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COHOMOGENEITY ONE ACTIONS ON SYMMETRIC SPACES

OF NONCOMPACT TYPE AND HIGHER RANK

JOSÉ CARLOS DÍAZ-RAMOS, MIGUEL DOMÍNGUEZ-VÁZQUEZ, AND TOMÁS OTERO

Abstract. We develop a new structural result for cohomogeneity one actions on (not
necessarily irreducible) symmetric spaces of noncompact type and arbitrary rank. We
apply this result to classify cohomogeneity one actions on SLn(R)/SOn, n ≥ 2, up to
orbit equivalence. We also reduce the classification problem on a reducible space to the
classification on each one of its irreducible factors, which in particular allows to classify
cohomogeneity one actions on any finite product of hyperbolic spaces.

1. Introduction and main results

When studying proper isometric actions on a given Riemannian manifold, it is natural to
investigate those that produce hypersurfaces as their regular orbits: these are the so-called
cohomogeneity one actions. This kind of study makes special sense in manifolds with a
large isometry group, as is the case of symmetric spaces.

The classification of cohomogeneity one actions on irreducible symmetric spaces of com-
pact type up to orbit equivalence was completed by Kollross in [22]. However, neither the
group theoretical approach used in this classification nor the use of duality of symmetric
spaces allow to derive complete classification results in the noncompact case (see [6], [23]
for partial results). This is ultimately due to the fact that noncompact real semisimple
Lie groups enjoy a much richer lattice of subgroups than compact Lie groups. This is why
the development of specific techniques, based on the algebraic and geometric structure of
symmetric spaces of noncompact type, has been shown to be crucial.

The particular but important case of rank one spaces (that is, the hyperbolic spaces over
the normed division algebras) was first addressed in real hyperbolic spaces by Cartan [11],
following a geometric approach. However, the classification in the other rank one spaces
has only been concluded eighty years later, after Berndt and Tamaru’s article [7] and the
very recent classification for quaternionic hyperbolic spaces due to the first two authors and
Rodŕıguez-Vázquez [14], both works based on geometric, and especially, algebraic ideas.
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The higher rank setting seems to be even more complicated. In [8], Berndt and Tamaru
proposed a general procedure for the classification of cohomogeneity one actions on irre-
ducible symmetric spaces up to orbit equivalence. They proved (see §2.2 for details) that
any such action either induces a regular foliation, or has a totally geodesic singular orbit, or
can be obtained by two new methods, called canonical extension and nilpotent construction.
Cohomogeneity one actions inducing regular foliations on (possibly reducible) symmetric
spaces had been previously classified into two families (which we will call of horospherical
or solvable type) in [5] and [3], whereas those with a totally geodesic singular orbit (on
irreducible spaces) had been determined in [6]. The canonical extension method allows to
extend an action from certain totally geodesic submanifolds, called boundary components,
to the whole ambient space. Since totally geodesic submanifolds of symmetric spaces are
symmetric spaces of lower rank, this method suggests a rank reduction approach to the
classification problem. However, a boundary component of an irreducible symmetric space
might be reducible, and no general study of cohomogeneity one actions on reducible sym-
metric spaces of noncompact type has been developed yet, as far as the authors know.
Finally, the actual application of the nilpotent construction in concrete spaces seems to
be a very difficult task. Indeed, finding an effective application of this general method to
the particular case of quaternionic hyperbolic spaces was the fundamental obstacle that
delayed the achievement of the classification finally obtained in [14].

Due to the difficulty in applying the nilpotent construction, the lack of a general theory
for cohomogeneity one actions on reducible spaces, and the incomplete understanding of
the interaction between the nilpotent construction and the canonical extension, only a few
explicit classifications are known. Apart from the rank one setting, all known classifica-
tions correspond to certain irreducible symmetric spaces of rank two, namely the spaces
SL3(R)/SO3, SL3(C)/SU3, SL3(H)/Sp3, SO5(C)/SO5, G2

2/SO4, GC

2 /G2, and the noncom-
pact real and complex two-plane Grassmannians; see [8], [4], and the recent work [28] by
Solonenko.

The aim of this article is twofold. On the one hand, we present a new structural result
for cohomogeneity one actions on symmetric spaces of noncompact type, which provides
an efficient tool to deal with spaces which are reducible or of rank higher than two. In-
deed, for reducible spaces we show that the classification problem can be reduced to the
corresponding problem on each one of the factors. On the other hand, we show the power
of these results by deriving the first explicit classifications of cohomogeneity one actions
on symmetric spaces of noncompact type and rank higher than two, namely on the spaces
SLn(R)/SOn and on any finite product of rank one spaces.

We now state the structural result that we prove in this article. The subtle but important
improvement in relation to Berndt and Tamaru’s result is that the only actions with a sin-
gular orbit that can be obtained by canonical extension, and not by nilpotent construction,
are those extending an action of a maximal proper reductive subgroup (or equivalently, with
a totally geodesic singular orbit) on a boundary component which is either irreducible or
a product of two mutually homothetic symmetric spaces of rank one. See below for the
explicit description of the different types of actions mentioned in the theorem.
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Theorem A. Let M = G/K be a symmetric space of noncompact type, and let H be a

connected closed subgroup of G. Then H acts on M with cohomogeneity one if and only if

the H-action is orbit equivalent to one of the following:

(FH) An action inducing a regular codimension one foliation of horospherical type.

(FS) An action inducing a regular codimension one foliation of solvable type.

(CEI) The canonical extension of a cohomogeneity one action with a totally geodesic sin-

gular orbit on an irreducible boundary component.

(CER) The canonical extension of a cohomogeneity one diagonal action on a reducible

boundary component of rank two whose two factors are homothetic.

(NC) An action obtained by nilpotent construction.

We will now introduce the necessary context and notation to explain each one of the
types of actions appearing in Theorem A. More information can be found in Section 2.

Let M = G/K be a Riemannian symmetric space of noncompact type, where G is (a
finite covering of) the connected component of the identity of the isometry group ofM , and
K is the isotropy subgroup at some base point o ∈M . Recall thatM is isometric to an open
Euclidean ball endowed with a symmetric metric of nonpositive sectional curvature. The
semisimple Lie algebra g admits a Cartan decomposition g = k⊕p, where p can be identified
with ToM . We can define a positive definite inner product 〈·, ·〉 on g that agrees with the
Killing form B of g on p, with −B on k, and that makes k and p orthogonal. In this article,
⊖ will denote orthogonal complement with respect to 〈·, ·〉. A choice of a maximal abelian
subspace a of p determines a restricted root space decomposition g = g0 ⊕ (

⊕

λ∈Σ gλ),
where Σ ⊂ a∗ is the set of restricted roots. Let Σ+ ⊂ Σ be a set of positive roots, and
Λ ⊂ Σ+ the associated set of simple roots. Recall that |Λ| = dim a = rank M . Then
g = k⊕ a⊕ n is an Iwasawa decomposition of g, where n =

⊕

λ∈Σ+ gλ.
The connected solvable Lie subgroup AN of G with Lie algebra a⊕ n acts simply tran-

sitively on M . Hence, any connected subgroup of G with Lie algebra of codimension one
in a ⊕ n acts with cohomogeneity one and no singular orbits on M . As shown in [3] (or
in [5] for the case that M is irreducible), any cohomogeneity one action on M without
singular orbit, or equivalently, inducing a regular foliation, arises in this way, up to orbit
equivalence. Moreover, these homogeneous regular foliations have been classified into two
types, which correspond to items (FH) and (FS) in Theorem A:

(FH) Horospherical type, if it is induced by the action of the connected subgroup of AN
with Lie algebra (a⊖ ℓ)⊕ n, for some one-dimensional subspace ℓ of a, up to orbit
equivalence. Such regular foliations are characterized by the property that all their
orbits are mutually congruent. For some choices of ℓ, these orbits are horospheres
(see [17, Remark 5.4]).

(FS) Solvable type, if it is induced by the action of the connected subgroup of AN with
Lie algebra a⊕ (n⊖ ℓ), for some one-dimensional subspace ℓ of a simple root space
gα, α ∈ Λ, up to orbit equivalence. These foliations have exactly one minimal leaf.

We will now describe the remaining actions in Theorem A. Let Φ ⊂ Λ. Define ΣΦ =
Σ∩ spanΦ, and Σ+

Φ = Σ+ ∩ spanΦ. Consider the abelian Lie subalgebra aΦ =
⋂

α∈Φ kerα,
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and the nilpotent subalgebra nΦ =
⊕

λ∈Σ+\Σ+
Φ
gλ ⊂ n. The connected Lie subgroup AΦNΦ

of AN with Lie algebra aΦ ⊕ nΦ is known to act freely and polarly on M , as follows
from the horospherical decomposition of M associated with the parabolic subgroup of G
determined by Φ (see [15]). This means that there is a totally geodesic submanifold BΦ

of M passing through o and intersecting each AΦNΦ-orbit perpendicularly (and exactly
once). Such totally geodesic submanifold BΦ, which is called a boundary component in
the context of the maximal Satake compactification of M , is intrinsically a symmetric
space of noncompact type and rank |Φ|. If we denote by bΦ ∼= ToBΦ the Lie triple system
corresponding to the totally geodesic submanifold BΦ, then sΦ = [bΦ, bΦ] ⊕ bΦ is a real
semisimple Lie algebra, and the associated connected subgroup SΦ of G is (up to a finite
covering) the connected component of the identity of the isometry group of BΦ. Given a
Lie subgroup HΦ of SΦ acting with cohomogeneity one on BΦ, the action of the Lie group

HΛ
Φ = HΦAΦNΦ

onM is of cohomogeneity one onM , and is called the canonical extension of the HΦ-action
on BΦ to M . Items (CEI) and (CER) of Theorem A correspond to canonical extensions of
two different types of cohomogeneity one HΦ-actions with a totally geodesic singular orbit
on a boundary component BΦ:

(CEI) Φ is a connected subset of simple roots in the Dynkin diagram of g, or equivalently,
BΦ is an irreducible symmetric space of noncompact type. Up to orbit equivalence,
the group HΦ can be taken as a maximal proper connected reductive subgroup
of SΦ. As already mentioned, cohomogeneity one actions with a totally geodesic
singular orbit on irreducible spaces have been completely classified in [6].

(CER) Φ = {α, β}, where α and β are orthogonal simple roots with dim gα = dim gβ and
dim g2α = dim g2β. Equivalently, BΦ = B{α} × B{β} = FHn × FHn is a reducible
boundary component of rank two whose factors are mutually homothetic hyperbolic
spaces of the same dimension and over the same normed division algebra F. By
cohomogeneity one diagonal action on such a BΦ we understand the action of the
connected subgroup HΦ of G with Lie algebra hΦ = {X +σX : X ∈ s{α}} ∼= s{α} ∼=
s{β}, for some Lie algebra isomorphism σ : s{α} → s{β} between the Lie algebras of
the isometry groups of B{α} and B{β}. Such an HΦ-action on BΦ has a diagonal
totally geodesic singular orbit HΦ · o homothetic to B{α}

∼= B{β}.

In order to describe the nilpotent construction we can and will restrict our attention
to subsets Φ of simple roots of the form Φ = Λ \ {α}, for some simple root α. Given
any λ ∈ Σ+ \ Σ+

Φ , the coefficient of α in the expression of λ as a sum of simple roots is a
positive integer k. This determines a grading nΦ =

⊕

k∈N n
k
Φ. Define LΦ = ZG(aΦ) as the

centralizer of aΦ in G, whose Lie algebra is lΦ = g0 ⊕ (
⊕

λ∈ΣΦ
gλ), and consider the group

KΦ = LΦ ∩K and the totally geodesic submanifold FΦ = LΦ · o ∼= (AΦ · o)× BΦ.

(NC) Let v be a subspace of n1Φ with dim v ≥ 2. Let N·(·) denote a normalizer, and
assume that the following two conditions are satisfied:
(NC1) NLΦ

(nΦ ⊖ v) acts transitively on FΦ, and
(NC2) NKΦ

(v) acts transitively on the unit sphere of v.
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Then the connected subgroup HΦ,v of G with Lie algebra

hΦ,v = NlΦ(nΦ ⊖ v)⊕ (nΦ ⊖ v)

acts with cohomogeneity one and a minimal singular orbit HΦ,v · o on M . In this
case, we say that such action has been obtained by nilpotent construction from the
choice of the simple root α and the subspace v.

As already mentioned, the determination of the possible subspaces v giving rise to co-
homogeneity one actions via nilpotent construction may be a complicated task for many
spaces M , due to the difficulty of checking conditions (NC1) and (NC2) simultaneously. It
is important to remark that many actions obtained by nilpotent construction may be ob-
tained via canonical extension as well. Indeed, so far, examples of nilpotent constructions
that cannot be achieved as canonical extensions have only been found in the hyperbolic
spaces of nonconstant curvature, and in the two spaces of (G2)-type (see [8], [4]).

As a first application of the structural result in Theorem A, we derive the explicit clas-
sification of cohomogeneity one actions on the symmetric space SLn+1(R)/SOn+1, n ≥ 1,
whose rank is n. We recall that this family of spaces of noncompact type is universal in the
sense that any symmetric space of noncompact type (maybe after rescaling the metric on
its irreducible factors) can be isometrically embedded in SLn+1(R)/SOn+1 in an equivariant
and totally geodesic manner, for some n ≥ 1 (see [19, §2.6.5]).

Theorem B. Let M = G/K = SLn+1(R)/SOn+1, n ≥ 1, and let Λ = {α1, . . . , αn} be a

set of simple roots for g = sln+1(R) whose Dynkin diagram is

α1 α2 αn−1 αn

Any cohomogeneity one action on M is orbit equivalent to one of the following actions:

(FH) The action of the connected subgroup of SLn+1(R) with Lie algebra (a⊖ ℓ)⊕ n, for

some one-dimensional linear subspace ℓ of a.
(FS) The action of the connected subgroup of SLn+1(R) with Lie algebra a ⊕ (n ⊖ gαj

),
for some simple root αj ∈ Λ.

(CE) The canonical extension HΛ
Φ of the action of the connected subgroup HΦ of G on a

boundary component BΦ, for one of the cases listed on the table below.

hΦ Φ BΦ codim(HΛ
Φ · o) Comments

k{αj}
∼= so2 {αj} RH2 2 1 ≤ j ≤ n

slk−j+1(R)⊕ R {αj, . . . , αk} SLk−j+2(R)/SOk−j+2 k − j + 1 1 ≤ j < k ≤ n

sp2(R) {αj, αj+1, αj+2} SL4(R)/SO4 3 1 ≤ j ≤ n− 2

sj,k,σ ∼= sl2(R) {αj, αk} RH2 × RH2 2 |k − j| > 1

In the table, we use the notation sj,k,σ = {X + σX : X ∈ s{αj}} for some isomorphism
σ : s{αj} → s{αk} between the Lie algebras of the isometry groups of B{αj} and B{αk}.

Without loss of generality, the only singular orbit of the HΛ
Φ -action on M is assumed to
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pass through the base point o. It is important to remark that the group HΦ does not have
to be “canonically embedded” or “embedded in the standard way” into the isometry group
SΦ of BΦ: its Lie algebra is only of the form τ(hstandardΦ ), for some automorphism τ of sΦ,
and where hstandardΦ denotes a standard matrix group embedding. This is important since
we have a priori no guarantee that the canonical extensions of orbit equivalent actions (for
instance, those corresponding to hstandardΦ and τ(hstandardΦ )) are orbit equivalent.

Remark 1.1. (Orbit equivalence of the examples.) Although the classification results in
this article are obtained up to orbit equivalence, the explicit determination of the moduli
space of cohomogeneity one actions on a given space entails an added difficulty whose
solution lies outside the scope of this article. The reason is that two orbit equivalent
cohomogeneity one actions with a totally geodesic singular orbit on a boundary component
BΦ may (in principle) produce non-orbit equivalent canonical extended actions onM . This
can happen if the orbit equivalence in BΦ is only obtained via an outer isometry of BΦ (that
is, an isometry not lying in the connected component of the identity of the isometry group
of BΦ), since such outer isometry might not be the restriction of an isometry ofM . Berndt
and Tamaru’s classification of cohomogeneity one actions with a totally geodesic singular
orbit on irreducible symmetric spaces [6] is given up to orbit equivalence by a possibly
outer isometry. But we do not know if considering the relation of orbit equivalence by
an inner isometry (which Solonenko called “strong orbit equivalence” in [28]) would yield
more classes. Addressing this problem would require, in particular, understanding the
analogous congruence problem for reflective totally geodesic submanifolds, as [6] rests in
part on Leung’s classification of such submanifolds [25], where again only congruence by
the full group of isometries is considered. In short, this difficulty concerns the actions of
type (CEI), as well as of type (CER), where there is a similar problem. The moduli space
of actions of foliation types (FH) and (FS) has been determined in [5] in the irreducible
case, and in [16] and [29] in the reducible setting, whereas the orbit equivalence involving
actions obtained by nilpotent construction may in principle require a case-by-case study.

As a second application of our structural result we reduce the classification problem of
cohomogeneity one actions (up to orbit equivalence) on a reducible symmetric space of
noncompact type to the classification problem on each one of its irreducible factors. The
result basically says that if the action is not of (FH) or (CER) types, then it is a product
action. It is interesting to point out that there is no known analog of Theorem C below in
the compact setting, cf. [24].

Theorem C. LetM be a symmetric space of noncompact type with De Rham decomposition

M = M1 × · · · × Ms, where Mi = Gi/Ki, i = 1, . . . , s, and let G =
∏s

i=1Gi. Then, a

cohomogeneity one action on M is orbit equivalent to one of the following actions:

(Prod) The product action of a subgroup Hj ×
∏s

i=1
i 6=j

Gi of G, where Hj is a connected Lie

subgroup of Gj that acts with cohomogeneity one on the irreducible factor Mj.

(FH) The action of the connected subgroup of G with Lie algebra h = (a ⊖ ℓ) ⊕ n, for

some one-dimensional linear subspace ℓ of a.
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(CER) The canonical extension of a cohomogeneity one diagonal action on a reducible

rank two boundary component of M whose two factors are homothetic.

Since actions of types (FH) and (CER) are well understood, Theorem C easily allows
to derive explicit classifications on any product of irreducible spaces M =M1 × · · · ×Ms,
whenever we know the classification of cohomogeneity one actions up to orbit equivalence
on each irreducible factor Mi, i = 1, . . . , s. This is the case, in particular, of the rank
one symmetric spaces of noncompact type. These are precisely the hyperbolic spaces FHn,
F ∈ {R,C,H,O}, n ≥ 2, over the normed division algebras of the reals R, the complex
numbers C, the quaternions H, and the octonions O (in this case, n = 2). We recall that
the real hyperbolic spaces RHn have a root system of type (A1), whereas the other rank
one symmetric spaces FHn, F 6= R, n ≥ 2, have a root system of type (BC1). Thus, the set
of simple roots associated with a productM =M1×· · ·×Mr, where Mi = Gi/Ki = FiH

ni ,
consists of r mutually orthogonal roots, Λ = {α1, . . . , αr}. We will also denote by ki⊕ai⊕ni
the Iwasawa decomposition of the Lie algebra gi of Gi (in particular, ni = gαi

⊕ g2αi
), and

put (ki)0 = Nki(ai). In this context, the application of Theorem C leads to the following
classification result.

Theorem D. Let M = M1 × · · · ×Mr be a Riemannian product of rank one symmetric

spaces of noncompact type Mi = Gi/Ki = FiH
ni, where Fi ∈ {R,C,H,O}, i = 1, . . . , r,

and let G =
∏r

i=1Gi. Then, a proper isometric action on M is of cohomogeneity one if

and only if it is orbit equivalent to the action of the connected subgroup H of G with one

of the following Lie algebras:

Type h Comments

(FH) (a⊖ ℓ)⊕ n ℓ ⊂ a, dim ℓ = 1.

(FS) a⊕ (n⊖ ℓ) ℓ ⊂ gαj
, dim ℓ = 1, αj ∈ Λ.

(CEI)
⊕r

i=1
i 6=j

gi ⊕ hj
Hj ⊂ Gj acts on Mj with cohom. 1

and a totally geodesic singular orbit.

(CER)
⊕r

i=1
i 6=j,k

gi ⊕ gj,k,σ
gj,k,σ = {X + σX : X ∈ gj}, j 6= k,

σ : gj → gk Lie algebra isomorphism.

(NC)
⊕r

i=1
i 6=j

gi ⊕N(kj)0(v)⊕ aj ⊕ (nj ⊖ v) v ⊂ gαj
protohomogeneous subspace,

αj ∈ Λ, dim v ≥ 2.

As already mentioned, the cohomogeneity one Hj-actions with a totally geodesic singular
orbit on a rank one space Mj mentioned in item (CEI) above are well known (up to orbit

equivalence), see [1, §6]. The protohomogeneous subspaces v of gαj
∼= F

nj−1
j are, by

definition, those subspaces such that N(Kj)0(v) acts transitively on the unit sphere of v,
where (Kj)0 = NKj

(aj) (equivalently, v is protohomogeneous if it satisfies condition (NC2)
of the nilpotent construction). Protohomogeneous subspaces in the rank one setting have
been classified in [1, §7] and [7, §4] for Fj ∈ {R,C,O}, and in [14] for Fj = H.

It is important to remark that, unlike the result for SLn(R)/SOn, in the case considered in
Theorem D one can easily determine when two given actions are orbit equivalent. Indeed,
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on the one hand, two orbit equivalent actions must be of the same type in Theorem D,
except when v ∼= Fl

j ⊂ F
nj−1
j , l ∈ {0, . . . , nj − 2} in type (NC) (which yields also an action

of type (CEI)). On the other hand, the moduli space of cohomogeneity one actions on
rank one spaces up to orbit equivalence has been completely determined [7], [14] (which
immediately gives the moduli space of actions of types (FS), (CEI) and (NC) in Theorem D,
since all these fit into type (Prod) of Theorem C), as well as for actions of (FH) type [5],
[16], [29]. Finally, two actions of type (CER) with the same pair (j, k) are orbit equivalent
(with independence of the isomorphism σ), see Proposition 3.4. We illustrate how this
determination of the moduli space can be carried out by considering the case of the product
of two real hyperbolic spaces.

Example 1.2. (Cohomogeneity one actions on M = RHn × RHm.) Assume first that
m = n. Then, the moduli space of cohomogeneity one actions up to orbit equivalence is
(In × Γ1) ⊔ RP1/Γ2 ⊔ {g1,2,σ}, where Ik = {0, . . . , k − 1}, and (Γ1,Γ2) = ({0},Z2) if both
RHn factors are isometric, or (Γ1,Γ2) = (Z2, {id}) otherwise. Given H1 = SO0

1,k × SOn−k

(whose action on RHn has a totally geodesic orbit homothetic to RHk) and H2 = SO0
1,n,

(k, 0) ∈ In × Γ1 represents the H1 × H2-action, and (k, 1) ∈ In × Γ1 the H2 × H1-action.
Both actions are orbit equivalent if and only if both RHn factors ofM are isometric, which
motivates the definition of Γ1. The quotient RP1/Γ2 represents the actions of type (FH),
where the space of lines ℓ in a is represented by RP1, and Γ2 is the group of automorphisms
of a of the form Ad(k)|a and inducing a symmetry of the Dynkin diagram ofM , where k is
an isometry of M fixing o and such that Ad(k)a ⊂ a (see [16]). Finally, {g1,2,σ} represents
the unique diagonal action of type (CER). If both factors have different dimensions n and
m, the moduli space is In ⊔ Im ⊔ RP1.

The tools developed in this paper can be applied to derive explicit classifications on
other symmetric spaces of noncompact type. Basically, the only difficulty to do this stems
from determining the actions that arise via nilpotent construction. Even in the seemingly
simpler case of spaces whose isometry Lie algebra is split real semisimple, this study would
entail a long, case-by-case analysis involving various representations of real semisimple
Lie algebras. In other cases, the problem seems to get even harder, as illustrated by the
solution to the problem for quaternionic hyperbolic spaces [14]. However, we expect that
combining the structural result in Theorem A with an appropriate generalization of the
ideas developed by Solonenko in [28] (which ultimately rely on [4] and [14]) may lead in
the future to the complete solution of the classification problem.

This paper is organized as follows. In Section 2 we introduce the concepts and facts
needed to state Berndt and Tamaru’s structural result for cohomogeneity one actions. In
Section 3 we discuss diagonal cohomogeneity one actions on reducible symmetric spaces.
Section 4 is devoted to the proof of our structural result stated in Theorem A. Finally, in
Section 5 we will prove Theorems B, C and D as an application of Theorem A.

The authors would like to thank Alberto Rodŕıguez-Vázquez for helpful comments.
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2. Parabolic subgroups and Berndt-Tamaru’s result

The aim of this section is to explain the different types of actions considered by Berndt
and Tamaru in [8], as well as their structural result for cohomogeneity one actions (§2.2).
For that, we will first introduce in §2.1 the basic facts, terminology and notation in relation
to the algebraic structure of symmetric spaces of noncompact type, and particularly, the
description of parabolic subgroups of real semisimple Lie groups. We will essentially follow
the notation in [8]; see also [2, Chapter 13], [3], [4], [9, §I.1], [19, Chapter 2], [21, Chapter 7]
and [28] for more information.

2.1. Parabolic subgroups. Let M = G/K be a connected Riemannian symmetric space
of noncompact type. We can assume that (G,K) is a symmetric pair, which in particular
implies that G is a Lie group that acts almost effectively on M , and K is the isotropy
subgroup of G at some point o ∈ M that we fix from now on. Since M is of noncompact
type, the Lie group G is real semisimple, and K is a maximal compact subgroup of G.
As usual, we will use gothic letters for the Lie algebras. Thus, let g = k ⊕ p be a Cartan
decomposition of the real semisimple Lie algebra g of G, where the subspace p is naturally
identified with the tangent space ToM . Let θ be the associated Cartan involution, given
by θ(X + Y ) = X − Y for X ∈ k and Y ∈ p, and B the Killing form of g. Then
〈X, Y 〉 = −B(X, θY ) is a positive definite inner product on g such that 〈ad(X)Y, Z〉 =
−〈Y, ad(θX)Y 〉 for every X , Y , Z ∈ g. From now on, we will consider g endowed with
this inner product. Also, given two subspaces V ⊂ W ⊂ g, we will denote by W ⊖ V the
orthogonal complement of V in W with respect to 〈·, ·〉.

Let a be a maximal abelian subspace of p, and consider the corresponding restricted root
space decomposition g = g0 ⊕

(
⊕

λ∈Σ gλ
)

, where Σ is the set of restricted roots, i.e. those
nonzero covectors λ ∈ a∗ such that the subspace

gλ = {X ∈ g : [H,X ] = λ(H)X for all H ∈ a}

is nonzero. It turns out that g0 = k0 ⊕ a, where k0 = Zk(a) is the centralizer (and the
normalizer) of a in k. For each root λ ∈ Σ we define the root vector Hλ ∈ a by the relation
λ(H) = 〈Hλ, H〉 for all H ∈ a. Moreover, we have θgλ = g−λ and [gλ, gµ] ⊂ gλ+µ, for any
λ, µ ∈ Σ ∪ {0}.

Let r = dim a be the rank of M . The set Σ constitutes a (possibly nonreduced) root
system on a∗. Choose a subset Σ+ of Σ of positive roots, and let Λ = {α1, . . . , αr} ⊂ Σ+ be
the corresponding set of simple roots. We define the nilpotent subalgebra n =

⊕

λ∈Σ+ gλ.
Then g = k⊕a⊕n is an Iwasawa decomposition of g, and the corresponding decomposition
at the Lie group level states that G is diffeomorphic to the Cartesian product K ×A×N ,
where A and N are the connected subgroups of G with Lie algebras a and n, respectively.
It follows that the solvable part of the Iwasawa decomposition, that is, the connected Lie
subgroup AN of G with solvable Lie algebra a⊕ n, acts simply transitively on M .

A parabolic subalgebra q of g is a Lie subalgebra containing Ad(g)(k0⊕ a⊕ n), for some
g ∈ G. Geometrically speaking, and except for g itself, each parabolic subalgebra of g
is the Lie algebra of the stabilizer Gx of some point at infinity x in the ideal boundary
of M . The conjugacy classes of parabolic subalgebras of g are parametrized by the subsets
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Φ of Λ. Thus, for any subset Φ of simple roots, we will denote by ΣΦ = Σ ∩ spanΦ the
root subsystem of Σ generated by Φ, and we will put Σ+

Φ = ΣΦ ∩Σ+. Define the following
Lie subalgebras of g:

lΦ = g0 ⊕

(

⊕

λ∈ΣΦ

gλ

)

, aΦ =
⋂

α∈Φ

kerα, nΦ =
⊕

λ∈Σ+\Σ+
Φ

gλ,

which are reductive, abelian and nilpotent, respectively.

Remark 2.1. In this article, by a reductive subalgebra of a real semisimple Lie algebra g

we understand a θ-invariant Lie subalgebra h of g, for some Cartan involution θ of g,
or equivalently, a subalgebra h that is canonically embedded with respect to a Cartan
decomposition g = k ⊕ p, namely h = (k ∩ h)⊕ (p ∩ h). This implies that h is a reductive
subalgebra in the sense that ad |h : h → gl(g) is completely reducible [10, §6], and hence, in
particular h is a reductive Lie algebra. If G is a real semisimple Lie group, we will say that
a Lie subgroup H of G is a reductive subgroup if its Lie algebra h is a reductive subalgebra
of g. If H is a reductive subgroup of G, the orbit through the base point o that determines
the Cartan decomposition is totally geodesic, since p ∩ h is a Lie triple system.

Let aΦ = a⊖aΦ =
⊕

α∈Φ RHα (note that the direct sum in this equation is not necessarily
orthogonal). The centralizer and normalizer of aΦ in g is lΦ. Moreover, [lΦ, nΦ] ⊂ nΦ. Then,
the Lie algebra qΦ = lΦ ⊕ nΦ is the parabolic subalgebra of g associated with the subset
Φ of Λ. The decomposition qΦ = lΦ ⊕ nΦ is known as the Chevalley decomposition of qΦ.
We also define the reductive subalgebra mΦ = lΦ⊖ aΦ of g, which normalizes aΦ⊕nΦ. The
decomposition qΦ = mΦ ⊕ aΦ ⊕ nΦ is called the Langlands decomposition of the parabolic
subalgebra qΦ. Every parabolic subalgebra of g is conjugate to some of the subalgebras qΦ
for some Φ ⊂ Λ by means of an element in K. We will also consider the subalgebra kΦ of
k given by

kΦ = qΦ ∩ k = lΦ ∩ k = mΦ ∩ k = k0 ⊕

(

⊕

λ∈Σ+
Φ

kλ

)

,

where kλ = πk(gλ) = k∩ (g−λ ⊕ gλ), λ ∈ Σ, and πk is the orthogonal projection map onto k.
The subspace of p given by

bΦ = mΦ ∩ p = aΦ ⊕

(

⊕

λ∈Σ+
Φ

pλ

)

,

where pλ = πp(gλ) = p ∩ (g−λ ⊕ gλ), is a Lie triple system in p. This means that it
corresponds to the tangent space at o of some connected totally geodesic submanifold BΦ

of M . Associated with bΦ one can consider the semisimple Lie algebra sΦ = [bΦ, bΦ]⊕ bΦ,
where [bΦ, bΦ] ⊂ kΦ. Then, sΦ = [bΦ, bΦ] ⊕ bΦ is a Cartan decomposition of sΦ, and aΦ

is a maximal abelian subspace of bΦ. Moreover, the set ΣΦ|aΦ = {λ|aΦ : λ ∈ ΣΦ} is a
root system for sΦ = [bΦ, bΦ]⊕ bΦ with respect to the maximal abelian subspace aΦ of bΦ.
Since λ|aΦ = 0 for each λ ∈ ΣΦ, the restriction map ΣΦ → ΣΦ|aΦ is bijective. Thus we
can naturally identify ΣΦ (resp. Φ) with a root system for sΦ (resp. with a set of simple
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roots for sΦ) simply by restricting the roots to aΦ. We will implicitly do this identification
in what follows. For example, if λ ∈ ΣΦ, the root space (sΦ)λ = (sΦ)λ|

a
Φ
of sΦ coincides

with the root space gλ of g, and the root space (sΦ)0 of sΦ corresponding to the 0-weight
is (sΦ)0 = sΦ ∩ g0 = (sΦ ∩ k0)⊕ aΦ. In particular, we have the root space decomposition

sΦ = (sΦ)0 ⊕
⊕

λ∈ΣΦ

(sΦ)λ = (sΦ ∩ k0)⊕ aΦ ⊕

(

⊕

λ∈ΣΦ

gλ

)

.

Now we consider some groups associated with the Lie algebras described so far. Write AΦ,
NΦ and SΦ for the connected subgroups of G with Lie algebras aΦ, nΦ and sΦ, respectively.
If we define the reductive group LΦ = ZG(aΦ) as the centralizer of aΦ in G, then QΦ =
LΦNΦ is the parabolic subgroup of G associated with the subset Φ of Λ. We also define
KΦ = LΦ ∩K = ZK(aΦ) and MΦ = KΦSΦ. Then MΦ is a (possibly disconnected) closed
reductive subgroup of LΦ, KΦ is a maximal compact subgroup of MΦ, and LΦ =MΦ×AΦ.

The orbit SΦ · o of the SΦ-action on M = G/K through o is the totally geodesic sub-
manifold BΦ of M with ToBΦ

∼= bΦ. BΦ is itself a symmetric space of noncompact type
whose rank agrees with the cardinality |Φ| of Φ, and is called the boundary component (or
boundary symmetric space) of M associated with Φ ⊂ Λ. Moreover,

BΦ = SΦ · o =MΦ · o ∼=MΦ/KΦ
∼= SΦ/(SΦ ∩KΦ).

Since sΦ is θ-invariant and SΦ is connected, (SΦ, SΦ ∩K) = (SΦ, SΦ ∩KΦ) is a symmetric
pair, and in particular sΦ is the Lie algebra of the isometry group of BΦ. We also have a
diffeomorphism AΦ×NΦ×MΦ → QΦ which induces a diffeomorphism AΦ×NΦ×BΦ →M ,
(a, n,m · o) 7→ (anm) · o, known as the horospherical decomposition of the symmetric
space M . Indeed, the action of AΦNΦ on M turns out to be free, polar with section BΦ,
and with mutually congruent minimal orbits [30], [15]. We recall that a Lie group action is
called polar if there is a totally geodesic submanifold (called section) intersecting all orbits,
and at every intersection point between an orbit and the section both submanifolds meet
perpendicularly. In the case of the AΦNΦ-action on M , the section BΦ meets each orbit
exactly once.

Let AΦNΦ be the connected subgroup of AN with Lie algebra aΦ ⊕ nΦ, where

nΦ =
⊕

λ∈Σ+
Φ

gλ.

Then BΦ = (AΦNΦ) · o, since the solvable part of the Iwasawa decomposition of the real
semisimple Lie algebra sΦ is precisely aΦ ⊕ nΦ, and hence, AΦNΦ acts transitively on BΦ.
Similarly, the connected subgroup ANΦ of AN with Lie algebra a⊕nΦ acts transitively on
the totally geodesic submanifold FΦ = LΦ ·o ∼= (AΦ ·o)×BΦ with Lie triple system aΦ⊕bΦ.

Later in this paper, we will need to know the relation between the parabolic subalgebras
of the semisimple Lie algebra sΦ and the parabolic subalgebras of g. Thus, let Ψ ⊂ Φ ⊂ Λ.
Then we have the following inclusions of boundary components: BΨ ⊂ BΦ ⊂ BΛ =M . By
qΨ,Φ we will denote the parabolic subalgebra of sΦ associated with the subset Ψ of the set
Φ of simple roots of sΦ. The corresponding Chevalley and Langlands decompositions can
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then be written as qΨ,Φ = lΨ,Φ ⊕ nΨ,Φ = mΨ,Φ ⊕ aΨ,Φ ⊕ nΨ,Φ, where

lΨ,Φ = (sΦ)0 ⊕
(

⊕

λ∈ΣΨ

gλ

)

, nΨ,Φ =
⊕

λ∈Σ+
Φ
\Σ+

Ψ

gλ = nΦ ∩ nΨ,

aΨ,Φ =
⋂

α∈Ψ

kerα|aΦ = aΦ ⊖
(

⊕

α∈Ψ

RHα

)

= aΦ ∩ aΨ, mΨ,Φ = lΨ,Φ ⊖ aΨ,Φ.

In particular, we have qΨ,Φ = qΨ ∩ sΦ. We also define

kΨ,Φ = k ∩ lΨ,Φ = kΨ ∩ sΦ,

and the (possibly disconnected) Lie subgroups LΨ,Φ = ZSΦ
(aΨ,Φ), KΨ,Φ = LΨ,Φ ∩ K and

MΨ,Φ = KΨ,ΦSΨ of SΦ, whose respective Lie algebras are lΨ,Φ, kΨ,Φ, and mΨ,Φ.

2.2. Berndt and Tamaru’s result. We will now describe the different classes of coho-
mogeneity one actions that appear in the structure result by Berndt and Tamaru [8], which
is also stated below in Theorem 2.2. We keep on using the notation described above.

Foliations of horospherical type. Let ℓ be a one-dimensional subspace of a. Then the
connected subgroupHℓ of G with Lie algebra hℓ = (a⊖ℓ)⊕n acts onM with cohomogeneity
one giving rise to a regular Riemannian foliation whose orbits are congruent to each other.
The study of the orbit equivalence of these actions was carried out in [5] for irreducible
symmetric spaces G/K, and recently in [16] and in [29] for the general case. It turns out
that two choices ℓ and ℓ′ yield orbit equivalent actions if and only if ϕ(ℓ) = ℓ′ for some
linear automorphism ϕ of a of the form ϕ = Ad(k)|a with k ∈ NI(M)o(a) and mapping
the set {Hλ : λ ∈ Σ+} onto itself. Here, I(M)o is the isotropy subgroup at o of the full
isometry group I(M) of M . We note that an automorphism ϕ as above is precisely an
automorphism of a induced by an isometry of M that is in turn induced by a symmetry
of the Dynkin diagram of g. The requirement that ϕ is induced by an isometry of M (i.e.
ϕ = Ad(k)|a with k ∈ NI(M)o(a)) is superfluous if M is irreducible, but not if M has two
homothetic but not isometric factors.

Foliations of solvable type. Let ℓ be a one-dimensional subspace of a simple root space
gαj

, αj ∈ Λ. Then, the connected subgroup Hj of G with Lie algebra hj = a⊕ (n⊖ ℓ) acts
on M with cohomogeneity one, and the orbits form a Riemannian foliation with exactly
one minimal leaf (the one through o). Two lines ℓ, ℓ′ in the same simple root space gαj

always yield orbit equivalent actions. More generally, two choices ℓ ⊂ gαj
and ℓ′ ⊂ gαk

produce orbit equivalent actions if and only if there is an isometry of M induced by a
Dynkin diagram symmetry mapping αj to αk. See [5], [3] and [29] for more information.

Actions with a totally geodesic singular orbit. Cohomogeneity one actions with a totally
geodesic singular orbit on irreducible symmetric spaces of noncompact type M have been
classified up to orbit equivalence (by isometries of the full isometry group I(M)) in [6]. It
follows that a totally geodesic submanifold F of an irreducible spaceM is the singular orbit
of a cohomogeneity one action on M = G/K if and only if F is a reflective submanifold
whose complementary reflective submanifold has rank one, or F is one of five exceptions
(mysteriously related to the group G2). These actions are induced by maximal proper
reductive subgroups of G. The converse is not true in general. However, if L is a maximal
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proper reductive subgroup of G, and H is a subgroup of L acting onM with cohomogeneity
one, then the actions of H and L have the same orbits, one of which is totally geodesic,
being singular if M is irreducible and different from a real hyperbolic space.

Canonical extension. Consider the Langlands decomposition QΦ =MΦAΦNΦ of a max-
imal proper parabolic subgroup QΦ of G obtained by the choice of some subset Φ of Λ.
The corresponding boundary component BΦ is a noncompact symmetric space of rank
|Φ| embedded in M as a totally geodesic submanifold. Since sΦ is the Lie algebra of the
isometry group of BΦ, it follows that any isometric action (of a connected Lie group) on
BΦ has the same orbits as the action of some connected Lie subgroup of SΦ. Let HΦ be
a Lie subgroup of SΦ acting on BΦ with cohomogeneity one. Then HΛ

Φ = HΦAΦNΦ is a
connected Lie subgroup of QΦ acting on M with cohomogeneity one. We say that this
action has been obtained by canonical extension of a cohomogeneity one action on the
boundary component BΦ. If two connected closed subgroups HΦ, H

′
Φ of SΦ act on BΦ with

cohomogeneity one and their actions are orbit equivalent by an isometry in the connected
component of the identity I0(BΦ) of the isometry group of BΦ (or equivalently, by an el-
ement in SΦ), then their canonical extensions to M are orbit equivalent by an element of
G as well; see [8]. The orbits of the AΦNΦ-action on M are all minimal, but rarely totally
geodesic. In fact, they are totally geodesic if and only if Φ and Λ \ Φ are orthogonal [30].
This implies that the canonical extension of an HΦ-action on BΦ will have a minimal orbit
if there is a minimal HΦ-orbit on BΦ, but will only have a totally geodesic orbit if Φ and
Λ \ Φ are orthogonal and there is a totally geodesic HΦ-orbit on BΦ, cf. [15].

Nilpotent construction. This construction method was introduced in [8] and revisited
in [4] and [28]. Here, it will be enough to consider subsets

Φ = Λ \ {αj}

of Λ with cardinality |Λ| − 1. Thus, QΦ = LΦNΦ is a maximal proper parabolic subgroup
of G. Recall also that LΦ =MΦAΦ. Consider the vector Hj ∈ a such that αk(H

j) = δjk is
the Kronecker delta of j and k. Then Hj induces a gradation

⊕

ν≥1 n
ν
Φ of nΦ, where nνΦ is

the sum of all root spaces corresponding to positive roots λ ∈ Σ+ with λ(Hj) = ν. In fact,
λ(Hj) = ν if and only if the coefficient of αj in the expression of λ as a linear combination
of simple roots is precisely ν. Let v be a subspace of n1Φ with dim v ≥ 2. Then nΦ,v = nΦ⊖v

is a subalgebra of n. Let NΦ,v be the corresponding connected subgroup of NΦ. Denote by
Θ the Cartan involution of G associated with θ. If v satisfies the following conditions:

(NC1) N0
MΦ

(nΦ,v) = ΘN0
MΦ

(v) acts transitively on BΦ =MΦ · o,
(NC2) N0

KΦ
(nΦ,v) = N0

KΦ
(v) acts transitively on the unit sphere of v,

then HΦ,v = N0
LΦ

(nΦ,v)NΦ,v = N0
MΦ

(nΦ,v)AΦNΦ,v is a connected subgroup of QΦ that acts
on M with cohomogeneity one and singular orbit HΦ,v · o. (Note that the equalities
N0

MΦ
(nΦ,v) = ΘN0

MΦ
(v) and N0

KΦ
(nΦ,v) = N0

KΦ
(v) are satisfied for any v.) We say that

the HΦ,v-action on M has been obtained by nilpotent construction from the choice of αj

and v. Moreover, if v and v′ are two such subspaces which are conjugate by an element
k ∈ KΦ, then the cohomogeneity one actions by HΦ,v and HΦ,v′ on M are orbit equivalent
via conjugation by k. Observe that condition (NC1) in the introduction is slightly different
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than the one here. The former is quicker to introduce, whereas the latter is more manage-
able in certain situations. It was shown in [4, Proposition 3.2] that both descriptions are
equivalent, due to the fact that N0

LΦ
(nΦ,v) = N0

MΦ
(nΦ,v)AΦ. We also note that a subspace v

satisfying (NC1) (resp. (NC2)) has been called admissible (resp. protohomogeneous) in [28].
The main result of [8] guarantees that all cohomogeneity one actions on irreducible

symmetric spaces of noncompact type can be obtained by one of the five methods described
above. However, note that all these construction methods keep their validity for reducible
symmetric spaces.

Theorem 2.2. [8] Let M = G/K be a connected irreducible Riemannian symmetric space

of noncompact type and rank r, and let H be a connected closed subgroup of G acting on

M with cohomogeneity one. Then one of the following statements holds:

(1) The orbits form a Riemannian foliation onM , and one of the following two cases holds:

(i) The H-action is orbit equivalent to a foliation of horospherical type induced by

the action of Hℓ for some one-dimensional subspace ℓ of a.
(ii) The H-action is orbit equivalent to a foliation of solvable type induced by the

action of Hj for some j ∈ {1, . . . , r}.
(2) The H-action has exactly one singular orbit, and one of the following two cases holds:

(i) H is contained in a maximal proper reductive subgroup L of G, the actions of H
and L have the same orbits, and the singular orbit is totally geodesic.

(ii) Up to conjugation by an element of G, the group H is contained in a maximal

proper parabolic subgroup QΦ of G, for some Φ ⊂ Λ with cardinality |Φ| = |Λ|−1,
and one of the following two subcases holds:

(a) The H-action is orbit equivalent to the canonical extension of a cohomogeneity

one action with a singular orbit on the maximal proper boundary component

BΦ of M .

(b) The H-action is orbit equivalent to the action of a group HΦ,v obtained by

nilpotent construction, for some subspace v ⊂ n1Φ with dim v ≥ 2.

Remark 2.3. In case Theorem 2.2 (1), either (1)-(i) or (1)-(ii) holds even if M is not nec-
essarily irreducible. This was proved in [3]. Moreover, it follows from the proof in [3] that
the orbit equivalence is obtained by an isometry g ∈ G (i.e., in the connected component
of the identity of the isometry group of M).

Remark 2.4. In case (2)-(ii) of Theorem 2.2, it is stated that H ⊂ gQΦg
−1, for some

g ∈ G. This is not explicitly stated in [8, Theorem 1.1], but implicitly understood. This
element g ∈ G is precisely the one that gives the orbit equivalence stated in items (a) and
(b) of case (2)-(ii), as follows from the proof in [8] (specifically, the final paragraph of the
proof of [8, Theorem 3.2]). This actually shows that the orbit equivalence claimed in [8,
Theorem 5.8] is in fact an equality of orbit foliations. We also remark that, as stated in [8,
Theorem 5.8], even without the assumption that M is irreducible, if H is in the situation
described in case (2)-(ii) (i.e., H is a connected subgroup of a maximal proper parabolic
subgroup of G and acting with cohomogeneity one on M), then one of the cases (a) and
(b) above hold. This facts will be important later on in our proof of Theorem A.
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Remark 2.5. If M =M1 × · · · ×Ms is reducible (where each Mi = Gi/Ki is irreducible),
any symmetric metric on M is induced by (the restriction to p ∼= ToM of) a weighted sum
a1Bg1 + · · ·+asBgs of the Killing forms of the simple factors of g, where a1, . . . , as > 0. The
proofs of Theorem 2.2 (1) in [3] and of Theorem 2.2 (2)-(ii) in [8, Theorem 5.8] assume
that the metric on M is induced by the Killing form of g (i.e., a1 = · · · = as = 1 in the
previous expression). However, these results hold for an arbitrary symmetric metric on M
(i.e., for any a1, . . . , as > 0). Indeed, given symmetric metrics g, g′ on M = G/K, we have
G = I0(M, g) = I0(M, g′) (possibly after effectivization), and then, a connected group of
isometries of (M, g) acts isometrically with cohomogeneity one on (M, g) if and only if it
acts isometrically with cohomogeneity one on (M, g′). Moreover, the orbit equivalences in
Theorem 2.2 (1) and (2)-(ii) are achieved by elements of G, as recalled in Remarks 2.3
and 2.4, and hence they hold independently of the symmetric metric on M = G/K.

3. Maximal subgroups and diagonal actions

In this section we show that a group acting with cohomogeneity one on a reducible
symmetric space of noncompact type is contained in a maximal proper subgroup that either
splits nicely with respect to the decomposition into irreducible factors, or is determined by
a diagonal action of a maximal proper reductive subgroup on the product of two rank one
irreducible factors.

Let M = G/K be a symmetric space of noncompact type. Let g = g1 ⊕ · · · ⊕ gs
be the decomposition of the real semisimple Lie algebra g into simple ideals, and M =
M1 × · · · ×Ms = G1/K1 × · · · × Gs/Ks the corresponding decomposition of M into irre-
ducible symmetric spaces of noncompact type. For each i ∈ {1, . . . , s}, we have the Cartan
decomposition gi = ki ⊕ pi.

LetH be a connected closed Lie subgroup of G. Let l be a maximal proper Lie subalgebra
of g containing h and with corresponding connected Lie subgroup L of G. Then, it follows
from [18, Theorem 15.1, p. 235] (cf. [22, Theorem 2.1]) that either

l =
s

⊕

i=1
i 6=j

gi ⊕ lj

for an index j ∈ {1, . . . , s} and a maximal proper subalgebra lj of gj, or

l =

s
⊕

i=1
i 6=j,k

gi ⊕ gj,k,σ,

for two indices j, k ∈ {1, . . . , s}, j 6= k, an isomorphism σ : gj → gk, and where gj,k,σ =
{X + σX : X ∈ gj}. In this case, gj,k,σ and l are reductive subalgebras of g, and gj,k,σ is a
maximal proper reductive subalgebra of gj ⊕ gk.

Let us focus on the second case, namely, the maximal proper subalgebra l has a simple
ideal which is diagonal with respect to the decomposition of g into simple ideals. Let us
recall first that there is a natural bijective correspondence between homothety classes of
irreducible symmetric spaces of noncompact type and noncompact real simple Lie algebras.
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Hence, since gj and gk are isomorphic, the corresponding irreducible symmetric spaces Mj

and Mk are homothetic. Let Gj,k,σ be the connected closed subgroup of Gj ×Gk with Lie
algebra gj,k,σ. Then, according to [8, Proposition 3.1] (it will also follow from Theorem 3.1
below), the action of Gj,k,σ on Mj ×Mk is not transitive. Hence, since H ⊂ L, if H acts
with cohomogeneity one on M , the actions of H and L have the same orbits.

It only remains to decide for which real simple Lie algebras gj ∼= gk and corresponding
isomorphism σ the action of L on M is indeed of cohomogeneity one, and not higher.
Equivalently, we have to decide when the action of Gj,k,σ on Mj ×Mk has cohomogeneity
one. The following result answers this question. We recall that an action is said to be
hyperpolar if it is polar and its sections are flat.

Theorem 3.1. The action of Gj,k,σ on Mj × Mk is hyperpolar and its cohomogeneity

coincides with the rank of Mj.

Proof. Without loss of generality, we will assume that σ(kj) = kk. In other words, the base
point ok we consider in Mk is the one whose isotropy Lie algebra is σ(kj). Then the Lie
algebra of the isotropy group at (oj, ok) is kj,k,σ = {T + σT : T ∈ kj} ∼= kj ∼= kk. Moreover,
the orbit of Gj,k,σ through (oj , ok) ∈ Mj × Mk is singular and of minimum orbit type,
according to the proof of [13, Proposition 5.2].

The cohomogeneity of the action of Gj,k,σ agrees with the cohomogeneity of the slice
representation at (oj, ok). We calculate this first. We have

T(oj ,ok)(Gj,k,σ · (oj, ok)) ∼= πpj⊕pk(gj,k,σ) = {X + σX : X ∈ pj},

where πpj⊕pk = ((id−θ)/2)|gj⊕gk is the projection map onto pj ⊕ pk. For simplicity we will
assume that Mj and Mk are isometric, but the proof holds with minor changes if they are
only homothetic (cf. Remark 3.3). The normal space to Gj,k,σ · (oj , ok) is

ν(oj ,ok)(Gj,k,σ · (oj , ok)) ∼= {X − σX : X ∈ pj}.

Now, the adjoint action of kj,k,σ on ν(oj ,ok)(Gj,k,σ · (oj, ok)) is given by

ad(T + σT )(X − σX) = [T,X ]− σ[T,X ],

for T + σT ∈ kj,k,σ and X − σX ∈ ν(oj ,ok)(Gj,k,σ · (oj, ok)). This representation is clearly
equivalent to the adjoint action of kj on pj. Therefore, the slice representation at (oj , ok) is
equivalent to the isotropy representation of the symmetric spaceMj , whose cohomogeneity
is precisely the rank of Mj .

Let aj,k,σ = {X − σX : X ∈ aj} and Ξ = Exp(aj,k,σ) · (oj, ok) ⊂ Mj ×Mk, where aj is
a maximal abelian subspace of pj . As usual we can identify T(oj ,ok)Ξ with aj,k,σ, and this
is clearly a section for the slice representation of the Gj,k,σ-action on Mj ×Mk at (oj , ok).
It is also clear that 〈gj,k,σ, aj,k,σ ⊕ [aj,k,σ, aj,k,σ]〉 = 0, since aj,k,σ ⊂ ν(oj ,ok)(Gj,k,σ · (oj, ok)) is
abelian. Then, [13, Proposition 2.3] guarantees that the Gj,k,σ-action is polar with section
Ξ. Since aj,k,σ is abelian, then Ξ is flat, which shows that the action is hyperpolar. �

Remark 3.2. Being Gj,k,σ a reductive subgroup of Gj×Gk, its action onMj×Mk induces
an action on a compact dual symmetric space of Mj ×Mk, see [23]. Such dual action turns
out to be an indecomposable, hyperpolar, Hermann action in the sense of [24].
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Remark 3.3. The singular orbit of Gj,k,σ through (oj , ok) ∈Mj ×Mk is a totally geodesic
submanifold of Mj × Mk, since T(oj ,ok)(Gj,k,σ · (oj, ok)) ∼= {X + σX : X ∈ pj} is a Lie
triple system in pj ⊕ pk. Intrinsically, this singular orbit is homothetic to Mj and to Mk.
More specifically, since gj and gk are isomorphic via σ, we can assume that their Killing
forms are the same; denote both by B. Then the metrics at oj and ok of the irreducible
symmetric spaces Mj and Mk can be canonically identified with λjB|pj×pj and λkB|pk×pk ,
for some positive constants λj, λk. Thus, the metric on Gj,k,σ · (oj, ok) at (oj, ok) is given
by (λj + λk)B(πpj (·), πpj (·)), where πpj : pj ⊕ pk → pj is the projection onto the first factor.

We conclude this section by showing that, up to orbit equivalence in I(M), the role of
the automorphism σ is irrelevant. More precisely:

Proposition 3.4. Let σ, τ : gj → gk be two Lie algebra isomorphisms. Then the actions

of Gj,k,σ and of Gj,k,τ on Mj ×Mk are orbit equivalent. Moreover, this orbit equivalence is

achieved by means of an element of Gj ×Gk if στ−1 is an inner automorphism of gk.

Proof. As above, we can assume that σ(kj) = kk and that there exists g ∈ Gk such
that Ad(g)τ(kj) = kk, since any two maximal compactly embedded subalgebras of a real
semisimple Lie algebra are conjugate by an inner automorphism [20, Chapter VI, §2]. Let
ϕ = στ−1Ad(g−1) ∈ Aut(gk). Then ϕ(kk) = kk, and hence ϕ(pk) = pk. Since ϕ is a Lie
algebra automorphism, it preserves the Lie bracket, and then also the curvature tensor of
Mk at ok, and the Killing form of gk. Therefore, ϕ|pk : pk

∼= TokMk → pk ∼= TokMk is a
linear isometry that preserves the curvature tensor at ok. Hence, by a well-known result
(see [31, Corollary 2.3.14]), ϕ is the differential at ok of an isometry ψ ∈ I(Mk) that fixes
ok. In other words, ϕ = Ad(ψ), and hence σ = Ad(ψg)τ , where Ad is the adjoint repre-
sentation of the Lie group I(Mk). Then the automorphism Ad(id, ψg) of gj ⊕ gk satisfies
Ad(id, ψg)gj,k,τ = gj,k,σ, and therefore the connected Lie groups Gj,k,σ and Gj,k,τ are con-
jugate by the isometry (id, ψg) ∈ I(Mj ×Mk). In particular, their actions on Mj ×Mk are
orbit equivalent. Finally, if στ−1 is inner, then ϕ is also inner, and hence we can assume
that ψ ∈ Gk, so (id, ψg) ∈ Gj ×Gk. �

4. New structural result

The aim of this section is to prove Theorem A, which describes all possible types of
cohomogeneity one actions on symmetric spaces of noncompact type. We will first state
three lemmas about canonical extensions. The first two lemmas are rather simple, and
deal with canonical extensions on products (Lemma 4.1) and compositions of canonical
extensions (Lemma 4.2). The third one (Lemma 4.3) is more involved, and describes how
canonical extensions of nilpotent constructions look like. Finally, we will prove Theorem A.

If one considers a Riemannian productM =M1×M2 of symmetric spaces of noncompact
type (where M1 and M2 are not necessarily irreducible), any set of simple roots associated
with M is a disjoint union Λ = Λ1 ⊔ Λ2, where each Λi is a set of simple roots for Mi,
and where the roots in Λ1 are orthogonal to the roots in Λ2. The boundary component
associated with taking Λi as a subset of Λ turns to be exactly Mi, and the canonical
extension is in a way well behaved with respect to the Riemannian product.
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Lemma 4.1. Let M1 = G1/K1 and M2 = G2/K2 be symmetric spaces of noncompact type,

and M = M1 ×M2 their Riemannian product. Let Λ = Λ1 ⊔ Λ2 be a set of simple roots

for g1 ⊕ g2, where Λi is a set of simple roots for gi, i = 1, 2. Let HΛ1
be a connected Lie

subgroup of G1 acting with cohomogeneity one on M1. Then the cohomogeneity one action

of HΛ1
×G2 on M has the same orbits as the action of the group HΛ

Λ1
obtained by canonical

extension of HΛ1
from the boundary component BΛ1

=M1 to M .

Proof. First observe that the roots in Λ1 are perpendicular to the roots in Λ2. Hence,
aΛ1

= aΛ2 and nΛ1
= nΛ2 . Thus hΛΛ1

= hΛ1
⊕ aΛ1

⊕ nΛ1
= hΛ1

⊕ aΛ2 ⊕ nΛ2 ⊂ hΛ1
⊕ g2. Since

both HΛ
Λ1

and HΛ1
×G2 act with cohomogeneity one on M , we conclude that their actions

have the same orbits. �

The next lemma basically states that an iterated canonical extension is a canonical
extension itself.

Lemma 4.2. Let Ψ ⊂ Φ ⊂ Λ be subsets of the set of simple roots Λ, and let HΨ be a

subgroup of SΨ acting on the boundary component BΨ with cohomogeneity one. Denote

by HΦ
Ψ the canonical extension of HΨ from BΨ to BΦ, by (HΦ

Ψ)
Λ the canonical extension

of HΦ
Ψ from BΦ to M , and by HΛ

Ψ the canonical extension of HΨ from BΨ to M . Then

(HΦ
Ψ)

Λ = HΛ
Ψ.

Proof. This is a straightforward calculation at the Lie algebra level. First, we have

(hΦΨ)
Λ = hΦΨ ⊕ aΦ ⊕ nΦ = (hΨ ⊕ aΨ,Φ ⊕ nΨ,Φ)⊕ aΦ ⊕ nΦ.

But
aΦ ⊕ aΨ,Φ = (a⊖ aΦ)⊕ (aΦ ∩ aΨ) = aΨ

and, since (sΦ)λ = gλ for any λ ∈ ΣΦ,

nΦ ⊕ nΨ,Φ =

(

⊕

λ∈Σ+\Σ+
Φ

gλ

)

⊕

(

⊕

Σ+
Φ
\Σ+

Ψ

gλ

)

= nΨ,

which shows that (hΦΨ)
Λ = hΨ ⊕ aΨ ⊕ nΨ = hΛΨ. �

The following result is more complicated than the previous ones, and roughly states that
the canonical extension of a nilpotent construction in a boundary component ofM is orbit
equivalent to a nilpotent construction on M .

Lemma 4.3. Let αj ∈ Φ ⊂ Λ. Let

qΦ\{αj},Φ = lΦ\{αj},Φ ⊕ nΦ\{αj},Φ

be the Chevalley decomposition of the parabolic subalgebra of sΦ associated with the subset

Φ \ {αj} of Φ. Let

HΦ = HΦ\{αj},Φ,v = N0
LΦ\{αj},Φ

(nΦ\{αj},Φ,v)NΦ\{αj},Φ,v

be a subgroup of SΦ obtained by nilpotent construction acting on BΦ with cohomogeneity

one, where v is a subspace of n1Φ\{αj},Φ
and nΦ\{αj},Φ,v = nΦ\{αj},Φ ⊖ v.
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Then, v ⊂ n1Λ\{αj}
, and HΛ\{αj},v = N0

LΛ\{αj}
(nΛ\{αj},v)NΛ\{αj},v is a subgroup of G ob-

tained by nilpotent construction and acting with cohomogeneity one on M . Moreover, the

action of HΛ\{αj},v on M has the same orbits as the HΛ
Φ-action obtained by canonical ex-

tension of the HΦ-action from BΦ to M .

Proof. First of all, we check that v is indeed a subspace of n1Λ\{αj}
. This is easy, since

v ⊂ n1Φ\{αj},Φ
=

⊕

λ∈Σ+
Φ

λ(Hj)=1

gλ ⊂
⊕

λ∈Σ+

λ(Hj)=1

gλ = n1Λ\{αj}
.

We will now check that this choice of v as a subspace of n1Λ\{αj}
gives rise to a nilpotent

construction, that is, v satisfies the conditions (NC1) and (NC2) in §2.2.
We have the inclusion

lΦ\{αj},Φ = (sΦ)0 ⊕

(

⊕

λ∈ΣΦ\{αj}

gλ

)

⊂ g0 ⊕

(

⊕

λ∈ΣΛ\{αj}

gλ

)

= lΛ\{αj},

and hence kΦ\{αj},Φ = lΦ\{αj},Φ ∩ k ⊂ lΛ\{αj} ∩ k = kΛ\{αj}. Therefore,

(1) NlΦ\{αj},Φ
(nΦ\{αj},Φ,v) = θNlΦ\{αj},Φ

(v) ⊂ θNlΛ\{αj}
(v) = NlΛ\{αj}

(nΛ\{αj},v),

and NkΦ\{αj},Φ
(v) ⊂ NkΛ\{αj}

(v).

By hypothesis, v ⊂ n1Φ\{αj},Φ
satisfies the two conditions for the nilpotent construc-

tion on BΦ. In particular, N0
KΦ\{αj},Φ

(v) acts transitively on the unit sphere of v. Since

N0
KΦ\{αj},Φ

(v) ⊂ N0
KΛ\{αj}

(v), so does N0
KΛ\{αj}

(v). Thus v satisfies condition (NC2) for the

nilpotent construction on M .
In order to check condition (NC1), first note that N0

MΛ\{αj}
(nΛ\{αj},v) leaves BΛ\{αj} =

MΛ\{αj} · o invariant. Therefore, it will be enough to verify the inclusion

(2) bΛ\{αj} ⊂ To
(

N0
MΛ\{αj}

(nΛ\{αj},v) · o
)

to see that N0
MΛ\{αj}

(nΛ\{αj},v) acts transitively on BΛ\{αj}. For this, decompose bΛ\{αj} as

bΛ\{αj} = aΛ\{αj} ⊕

(

⊕

λ∈Σ+

Λ\{αj}

pλ

)

= aΦ\{αj},Λ\{αj} ⊕ bΦ\{αj} ⊕ To(NΦ\{αj},Λ\{αj} · o),

with aΦ\{αj},Λ\{αj} = aΛ\{αj}∩aΦ\{αj} = aΛ\{αj}⊖aΦ\{αj}, bΦ\{αj} = aΦ\{αj}⊕
(
⊕

λ∈Σ+

Φ\{αj}
pλ
)

and To(NΦ\{αj},Λ\{αj} · o)
∼=

⊕

λ∈Σ+

Λ\{αj}
\Σ+

Φ\{αj}
pλ. We will prove (2) by showing that each

one of the three addends in the right-hand term of the previous relation for bΛ\{αj} is

contained in To
(

N0
MΛ\{αj}

(nΛ\{αj},v) · o
)

.

By assumption, N0
MΦ\{αj},Φ

(nΦ\{αj},Φ,v) acts transitively on BΦ\{αj}, so

bΦ\{αj} = To
(

N0
MΦ\{αj},Φ

(nΦ\{αj},Φ,v) · o
)

⊂ To
(

N0
MΛ\{αj}

(nΛ\{αj},v) · o
)

,
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where in the inclusion we have used (1) and mΦ\{αj},Φ ⊂ mΛ\{αj}.
Let H ∈ aΦ\{αj} and X =

∑

λ∈Σ+
Φ
, λ(Hj)=1Xλ ∈ v ⊂ n1Φ\{αj},Φ

, with Xλ ∈ gλ. Given

λ ∈ Σ+
Φ such that λ(Hj) = 1, we can write λ = αj +

∑

α∈Φ\{αj}
nαα, for some nα ∈ Z≥0.

Then λ(H) = αj(H), since H ∈ aΦ\{αj}. Thus

[H,X ] =
∑

λ∈Σ+
Φ

λ(Hj)=1

λ(H)Xλ =
∑

λ∈Σ+
Φ

λ(Hj )=1

αj(H)Xλ = αj(H)X,

which means that aΦ\{αj} normalizes v. Since aΦ\{αj} ⊂ a ⊂ lΛ\{αj}, this implies

(3) aΦ\{αj} = θaΦ\{αj} ⊂ θNlΛ\{αj}
(v) = NlΛ\{αj}

(nΛ\{αj},v).

Intersecting with aΛ\{αj} ⊂ mΛ\{αj}, we get a
Λ\{αj}∩aΦ\{αj} ⊂ NmΛ\{αj}

(nΛ\{αj},v). Therefore

we deduce aΦ\{αj},Λ\{αj} = aΛ\{αj} ∩ aΦ\{αj} ⊂ To
(

N0
MΛ\{αj}

(nΛ\{αj},v) · o
)

.

We now check that To
(

NΦ\{αj},Λ\{αj} ·o
)

⊂ To
(

N0
MΛ\{αj}

(nΛ\{αj},v) ·o
)

. We will first prove

(4) nΦ ∩mΛ\{αj} ⊂ NmΛ\{αj}
(nΛ\{αj},v).

Observe that v ⊂ n1Φ\{αj},Φ
⊂ mΦ ∩ nΛ\{αj}. Then,

[θ(nΦ ∩mΛ\{αj}), v] ⊂ [θnΦ, v] ∩ [mΛ\{αj}, v] ⊂ [θnΦ,mΦ] ∩ [mΛ\{αj}, nΛ\{αj}]

⊂ θ[nΦ,mΦ] ∩ nΛ\{αj} = θnΦ ∩ nΛ\{αj} ⊂ θn ∩ n = 0.

Thus, θ(nΦ ∩ mΛ\{αj}) ⊂ NmΛ\{αj}
(v) = θNmΛ\{αj}

(nΛ\{αj},v), from where (4) follows. But

then nΦ\{αj},Λ\{αj} ⊂ nΦ ∩mΛ\{αj} ⊂ NmΛ\{αj}
(nΛ\{αj},v), and hence To

(

NΦ\{αj},Λ\{αj} · o
)

⊂

To
(

N0
MΛ\{αj}

(nΛ\{αj},v) · o
)

. This concludes the proof of (2). Therefore, N0
MΛ\{αj}

(nΛ\{αj},v)

acts transitively on BΛ\{αj}, and thus, v satisfies the condition (NC1) for the nilpotent
construction on M . Since, as shown above, (NC2) also holds, we get that HΛ\{αj},v acts
on M with cohomogeneity one.

In order to conclude the proof of the lemma, we just have to see that the actions of
HΛ\{αj},v and HΛ

Φ have the same orbits. For this, we will show that hΛΦ ⊂ hΛ\{αj},v. First
observe that

hΛΦ = NlΦ\{αj},Φ
(nΦ\{αj},Φ,v)⊕ nΦ\{αj},Φ,v ⊕ aΦ ⊕ nΦ,

and recall
hΛ\{αj},v = NlΛ\{αj}

(nΛ\{αj},v)⊕ nΛ\{αj},v.

We have seen in (1) that NlΦ\{αj},Φ
(nΦ\{αj},Φ,v) ⊂ NlΛ\{αj}

(nΛ\{αj},v). Also, nΦ\{αj},Φ ⊂

nΛ\{αj}, and hence nΦ\{αj},Φ,v ⊂ nΛ\{αj},v. By (3) we have aΦ ⊂ aΦ\{αj} ⊂ NlΛ\{αj}
(nΛ\{αj},v).

Finally, we show that nΦ =
⊕

λ∈Σ+\Σ+
Φ
gλ is contained in hΛ\{αj},v. Let λ ∈ Σ+\Σ+

Φ . Assume

first λ /∈ Σ+
Λ\{αj}

. Then gλ ⊂ nΛ\{αj},v, since gλ ⊥ nΦ\{αj},Φ ⊃ v as λ /∈ Σ+
Φ. Now suppose

λ ∈ Σ+
Λ\{αj}

. Then, by (4), gλ ⊂ nΦ ∩mΛ\{αj} ⊂ NmΛ\{αj}
(nΛ\{αj},v) ⊂ NlΛ\{αj}

(nΛ\{αj},v).

Altogether we have hΛΦ ⊂ hΛ\{αj},v, and by connectedness, HΛ
Φ ⊂ HΛ\{αj},v. Since both

groups act with cohomogeneity one on M , they must have the same orbits. �
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We can now prove the first main result of this paper.

Proof of Theorem A. By construction, an action of any of the five types stated in Theo-
rem A is of cohomogeneity one.

In order to prove the converse, let H be a connected closed subgroup of G acting on
M = G/K with cohomogeneity one. If the action of H has no singular orbits, then
the results in [5] and [3] (see Remarks 2.3 and 2.5) guarantee that the H-action is orbit
equivalent to one of the actions of foliation type, namely (FH) or (FS).

Hence, we will assume from now on that the H-action on M has a singular orbit. Let
g = g1 ⊕ · · · ⊕ gs be the decomposition of the real semisimple Lie algebra g into simple
ideals, andM =M1×· · ·×Ms = G1/K1×· · ·×Gs/Ks the corresponding decomposition of
M into irreducible symmetric spaces of noncompact type. Let q be a maximal proper Lie
subalgebra of g containing the Lie algebra h ofH , and let Q be the connected subgroup of G
with Lie algebra q. According to the exposition in Section 3 we must have q =

⊕s
i=1
i 6=l

gi⊕ql

for an index l ∈ {1, . . . , s} and a maximal proper subalgebra ql of gl, or q =
⊕s

i=1
i 6=j,k

gi⊕gj,k,σ,

for two indices j, k ∈ {1, . . . , s}, j 6= k, and an isomorphism σ : gj → gk, where gj,k,σ =
{X + σX : X ∈ gj} is a maximal proper reductive subalgebra of gj ⊕ gk.

In the second case, in view of Theorem 3.1, the cohomogeneity of the Q-action on M
agrees with the rank of Mj , and so it must be equal to one, since H ⊂ Q acts on M
with cohomogeneity one by assumption. Thus, the actions of H and Q have the same
orbits. Hence, by Lemma 4.1, the H-action has the same orbits as a canonical extension
of a cohomogeneity one diagonal action on the boundary component BΦ =Mj ×Mk with
Φ = {βj, βk} ⊂ Λ, B{βj} =Mj , B{βk} =Mk, gj = s{βj}, and gk = s{βk}. Thus, the H-action
is orbit equivalent to an action of (CER) type.

We consider the first case from now on, i.e. h ⊂ q =
⊕s

i=1
i 6=l

gi ⊕ ql for an index l ∈

{1, . . . , s} and a maximal proper subalgebra ql of gl. Then, by [8, Theorem 3.2] (which
ultimately relies on the work of Mostow [26]), ql is either a maximal proper reductive or
a maximal proper parabolic subalgebra of gl. If ql is a reductive subalgebra of gl, then q

is a reductive subalgebra of g, and the H-action and the Q-action have the same orbits
by [8, Theorem 3.2]. By the same result and the assumption that H has a singular orbit,
we have that such singular orbit is totally geodesic. Using Lemma 4.1, we see that the
actions of H and Q have the same orbits as an action obtained by the canonical extension
of a cohomogeneity one Ql-action with a totally geodesic singular orbit on the irreducible
boundary component BΦ = Ml, where Φ is the subset of Λ consisting of all simple roots
of gl. This corresponds to an action of type (CEI).

Henceforth, we assume that ql is a maximal proper parabolic subalgebra of gl, and hence,
q is a maximal proper parabolic subalgebra of g. Then, there is an element g ∈ Gl ⊂ G
such that Ad(g)q is a standard maximal proper parabolic subalgebra qΛ\{αj}, for some
simple root αj ∈ Λ corresponding to gl ⊂ g. Therefore, we know from [8, Theorem 5.8]
(see Remarks 2.4 and 2.5) that the H-action on M is orbit equivalent (via g ∈ Gl) to a
cohomogeneity one action on M obtained by canonical extension of a cohomogeneity one
action on the boundary component BΛ\{αj}, or to a cohomogeneity one action on M of a
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group HΛ\{αj},v obtained by nilpotent construction, for some subspace v ⊂ n1Λ\{αj}
. This

second case corresponds to an action of type (NC) in the statement of Theorem A.
Hence, we assume that theH-action is orbit equivalent to the canonical extensionHΛ

Λ\{αj}

of certain connected closed subgroup HΛ\{αj} ⊂ SΛ\{αj} acting on BΛ\{αj} with cohomo-
geneity one. We can and will also assume that the HΛ\{αj}-action on BΛ\{αj} has a singular
orbit, since otherwise its canonical extension (and hence, the H-action) would yield a ho-
mogeneous regular foliation on M , contradicting the assumption that the H-action has a
singular orbit.

Let j1 = j. Now we apply all the procedure described so far (for actions with singular
orbits) with BΛ\{αj1

} instead of M and with HΛ\{αj1
} ⊂ SΛ\{αj1

} instead of H ⊂ G. In
the case that the HΛ\{αj1

}-action on BΛ\{αj1
} is orbit equivalent to a canonical extension

of a group HΛ\{αj1
,αj2

} ⊂ SΛ\{αj1
,αj2

} acting on BΛ\{αj1
,αj2

}, we continue the procedure.
This algorithm ends at some point, since M has finite dimension and the dimensions of
successive boundary components BΛ\{αj1

} ⊃ BΛ\{αj1
,αj2

} ⊃ . . . form a strictly decreasing
sequence. Say that the sequence of boundary components we get is

M = BΦ0
⊃ BΦ1

⊃ BΦ2
⊃ · · · ⊃ BΦm

,

where we put Φ0 = Λ and Φi = Λ\{αj1, . . . , αji}, for i = 1, . . . , m, wherem must be strictly
lower than the rank ofM (otherwise BΦm

is just one point, and there are no cohomogeneity
one actions on it). Thus, our recurrence assumption is that we have a finite sequence of
groups

H = HΦ0
⊂ G = SΦ0

, HΦ1
⊂ SΦ1

, HΦ2
⊂ SΦ2

, . . . , HΦm
⊂ SΦm

such that each HΦi
-action on BΦi

is orbit equivalent via an element gi ∈ SΦi
(see Re-

marks 2.4 and 2.5) to the canonical extension of the HΦi+1
-action on BΦi+1

to BΦi
, for each

i = 0, 1, . . . , m−1, and the HΦm
-action on BΦm

is no longer orbit equivalent to a canonical
extension from any smaller boundary component of BΦm

. Since giHΦi
g−1
i and HΦi

Φi+1
act on

BΦi
with the same orbits, their canonically extended actions of (giHΦi

g−1
i )Λ and (HΦi

Φi+1
)Λ

on M have exactly the same orbits, by construction. Moreover, the actions of (giHΦi
g−1
i )Λ

and HΛ
Φi

on M are orbit equivalent, because the actions of HΦi
and giHΦi

g−1
i on BΦi

are
trivially orbit equivalent by the inner isometry gi ∈ SΦi

of BΦi
(see [8, Proposition 4.2] or

the description of the canonical extension in §2.2). Also, by Lemma 4.2, (HΦi

Φi+1
)Λ = HΛ

Φi+1
.

Altogether, we obtain that the actions of HΛ
Φi

and HΛ
Φi+1

on M are orbit equivalent, for

each i = 1, . . . , m− 1. Therefore, the actions of HΛ
Φ1

and HΛ
Φm

on M are orbit equivalent.

Since g0HΦ0
g−1
0 and HΛ

Φ1
act on M with the same orbits, we conclude that the action of

H = HΦ0
on M is orbit equivalent to the action of HΛ

Φm
on M .

Now we apply the procedure described at the beginning of the proof (for actions with
singular orbits) to the action of HΦm

on BΦm
instead of the action of H on M . Let

sΦm
=

⊕sm
i=1(sΦm

)i be the decomposition of sΦm
into simple ideals. Since by construction

the action of HΦm
on BΦm

is not a canonical extension, we have one of the following
possibilities:
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(i) The HΦm
-action on BΦm

has the same orbits as the action of a maximal proper
reductive subgroup of SΦm

with Lie algebra
⊕sm

i=1
i 6=j,k

(sΦm
)i ⊕ (sΦm

)j,k,σm
, where σm is

an isomorphism between (sΦm
)j and (sΦm

)k, j, k ∈ {1, . . . , sm}, j 6= k.
(ii) The HΦm

-action on BΦm
has the same orbits as the action of a maximal proper

reductive subgroup of SΦm
with Lie algebra

⊕sm
i=1
i 6=l

(sΦm
)i ⊕ ql, where ql is a maximal

proper reductive subalgebra of (sΦm
)l.

(iii) The HΦm
-action on BΦm

has the same orbits as the action of gmHΦm\{αk},Φm,vg
−1
m ,

where gm ∈ SΦm
, αk ∈ Φm, v is a subspace of n1Φm\{αk},Φm

, and HΦm\{αk},Φm,v ⊂ SΦm

is obtained by nilpotent construction.

In case (i) we must have sm = 2, Φm has two elements and BΦm
is the product of two

symmetric spaces of rank one, because otherwise (by Lemma 4.1) the HΦm
-action on BΦm

would be orbit equivalent to a canonical extension, which contradicts the definition of Φm.
This situation corresponds to an action of type (CER) in the statement of Theorem A,
where the reducible boundary component of rank two is precisely BΦm

.
Similarly, in case (ii) we have that sΦm

is a simple Lie algebra for the same reason (and
thus sm = l = 1), and this corresponds to an action of type (CEI), where the irreducible
boundary component is BΦm

.
Finally, in case (iii), since gm ∈ SΦm

is an inner isometry of BΦm
, we have that the

canonical extensions of the actions of HΦm
and HΦm\{αk},Φm,v on BΦm

to M are orbit
equivalent. As shown above, the H-action and the HΛ

Φm
-action on M are orbit equivalent,

so we get that the H-action is orbit equivalent to the HΛ
Φm\{αk},Φm,v-action. But then,

Lemma 4.3 guarantees that the HΛ
Φm\{αk},Φm,v-action has the same orbits as the action of

the group HΛ\{αk},v obtained by nilpotent construction from the choice of v as a subset of
n1Λ\{αk}

. This corresponds to case (NC) in the statement of Theorem A. �

5. Applications

The goal of this section is to prove Theorems B, C and D as applications of Theorem A.
This will give us explicit descriptions of the cohomogeneity one actions on the symmetric
spaces SLn+1(R)/SOn+1, n ≥ 1 (§5.1), on the products of rank one spaces (§5.3), and the
structure result for cohomogeneity one actions on reducible spaces (§5.2).

5.1. Cohomogeneity one actions on SLn+1(R)/SOn+1.

For each integer n ≥ 1, the symmetric space SLn+1(R)/SOn+1 has rank n and its root

system is of type (An), which in particular means that Σ+ = {
∑k

i=j αi : 1 ≤ j ≤ k ≤ n} for

some set of simple roots Λ = {α1, . . . , αn}. Moreover, k0 = 0, g0 = a, and for each λ ∈ Σ,
the restricted root space gλ has dimension one. See [2, Example 13.2.1] for a detailed
description.

Note that the case n = 1 leads to the real hyperbolic plane RH2, in which case the
classification is classical, whereas the case n = 2 has been studied in [8].
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Proof of Theorem B. Let us analyze the different cases arising in Theorem A. First, the
foliation types (FH) and (FS) in Theorem A correspond directly to cases (FH) and (FS)
of Theorem B.

Let us focus now on case (CEI) of Theorem A, that is, the cohomogeneity one actions
on M that arise as canonical extensions from irreducible boundary components.

Any connected subset Φ of simple roots in the Dynkin diagram of Λ is of the form
Φ = {αj, . . . , αk}, for some j, k ∈ {1, . . . , n}, j ≤ k. In this case, the boundary component
BΦ is isometric to the irreducible symmetric space SLk−j+2(R)/SOk−j+2. By the description
of actions of type (CEI), we have to consider the possible cohomogeneity one actions on
BΦ with a totally geodesic singular orbit. Such actions are induced by maximal proper
reductive subgroups of SLk−j+2(R).

If j = k, then BΦ
∼= RH2 admits only one cohomogeneity one action with a totally

geodesic orbit, up to orbit equivalence. Such action is the one of the isotropy group at
some point of BΦ

∼= RH2, which is given by the action of K0
Φ
∼= SO2 on BΦ up to orbit

equivalence, and has a fixed point as singular orbit. The canonical extension of this action
to M leads to the the first row of the table of case (CE) in Theorem B.

If j < k, we have to consider the cohomogeneity one actions onBΦ
∼= SLk−j+2(R)/SOk−j+2

that have a totally geodesic singular orbit. These were classified in [6]. According to the
classification, these actions are orbit equivalent to the action of a maximal proper reductive
subgroup of SLk−j+2(R) isomorphic to SLk−j+1(R)×R, or, exceptionally in the case that BΦ

has rank 3, i.e., k = j+2, to the action of a maximal proper reductive subgroup of SL4(R)
isomorphic to Sp2(R). The corresponding totally geodesic singular orbits are isometric to
(SLk−j+1(R)/SOk−j+1)× R or to Sp2(R)/U2

∼= SO0
2,3/SO2SO3, respectively. The canonical

extensions of such actions from BΦ to M yield the cohomogeneity one actions described in
the second and third rows of the table in Theorem B.

Now, it is straightforward that the actions of type (CER) in Theorem A give rise to
the actions of type (CE) described in the fourth row of the table in Theorem B. This is
so since any rank two reducible boundary component of M = SLn+1(R)/SOn+1 is of the
form BΦ

∼= RH2 ×RH2, where Φ = {αj, αk}, |k− j| ≥ 2, is any disconnected subset of two
simple roots in the Dynkin diagram of Λ.

Finally, we have to determine the actions of type (NC) in Theorem A, that is, those
obtained via nilpotent construction. For this, fix j ∈ {1, . . . , n}. In our context, we have

nΛ\{αj} = n1Λ\{αj}
=

j
⊕

i=1

n
⊕

l=j

gαi+···+αl
∼= R

j ⊗ (Rn−j+1)∗,

mΛ\{αj} = aΛ\αj ⊕

(

⊕

α∈Σ{α1,...,αj−1}

gα

)

⊕

(

⊕

α∈Σ{αj+1,...,αn}

gα

)

∼= slj(R)⊕ sln−j+1(R).

Moreover, the adjoint Lie algebra representation of mΛ\{αj} (resp. kΛ\{αj}) on nΛ\{αj}

is equivalent to the exterior tensor product representation of slj(R) ⊕ sln−j+1(R) (resp.
soj ⊕ son−j+1) on Rj ⊗ (Rn−j+1)∗. Let us choose orthonormal bases {e1, . . . , ej} of Rj and
{f 1, . . . , fn−j+1} of (Rn−j+1)∗ in such a way that ei ⊗ f l can be regarded as a generator of
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gαj−i+1+···+αj+l−1
, and thus, {ei ⊗ f l : 1 ≤ i ≤ j, 1 ≤ l ≤ n− j + 1} is an orthonormal basis

of nΛ\{αj}
∼= Rj ⊗ (Rn−j+1)∗.

Let us assume, without loss of generality, that j ≤ n − j + 1; the case j > n − j + 1
is completely analogous due to the symmetry of the Dynkin diagram of Λ. Since the
action of K0

Λ\{αj}
on nΛ\{αj} is equivalent to the isotropy representation of the symmetric

space SO0
j,n−j+1/SOjSOn−j+1, such action is polar with Ξ = span{ei ⊗ f i : i = 1, . . . , j}

as a section, that is, Ξ intersects all K0
Λ\{αj}

-orbits and always perpendicularly. Thus, up

to conjugation by an element of K0
Λ\{αj}

, we can assume that any nonzero subspace v of

n1Λ\{αj}
= nΛ\{αj} contains a unit vector v =

∑j

i=1 viei ⊗ f i, vi ∈ R. By the condition

(NC2) of the nilpotent construction method, we want v to be such that N0
KΛ\{αj}

(v) acts

transitively on the unit sphere of v. Thus, v must admit the orthogonal decomposition
v = Rv ⊕ [NkΛ\{αj}

(v), v], where the second addend is perpendicular to Ξ by polarity.

Now we take an element in mΛ\{αj}, which we identify with some A + B ∈ slj(R) ⊕

sln−j+1(R), where A = (ail)
j
i,l=1 and B = (bil)

n−j+1
i,l=1 . For the sake of convenience, let us

define vi = 0 for i > j. Then

[A+B, v] =

j
∑

i=1

n−j+1
∑

l=1

(ailvl − bilvi)ei ⊗ f l =

j
∑

i=1

(aii − bii)viei ⊗ f i +
∑

i 6=l

(ailvl − bilvi)ei ⊗ f l.

Note that the first sum after the second equal sign belongs to Ξ, whereas the second sum
is perpendicular to Ξ. Thus, if A + B ∈ NmΛ\{αj}

(v), the first sum must be proportional

to v, which implies that there exists λ ∈ R such that aii − bii = λ for all i ∈ {1, . . . , j}
with vi 6= 0. Hence, if there are at least two indices i1, i2 ∈ {1, . . . , j} such that vi1 6=
0 6= vi2 , then not every A + B ∈ slj(R)⊕ sln−j+1(R), with A and B diagonal, normalizes
v. Under the identification mΛ\{αj}

∼= slj(R)⊕ sln−j+1(R), this means that the orthogonal
projection of NmΛ\{αj}

(nΛ\{αj},v) = θNmΛ\{αj}
(v) onto p does not contain the whole subspace

a{α1,...,αj−1} ⊕ a{αj+1,...,αn} = aΛ\{αj}. In this case, the group N0
MΛ\{αj}

(nΛ\{αj},v) cannot act

transitively on the boundary component BΛ\{αj}
∼= (SLj(R)/SOj)× (SLn−j−1(R)/SOn−j−1)

since aΛ\{αj} ⊂ ToBΛ\{αj}. This means that condition (NC1) does not hold in this case.
Therefore, we must have vi = 0 for all except one i ∈ {1, . . . , j}. Again, by conjugating

by an element of K0
Λ\{αj}

if necessary, we can assume that v = e1 ⊗ f 1 ∈ gαj
. Now let

S + T ∈ NkΛ\{αj}
(v), where S ∈ k{α1,...,αj−1}

∼= soj and T ∈ k{αj+1,...,αn}
∼= son−j+1. Then the

element

[S + T, v] = (Se1)⊗ f 1 + e1 ⊗ (Tf 1)

belongs to v ⊖ Rv. Assume Se1 6= 0 6= Tf 1. Then there exists P ∈ SOj mapping the
orthogonal set (e1, Se1) to the orthogonal set (e2, µ1e1), for some µ1 6= 0; and similarly,
there exists Q ∈ SOn−j+1 sending (f 1, T f 1) to (f 1, µ2f

2), for some µ2 6= 0. Thus, the
element g = (P,Q) ∈ K0

Λ\{αj}
∼= SOj × SOn−j+1 satisfies

(5) Ad(g)[S + T, v] = µ1e1 ⊗ f 1 + µ2e2 ⊗ f 2, with µ1 6= 0 6= µ2.
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Thus, the subspace Ad(g)v of nΛ\{αj} intersects Ξ nontrivially. Also, it satisfies condi-
tions (NC1)-(NC2) because v does so by assumption. But we have shown in the pre-
vious paragraph that no subspace of nΛ\{αj} satisfying (NC1)-(NC2) and intersecting Ξ
contains an element such as the one on the right hand side of (5). This yields a contra-
diction, which implies that, for each S + T ∈ NkΛ\{αj}

(v), either Se1 = 0 or Tf 1 = 0.

Since NkΛ\{αj}
(v) is a vector space, we actually have either Se1 = 0 or Tf 1 = 0, for all

S + T ∈ NkΛ\{αj}
(v). In other words, [NkΛ\{αj}

(v), v] ⊂ span{e1 ⊗ f i : i = 1, . . . , n− j + 1}

or [NkΛ\{αj}
(v), v] ⊂ span{ei ⊗ f 1 : i = 1, . . . , j}. Assume that we are in the second case,

that is, v = Rv ⊕ [NkΛ\{αj}
(v), v] ⊂ span{ei ⊗ f 1 : i = 1, . . . , j}; the first case is completely

analogous. Let k = dim v. Again, up to conjugation by an element of K0
{α1,...,αj−1}

∼= SOj

we can assume

(6) v = gαj−k+1+···+αj
⊕ gαj−k+2+···+αj

⊕ · · · ⊕ gαj−1+αj
⊕ gαj

.

Let Ω = {αi : 1 ≤ i ≤ j − k − 1, or j − k + 1 ≤ i ≤ j − 1, or j + 2 ≤ i ≤ n}. Then the
connected subgroup of KΛ\{αj} with Lie algebra

NkΛ\{αj}
(v) =

⊕

λ∈Σ+
Ω

kλ ∼= soj−k ⊕ sok ⊕ son−j

acts transitively on the unit sphere of v. Moreover, NmΛ\{αj}
(nΛ\{αj},v) contains aΛ\{αj} ⊕

nΛ\{αj}, which is the solvable part of the Iwasawa decomposition of sΛ\{αj}, and hence,
N0

MΛ\{αj}
(nΛ\{αj},v) acts transitively on BΛ\{αj}. Thus, the subspace v of n1Λ\{αj}

given in (6)

satisfies both conditions (NC1)-(NC2) of the nilpotent construction method. However, the
corresponding cohomogeneity one action onM is orbit equivalent to a canonical extension.
Indeed, on the one hand, the Lie algebra of the resulting group HΛ\{αj},v that acts with
cohomogeneity one on M satisfies

hΛ\{αj},v = NlΛ\{αj}
(nΛ\{αj},v)⊕ nΛ\{αj},v ⊃ a⊕ nΛ\{αj} ⊕ nΛ\{αj},v = a⊕ (n⊖ v).

By dimension reasons, the singular orbit of the HΛ\{αj},v-action is also an orbit of the
connected Lie subgroup of AN with Lie algebra a ⊕ (n ⊖ v). On the other hand, let
Ψ = {αj−k+1, . . . , αj−1} ⊂ {αj−k+1, . . . , αj} = Φ. Consider the boundary component
BΦ

∼= SLk+1(R)/SOk+1 and the cohomogeneity one action on BΦ of the reductive subgroup
L0
Ψ,Φ

∼= SLk(R)×R of SLk+1(R) with Lie algebra lΨ,Φ (recall the notation at the end of §2.1).

Then the Lie algebra lΛΨ,Φ of the group obtained by canonical extension of the action of

L0
Ψ,Φ

∼= SLk(R)× R on BΦ to M has the following projection onto a⊕ n:

(lΛΨ,Φ)a⊕n = (lΨ,Φ⊕aΦ⊕nΦ)a⊕n = aΦ⊕nΨ⊕aΦ⊕nΦ = aΦ⊕ (nΦ⊖v)⊕aΦ⊕nΦ = a⊕ (n⊖v),

where we have used nΦ⊖nΨ = nΨ,Φ = gαj−k+1+···+αj
⊕· · ·⊕gαj

= v. By dimension reasons,

the singular orbits of the cohomogeneity one actions ofHΛ\{αj},v and (L0
Ψ,Φ)

Λ onM coincide.
Hence, both actions have the same orbits. We conclude that the action of HΛ\{αj},v is orbit
equivalent to one of the actions in the second row of the table of item (CE) in Theorem B,
namely the canonical extension of the action of SLk(R)× R on B{αj−k+1,...,αj} to M . �
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5.2. Cohomogeneity one actions on reducible symmetric spaces.

Consider a symmetric space of noncompact type M = M1 × · · · ×Ms = G/K, where
each Mi = Gi/Ki, i = 1, . . . , s, is irreducible, G =

∏s

i=1Gi, and K =
∏s

i=1Ki. Clearly,
the root system of g =

⊕s

i=1 gi splits as the orthogonal disjoint union Σ =
⊔s

i=1Σi, where
Σi is the root system of gi. Similarly, a set of simple roots for g is given by Λ =

⊔s

i=1 Λs,
where Λi ⊂ Σ+

i is a set of simple roots for gi, i = 1, . . . , s. We will denote by ki⊕ai⊕ni the
associated Iwasawa decomposition of gi. Observe that ai = aΛi and ni = nΛi , i = 1, . . . , s.
Of course, we have orthogonal direct sums k =

⊕s

i=1 ki, a =
⊕s

i=1 ai and n =
⊕s

i=1 ni.

Proof of Theorem C. We have to analyze the different cases arising in Theorem A when
applied to a reducible M . First note that cases (FH) and (CER) in Theorem A correspond
directly to cases (FH) and (CER) in Theorem D, respectively.

An action of type (FS) in Theorem A is induced by the Lie algebra a ⊕ (n ⊖ ℓ), where
ℓ is a subspace of a simple root space gβ , β ∈ Λ, with dim ℓ = 1. Then β ∈ Λj, for some
j ∈ {1, . . . , s}, and hence

a⊕ (n⊖ ℓ) = a⊕
(

s
⊕

i=1
i 6=j

ni

)

⊕ (nj ⊖ ℓ) =
(

s
⊕

i=1
i 6=j

(ai ⊕ ni)
)

⊕ (aj ⊕ (nj ⊖ ℓ)) = aΛj
⊕ nΛj

⊕ hj ,

where hj = aj ⊕ (nj ⊖ ℓ). Then the corresponding action is the canonical extension of the
Hj-action on BΛj

∼= Mj to M , where Hj is the connected subgroup of Gj with Lie algebra
hj. By Lemma 4.1, such action is orbit equivalent to the action of Hj ×

∏s
i=1
i 6=j

Gi, which

corresponds to case (Prod) in the statement of Theorem C.
Case (CEI) of Theorem A concerns canonical extensions of cohomogeneity one actions

with a totally geodesic singular orbit on an irreducible boundary component BΦ, for some
connected subset Φ of roots in the Dynkin diagram. The corresponding Lie algebras are of
the form hΛΦ = hΦ⊕aΦ⊕nΦ, for some maximal proper reductive subalgebra hΦ of sΦ whose
corresponding Lie subgroup of SΦ acts with cohomogeneity one on BΦ. In our setting,
being BΦ irreducible implies Φ ⊂ Λj , for some j ∈ {1, . . . , s}. Hence

hΦ ⊕ aΦ ⊕ nΦ = hΦ ⊕ (aΦ,Λj
⊕ aΛj

)⊕ (nΦ,Λj
⊕ nΛj

) = (hΦ ⊕ aΦ,Λj
⊕ nΦ,Λj

)⊕ aΛj
⊕ nΛj

,

which means that the action is a composition of canonical extensions, firstly from BΦ to
BΛj

∼= Mj , and secondly from BΛj
∼= Mj to M . Again by Lemma 4.1 we get that the

action of the connected subgroup of G with Lie algebra hΛΦ has the same orbits as the
action of Hj ×

∏s
i=1
i 6=j

Gi on M , where Hj is the connected subgroup of G with Lie algebra

hΦ ⊕ aΦ,Λj
⊕ nΦ,Λj

. This fits again into case (Prod) in the statement.
Finally, case (NC) of Theorem A describes a nilpotent construction from a subspace v

of n1Λ\{β} for some β ∈ Λ, dim v ≥ 2. Let j ∈ {1, . . . , s} such that β ∈ Λj. Then

n1Λ\{β} = n1Λ\{β},Λj
⊂ nΛ\{β} = nΛ\{β},Λj

⊂ nΛj = nj ,

since any root not spanned by Λ \ {β} must be spanned by roots in Λj. Note that lΛ\{β} =
(
⊕s

i=1
i 6=j

gi
)

⊕ lΛj\{β},Λj
. Hence the Lie algebra of the group HΛj\{β},v built by nilpotent
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construction from the choice v ⊂ n1Λ\{β} = n1Λ\{β},Λj
is

(7) NlΛ\{β}
(nΛ\{β}⊖v)⊕(nΛ\{β}⊖v) =

(

s
⊕

i=1
i 6=j

gi
)

⊕NlΛj\{β},Λj
(nΛj\{β},Λj

⊖v)⊕(nΛj\{β},Λj
⊖v),

where the two last direct addends of the right-hand term constitute a Lie subalgebra of gj .
(Indeed, it is not difficult to show that the associated connected subgroup of Gj yields the
cohomogeneity one action on Mj obtained by nilpotent construction from the choice of v
as a subspace of n1Λ\{β},Λj

.) We conclude that the group HΛj\{β},v splits nicely with respect

to the decomposition of G, and hence corresponds again to an action of type (Prod). �

5.3. Cohomogeneity one actions on products of rank one spaces.

In this subsection, M =M1×· · ·×Mr will be a product of symmetric spaces of noncom-
pact type and rank one, Mi = Gi/Ki = FiH

ni , where Fi ∈ {R,C,H,O}, i = 1, . . . , r.
We will use the other notations stated at the beginning of §5.2. Moreover, we have
Λ = {α1, . . . , αr} with Λi = {αi}, Σ+ = Λ ∪ {2αi : Fi 6= R}, and ai ∼= R, for each
i = 1, . . . , r.

Proof of Theorem D. We will go through the three types of actions in Theorem C.
First, assume we have an action of (Prod) type, that is, the action of a subgroup H =

Hj ×
∏r

i=1
i 6=j

Gi of G, where Hj is a connected subgroup of Gj acting with cohomogeneity

one on the rank one space Mj = B{αj} = FjH
nj . By the classification of cohomogeneity

one actions on rank one spaces [7], [14], we can distiguish four cases:

(1) Hj produces a foliation of horospherical type. In this case, up to orbit equivalence,
we can assume hj = nj (since dim aj = 1), and it is easy to realize that H induces
a foliation of horospherical type on M , with the same orbits as the action of the
connected subgroup of G with Lie algebra (a ⊖ aj)⊕ n. This corresponds to item
(FH) in the statement.

(2) Hj produces a foliation of solvable type. In this case we can assume hj = aj⊕(nj⊖ℓ),
for some one-dimensional subspace ℓ of gαj

. Similarly as above, one can see that the
H-action is orbit equivalent to the action described in item (FS) of the statement.

(3) Hj acts with cohomogeneity one and a totally geodesic singular orbit on Mj , which
translates directly into type (CEI) of the statement.

(4) Hj acts with cohomogeneity one and a non-totally geodesic singular orbit on Mj .
In this case, hj can be taken of the form N(kj)0(v)⊕ aj ⊕ (nj ⊖ v), for some proto-
homogeneous subspace v of gαj

with dim v ≥ 2. This yields an action of type (NC)
in the statement.

Now, clearly an action of (FH) type in Theorem C corresponds to an action of the same
type in Theorem D.

Finally, actions of type (CER) are induced by groups HΛ
Φ with Lie algebras of the type

hΦ⊕aΦ⊕nΦ, where Φ ⊂ Λ determines a reducible rank two boundary component BΦ, which,
in the current context, is of the form BΦ = Mj ×Mk, for Φ = {αj, αk}, j, k ∈ {1, . . . , r},
j 6= k. Hence, s{αj} = gj and s{αk} = gk, so the Lie algebra of the group acting diagonally
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on BΦ is hΦ = {X + σX : X ∈ gj} = gj,k,σ, for some Lie algebra isomorphism σ : gj → gk.
Since Φ and Λ \ Φ are the sets of simple roots associated with gj ⊕ gk and

⊕

i=1
i 6=j,k

gi,

respectively, we can apply Lemma 4.1 to conclude that the HΛ
Φ-action is orbit equivalent

to the action of the connected subgroup of G with Lie algebra
⊕

i=1
i 6=j,k

gi ⊕ gj,k,σ, as in item

(CER) of the statement. �
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