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HOMOGENEOUS CR SUBMANIFOLDS
OF COMPLEX HYPERBOLIC SPACES

JOSÉ CARLOS DÍAZ-RAMOS, MIGUEL DOMÍNGUEZ-VÁZQUEZ, AND OLGA PÉREZ-BARRAL

Abstract. We classify homogeneous CR submanifolds in complex hyperbolic spaces aris-
ing as orbits of a subgroup of the solvable part of the Iwasawa decomposition of the
isometry group of the ambient space.

1. Introduction

In the setting of complex analysis, a submanifold of a Kähler manifold is said to be
CR if the maximal holomorphic subspaces of all tangent spaces define a smooth distribu-
tion. Bejancu [2] introduced a stronger notion of CR submanifold of a Kähler manifold
by requiring the complementary distribution to the maximal complex distribution in the
tangent bundle to be totally real; thus, complex and totally real submanifolds are special
examples of CR submanifolds. These two definitions of CR submanifold coincide under the
assumption that the complementary distribution has real dimension one. CR submanifolds
satisfying this condition are said to be of hypersurface type and they play an important
role in the context of complex analysis and boundary value problems.

In submanifold geometry, an interesting problem is to classify homogeneous CR subman-
ifolds, according to Bejancu’s definition, in certain important families of Kähler manifolds
such as Hermitian symmetric spaces or, more particularly, complex space forms, that is,
complex Euclidean spaces Cn, complex projective spaces CP n, and complex hyperbolic
spaces CHn. The relevance of homogeneous CR submanifolds in this setting stems from
the fact that they include several examples of interest in the context of symmetric spaces.

Real hypersurfaces, that is, submanifolds of real codimension one, constitute an im-
portant subclass of CR submanifolds that has been thoroughly studied by many authors.
Indeed, the classification of homogeneous real hypersurfaces in C

n follows from Segre’s clas-
sical work on isoparametric hypersurfaces, whereas for CP n this is due to Takagi [16]. The
classification of homogeneous hypersurfaces in complex hyperbolic spaces is more involved,
although it has successfully been solved by Berndt and Tamaru [5].

Another subclass of homogeneous CR submanifolds is that of homogeneous Kähler ones.
The corresponding classifications in complex space forms have been achieved by several
authors. While in complex n-dimensional Euclidean and hyperbolic spaces the only ex-
amples are totally geodesic Ck and CHk, with k < n, respectively, as proved by Di Scala,
Ishi and Loi [7], the classification of compact homogeneous Kähler submanifolds of CP n,
obtained by Takeuchi [17], includes more examples.

Lagrangian submanifolds, that is, totally real submanifolds of maximal dimension, con-
stitute another important class of CR submanifolds. The classification of homogeneous
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Lagrangian submanifolds in complex space forms is still an open problem. However, some
partial results have been achieved. For example, Bedulli and Gori [1] obtained the classifi-
cation of homogeneous Lagrangian submanifolds in CP n induced by the action of a simple
compact subgroup of SU(n+1), whereas little is known in the non-simple case. Under ad-
ditional assumptions, such as the parallelity of the second fundamental form, some results
have also been derived; see [14] for a survey. However, the classification of homogeneous
Lagrangian submanifolds in complex hyperbolic spaces CHn has been shown to be a rather
complicated problem, mainly due to the non-compactness of its isometry group. Hashinaga
and Kajigaya obtained some partial results in [13]. In particular, they derived a classifica-
tion result of homogeneous Lagrangian submanifolds that arise as orbits of a subgroup of
the solvable part of the Iwasawa decomposition of the isometry group of CHn.

Other interesting examples of homogeneous CR submanifolds in Hermitian symmetric
spaces arise as principal orbits of polar and coisotropic actions. An isometric action on a
Riemannian manifold is said to be polar if there is a submanifold that intersects all the
orbits of the action and every such intersection is orthogonal. An isometric action on a Her-
mitian manifold is called coisotropic if the normal spaces to its principal orbits are totally
real. Thus, every principal orbit of a coisotropic action is a CR submanifold. Polar actions
on irreducible compact homogeneous Kähler manifolds are known to be coisotropic [15], so
they produce examples of CR submanifolds. In non-compact Hermitian symmetric spaces,
deciding whether polar actions are coisotropic is still an open problem. However, this is
known to be true in complex hyperbolic spaces: this follows from a classification result
in [8], which also yields several uncountable families of CR submanifolds. Specifically, any
orbit of minimum orbit type of any polar action on CHn is induced by a subgroup of
the solvable part of the Iwasawa decomposition of the isometry group of CHn. In some
cases, such orbits are CR, including the focal sets of homogeneous (or even isoparametric)
hypersurfaces with at most three principal curvatures in CHn [4], [9].

The main purpose of this article is to present the classification of homogeneous CR
submanifolds in complex hyperbolic spaces that arise as orbits of a subgroup of the solvable
part of the Iwasawa decomposition of the isometry group of the ambient space. We briefly
explain here the notation that is used in the main theorems of this paper.

Up to finite quotient, the connected component of the identity of the isometry group
of CHn is the simple Lie group G = SU(1, n). Let KAN be its Iwasawa decomposition.
Here K ∼= U(n) is the isotropy subgroup of G at some point o ∈ CHn. The solvable Lie
group AN acts simply transitively on CHn. Let a ⊕ n be the Lie algebra of AN . It is
known that a is 1-dimensional, whereas n is nilpotent and can be decomposed further as
n = gα ⊕ g2α, where g2α is the 1-dimensional center of n. Moreover, gα is isomorphic,
as a vector space, to a complex vector space Cn−1. In this paper, the symbol ⊖ denotes
orthogonal complement. See Section 2 for more details and references.

Theorem A. An orbit of the action of a connected Lie subgroup of AN is a CR submanifold
of CHn if and only if it is congruent to the orbit H · g(o), where H is the connected Lie
subgroup of AN with Lie algebra h and g ∈ AN , for one of the following cases:

(i) h = r and g ∈ Exp
(

(a ⊕ n) ⊖ r
)

; in this case all the orbits of H are totally real
submanifolds that constitute a homogeneous subfoliation of a horosphere foliation.

(ii) h = c⊕ r⊕ g2α and g ∈ Exp
(

a⊕ (gα ⊖ (c⊕ r))
)

; in this case all the orbits of H are
CR submanifolds that are congruent to each other, and constitute a homogeneous
subfoliation of a horosphere foliation.
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(iii) h = a⊕ r and g ∈ Exp
(

(gα ⊖Cr)⊕ g2α
)

; in this case the CR orbits are totally real

equidistant submanifolds to a totally geodesic RHk in CHn, k ∈ {1, . . . , n}.
(iv) h = a ⊕ c ⊕ r ⊕ g2α and g ∈ Exp(Jr); in this case the CR orbits are the leaves of

a homogeneous polar foliation with exactly one minimal leaf (called Berndt-Brück
submanifold) on a totally geodesic CHk in CHn, k ∈ {2, . . . , n}.

Here, r stands for a totally real subspace of gα, and c for a complex subspace of gα.

The next main goal of this paper is to study the congruence classes of these examples. In
the following theorem ρ : R → (0,∞) is the analytic function defined by ρ(t) = (et − 1)/t,
t 6= 0, ρ(0) = 1.

Theorem B. Let H1 and H2 be two connected Lie subgroups of AN , and h1 and h2 their Lie
algebras. Assume that H1 and H2 act on CHn in such a way that H1 · g1(o) and H2 · g2(o)
are CR submanifolds, with g1, g2 ∈ AN , as given by Theorem A. Then, H1 · g1(o) and
H2 ·g2(o) are congruent if and only if h1 and h2 correspond to the same type in Theorem A,
and according to the type:

(i) gi = Exp(biB + JTi +Wi + yiZ), with bi, yi ∈ R, Wi ∈ gα ⊖ Cr, Ti ∈ r, i ∈ {1, 2},
and ρ(b2/2)‖T1‖ = ρ(b1/2)‖T2‖.

(ii) In this case all the orbits are congruent.
(iii) gi = Exp(Wi + yiZ), with yi ∈ R, Wi ∈ gα ⊖ Cr, i ∈ {1, 2}, and ‖W1‖ = ‖W2‖,

|y1| = |y2|.
(iv) gi = Exp(JTi), with Ti ∈ r, i ∈ {1, 2}, and ‖T1‖ = ‖T2‖.
As a consequence we have

Corollary C. The moduli space of congruence classes of (non-trivial and proper) homoge-
neous CR submanifolds of CHn induced by the action of subgroups of AN is given by the
disjoint union

(

In−1 × [0,∞)
)

⊔ I0,n−1 ⊔
(

[0,∞) ⊔ (In−1 × [0,∞)2)
)

⊔
(

In−1 ⊔ (I1,n−1 × [0,∞))
)

,

where Ik = {1, . . . , k} and Ik,l = {(i, j) ∈ Z2 : k ≤ i ≤ j ≤ l}.
(In the definition of Ik,l we think i = dimR r and j = dimC(gα ⊖ c).)

This article is organized as follows. In Section 2, we introduce the notation and known
results that we will use throughout this paper. Section 3 is devoted to classifying homo-
geneous CR submanifolds in CHn which arise as orbits of a connected subgroup of the
solvable part of the Iwasawa decomposition of the isometry group of CHn. This prob-
lem is tackled in two steps. We first determine the subgroups producing at least a CR
orbit (Proposition 3.1). Then, we prove Theorem A, where we present the classification
result. Finally, in Section 4, we study the congruence classes of the examples, and prove
Theorem B.

2. Preliminaries

In this section we introduce some known results and notation that we use in this paper.

2.1. CR submanifolds.
Consider a complex Euclidean space V with complex structure J and inner product 〈·, ·〉.

A subspace W ⊂ V is said to be complex if it is invariant by the complex structure, that
is, if JW ⊂ W . The subspace W is said to be totally real if JW is perpendicular to W . In
the setting of Hermitian manifolds, one can generalize these concepts by introducing the
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notions of complex and totally real submanifolds. Let M̄ be a Hermitian manifold with
complex structure J . A submanifold M ⊂ M̄ is said to be complex (totally real) if at each
point p ∈ M the tangent space TpM is a complex (totally real) vector subspace of TpM̄ .
The subspace J(TpM) ∩ TpM is the maximal complex subspace of TpM .

The notion of CR submanifold of a Hermitian manifold includes both complex and
totally real submanifolds as particular examples. A submanifold M ⊂ M̄ is said to be
a CR (Cauchy-Riemann or complex-real) submanifold if there exists a pair of orthogonal
complementary distributions of the tangent bundle TM = C ⊕ R, where C is complex
and R is totally real. In other words, M is a CR submanifold of M̄ if the maximal
complex subspaces of the tangent spaces to M have constant dimension along M and their
orthogonal complements in each tangent space are totally real subspaces. We refer to [2]
and [11] for more information on CR submanifolds of Hermitian manifolds.

2.2. The complex hyperbolic space.
In what follows, we denote by CHn the complex hyperbolic space of constant holomor-

phic sectional curvature −1. The complex hyperbolic space is known to be a symmetric
space of non-compact type and rank one. As a symmetric space, it can be identified with
the quotient space G/K, where G = SU(1, n) is, up to a finite quotient, the connected com-
ponent of the identity element of the isometry group of CHn, and K = Go = S(U(1)U(n))
is the stabilizer of an element o ∈ CHn. Let g and k denote the Lie algebras of G and K,
respectively, and consider the Cartan decomposition g = k ⊕ p with respect to o, where p

denotes the orthogonal complement to k with respect to the Killing form B of g. Denote
by θ the associated Cartan involution, which satisfies θ|k = Idk and θ|p = − Idp. De-
note by ad and Ad the adjoint maps of g and G, respectively. One can define a positive
definite inner product Bθ on g by Bθ(X, Y ) := −B(θX, Y ). This inner product satisfies
Bθ(ad(X)Y, Z) = −Bθ(Y, ad(θX)Z), for all X , Y , Z ∈ g. Moreover, we can identify
p ∼= ToCH

n.
We select a maximal abelian subspace a ⊂ p. Then a is 1-dimensional since CHn is

a rank one symmetric space, and a determines a geodesic through o. For each covector
λ ∈ a∗, we define the vector subspace gλ = {X ∈ g : ad(H)X = λ(H)X, for each H ∈ a}.
If gλ 6= 0, then gλ is said to be a restricted root space, and each λ 6= 0 such that gλ 6= 0 is
called a restricted root. Notice that g0 is always a restricted root space since a ⊂ g0. It is
known that in the case of the complex hyperbolic space the set of restricted roots consists
exactly of four elements, Σ = {±α,±2α}. Then, a determines a root space decomposition
g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α, which is an orthogonal direct sum with respect to Bθ.
Moreover, [gλ, gµ] = gλ+µ and θgλ = g−λ for all λ, µ ∈ a∗.

Two unit speed, complete geodesics γ1 and γ2 in CHn are said to be asymptotic if
d(γ1(t), γ2(t)) remains bounded for large t, where d denotes the Riemannian distance func-
tion. This is an equivalence relation. The ideal boundary of CHn, denoted by CHn(∞), is
the quotient set by this relation. The union CHn = CHn ∪CHn(∞), when endowed with
the cone topology, becomes homeomorphic to the closed unit ball of Rn.

Now we choose a positivity criterion on Σ such that Σ+ = {α, 2α} is the set of positive
roots. Equivalently, the geodesic determined by a has two limit points in the ideal boundary
CHn(∞) of CHn; choosing a positivity criterion in Σ is the same as choosing one of these
two limit points at infinity. We denote by x ∈ CHn(∞) the point at infinity determined by
this choice of positivity. We define n = gα ⊕ g2α, which turns out to be a 2-step nilpotent
Lie algebra. The Iwasawa decomposition theorem states that g = k⊕a⊕n is a direct sum of
vector spaces, and that there exists an analytic diffeomorphism K×A×N → G, (k, a, n) 7→
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kan, where A and N denote the connected Lie subgroups of G with Lie algebras a and n,
respectively. We have g0 = k0 ⊕ a, where k0 = g0 ∩ a ≃ u(n− 1) is the normalizer of a in k.
Both gα and g2α are normalized by k0. In fact, the corresponding connected Lie subgroup
K0 acts trivially on a and g2α, and transitively on the unit sphere of gα. It is known that
a ⊕ n is a solvable Lie algebra, and that its associated connected Lie subgroup AN acts
simply and transitively on CHn. One can endow AN , and so a ⊕ n, with a left-invariant
metric 〈 · , · 〉 and a complex structure J that make CHn and AN isomorphic as Kähler
manifolds. Moreover, up to scaling of Bθ, we have 〈X, Y 〉 = Bθ(Xa, Ya) +

1
2
Bθ(Xn, Yn), for

any X , Y ∈ a⊕ n, where the subscripts mean the a and n components, respectively. The
complex structure J on a ⊕ n satisfies that gα is a J-invariant subspace, and Ja = g2α.
The orbits of the action of N on CHn are horospheres centered at the point of infinity x
chosen above. In fact, the group K0AN is a parabolic subgroup determined by x, that is,
K0AN is the stabilizer in SU(1, n) of the point at infinity x ∈ CHn(∞).

Let B ∈ a be a unit vector and define Z = JB ∈ g2α. In particular, 〈B,B〉 = Bθ(B,B) =
1 and 2〈Z,Z〉 = Bθ(Z,Z) = 2. Moreover, if U , V ∈ gα, the Lie bracket of a ⊕ n is given
by the following relations:

(1) [B,Z] = Z, [B,U ] =
1

2
U, [U, V ] = 〈JU, V 〉Z, [U,Z] = 0.

Using these formulas we get

Lemma 2.1. Let a, b, x, y ∈ R and X, Y ∈ gα, and define g = Exp(bB+X+yZ). Then,

Ad(g)(aB + Y + xZ) = aB + eb/2Y − a

2
ρ
( b

2

)

X +
(

xeb − ayρ(b) + eb/2ρ
( b

2

)

〈JX, Y 〉
)

Z,

where ρ : R → (0,∞) is the analytic function given by ρ(t) = (et − 1)/t, t 6= 0, ρ(0) = 1.

Proof. Using the bracket relations (1) it is easy to prove by induction

ad(bB +X + yZ)(aB + Y + xZ) =
b

2
Y − a

2
X +

(

bx− ay + 〈JX, Y 〉
)

Z,

adk(bB +X + yZ)(aB + Y + xZ) = bk−1
( b

2k
Y − a

2k
X +

(

bx− ay + 2
(

1− 1

2k

)

〈JX, Y 〉
)

Z
)

,

for any k ≥ 2. Now, recalling that

Ad(Exp(X))Y = ead(X)Y =
∞
∑

k=0

1

k!
adk(X)Y,

for any X , Y ∈ g, the result follows after grouping terms and doing some calculations. �

Finally, we recall the expression for the Levi-Civita connection ∇̄ of the complex hyper-
bolic space (see, for example, [4] or [6]):

(2)
∇̄aB+U+xZ(bB + V + yZ) =

(1

2
〈U, V 〉+ xy

)

B − 1

2

(

bU + yJU + xJV
)

+
(1

2
〈JU, V 〉 − bx

)

Z.

3. Proof of Theorem A

The aim of this section is to find all homogeneous CR submanifolds in complex hyperbolic
spaces CHn that arise as orbits of connected subgroups of the solvable part of the Iwasawa
decomposition of G = SU(1, n). Hence, we will determine the connected subgroups H of
AN that act on CHn producing a CR orbit.
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Let H be a connected Lie subgroup of AN , one of whose orbits is CR. Since AN acts
transitively on CHn, we may assume that the orbit that is CR is precisely the one through
the point o ∈ CHn that determines the compact subgroup K of G. Moreover, since the
isometries of AN are holomorphic, a homogeneous submanifold of CHn is CR if and only if
its tangent space is a CR subspace of the tangent space of CHn at some point. Therefore,
it follows that the problem of classifying homogeneous CR submanifolds in the complex
hyperbolic space given by the action of a connected Lie subgroup of AN reduces to finding
all the Lie subalgebras h of a⊕ n that can be decomposed into an orthogonal direct sum
of a totally real and a complex subspace.

Proposition 3.1. Let H be a connected Lie subgroup of AN acting on CHn in such a way
that the orbit H · o through o is a CR-submanifold. Then, its Lie algebra h is conjugate to
b ⊕ c ⊕ r ⊕ z, where b is a subspace of a, c is a complex subspace of gα, r is totally real
subspace of gα, and z is a subspace of g2α containing [c, c].

Proof. We consider the orthogonal projection π : g → a⊕ g2α. We have two possibilities:
Case (a): π is not surjective. In this case π(h) 6= a⊕ g2α. Hence, there exists a subspace

w ⊂ gα, a, x ∈ R, and X ∈ gα ⊖ w such that h = R(aB + X + xZ) ⊕ w. Here and
henceforth ⊖ denotes orthogonal complement.

Let U , V ∈ w. Since h is a Lie subalgebra, 〈JU, V 〉Z = [U, V ] ∈ h∩g2α. Thus aB+X = 0
or 〈JU, V 〉 = 0.

Assume first that aB + X = 0, that is, a = 0 and X = 0. Then, h = w ⊕ z, where
z = g2α if x 6= 0, or z = 0 if x = 0. We define the maximal complex subspace c = w ∩ Jw
of w in gα ∼= C

n−1, and r = w⊖ c. Since Jg2α = a, it turns out that h ∩ Jh = c is also the
maximal complex subspace of h. Since h is CR by assumption, h⊖ c is totally real, which
implies that r is totally real. If x = 0, that is, if h = w = c ⊕ r, we must have c = 0, as
otherwise, g2α = [c, c] ⊂ h. Thus, h = r is a totally real subspace of gα, and we take b = 0,
z = 0. If x 6= 0, then h = c⊕ r⊕ g2α, with c complex in gα, r totally real in gα, and b = 0
in the notation of Proposition 3.1.

Therefore, we may assume aB + X 6= 0. This implies 〈JU, V 〉 = 0 for all U , V ∈ w.
Hence, w is totally real as a subspace of gα ∼= Cn−1. Moreover, for each U ∈ w ⊂ h we
have

a

2
U + 〈JX,U〉Z = [aB +X + xZ, U ] ∈ h,

which implies 〈JX,U〉Z ∈ h∩g2α = 0. Hence, X ∈ gα⊖Cw, or equivalently, RX⊕w ⊂ gα
is totally real.

If a 6= 0, we define g = Exp( 2
a
X+ x

a
Z). Using Lemma 2.1 we get Ad(g)(aB+X+xZ) =

aB, and Ad(g)(U) = U for each U ∈ w. Then, Ad(g)h = a ⊕ w, where w is totally real.
Thus, b = a, c = 0, r = w, and z = 0 in the notation of Proposition 3.1.

Finally, assume a = 0. Then, X 6= 0. In this case we define g = x
‖X‖2

JX . Using

Lemma 2.1 we get Ad(g)(X + xZ) = X , and Ad(g)(U) = U for each U ∈ w, that is,
Ad(g)h = RX ⊕ w. Thus, we take b = 0, c = 0, z = 0, and r = RX ⊕ w is a totally real
subspace of gα.

Case (b): π is surjective, that is, π(h) = a ⊕ g2α. Then, there exist a subspace w ⊂ gα
and X , Y ∈ gα ⊖w such that h = R(B +X)⊕w⊕ R(Y + Z).

For any U ∈ w ⊂ h we have 1
2
U+〈JX,U〉Z = [B+X,U ] ∈ h. Thus, 〈JX,U〉Z ∈ h∩g2α.

Hence Y = 0 or 〈JX,U〉 = 0 for each U ∈ w.
Assume Y = 0, that is, h = R(B+X)⊕w⊕g2α. We first show that w is a CR subspace

of gα. Let c = w ∩ Jw be the maximal complex subspace of w. Since B + X , Z ∈ h ⊖ c

and 〈J(B + X), Z〉 6= 0, h ⊖ c is not totally real. Then there exists ξ′ ∈ (h ∩ Jh) ⊖ c,
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ξ′ 6= 0. Let us put ξ′ = a(B + X) + W ′ + xZ, for some W ′ ∈ w, and where a and x
cannot vanish simultaneously. By assumption, −x(B + X) + xX + aJX + JW ′ + aZ =
−xB + aJX + JW ′ + aZ = Jξ′ ∈ h, and then xX + aJX + JW ′ ∈ w. Thus we can
take ξ = (aξ′ − xJξ′)/(a2 + x2) ∈ (h ∩ Jh) ⊖ c, which is of the form ξ = B + X + W ,
with W ∈ w. Hence, Jξ = JX + JW + Z ∈ h, where JX + JW ∈ w. Then η =
JX + JW − (‖X‖2 + ‖W‖2)Z ∈ h⊖Cξ. Let us decompose η = ηc + ηr, where ηc ∈ h∩ Jh
and ηr ∈ h⊖(h∩Jh). Since h is CR, then Jη = Jηc+Jηr with Jηc ∈ h and Jηr ∈ (a⊕n)⊖h.
But

Jη = −X −W + (‖X‖2 + ‖W‖2)B

=

( ‖W‖2
1 + ‖X‖2 (B +X)−W

)

+
1 + ‖X‖2 + ‖W‖2

1 + ‖X‖2 (‖X‖2B −X),

where the first addend belongs to h and the second one is orthogonal to h. We deduce in

particular that Jηc =
‖W‖2

1+‖X‖2
(B +X)−W , and thus, − ‖W‖2

1+‖X‖2
(Z + JX) + JW = ηc ∈ h.

Since Z, JX + JW ∈ h, we get JX , JW ∈ h. In particular, JX ∈ w. Then

h = C(B +X)⊕ R(‖X‖2Z − JX)⊕ (w⊖ RJX)

is a C-orthogonal direct sum, from where we deduce that w is a CR subspace of gα. Now
let g = Exp(2X). Then, Lemma 2.1 yields Ad(g)(B+X) = B, Ad(g)(U) = U+2〈JX,U〉Z
for each U ∈ w, and Ad(g)(Z) = Z. This implies Ad(g)h = a⊕w⊕ g2α. Since w is a CR
subspace of gα, we have the orthogonal decomposition Ad(g)h = a ⊕ c ⊕ r ⊕ g2α, with c

complex and r totally real in gα.
Hence, we assume from now on Y 6= 0. Recall that this implies 〈JX,U〉 = 0 for each

U ∈ w, that is, X ∈ g⊖Cw. Similarly, for each U ∈ w, the fact that h is a Lie subalgebra
yields 〈JU, Y 〉Z = [U, Y + Z] ∈ h ∩ g2α = 0, which implies Y ∈ gα ⊖ Cw. Moreover, for
each U , V ∈ w ⊂ h we have 〈JU, V 〉Z = [U, V ] ∈ h ∩ g2α = 0. Thus, w is totally real. We
also have

1

2
Y +

(

1 + 〈JX, Y 〉
)

Z = [B +X, Y + Z] ∈ h.

Since Y 6= 0, we get 1 + 〈JX, Y 〉 = 1/2, that is, 〈JX, Y 〉 = −1/2.
By assumption, h is a CR subspace of a⊕ n ∼= Cn. Since h = span{B +X, Y + Z} ⊕w

is a C-orthogonal direct sum, it follows that R(B + X) ⊕ R(Y + Z) is either complex or
totally real. Observe that

0 = 〈J(B +X), Y + Z〉 = 〈Z + JX, Y + Z〉 = 1 + 〈JX, Y 〉
implies 〈JX, Y 〉 = −1, which contradicts 〈JX, Y 〉 = −1/2. Consequently, R(B + X) ⊕
R(Y + Z) is a complex subspace. Since J(B + X) = Z + JX , then Y = JX . Hence,
−1/2 = 〈JX, Y 〉 = ‖X‖2, which gives a contradiction. Thus, this case is not possible. �

Now that we know the subgroups H of AN that have a CR orbit through o ∈ CHn, we
must study which orbits of the H-action are CR submanifolds. Since AN acts transitively
on the complex hyperbolic space, it will be enough to determine the elements g ∈ AN such
that the orbit H · g(o) is a CR submanifold. The next result reduces the set of elements of
AN to investigate.

Lemma 3.2. Let h = b⊕ c ⊕ r⊕ z, with b a subspace of a, c complex in gα, r totally real
in gα, and z a subspace of g2α such that [c, c] ⊂ z. Let H be the connected Lie subgroup of
AN whose Lie algebra is h. Then, each orbit of H can be written as H · Exp(X)(o) with
X ∈ (a⊕ n)⊖ h.
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Proof. The Lie algebra h can be identified with the tangent space to the orbit H ·o at o, and
then, the corresponding normal space can be identified with the orthogonal complement of
h in a⊕n, νo(H · o) = (a⊕n)⊖h = (a⊖b)⊕ c′⊕Jr⊕ (g2α⊖ z), where c′ = gα⊖ (c⊕ r⊕Jr)
is a complex subspace of gα. We denote Σ = Exp

(

(a⊖ b)⊕ c′ ⊕ Jr⊕ (g2α ⊖ z)
)

(o), which
is a submanifold of AN since Exp: a⊕ n → AN is a diffeomorphism (but not a subgroup
in general). We show that Σ intersects every orbit of the H-action. In fact, it is enough to
show that the smooth map ϕ : H × Σ → AN , (h, p) 7→ hp, is surjective.

Let g ∈ AN . Since Exp : a ⊕ n → AN is a diffeomorphism, there exist c, z ∈ R,
and W ∈ gα such that g = Exp(cB + W + zZ). Since gα = c ⊕ c′ ⊕ r ⊕ Jr, we write
W = U + V + S + JT , with U ∈ c, V ∈ c′, and S, T ∈ r, accordingly.

If b = 0 we set a = 0, b = c, and if b = a we set a = c, b = 0. If z = 0, we set

x = 0, y = e−aρ(b)−1
(

ρ(c)z − 1

2
ρ
( c

2

)2

〈S, T 〉
)

;

otherwise, if z = g2α we set

x = ρ(a)−1
(

ρ(c)z − 1

2
ρ
( c

2

)2

〈S, T 〉
)

, y = 0.

Taking this into account, we define

X = aB + ρ
( c

2

)

ρ
(a

2

)−1
(

U + S
)

+ xZ ∈ h,

Y = bB + e−a/2ρ
( c

2

)

ρ
( b

2

)−1
(

V + JT
)

+ yZ ∈ (a⊕ n)⊖ h.

Using [6, Subsections 4.1.3 and 4.1.4] yields

Exp(X) · Exp(Y ) =
(

a,Expn

(

ρ
( c

2

)

(

U + S
)

+ ρ(a)xZ
))

·
(

b,Expn

(

e−a/2ρ
( c

2

)

(

V + JT
)

+ ρ(b)yZ
))

=
(

a+ b,Expn

(

ρ
( c

2

)

(

U + S + V + JT
)

+
(

ρ(a)x+ eaρ(b)y +
1

2
ρ
( c

2

)2

〈J(U + S), V + JT 〉)Z
))

=
(

c,Expn

(

ρ
( c

2

)

(

U + S + V + JT
)

+ ρ(c)z
))

= Exp
(

cB + U + V + S + JT + zZ
)

= g,

which shows that ϕ is onto, as we wanted to prove. �

We can now prove the first main theorem of this paper.

Proof of Theorem A. Since H · g(o) is homogeneous and H ⊂ AN acts by holomorphic
isometries, the orbit H · g(o) is a CR submanifold of CHn if and only if the tangent
space Tg(o)(H · g(o)) is a CR subspace of Tg(o)CH

n. Since H · g(o) = g(g−1Hg · o), the
tangent space to the orbit H · g(o) at g(o) can be written in terms of the Lie algebra h

as Tg(o)

(

H · g(o)
)

= g∗Ad(g
−1)h. Since g is a holomorphic isometry, it is enough to study

the elements g ∈ AN such that Ad(g)h is a CR subspace of a⊕ n. By Lemma 3.2 we only
have to consider elements of the form g ∈ Exp

(

(a⊕ n)⊖ h
)

.
By Proposition 3.1, the Lie subalgebras h we have to work with are:

h ∈ {r, c⊕ r⊕ g2α, a⊕ r, a⊕ c⊕ r⊕ g2α},
where r is a totally real subspace of gα, and c is a complex one.
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(i): h = r, with r a totally real subspace of gα. For g = Exp(bB + JT +W + yZ) ∈ AN
with b, y ∈ R and T ∈ r, W ∈ gα ⊖ Cr, and any S ∈ r, Lemma 2.1 yields Ad(g)(S) =
eb/2S − eb/2ρ(b/2)〈T, S〉Z. Hence, we have

(3) Ad(g)h = (r⊖ RT )⊕ R

(

T − ρ
( b

2

)

‖T‖2Z
)

.

Since r is totally real and Jg2α = a, this readily implies that Ad(g)h is totally real.
Therefore all the orbits of H are totally real, and since h ⊂ n, each H-orbit is contained in
one of the leaves of the horosphere foliation induced by the Lie group N , from where (i)
of Theorem A follows.

(ii): h = c ⊕ r ⊕ g2α, where c is complex and r is totally real in gα. Taking g =
Exp(bB +X + yZ) with b, y ∈ R and X ∈ gα ⊖ (c⊕ r), and U ∈ c⊕ r we get

Ad(g)(U + xZ) = eb/2U +
(

xeb + eb/2ρ
( b

2

)

〈JX,U〉
)

Z.

Note that Z ∈ Ad(g)(h) (just set U = 0, x = e−b). Hence, it follows that c ⊕ r ⊂ Ad(g)h,
and for dimension reasons, Ad(g)h = h. Thus, all the orbits of H are CR-submanifolds
that are congruent to each other, and since h ⊂ n, H-orbits are contained in the leaves of
the horosphere foliation induced by N . This corresponds to (ii) of Theorem A.

(iii): h = a⊕ r, with r a totally real subspace of gα. We have (a⊕ n)⊖ h = Jr ⊕ (gα ⊖
Cr) ⊕ g2α. Consider g = Exp(2JT + 2W + yZ), where T ∈ r, W ∈ gα ⊖ Cr, and y ∈ R.
For any a ∈ R and S ∈ r, Lemma 2.1 yields

Ad(g)(aB + S) = aB + S − a(JT +W )− (ay + 2〈T, S〉)Z.
Then

(4) Ad(g)h = R(B − JT −W − yZ)⊕ R(T − 2‖T‖2Z)⊕ (r⊖ RT ).

If T = 0, we get Ad(g)h = R(B−W − yZ)⊕ r, which is totally real since W ∈ gα ⊖Cr;
in particular, Ad(g)h is CR in a⊕ n.

Assume T 6= 0. Then, R (T − 2‖T‖2Z)⊕ (r⊖RT ) is totally real, and B−JT −W − yZ
is complex orthogonal to r⊖ RT . On the other hand,

〈J(B − JT −W − yZ), T − 2‖T‖2Z〉 = −‖T‖2 6= 0,

which implies that Ad(g)h is not totally real. Moreover, J(B − JT −W − yZ) = yB +
T − JW + Z cannot be proportional to T − 2‖T‖2Z. Hence, Ad(g)h does not contain a
non-trivial complex vector subspace. Therefore, if T 6= 0, Ad(g)h is not a CR subspace of
a⊕ n. We conclude that Ad(g)h is CR if and only if g ∈ Exp

(

(gα ⊖Cr)⊕ g2α
)

, and in this

case Ad(g)h is actually totally real. Note also that H · o is a totally geodesic RHk, with
k = dim r+ 1, and hence the other H-orbits are equidistant to it. This proves item (iii) of
Theorem A.

(iv): h = a ⊕ c ⊕ r ⊕ g2α, where c is complex and r is totally real in gα. In view of
Lemma 3.2 we consider (a ⊕ n) ⊖ h = c′ ⊕ Jr, where c′ = gα ⊖ (c ⊕ Cr) is a complex
subspace of gα. Let g = Exp(2JT + 2W ), with T ∈ r and W ∈ c′. Let a, x ∈ R, S ∈ r,
and U ∈ c. Using Lemma 2.1 we get

Ad(g)(aB + U + S + xZ) = aB + U + S − a(JT +W ) +
(

x− 2〈S, T 〉
)

Z.

In particular, Z = Ad(g)(Z) ∈ Ad(g)h, and thus,

(5) Ad(g)h = R(B − JT −W )⊕ c⊕ r⊕ g2α.
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If W = 0, the maximal complex distribution of Ad(g)h is

m = Ad(g)h ∩ J(Ad(g)h) = R(B − JT )⊕ R(Z + T )⊕ c.

Then, its orthogonal complement

Ad(g)(h)⊖m = (r⊕ g2α)⊖ R(Z + T ) = (r⊖ RT )⊕ R
(

T − ‖T‖2Z
)

,

is totally real. Hence Ad(g)h is a CR subspace.
Now assume W 6= 0. In this case, the maximal complex subspace of Ad(g)h is m =

Ad(g)h ∩ J(Ad(g)h) = c, and its orthogonal complement in Ad(g)(h) is Ad(g)(h) ⊖ m =
R(B−JT −W )⊕ r⊕g2α, which is not a totally real subspace since 〈J(B−JT −W ), Z〉 =
1 6= 0. Then, Ad(g)h is not a CR submanifold when W 6= 0. Altogether this proves that
Ad(g)h is a CR subspace of a⊕ n precisely when g ∈ Exp(Jr). Note that Exp(h⊕ Jr) · o
is a totally geodesic CHk, with k = dimC(h ⊕ Jr). Then, it follows from [8, Theorem A
and Corollary 6.2] that the H-orbits that foliate this CHk constitute a homogeneous polar
regular foliation with exactly one minimal leaf. This minimal leaf is precisely H · o, which
is called a Berndt-Brück submanifold W 2k−dim r with totally real normal bundle in such
CHk, see [3], [4]. This proves (iv). �

4. Proof of Theorem B

This section is devoted to determining the congruence classes of the homogeneous CR
submanifolds obtained in Theorem A. We first study each case separately.

Case (i). Let h = r be a totally real subspace of gα.
First of all, recall that two totally real subspaces of gα are congruent by an element of

K0
∼= S(U(1)U(n)) if and only if both have the same dimension. Hence, we can fix r in the

rest of the proof.
Let T ∈ r, W ∈ gα ⊖ Cr, and b, y ∈ R. It readily follows from (3) that

(6) Ad
(

Exp(bB + JT +W + yZ)
)

h = Ad
(

Exp
(

ρ
( b

2

)

JT
))

h.

Hence, H · Exp(bB + JT +W + yZ)(o) and H · Exp(ρ(b/2)JT )(o) are congruent. Thus,
in order to settle the congruence problem for case (i) we just have to consider elements
g ∈ Exp(Jr).

Lemma 4.1. The squared norm of the mean curvature vector H of the orbit H ·Exp(JT )(o),
T ∈ r, is given by

‖H‖2 = 4‖T‖2 + (r + (r + 1)‖T‖2)2
4(1 + ‖T‖2)2 ,

where r = dim r = dim h.

Proof. Let g = Exp(JT ). Since H · g(o) is congruent to g−1Hg · o, we calculate the mean
curvature of the latter. It suffices to do so at o by homogeneity. It follows from (3) that the
normal space of g−1Hg · o at o, which can be identified with the orthogonal complement
of Ad(g−1)h = Ad(Exp(−JT ))h in a⊕ n, is

(7) νo(g
−1Hg · o) = a⊕ Jr⊕ (gα ⊖ Cr)⊕ R(−T + Z).

Let S ∈ r⊖RT with ‖S‖ = 1, and X = T+‖T‖2Z

‖T‖
√

1+‖T‖2
if T 6= 0. Using the formula for the

Levi-Civita connection of left-invariant vector fields (2), it follows that

(8) ∇̄SS =
1

2
B, ∇̄XX =

1 + 2‖T‖2
2(1 + ‖T‖2)B − 1

1 + ‖T‖2JT.
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Recall that, given an orthonormal basis {Ei} of To(g
−1Hg · o), the mean curvature can

be computed as H =
∑

i II(Ei, Ei), where II denotes the second fundamental form. In this
case, using (8) and projecting onto the normal space according to (7), the mean curvature
of g−1Hg · o is given by

H =
(r − 1

2
+

1 + 2‖T‖2
2(1 + ‖T‖2)

)

B − 1

1 + ‖T‖2JT.

The result follows after calculating the squared norm of this vector. �

In order to finish the proof in this case, let g1 = Exp(JT1), g2 = Exp(JT2) with T1,
T2 ∈ r. We investigate whether the orbits H · g1(o) and H · g2(o) are congruent.

Assume first ‖T1‖ = ‖T2‖. Since the connected component of the identity of the normal-
izer of r in K0, which is given by N0

K0
(r) ∼= SO(dim r)× U(n− 1− dim r), acts transitively

on the spheres of r centered at the origin, there exists an element k ∈ N0
K0
(r) satisfying

Ad(k)(T1) = T2. Since k ∈ N0
K0
(r) and K0

∼= U(n−1), then k ∈ NK0
(gα⊖Cr). Considering

these facts, it follows that

Ad(k) Ad(g−1
1 )h = Ad(k)

(

(r⊖ RT1)⊕ R(T1 + ‖T1‖2Z)
)

= (r⊖ RT2)⊖ R(T2 + ‖T2‖2Z) = Ad(g−1
2 )h.

Since k fixes o ∈ CHn and normalizes a ⊕ n, it follows that k(g−1
1 Hg1 · o) = g−1

2 Hg2 · o.
This shows that H · g1(o) is congruent to H · g2(o).

Conversely, in view of Lemma 4.1 it is enough to show that h : [0,∞) → [0,∞), given

by t 7→ 4t+(r+(r+1)t)2

4(1+t)2
, is injective. This follows simply from h′(t) = 2+r+(r−1)t

2(1+t)3
> 0, which

implies that h is strictly increasing. Therefore, if ‖T1‖ 6= ‖T2‖, H · g1(o) and H · g2(o) are
not congruent.

All in all, and taking (6) into account, this means that the orbit H · Exp(b1B + JT1 +
W1 + y1Z)(o) is congruent to H · Exp(b2B + JT2 +W2 + y2Z)(o), with bi, yi ∈ R, Ti ∈ r,
Wi ∈ gα ⊖ Cr, i ∈ {1, 2}, if and only if ρ(b2/2)‖T1‖ = ρ(b1/2)‖T2‖. This concludes the
proof of case (i) of Theorem B.

Case (ii). Let h = c⊕ r⊕ g2α, with c complex and r totally real in gα.
It follows from Theorem A(ii) that all the orbits of H are congruent to each other. Let

now H1 and H2 be connected Lie subgroups of G with Lie algebras hi = ci⊕ri⊕g2α, where
ci is complex and ri is totally real in gα, i ∈ {1, 2}. Then, since isometries of SU(1, n)
are holomorphic, it follows that h1 and h2 are conjugate if and only if dim c1 = dim c2 and
dim r1 = dim r2. Hence, the orbits ofH1 and H2 are congruent if and only if dim c1 = dim c2
and dim r1 = dim r2.

Lemma 4.2. The squared norm of the mean curvature of any orbit of H is

‖H‖2 =
(

2 + dim(c⊕ r)
)2

4
.

Proof. From [8, Corollary 6.2], we have 2H =
(

2 + dim(c ⊕ r)
)

B, and the result follows
taking squared norm. �

Case (iii). Let h = a⊕ r, where r is a totally real subspace of gα.
Since two totally real subspaces of gα are conjugate if and only if they have the same

dimension, we can fix r from now on. From Theorem A we just have to consider orbits of
the form H · g(o), with g ∈ Exp

(

(gα ⊖ Cr)⊕ g2α
)

. We define r = dim r.
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Lemma 4.3. The squared norms of the mean curvature vector and of the second funda-
mental form of H · Exp(2W + yZ)(o), W ∈ gα ⊖ Cr, y ∈ R, are given by

‖H‖2 = (1 + r)2‖W‖4 + (2 + r)2y2(1 + y2) + ‖W‖2
(

1 + 8y2 + r2(1 + 2y2) + 2r(1 + 3y2)
)

4(1 + y2 + ‖W‖2)2 ,

‖II‖2 = (1 + r)‖W‖4 + (4 + 3r)y2(1 + y2) + ‖W‖2
(

1 + r + 4y2(2 + r)
)

4(1 + y2 + ‖W‖2)2 .

Proof. Let g = Exp(2W+yZ). Recall from (4) (with T = 0) that Tg(o)

(

H ·g(o)
)

is identified
with Ad(g−1)h = Ad(Exp(−2W − yZ))h = R(B +W + yZ)⊕ r. We define

(9) X =
B +W + yZ

√

1 + y2 + ‖W‖2
, ξ1 =

−yB + Z
√

1 + y2
, ξ2 =

‖W‖2B − (1 + y2)W + y‖W‖2Z
‖W‖

√

(1 + y2)(1 + y2 + ‖W‖2)
.

Then, X , ξ1, and ξ2 (if W 6= 0) are mutually orthogonal unit vectors of a⊕n. Furthermore,
we have Ad(g−1)h = RX ⊕ r, and the normal space of H · g(o) can be identified with the
direct sum νg(o)

(

H · g(o)
)

= Rξ1 ⊕ Rξ2 ⊕ Jr⊕ (gα ⊖
(

Cr⊕ RW )
)

.
Let S, T ∈ r. Using the formula for the Levi-Civita connection (2) for left-invariant

vector fields of AN , and taking the orthogonal projection onto νg(o)
(

H · g(o)
)

we get

II(X,X) = (∇̄XX)⊥ =
1

1 + y2 + ‖W‖2
((

y2 +
1

2
‖W‖2

)

B − 1

2
W − yZ − yJW

)

,

II(X,S) = (∇̄SX)⊥ = − y

2
√

1 + y2 + ‖W‖2
JS,

II(S, T ) =
〈S, T 〉

2

(

〈B, ξ1〉ξ1 + 〈B, ξ2〉ξ2
)

=
〈S, T 〉

2(1 + y2 + ‖W‖2)
(

(y2 + ‖W‖2)B −W − yZ
)

.

The squared norms of the mean curvature and of the second fundamental form are cal-
culated as ‖H‖2 =∑i,j〈II(Ei, Ei), II(Ej, Ej)〉 and ‖II‖2 =∑i,j‖II(Ei, Ej)‖2 with respect

to an orthonormal basis {Ei} of the tangent space. The result follows after substitution
and some calculations. �

Corollary 4.4. We have

‖H‖2 − ‖II‖2 = r(1 + r)(y2 + ‖W‖2)
4(1 + y2 + ‖W‖2) ,

(r + 1)‖II‖2 − ‖H‖2 = ry2
(

(3 + 2r)(1 + y2) + 2(3 + r)‖W‖2
)

4(1 + y2 + ‖W‖2)2 .

Let g1 = Exp(2W1 + y1Z), g2 = Exp(2W2 + y2Z), with Wi ∈ gα ⊖ Cr and yi ∈ R,
i ∈ {1, 2}. We show that, if H · g1(o) is congruent to H · g2(o), then ‖W1‖ = ‖W2‖ and
|y1| = |y2|.

In fact, if r ≥ 1, taking into account Corollary 4.4, the previous claim follows from

Lemma 4.5. The function F : [0,+∞)× [0,+∞) → [0,+∞)× [0,+∞) defined by

F (z, w) =

(

z + w

1 + z + w
,
z
(

a(1 + z) + (a + 3)w
)

(1 + z + w)2

)

,

where a ≥ 5, is injective.
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Proof. Let (c1, c2) ∈ [0,+∞)× [0,+∞). We have to check whether F−1(c1, c2) has at most
one element. In fact, there are two solutions to the equation F (z, w) = (c1, c2) which are

(z, w) =
(a+ 3c1 ±

√

(a+ 3c1)2 − 12c2
6(1− c1)

,
3c1 − a∓

√

(a+ 3c1)2 − 12c2
6(1− c1)

)

.

Observe that we need 0 ≤ c1 < 1 for the first component to be non-negative, whereas
(a + 3c1)

2 − 12c2 ≥ 0 so that there are real solutions. Since 3c1 − a ≤ −2 < 0, the first
possibility would give a negative solution for w, which is not allowed. Then F−1(c1, c2) has
at most one element, and F is injective. �

Now we assume r = 0, that is, h = a. Thus, we have to study the congruence classes of or-
bits of the 1-dimensional Lie group A appearing in the Iwasawa decomposition of SU(1, n).

Recall that A · o is a geodesic. Let γ : R → CHn be a unit speed parametrization
of A · o, and assume limt→∞ γ(t) = x, the point at infinity determined by a and the
fact that α is a positive root. If A · g(o), g ∈ Exp(gα ⊕ g2α), is another orbit of A,
then it can be parametrized as β(t) = expγ(t)(rξγ(t)), where r > 0 is a constant (the
distance to A · o), and ξ is an equivariant normal vector field along A · o. Now we apply
the law of cosines [12, Corollary 1.4.4(3)] to the points o, γ(t) and β(t). Observe that
limt→∞ d(o, γ(t)) = ∞, but d(γ(t), β(t)) is bounded because A·o and A·g(o) are equidistant.
Hence, the angle ∢o(γ(t), β(t)) subtended from o between γ(t) and β(t) approaches 0 as
t → ∞. According to the definition of the cone topology of CHn ∪ CHn(∞) (see for
example [12, Proposition 1.7.6]), we the conclude that limt→∞ β(t) = limt→∞ γ(t) = x. An
analogous argument shows that limt→−∞ β(t) = limt→−∞ γ(t) = −x, the other point at
infinity of the geodesic A · o.

Let gi = Exp(2Wi + yiZ) ∈ Exp(gα ⊕ g2α), with Wi ∈ gα, yi ∈ R, i ∈ {1, 2}. According
to (4) (with T = 0, r = 0), we have Ad(g−1

i )h = R(B + Wi + yiZ), i ∈ {1, 2}. Assume
that there exists an isometry φ of the full isometry group of CHn that maps A · g1(o) to
A · g2(o). Then, φ maps the limit points of one orbit to the limit points of the other. Since
these are x and −x by the discussion above, we conclude that φ leaves {x,−x} ⊂ CHn(∞)
invariant. In particular, the only geodesic of CHn that has {x,−x} as its limit set is A · o.
Thus, φ maps A · o to itself.

Hereafter c denotes complex conjugation of projective coordinates of CHn as a quotient
of the pseudo-Hermitian flat space C1,n \ {0}. Then, c is an isometry of CHn that is anti-
holomorphic, but fixes o. Considering the matrix expressions for a, gα and g2α [10, §3.1],
it follows that Ad(c)(B) = B, Ad(c)gα = gα and Ad(c)(Z) = −Z. In particular, c fixes x.

There is an element a ∈ A such that φa(o) = o. Hence, k = φa maps A · o to itself,
A · g1(o) to A · g2(o), and fixes o. Define h = σk, where σ is the identity transformation
if k(x) = x, or the geodesic symmetry at o if k(x) = −x. Then h(x) = x, which implies
that h ∈ K̃0 = K0 ⊔ cK0. Since σ normalizes A, we have h(A · g1(o)) = σk(A · g1(o)) =
σ(A · g2(o)) = A ·σ(g2(o)). It is not difficult to check that there exists a unique g ∈ N such
that g(o) ∈ A · σ(g2(o)), and if g = Exp(2W + yZ), W ∈ gα, y ∈ R, then ‖W‖ = ‖W2‖
and |y| = |y2|. As K̃0 normalizes AN , we have h∗|ToCHn ≡ Ad(h)|a⊕n. Since h(A · g1(o)) =
A · g(o), and K̃0 acts trivially on a and leaves gα and g2α invariant, we have

R(B +W + yZ) = Ad(g−1)(a) = Ad(h) Ad(g−1
1 )(a)

= Ad(h)(R(B +W1 + y1Z)) = R(B +Ad(h)W1 ± y1Z).

As K̃0 acts transitively on the spheres of gα, we get ‖W1‖ = ‖W‖ = ‖W2‖ and |y1| = |y| =
|y2|. This finishes the argument for r = 0.
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Now we show the converse. The connected component of the identity of the normalizer
of r in K0, which is given by N0

K0
(r) ∼= SO(dim r)× U(n− 1 − dim r), acts transitively on

the spheres of gα ⊖ Cr centered at the origin. Thus, if ‖W1‖ = ‖W2‖ and y1 = y2, the
orbits H · g1(o) and H · g2(o) are congruent.

We finally show that the congruence class does not depend on the sign of y. We use
the complex conjugation c considered above. We can find an element of K0 that maps the
totally real subspace r to a subspace of gα whose elements are real vectors; then we can
assume Ad(c)|r = Idr. Thus, supposing without loss of generality that W ∈ gα⊖Cr is real,
we have Ad(c)(B +W + yZ) = B +W − yZ and Ad(c)r = r, as we wanted to show.

Case (iv). Let h = a⊕ c⊕ r⊕ g2α, with c complex and r totally real in gα.
IfH1 andH2 are connected Lie subgroups ofG whose Lie algebras are hi = a⊕ci⊕ri⊕g2α,

where ci is complex and ri is totally real in gα, i ∈ {1, 2}, then h1 and h2 are conjugate
if and only if dim c1 = dim c2 and dim r1 = dim r2, because isometries of SU(1, n) are
holomorphic. Thus, from now on we fix c and r.

Recall from Theorem A that the CR H-orbits are obtained as H ·g(o), with g ∈ Exp(Jr).

Lemma 4.6. The squared norm of the mean curvature vector of the orbit H ·Exp(JT )(o),
T ∈ r, is given by

‖H‖2 = ‖T‖2
(

3 + dim(c⊕ r)
)2

4(4 + ‖T‖2) .

Proof. By virtue of (5) withW = 0 and [8, Lemma 6.1], the mean curvature ofH ·g(o) reads
H = (3 + dim(c⊕ r))(‖T‖2B − 2JT )/(2(4 + ‖T‖2)). The formula in the statement follows
after calculating the squared norm of this vector. �

Let T1, T2 ∈ r, and define g1 = Exp(JT1), g2 = Exp(JT2). We determine when the
orbits H · g1(o) and H · g2(o) are congruent.

If ‖T1‖ = ‖T2‖, then we show that H · g1(o) and H · g2(o) are congruent. Recall from (5)
(with W = 0) that Ad(g−1

i )h = R(2B + JTi) ⊕ c ⊕ r ⊕ g2α. The normalizer of r on K0,
N0

K0
(r) ∼= SO(dim r)×U(n−1−dim r), acts transitively on the spheres of r, and thus, there

exists k ∈ N0
K0
(r) such that Ad(k)JT1 = JT2 and Ad(k)c = c. Then, Ad(k) Ad(g−1

1 )h =

Ad(g−1
2 )h, and the orbits H · g1(o) and H · g2(o) are congruent.

Conversely, the function h : [0,∞) → [0,∞), t 7→ at/(4 + t), a > 0, satisfies h′(t) =
4a/(4+ t)2 > 0. Hence, h is injective, and Lemma 4.6 implies that the orbits H · g1(o) and
H · g2(o) are congruent if and only if ‖T1‖ = ‖T2‖.

Non-congruence of the different types.
We finally study the congruence among the four different types of orbits listed in Theo-

rem A. In order to do so, we first note that orbits of Type (i) and Type (ii) are contained
in horospheres, while none of the orbits of Type (iii) or Type (iv) satisfy this property.
Considering this fact, it follows that none of the orbits of Type (i) or (ii) is congruent to
any orbit of Type (iii) or (iv).

On the other hand, every Type (iii) orbit is a totally real submanifold, while any orbit
of Type (iv) has non-trivial holomorphic part. Thus, none of the orbits of Type (iii) is
congruent to any Type (iv) orbit.

It only remains to analyze the congruence between orbits of Types (i) and (ii). Let
us denote by Hi the connected Lie subgroup of G with Lie algebra hi, i ∈ {1, 2}, with
h1 = (r1 ⊖ RT ) ⊕ R(T − ‖T‖2Z), T ∈ r1, and h2 = c2 ⊕ r2 ⊕ g2α. As usual ri denotes a
totally real subspace of gα for each i ∈ {1, 2}, and c2 ⊂ gα denotes a complex one.
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Suppose that an H1-orbit is congruent to an H2-orbit. Since h1 is totally real, we must
have c2 = 0. In this case we also have r = dim r1 = dim r2 + 1 ≥ 1. Moreover, we must
have ‖H1‖2 = ‖H2‖2, which according to Lemmas 4.1 and 4.2, implies

(1 + r)2

4
=

4‖T‖2 + (r + (r + 1)‖T‖2)2
4(1 + ‖T‖2)2 ,

or equivalently, 3+ 2(r− 1)(1+ ‖T‖2) = 0. Since this never happens, none of the orbits of
H1 is congruent to any orbit of H2.
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