

Proof. If T + aB +U + xZ, S + bB + V + yZ ∈ h, with T , S ∈ hk0, U , V ∈ w, and a, b, x,
y ∈ R, then the bracket [T + aB + U + xZ, S + bB + V + yZ] = [T, S] + [T, V ]− [S, U ] +
a
2
V − b

2
U +

(

1
2
〈JU, V 〉+ ay − bx

)

Z belongs to h. In particular [T, S] ∈ hk0, so hk0 is a Lie
subalgebra of k0. Taking U = 0, a = b = x = y = 0 we obtain that [q,w] ⊂ w and hence
[q, gα ⊖w] ⊂ gα ⊖w.

Now let X ∈ gα ⊖ w. For any section through o we have Ad(Q)(ToΣ) = ν0(H · o) =
(a ⊖ b) ⊕ (1 − θ)(gα ⊖ w) ⊕ (1 − θ)(g2α ⊖ r), and (a ⊖ b) ⊕ (1 − θ)(gα ⊖ r) ⊂ ToΣ by
Lemma 5.4. Hence, for (1 − θ)X ∈ (1 − θ)(gα ⊖ w) we can find a section Σ such that
(1− θ)X ∈ ToΣ (after conjugation by an element of Q if necessary). Then, if X is regular,
Lemma 5.7 implies [hk0 , X ] ⊂ gα ⊖ w. Since the set of regular vectors is dense, X can
always be approximated by a sequence of regular vectors, and hence, by continuity we also
obtain [hk0, X ] ⊂ gα⊖w for non-regular vectors. Therefore, [hk0 , gα⊖w] ⊂ gα⊖w. Finally,
the skew-symmetry of the elements of ad(k0) implies [hk0 ,w] ⊂ w. �

We can now finish the proof of Proposition 5.3.

Proof of Proposition 5.3. The fact that ĥ = q⊕ b⊕w⊕ r is a subalgebra of k0⊕ a⊕n, and
Lemma 5.8, imply that h̃ = hk0 ⊕ b⊕w⊕ r is a Lie subalgebra of g that contains h and ĥ.
Let H̃ be the connected subgroup of G whose Lie algebra is h̃. Since To(H ·o) = To(H̃ ·o) =

To(Ĥ · o) = b ⊕ (1 − θ)w ⊕ (1 − θ)r and H ⊂ H̃, Ĥ ⊂ H̃, the orbits through o of the

groups H , H̃, and Ĥ coincide. The slice representations at o of H and H̃ have the same
principal orbits. Indeed, for a section Σ through o and v = aB+(1−θ)ξ+x(1−θ)Z ∈ ToΣ
with ξ ∈ s regular, Lemma 5.7 implies [hk0 , ξ] = gα ⊖ (w ⊕ s) = [q, ξ]. Thus, the tangent

spaces at v of the orbits of the slice representations of H and H̃ through v coincide, and
since H ⊂ H̃, both orbits coincide. Then, the slice representations at o of H and H̃ are
orbit equivalent. Since the codimension of an orbit of H (resp. of H̃) through expo(v)
coincides with the codimension of the orbit of the slice representation of H (resp. of H̃)

through v ∈ νo(H · o) = νo(H̃ · o), and since the orbits of H are contained in the orbits of
H̃ , we conclude that the actions of H and H̃ on CHn have the same orbits. Similarly, an
analogous argument with Ĥ instead of H allows to show that the actions of Ĥ and H̃ on
CHn are orbit equivalent, and this completes the proof. �
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We now proceed with the proof of Theorem 5.1.
Let H be a closed subgroup of the isometry group of CHn acting polarly on CHn, and

assume that the Lie algebra of H is contained in a maximal parabolic subalgebra k0⊕a⊕n.
As we argued at the beginning of this section, there is a maximal compact subgroup Q
of H , and we can assume that o ∈ CHn is a fixed point of Q, that is, the isotropy group
of H at o is Q. We are now interested in ha⊕n, the orthogonal projection of h on a ⊕ n.
It is clear that ha⊕n can be written in one of the following forms: w, R(B + X) ⊕ w,
R(B +X + xZ)⊕ w (with x 6= 0), w⊕ R(Y + Z), or R(B +X)⊕w ⊕ R(Y + Z), where
w ⊂ gα, and X , Y ∈ gα.

In order to conclude the proof of Theorem 5.1 we deal with these five possibilities sepa-
rately.

Case 1: ha⊕n = w, with w a subspace of gα.

Here h is in the hypotheses of Proposition 5.3, and it readily follows from Lemma 5.4
that this case is not possible.

Case 2: ha⊕n = R(B +X)⊕w, with w a subspace of gα, and X ∈ gα ⊖w.

Assume first thatX 6= 0. Then, νo(H ·o) = R(−‖X‖2B+(1−θ)X)⊕(1−θ)(gα⊖w)⊕p2α.
Let Σ be a section through o. Since ToΣ ⊂ νo(H · o), [q,−‖X‖2B + (1 − θ)X ] ⊂ pα,
[q, p2α] = 0, and [q, pα] ⊂ pα, we get that [q, ToΣ] is orthogonal to a and p2α. As νo(H ·o) =
ToΣ⊕ [q, ToΣ] (orthogonal direct sum) by Proposition 2.3, we readily get that p2α ⊂ ToΣ.
Moreover, let T ∈ hk0 be such that T +B+X ∈ h; then T +B+X is orthogonal to [q, ToΣ],
and since [q, ToΣ] ⊂ pα we obtain that X is orthogonal to [q, ToΣ]. The fact that the direct
sum νo(H · o) = ToΣ ⊕ [q, ToΣ] is orthogonal implies that −‖X‖2B + (1 − θ)X ∈ ToΣ.
However, since ToΣ is totally real we have

0 = 〈i(−‖X‖2B+(1−θ)X), (1−θ)Z〉 = 〈−
1

2
‖X‖2(1−θ)Z+(1−θ)JX, (1−θ)Z〉 = −2‖X‖2,

which is not possible because X 6= 0.
Therefore we must have X = 0, and thus ha⊕n = a ⊕ w. Note that the fact that h is

a subalgebra of k0 ⊕ a ⊕ n implies that w is a totally real subspace of gα. We are now in
the hypotheses of Proposition 5.3 and, as shown in the proof of Lemma 5.7, w = 0. We
conclude that the action of H is orbit equivalent to the action of the group Ĥ whose Lie
algebra is ĥ = q⊕ a. This corresponds to Theorem 5.1(a).

Case 3: ha⊕n = R(B +X + xZ) ⊕ w, with w a subspace of gα, X ∈ gα ⊖ w, and x ∈ R,

x 6= 0.
Let g = Exp(xZ) ∈ G, and let T + r(B +X + xZ) + V be a generic element of h, with

V ∈ w, r ∈ R. Clearly, since g ∈ AN we have Ad(g)(h) ⊂ k0 ⊕ a⊕ n. Then, it is easy to
obtain

Ad(g)(T + r(B +X + xZ) + V ) = T + r(B +X + xZ) + V − rxZ = T + r(B +X) + V.

Hence (Ad(g)(h))a⊕n = R(B +X)⊕w, and Ad(g)(q) = q. Since Q is a maximal compact
subgroup of Ig(H) = gHg−1, and the orthogonal projection of the Lie algebra of Ig(H)
onto a ⊕ n is R(B + X) ⊕ w, the new group Ig(H) satisfies the conditions of Case 2.
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Therefore, the action of H is orbit equivalent to the action of the group Ĥ whose Lie
algebra is ĥ = q⊕ a. This also corresponds to Theorem 5.1(a).

Case 4: ha⊕n = w⊕ R(Y + Z), with w a subspace of gα, and Y ∈ gα ⊖w.

Assume that Y 6= 0. Then, νo(H ·o) = a⊕(1−θ)(gα⊖w)⊕R(2(1−θ)Y −‖Y ‖2(1−θ)Z).
Let Σ be a section through o. Then, by Proposition 2.3 we have νo(H · o) = ToΣ⊕ [q, ToΣ]
(orthogonal direct sum). Since [q, 2(1− θ)Y −‖Y ‖2(1− θ)Z] ⊂ pα, [q, a] = 0, and [q, pα] ⊂
pα, we get that [q, ToΣ] is orthogonal to a and p2α. Then, a ⊂ ToΣ. On the other hand,
if T ∈ hk0 is such that T + Y + Z ∈ h, then T + Y + Z is orthogonal to [q, ToΣ] ⊂
νo(H · o), and since [q, ToΣ] ⊂ pα we also obtain that Y is orthogonal to [q, ToΣ]. Thus,
2(1− θ)Y − ‖Y ‖2(1− θ)Z ∈ ToΣ. But, since ToΣ is totally real, we get

0 = 〈B, i(2(1− θ)Y − ‖Y ‖2(1− θ)Z)〉 = 〈B, 2(1− θ)JY + 2‖Y ‖2B〉 = 2‖Y ‖2,

which contradicts Y 6= 0.
Therefore we have Y = 0, and thus, ha⊕n = w ⊕ g2α. We are now in the hypotheses of

Proposition 5.3, and we conclude that the action ofH is orbit equivalent to the action of the
connected subgroup Ĥ of the isometry group of CHn whose Lie algebra is ĥ = q⊕w⊕g2α,
with w a subspace of gα. This corresponds to Theorem 5.1(c).

Case 5: ha⊕n = R(B +X)⊕w⊕ R(Y + Z), with w ⊂ gα, and X, Y ∈ gα ⊖w.

This final possibility is more involved.
Our first aim is to show that Y = 0. So, assume for the moment that Y 6= 0.

Lemma 5.9. We have X = γY + 2
‖Y ‖2

JY , with γ ∈ R.

Proof. Assume that X and Y are linearly dependent, that is, X = λY , with λ ∈ R. Then,
ha⊕n = R(B + λY ) ⊕ w ⊕ R(Y + Z), and there exist T , S ∈ hk0 such that T + B + λY ,
S + Y + Z ∈ h. Then,

[T, S] + [T, Y ]− λ[S, Y ] +
1

2
Y + Z = [T +B + λY, S + Y + Z] ∈ h.

Since [T, Y ]− λ[S, Y ] ∈ gα ⊖ RY by the skew-symmetry of the elements of ad(k0), we get
1
2
Y + Z ∈ ha⊕n, which is not possible.
Therefore, we can assume that X and Y are linearly independent vectors of gα. In

particular, X 6= 0. Take and fix for the rest of the calculations T , S ∈ hk0 such that
T +B +X , S + Y + Z ∈ h.

In this case, the normal space to the orbit through the origin o can be written as

νo(H · o) = R(−‖X‖2B + (1− θ)X −
1

2
〈X, Y 〉(1− θ)Z)⊕ (pα ⊖ (1− θ)(w⊕ RX ⊕ RY ))

⊕ R(−〈X, Y 〉B + (1− θ)Y −
1

2
‖Y ‖2(1− θ)Z).

Let Σ be a section of the action of H on CHn through the point o ∈ CHn. By Propo-
sition 2.3 we have νo(H · o) = ToΣ ⊕ [q, ToΣ] (orthogonal direct sum). In particular the
vectors T + B + X and S + Y + Z are orthogonal to [q, ToΣ] ⊂ pα (because [k0, a] =
[k0, g2α] = 0). This implies that X and Y are already orthogonal to [q, ToΣ], and thus, so
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are −‖X‖2B + (1− θ)X − 1
2
〈X, Y 〉(1− θ)Z and −〈X, Y 〉B + (1− θ)Y − 1

2
‖Y ‖2(1− θ)Z.

Hence, they are in ToΣ and we can write

ToΣ = R(−‖X‖2B + (1− θ)X −
1

2
〈X, Y 〉(1− θ)Z)

⊕ (1− θ)s⊕ R(−〈X, Y 〉B + (1− θ)Y −
1

2
‖Y ‖2(1− θ)Z),

where s ⊂ gα ⊖ w is totally real, and CX ⊕ CY is orthogonal to s (because sections are
totally real). The fact that ToΣ is totally real also implies

(4)

0 = 〈i(−‖X‖2B + (1− θ)(X −
1

2
〈X, Y 〉Z)),−〈X, Y 〉B + (1− θ)(Y −

1

2
‖Y ‖2Z)〉

= 〈(1− θ)(−
1

2
‖X‖2Z + JX) + 〈X, Y 〉B),−〈X, Y 〉B + (1− θ)(Y −

1

2
‖Y ‖2Z)〉

= ‖X‖2‖Y ‖2 − 〈X, Y 〉2 + 2〈JX, Y 〉.

Now, using Lemma 2.1(a), and (4), we compute

[−‖X‖2B + (1− θ)(X −
1

2
〈X, Y 〉Z),−〈X, Y 〉B + (1− θ)(Y −

1

2
‖Y ‖2Z)]

=
1

2
(1 + θ)

(

−2[θX, Y ] + 〈X, Y 〉X − ‖X‖2Y − ‖Y ‖2JX + 〈X, Y 〉JY − 〈JX, Y 〉Z
)

.

This vector is in [ToΣ, ToΣ], which is orthogonal to h by Proposition 2.3, so taking inner
product with S + Y + Z, and using Lemma 2.1(b) and (4), we get 0 = −2〈[S,X ], Y 〉 −
1
2
‖Y ‖2〈JX, Y 〉, which implies

(5) 〈[S,X ], Y 〉 = −
1

4
‖Y ‖2〈JX, Y 〉.

We also have

[T +B +X,S + Y + Z] = [T, S] + [T, Y ]− [S,X ] +
1

2
Y +

(

1 +
1

2
〈JX, Y 〉

)

Z,

which is in h, so taking inner product with −〈X, Y 〉B+(1−θ)(Y − 1
2
‖Y ‖2Z), and using (5),

we obtain

0 = −〈[S,X ], Y 〉+
1

2
‖Y ‖2 − ‖Y ‖2

(

1 +
1

2
〈JX, Y 〉

)

= −
1

2
‖Y ‖2

(

1 +
1

2
〈JX, Y 〉

)

.

Since Y 6= 0, we get 〈JX, Y 〉 = −2 and thus (4) can be written as

‖X‖2‖Y ‖2 − 〈X, Y 〉2 = 4 = 〈JX, Y 〉2.

Now put X = γY + δJY +E with E orthogonal to CY , and γ, δ ∈ R. Then, the previous
equation reads ‖E‖2‖Y ‖2 = 0, which yields E = 0. This implies the result. �

Therefore the situation now is ha⊕n = R(B + γY + 2
‖Y ‖2

JY ) ⊕ w ⊕ R(Y + Z), with

CY ⊂ gα ⊖w. The normal space can be rewritten as

νo(H · o) = R(−2B + (1− θ)JY )⊕ (pα ⊖ (1− θ)(w⊕ CY ))

⊕ R(−γ‖Y ‖2B + (1− θ)Y −
1

2
‖Y ‖2(1− θ)Z),
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and arguing as above, if Σ is a section through o, then

(6) ToΣ = R(−2B + (1− θ)JY )⊕ (1− θ)s⊕R(−γ‖Y ‖2B + (1− θ)Y −
1

2
‖Y ‖2(1− θ)Z),

where s ⊂ gα ⊖ (w⊕ CY ) is a totally real subspace of gα.

Lemma 5.10. If S ∈ hk0 is such that S + Y + Z ∈ h then [S, JY ] = 1
4
‖Y ‖2Y .

Proof. First of all, by the properties of root systems and the skew-symmetry of the elements
of ad(k0), we have [S, JY ] ∈ gα ⊖ RJY .

Lemma 2.1(a) yields

(7)
[−2B + (1− θ)JY,−γ‖Y ‖2B + (1− θ)(Y −

1

2
‖Y ‖2Z)]

= (1 + θ)
(

−[θJY, Y ] +
(1

2
‖Y ‖2 − 1

)

Y +
γ

2
‖Y ‖2JY +

1

2
‖Y ‖2Z

)

,

which is a vector in [ToΣ, ToΣ].
Take U ∈ w, and let TU ∈ hk0 be such that TU + U ∈ h. Taking inner product with (7)

and using Lemma 2.1(b) we get 0 = 2〈[TU , JY ], Y 〉. Using this equality and since h is a
Lie subalgebra, we now have

0 = 〈[S+Y +Z, TU+U ],−2B+(1−θ)JY 〉 = 〈[S, TU ]+[S, U ]−[TU , Y ], JY 〉 = 〈[S, U ], JY 〉,

and since U ∈ w is arbitrary, [S, JY ] ∈ gα ⊖ (w⊕ RJY ).
Let ξ ∈ s. Proposition 2.3 implies

0 = 〈S + Y + Z, [−2B + (1− θ)JY, (1− θ)ξ]〉 = −〈S, (1 + θ)[θJY, ξ]〉 = −2〈[S, JY ], ξ〉.

Let η ∈ gα ⊖ (w ⊕ CY ) be an arbitrary vector. Since Ad(Q)(ToΣ) = νo(H · o) by
Proposition 2.3, we can conjugate the section Σ in such a way that η ∈ s. (Note that
−2B+(1−θ)JY and −γ‖Y ‖2B+(1−θ)Y − 1

2
‖Y ‖2(1−θ)Z always belong to ToΣ by (6).)

Hence, the equation above shows that [S, JY ] is orthogonal to gα ⊖ (w⊕CY ). Altogether
this implies [S, JY ] ∈ RY .

Finally, taking inner product of (7) with S + Y + Z ∈ h we get, using Lemma 2.1(a),
0 = 2〈[S, Y ], JY 〉+ 1

2
‖Y ‖4, and hence [S, JY ] = 1

4
‖Y ‖2Y as we wanted. �

We define g = Exp(−4JY/‖Y ‖2). Recall that the Lie algebra of the isotropy group of
H at g(o) is hg(o) = Ad(g)(k) ∩ h = q ∩ ker ad(JY ), according to Lemma 5.5. Let S ∈ hk0
be such that S + Y + Z ∈ h. Then, Lemma 5.10 yields

Ad(g)(S) = S −
4

‖Y ‖2
[JY, S] +

8

‖Y ‖4
[JY, [JY, S]] = S + Y + Z ∈ Ad(g)(k) ∩ h.

However, it is clear that S + Y + Z 6∈ q ∩ ker ad(JY ), which gives a contradiction.
Therefore we have proved that Y = 0. Thus ha⊕n = R(B +X)⊕w⊕ g2α. If X = 0 then

ha⊕n = a ⊕ w ⊕ g2α, and we are under the hypotheses of Proposition 5.3, which implies
that the action of H is orbit equivalent to the action of the group Ĥ whose Lie algebra is
ĥ = q⊕ a⊕w⊕ g2α. This corresponds to Theorem 5.1(b).

For the rest of this case we assume X 6= 0. Note that the normal space to the orbit
through o is νo(H · o) = R(−‖X‖2B+(1−θ)X)⊕ (pα⊖ (1−θ)(w⊕RX)). If Σ is a section



POLAR ACTIONS ON COMPLEX HYPERBOLIC SPACES 25

through o, since νo(H · o) = ToΣ ⊕ [q, ToΣ] (orthogonal direct sum), and [q, ToΣ] ⊂ pα, it
is easy to deduce, as in previous cases, that

ToΣ = R(−‖X‖2B + (1− θ)X)⊕ (1− θ)s,

where RX ⊕ s is a real subspace of gα.
We define g = Exp(2X). We will show (Ad(g)(h))a⊕n = a⊕w⊕ g2α and Ad(g)(q) = q,

which will allow us to apply Proposition 5.3. From now on we take T ∈ hk0 such that
T +B +X ∈ h.

Let S ∈ q. Then [S, T ] + [S,X ] = [S, T + B + X ] ∈ h, and thus [S,X ] ∈ w. Now
let U ∈ w be an arbitrary vector, and let SU ∈ hk0 such that SU + U ∈ h. We have
0 = 〈[S, SU + U ],−‖X‖2B + (1 − θ)X〉 = −〈[S,X ], U〉, which together with the previous
assertion implies [S,X ] = 0. Then Ad(g)(q) = q. In particular this implies that Q is a
maximal compact subgroup of Ig(H) = gHg−1.

Now we calculate [T,X ]. Let U ∈ w and SU ∈ hk0 such that SU + U ∈ h. Then, by the
skew-symmetry of the elements of ad(k0) we have 0 = 〈[T +B+X,SU +U ],−‖X‖2B+(1−
θ)X〉 = −〈[T,X ], U〉, so [T,X ] ∈ gα ⊖w. Let now ξ ∈ s. By Proposition 2.3 we get, using
Lemma 2.1(b), 0 = 〈T +B +X, [−‖X‖2B + (1− θ)X, (1− θ)ξ]〉 = −〈T, (1 + θ)[θX, ξ]〉 =
−2〈[T,X ], ξ〉. Using again Proposition 2.3 we have νo(H · o) = Ad(Q)(ToΣ), and thus, for
any η ∈ gα ⊖ (w ⊕ RX) we can find a section through o such that (1 − θ)η ∈ ToΣ (note
that −‖X‖2B + (1 − θ)X ∈ ToΣ for any section). Hence the previous argument shows
〈[T,X ], η〉 = 0, and altogether this means [T,X ] = 0. Therefore, Ad(g)(T+B+X) = T+B,
so the projection of this vector onto a⊕ n is in a ⊂ a⊕w⊕ g2α.

Fix U ∈ w and SU ∈ hk0 such that SU + U ∈ h. We calculate [SU , X ]. For any ξ ∈ s, by
Proposition 2.3 and Lemma 2.1(b), we get 0 = 〈SU +U, [−‖X‖2B + (1− θ)X, (1− θ)ξ]〉 =
−2〈[SU , X ], ξ〉. As in the previous paragraph, one can argue that ξ can be taken arbitrarily
in gα⊖(w⊕RX) by changing the tangent space to the section, if necessary, by an element of
Ad(Q). Hence [SU , X ] ∈ w, which yields Ad(g)(SU+U) = SU+U−2[SU , X ]+ 1

2
(〈JX,U〉−

2〈JX, [SU , X ]〉)Z, and thus, its projection onto a⊕ n belongs to a⊕w⊕ g2α.
Finally, let SZ ∈ hk0 such that SZ + Z ∈ h. For each ξ ∈ s we obtain 0 = 〈SZ +

Z, [−‖X‖2B + (1 − θ)X, (1 − θ)ξ]〉 = −2〈[SZ , X ], ξ〉, and since ξ can be taken to be in
gα⊖ (w⊕RX) by a suitable conjugation of the section by an element in Ad(Q), we deduce
[SZ , X ] ∈ w. Hence, Ad(g)(SZ + Z) = SZ − 2[SZ , X ] + (1 − 〈JX, [SZ , X ]〉)Z, and the
orthogonal projection of this vector onto a⊕ n belongs to a⊕w⊕ g2α.

These last calculations show that (Ad(g)(h))a⊕n ⊂ a⊕w⊕g2α. Since g ∈ AN normalizes
k0⊕a⊕n, we have that Ad(g)(h) ⊂ k0⊕a⊕n. Then the kernel of the projection of Ad(g)(h)
onto a⊕n is precisely Ad(g)(h)∩ k0, which is a compact subalgebra of Ad(g)(h) containing
q = Ad(g)(q). By the maximality of q we get that Ad(g)(h) ∩ k0 = q. But then by
elementary linear algebra

dim(Ad(g)h)a⊕n = dimAd(g)(h)− dim(Ad(g)(h) ∩ k0)

= dim h− dim q = dim ha⊕n = dim(a⊕w⊕ g2α).

All in all we have shown that the Lie algebra Ad(g)(h) of Ig(H) = gHg−1 satisfies
(Ad(g)(h))a⊕n = a ⊕ w ⊕ g2α, and that Q is a maximal compact subgroup of Ig(H).
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Therefore, we can apply Proposition 5.3 to Ig(H). This implies that the action of H on

CHn is orbit equivalent to the action of the group Ĥ whose Lie algebra is ĥ = q⊕a⊕w⊕g2α.
This corresponds to Theorem 5.1(b).

Altogether, we have concluded the proof of Theorem 5.1.

6. Proof of the main results

In this section we conclude the proof of Theorems A and B using the results of Sections 4
and 5.

Proof of Theorem A. The actions described in part (i) are polar by virtue of Lemma 4.1
and Theorem 4.2, whereas the polarity of the actions in part (ii) follows from Theorem 3.1.

An action of a subgroup H of the isometry group I(M) of a Riemannian manifold M
is proper if and only if H is a closed subgroup of I(M). Hence we may assume H ⊂
SU(1, n) is closed. Since the polarity of the action depends only on the Lie algebra of H
by Proposition 2.3, we may assume that H is connected.

Thus, let H be a connected closed subgroup of SU(1, n) acting polarly on CHn. The
Lie algebra h of H is contained in a maximal subalgebra of su(1, n). By [29, Theorem 1.9,
Ch. 6], the maximal nonsemisimple subalgebras of a semisimple real Lie algebra are para-
bolic or coincide with the centralizer of a pseudotoric subalgebra. (A subalgebra t ⊂ g is
called pseudotoric if Exp ad t ⊂ Int g is a torus.) The maximal subalgebras of simple real
Lie algebras which are centralizers of pseudotoric subalgebras have been classified in [32].
However, it is easy to determine them in the case of su(1, n). Indeed, it follows from [29,
Theorem 3.3, Ch. 4] that for all pseudotoric subalgebras t of su(1, n) there is an element
g ∈ SU(1, n) such that Ad(g)t is contained in the subalgebra comprised of all diagonal
matrices in su(1, n). Since we are interested in maximal subalgebras which are centraliz-
ers of pseudotoric subalgebras t we may restrict ourselves to one-dimensional pseudotoric
subalgebras t. For such a subalgebra we have t = R diag(it0, . . . , itn), for t0, . . . , tn ∈ R

such that t0 + · · · + tn = 0. The centralizers of such t are the subalgebras of the form
s(u(1, n1)⊕ u(n2)⊕ · · · ⊕ u(nℓ)) where n1 + · · ·+ nℓ = n. In particular, any maximal con-
nected subgroup of SU(1, n) whose Lie algebra is the centralizer of a pseudotoric subalgebra
is conjugate to one of the maximal subgroups S(U(1, k)U(n− k)), k = 0, . . . , n− 1.

First, let us assume H is contained (after conjugation) in a maximal subgroup of the
form S(U(1, k)U(n− k)) or in a semisimple maximal subgroup of SU(1, n). In both cases,
the action of H on CHn leaves a totally geodesic submanifold invariant; this follows from
the Karpelevich-Mostow Theorem [19], [27] (it is obvious in the first case). This situation
has been studied in Section 4.

If the action of H leaves a totally geodesic RHn invariant, then Theorem 4.2 applies
and the H-action is orbit equivalent to the cohomogeneity one action of SO(1, n). This
corresponds to case (i) with k = n in Theorem A. If the action ofH leaves a totally geodesic
RHk invariant, with k < n, then it also leaves a totally geodesic CHk invariant.

Let then k be the smallest complex dimension of a totally geodesic complex hyperbolic
subspace left invariant by the H-action. If k = 0, then the H-action has a fixed point. In
this case, it follows from [16] thatH is a subgroup of S(U(1)U(n)) ∼= U(n) that corresponds
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to a polar action on CP n−1, and therefore is induced by the isotropy representation of a
Hermitian symmetric space. This corresponds to case (i) with k = 0 in Theorem A.

Let us assume from now on that k ≥ 1. Lemma 4.1 guarantees that the H-action is
orbit equivalent to the product action of a closed subgroup H1 of SU(1, k) acting polarly
on CHk times a closed subgroup H2 of U(n−k) acting polarly (and with a fixed point) on
CHn−k. By assumption, the H1-action on CHk does not leave any totally geodesic CH l or
RH l with l < k invariant. Hence, either the H1-action on CHk is orbit equivalent to the
SO(1, k)-action on CHk, or H1 is contained in a maximal parabolic subgroup of SU(1, k).
The first case corresponds to part (i) with k ∈ {1, . . . , n}. Note that for Q = H2, the
Q-action on CHn−k is determined by its slice representation at the fixed point, so Q acts
polarly with a totally real section on ToCH

n−k ∼= Cn−k.
Let us consider the second case, that is, H1 is contained in a maximal parabolic subgroup

of SU(1, k), k ∈ {1, . . . , n}. As explained at the beginning of Section 5, we may assume
h1 ⊂ k10 ⊕ a⊕ g1α ⊕ g2α, where now g1α is a complex subspace of gα with complex dimension
k−1, and k10

∼= u(k−1) is the normalizer of a in k∩su(1, k). It follows that the H1-action is
orbit equivalent to the action of a closed subgroup of SU(1, k) with one of the Lie algebras
described in Theorem 5.1: (a) q1⊕a, (b) q1⊕a⊕w⊕g2α, or (c) q

1⊕w⊕g2α, where w is a
real subspace of g1α, and q1 ⊂ k10 normalizes w. Since H2 ⊂ U(n−k) acts on CHn−k, we can
define q = q1⊕h2, which is a subalgebra of k0. Part (a) of Theorem 5.1 is then a particular
case of Theorem A(i) for k = 1, while parts (b) and (c) of Theorem 5.1 correspond to
Theorem A(ii), where b = a and b = 0, respectively. Lemma 2.2, Proposition 2.4 and the
fact that the slice representation of a polar action is also polar, guarantee that the action
of q on the orthogonal complement of w in gα is polar with a totally real section. �

Before beginning the proof of Theorem B, we need to calculate the mean curvature vector
of the orbits of minimum orbit type.

Lemma 6.1. Let H be the connected Lie subgroup of SU(1, n) whose Lie algebra is h =
R(aB +X)⊕w⊕ g2α, for some a ∈ R, w subspace of gα, and X ∈ gα ⊖w, a 6= 0, X 6= 0.
Then, the mean curvature vector of H · o is

H =
3 + dimw

2(a2 + ‖X‖2)
(‖X‖2B − aX).

Proof. In order to shorten the notation, let us denote by 〈 · , · 〉 the metric on AN defined
in Section 2. Then, it is well known that the Levi-Civita connection of AN is given by (see
for example [4] or [10])

∇aB+U+xZ(bB+V+yZ) =

(

1

2
〈U, V 〉+ xy

)

B−
1

2
(bU + yJU + xJV )+

(

1

2
〈JU, V 〉 − bx

)

Z,

where a, b, x, y ∈ R, U , V ∈ gα, and all vector fields are considered to be left-invariant. The
normal space to the orbitH·o is given by the left-invariant distribution Rξ⊕(gα⊖(w⊕RX)),
where ξ is the unit vector

ξ =
1

‖X‖
√

a2 + ‖X‖2
(‖X‖2B − aX).
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Then, the shape operator Sη with respect to a left-invariant normal vector η is given by
the equation SηV = −(∇V η)

⊤, where (·)⊤ means orthogonal projection onto h.
Bearing all this in mind and applying the formula for the Levi-Civita connection above

we get:

Sξ(aB +X) =
‖X‖

2
√

a2 + ‖X‖2
(aB +X),

Sξ(W ) =
‖X‖

2
√

a2 + ‖X‖2

(

W + a
〈JW,X〉

‖X‖2
Z
)

, for each W ∈ w,

Sξ(Z) =
‖X‖

2
√

a2 + ‖X‖2

(

−
a

‖X‖2
(JX)⊤ + 2Z

)

.

This implies

trSξ =
(3 + dimw)‖X‖

2
√

a2 + ‖X‖2
.

On the other hand, if U ∈ gα ⊖ (w⊕ RX) we have

SU(aB +X) =
1

2
〈JU,X〉Z,

SU(W ) =
1

2
〈JU,W 〉Z, for each W ∈ w,

SU (Z) =
1

2
(JU)⊤.

Hence trSU = 0.
Altogether we have proved the lemma. �

We can also obtain easily the following result.

Corollary 6.2. If h = b⊕w⊕ g2α, with b ∈ {0, a} and w a subspace of gα, then the mean

curvature vector of H · o is

H =

{

0, if b = a,
1
2
(2 + dimw)B, if b = 0.

Now we finish the proof of Theorem B.

Proof of Theorem B. In the following we consider some orbits of minimum orbit type, as in
Proposition 5.2; some of them are also minimal submanifolds in the sense that their mean
curvature vector vanishes. If this is the case, we will say that they have vanishing mean

curvature in order to avoid confusion.
Let H1 and H2 be two subgroups of U(1, n) acting polarly on CHn, and assume that

these two actions are orbit equivalent. Let us denote by h1 and h2 the Lie algebras of H1

and H2. We distinguish three main cases.
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Case 1. First of all, assume that the actions of H1 and H2 are given by Theorem A(i), that
is, hi = qi ⊕ so(1, ki), i ∈ {1, 2}. The group Hi has a totally real, totally geodesic RHki as
a singular orbit of minimum orbit type. This immediately implies k1 = k2. If k1 = k2 = n
then both actions are orbit equivalent to the action of SO(1, n), according to Theorem 4.2,
and thus the isotropy actions of Q1 and Q2 are both trivial. Assume k1 = k2 < n. It
follows from Section 4 that Hi restricts to a cohomogeneity one action on the corresponding
totally geodesic CHki that contains this RHki. It follows from Theorem 4.1 that the slice
representation of Hi at o is polar and a section of this action is of the form ℓi ⊕ Σi, where
ℓi is a line in ToCH

ki and Σi is totally real in the complex subspace ToCH
n⊖ToCH

ki. The
unitary representation of Qi on the complex vector space ToCH

n ⊖ ToCH
ki cannot have

trivial factors, since otherwise a maximal trivial factor would be complex, and therefore
the section would not be totally real. Hence, the only orbit of minimal dimension must
be the totally geodesic RHki. Since the actions of H1 and H2 are orbit equivalent, we
conclude that H1 · o must be mapped to H2 · o. Now it is easy to deduce that the actions
of Q1 and Q2 must be orbit equivalent.

Case 2. Assume now that H1 is given by Theorem A(i), and H2 is given by Theorem A(ii),
that is, h1 = q1 ⊕ so(1, k) and h2 = q2 ⊕ b⊕w⊕ g2α. By assumption, there is an isometry
φ such that φ(H1 · p) = H2 · φ(p) for any p ∈ CHn. We know that H1 has a totally real,
totally geodesic RHk as a singular orbit of minimum orbit type. Let g ∈ AN be such
that φ(o) = g(o) and define H̃2 to be the connected Lie subgroup of SU(1, n) whose Lie

algebra is h̃2 = b⊕w⊕g2α. As φ(H1 ·o) must also be an orbit of H2 of minimal dimension,

it follows that H̃2 · g(o) = H2 · g(o) since H2 · g(o) has minimal dimension and contains
H̃2 · g(o). We have H̃2 · g(o) = g(g−1H̃2g) · o = g(Ig−1(H̃2) · o), from where it follows that

H̃2 · g(o) is congruent to the orbit of Ig−1(H̃2) through o. Since g ∈ AN , it is not difficult

to deduce from the bracket relations of AN that Ad(g−1)h̃2 = R(aB + X) ⊕ w ⊕ g2α
for some a ∈ R and X ∈ gα ⊖ w. The fact that Ad(g−1)h̃2 is totally real immediately
implies a = 0, and thus b = 0. Moreover, X = 0 for dimension reasons, and w is totally
real. Then, Corollary 6.2 implies that Ad(g−1)h̃2 = w ⊕ g2α has mean curvature vector
H = 1

2
(2 + dimw)B 6= 0. In particular, H2 · g(o) cannot be totally geodesic. Therefore,

polar actions given by Theorem A(i) cannot be orbit equivalent to polar actions given by
Theorem A(ii).

Case 3. Finally, assume that H1 and H2 are given by Theorem A(ii), that is, hi = qi ⊕
bi ⊕wi ⊕ g2α, i ∈ {1, 2}.

Let b1 = a, b2 = 0. The orbit H1 ·o is of minimum orbit type, and it has vanishing mean
curvature as Corollary 6.2 shows. This orbit must be mapped to an orbit of H2 of minimal
dimension. Let H̃2 be the Lie subgroup of SU(1, n) whose Lie algebra is h̃2 = w2 ⊕ g2α.
Assume H1 · o is mapped to H2 · g(o) with g ∈ AN . Since H2 · o has minimal dimension, we

must have H2 ·g(o) = H̃2 ·g(o), as H2 ·g(o) has minimal dimension and H̃2 ·g(o) ⊂ H2 ·g(o).
We have H̃2 · g(o) = g(g−1H̃2g · o), and it is easy to show using the bracket relations of AN

that Ad(g−1)h̃2 = h̃2 = w2 ⊕ g2α. Corollary 6.2 then implies that H2 · g(o) = H̃2 · g(o) has
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non-vanishing mean curvature. This contradicts the fact that the mean curvature vector
of H1 · o is zero. Therefore b1 = b2.

Assume that b1 = b2 = 0. Let φ be an isometry such that φ(H1 · o) = H2 ·φ(o), and take

g ∈ AN such that φ(o) = g(o). Let H̃2 be the Lie subgroup of SU(1, n) whose Lie algebra is

h̃2 = w2⊕g2α, and recall that Ad(g−1)h̃2 = h̃2, and thus Ig−1(H̃2) = H̃2. SinceH2·g(o) must

be of minimal dimension, we have H2·g(o) = H̃2·g(o) = g(g−1H̃2g ·o) = g(H̃2·o) = g(H2·o),
and thus, g−1φ(H1 ·o) = g−1H2 ·φ(o) = g−1H2g ·o = H2 ·o. By composing with an element
of H2 we can further assume that φ(H1 · o) = H2 · o, and φ(o) = o. In particular, we
have φ∗(To(H1 · o)) = To(H2 · o), that is, φ∗((1 − θ)(w1 ⊕ g2α)) = (1 − θ)(w2 ⊕ g2α). We
have the Kähler angle decompositions (see Subsection 2.3), wi = ⊕ϕ∈Φi

wi,ϕ, and thus,
(1− θ)wi = ⊕ϕ∈Φi

(1− θ)wi,ϕ. Since φ∗ maps real subspaces of constant Kähler angle ϕ to
real subspaces of constant Kähler angle ϕ, we must have Φ := Φ1 = Φ2 and

φ∗(1− θ)(w1,π/2 ⊕ g2α) = (1− θ)(w2,π/2 ⊕ g2α), φ∗(1− θ)(w1,ϕ) = (1− θ)(w2,ϕ),

for all ϕ ∈ Φ \ {π/2}. As a consequence, dimw1,ϕ = dimw2,ϕ for all ϕ ∈ Φ. It follows
from Remark 2.9 that there exists k ∈ K0 such that Ad(k)w1,ϕ = w2,ϕ for all ϕ ∈ Φ, and

thus Ad(k)(w1 ⊕ g2α) = w2 ⊕ g2α. Let Ĥ2 = k−1H2k. Obviously, the actions of H2 and

Ĥ2 on CHn are orbit equivalent. Indeed, ĥ2 = q̂2 ⊕w1 ⊕ g2α for some subalgebra q̂2 of k0.
Since the actions of H1 and Ĥ2 are orbit equivalent, their slice representations are orbit
equivalent and so are the actions of Q1 and Q̂2 on the normal space of H1 · o = Ĥ2 · o
(note that the action of K0 on a is trivial). Therefore, H1 and H2 are orbit equivalent if
and only if there exists k ∈ K0 such that Ad(k)w1 = w2, and the slice representations
Qi × (1− θ)w⊥

i → (1− θ)w⊥
i , i ∈ {1, 2}, are orbit equivalent.

We now deal with the last possibility: b1 = b2 = a. The proof goes along the lines of the
previous subcase, with some differences that we will point out. Let φ be an isometry such
that φ(H1 · o) = H2 · φ(o) and take g ∈ AN such that φ(o) = g(o). As before, we consider

H̃2 the subgroup of SU(1, n) whose Lie algebra is h̃2 = a ⊕ w2 ⊕ g2α. Since H2 · g(o) is
of minimal dimension, H2 · g(o) = H̃2 · g(o) = g(g−1H̃2g · o), so H2 · g(o) is congruent
to the orbit through o of the Lie subgroup of SU(1, n) whose Lie algebra is of the form

Ad(g)h̃2 = R(aB + X) ⊕ w2 ⊕ g2α, for some a ∈ R and X ∈ gα ⊖ w. Since H1 · o has
vanishing mean curvature by Corollary 6.2, according to Lemma 6.1 we must have that
X = 0. In this case we get Ad(g)h̃2 = h2. By composing with an element of H2 we can
further assume that φ(o) = o. Arguing as in the previous case, we have the Kähler angle
decompositions wi = ⊕ϕ∈Φi

wi,ϕ, and thus, it follows that Φ := Φ1 = Φ2 and

φ∗(1− θ)(a⊕w1,0 ⊕ g2α) = (1− θ)(a⊕w2,0 ⊕ g2α), φ∗(1− θ)(w1,ϕ) = (1− θ)w2,ϕ,

for all ϕ ∈ Φ \ {0}. Again, by Remark 2.9, it follows that there exists k ∈ K0 such
that Ad(k)w1,ϕ = w2,ϕ for all ϕ ∈ Φ, and therefore, H1 and H2 are orbit equivalent if
and only if there exists k ∈ K0 such that Ad(k)w1 = w2, and the slice representations
Qi × (1− θ)w⊥

i → (1− θ)w⊥
i , i ∈ {1, 2}, are orbit equivalent. �
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