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COHOMOGENEITY ONE ACTIONS ON SYMMETRIC SPACES
OF NONCOMPACT TYPE AND HIGHER RANK

JOSE CARLOS DIAZ-RAMOS, MIGUEL DOMINGUEZ-VAZQUEZ, AND TOMAS OTERO

ABSTRACT. We develop a new structural result for cohomogeneity one actions on (not
necessarily irreducible) symmetric spaces of noncompact type and arbitrary rank. We
apply this result to classify cohomogeneity one actions on SL,(R)/SO,, n > 2, up to
orbit equivalence. We also reduce the classification problem on a reducible space to the
classification on each one of its irreducible factors, which in particular allows to classify
cohomogeneity one actions on any finite product of hyperbolic spaces.

1. INTRODUCTION AND MAIN RESULTS

When studying proper isometric actions on a given Riemannian manifold, it is natural to
investigate those that produce hypersurfaces as their regular orbits: these are the so-called
cohomogeneity one actions. This kind of study makes special sense in manifolds with a
large isometry group, as is the case of symmetric spaces.

The classification of cohomogeneity one actions on irreducible symmetric spaces of com-
pact type up to orbit equivalence was completed by Kollross in [22]. However, neither the
group theoretical approach used in this classification nor the use of duality of symmetric
spaces allow to derive complete classification results in the noncompact case (see [6], [23]
for partial results). This is ultimately due to the fact that noncompact real semisimple
Lie groups enjoy a much richer lattice of subgroups than compact Lie groups. This is why
the development of specific techniques, based on the algebraic and geometric structure of
symmetric spaces of noncompact type, has been shown to be crucial.

The particular but important case of rank one spaces (that is, the hyperbolic spaces over
the normed division algebras) was first addressed in real hyperbolic spaces by Cartan [11],
following a geometric approach. However, the classification in the other rank one spaces
has only been concluded eighty years later, after Berndt and Tamaru’s article [7] and the
very recent classification for quaternionic hyperbolic spaces due to the first two authors and
Rodriguez-Véazquez [14], both works based on geometric, and especially, algebraic ideas.
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The higher rank setting seems to be even more complicated. In [§], Berndt and Tamaru
proposed a general procedure for the classification of cohomogeneity one actions on irre-
ducible symmetric spaces up to orbit equivalence. They proved (see §2.2] for details) that
any such action either induces a regular foliation, or has a totally geodesic singular orbit, or
can be obtained by two new methods, called canonical extension and nilpotent construction.
Cohomogeneity one actions inducing regular foliations on (possibly reducible) symmetric
spaces had been previously classified into two families (which we will call of horospherical
or solvable type) in [B] and [3], whereas those with a totally geodesic singular orbit (on
irreducible spaces) had been determined in [6]. The canonical extension method allows to
extend an action from certain totally geodesic submanifolds, called boundary components,
to the whole ambient space. Since totally geodesic submanifolds of symmetric spaces are
symmetric spaces of lower rank, this method suggests a rank reduction approach to the
classification problem. However, a boundary component of an irreducible symmetric space
might be reducible, and no general study of cohomogeneity one actions on reducible sym-
metric spaces of noncompact type has been developed yet, as far as the authors know.
Finally, the actual application of the nilpotent construction in concrete spaces seems to
be a very difficult task. Indeed, finding an effective application of this general method to
the particular case of quaternionic hyperbolic spaces was the fundamental obstacle that
delayed the achievement of the classification finally obtained in [14].

Due to the difficulty in applying the nilpotent construction, the lack of a general theory
for cohomogeneity one actions on reducible spaces, and the incomplete understanding of
the interaction between the nilpotent construction and the canonical extension, only a few
explicit classifications are known. Apart from the rank one setting, all known classifica-
tions correspond to certain irreducible symmetric spaces of rank two, namely the spaces
SL3(R)/SO3, SL3(C)/SUs, SL3(H)/Sps, SO5(C)/SOs5, G2/SO4, GS/Gs, and the noncom-
pact real and complex two-plane Grassmannians; see [§], [4], and the recent work [28] by
Solonenko.

The aim of this article is twofold. On the one hand, we present a new structural result
for cohomogeneity one actions on symmetric spaces of noncompact type, which provides
an efficient tool to deal with spaces which are reducible or of rank higher than two. In-
deed, for reducible spaces we show that the classification problem can be reduced to the
corresponding problem on each one of the factors. On the other hand, we show the power
of these results by deriving the first explicit classifications of cohomogeneity one actions
on symmetric spaces of noncompact type and rank higher than two, namely on the spaces
SL,(R)/SO,, and on any finite product of rank one spaces.

We now state the structural result that we prove in this article. The subtle but important
improvement in relation to Berndt and Tamaru’s result is that the only actions with a sin-
gular orbit that can be obtained by canonical extension, and not by nilpotent construction,
are those extending an action of a maximal proper reductive subgroup (or equivalently, with
a totally geodesic singular orbit) on a boundary component which is either irreducible or
a product of two mutually homothetic symmetric spaces of rank one. See below for the
explicit description of the different types of actions mentioned in the theorem.
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Theorem A. Let M = G/K be a symmetric space of noncompact type, and let H be a
connected closed subgroup of G. Then H acts on M with cohomogeneity one if and only if
the H-action is orbit equivalent to one of the following:

(FH) An action inducing a regular codimension one foliation of horospherical type.
(FS) An action inducing a regular codimension one foliation of solvable type.
(CEI) The canonical extension of a cohomogeneity one action with a totally geodesic sin-
gular orbit on an irreducible boundary component.
(CER) The canonical extension of a cohomogeneity one diagonal action on a reducible
boundary component of rank two whose two factors are homothetic.
(NC) An action obtained by nilpotent construction.

We will now introduce the necessary context and notation to explain each one of the
types of actions appearing in Theorem [Al More information can be found in Section 2.

Let M = G/K be a Riemannian symmetric space of noncompact type, where G is (a
finite covering of ) the connected component of the identity of the isometry group of M, and
K is the isotropy subgroup at some base point o € M. Recall that M is isometric to an open
Euclidean ball endowed with a symmetric metric of nonpositive sectional curvature. The
semisimple Lie algebra g admits a Cartan decomposition g = €@p, where p can be identified
with T,M. We can define a positive definite inner product (-,-) on g that agrees with the
Killing form B of g on p, with —B on £, and that makes £ and p orthogonal. In this article,
© will denote orthogonal complement with respect to (-,-). A choice of a maximal abelian
subspace a of p determines a restricted root space decomposition g = go @ (5, 92);
where ¥ C a* is the set of restricted roots. Let ¥T C X be a set of positive roots, and
A C X7 the associated set of simple roots. Recall that |A| = dima = rank M. Then
g=t® adnis an Iwasawa decomposition of g, where n = @, v+ 9x.

The connected solvable Lie subgroup AN of G with Lie algebra a & n acts simply tran-
sitively on M. Hence, any connected subgroup of G with Lie algebra of codimension one
in a @ n acts with cohomogeneity one and no singular orbits on M. As shown in [3] (or
in [5] for the case that M is irreducible), any cohomogeneity one action on M without
singular orbit, or equivalently, inducing a reqular foliation, arises in this way, up to orbit
equivalence. Moreover, these homogeneous regular foliations have been classified into two
types, which correspond to items (FH) and (FS) in Theorem [At

(FH) Horospherical type, if it is induced by the action of the connected subgroup of AN
with Lie algebra (a © ¢) @ n, for some one-dimensional subspace ¢ of a, up to orbit
equivalence. Such regular foliations are characterized by the property that all their
orbits are mutually congruent. For some choices of ¢, these orbits are horospheres
(see [I7, Remark 5.4]).

(FS) Solvable type, if it is induced by the action of the connected subgroup of AN with
Lie algebra a @ (n©¢), for some one-dimensional subspace ¢ of a simple root space
ga, @ € A, up to orbit equivalence. These foliations have exactly one minimal leaf.

We will now describe the remaining actions in Theorem [Al Let ® C A. Define Yp =

Y Nspan @, and 3f = T Nspan ®. Consider the abelian Lie subalgebra ap = Naca Xer a,
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and the nilpotent subalgebra ng = @Aezﬂzg gn C n. The connected Lie subgroup A¢Ng
of AN with Lie algebra ag @ ng is known to act freely and polarly on M, as follows
from the horospherical decomposition of M associated with the parabolic subgroup of G
determined by @ (see [I5]). This means that there is a totally geodesic submanifold Bg
of M passing through o and intersecting each AgNg-orbit perpendicularly (and exactly
once). Such totally geodesic submanifold Bg, which is called a boundary component in
the context of the maximal Satake compactification of M, is intrinsically a symmetric
space of noncompact type and rank |®|. If we denote by bg = T,Bs the Lie triple system
corresponding to the totally geodesic submanifold Bg, then s¢ = [bg, bg] @ bg is a real
semisimple Lie algebra, and the associated connected subgroup S¢ of G is (up to a finite
covering) the connected component of the identity of the isometry group of Bg. Given a
Lie subgroup Hg of Se acting with cohomogeneity one on Bg, the action of the Lie group

Hy = HyAg Ny

on M is of cohomogeneity one on M, and is called the canonical extension of the Hg-action
on Bg to M. Items (CEI) and (CER) of Theorem [Al correspond to canonical extensions of
two different types of cohomogeneity one Hg-actions with a totally geodesic singular orbit
on a boundary component Bg:

(CEI) @ is a connected subset of simple roots in the Dynkin diagram of g, or equivalently,
Bg is an irreducible symmetric space of noncompact type. Up to orbit equivalence,
the group He can be taken as a maximal proper connected reductive subgroup
of Sg. As already mentioned, cohomogeneity one actions with a totally geodesic
singular orbit on irreducible spaces have been completely classified in [6].

(CER) @ = {«, 8}, where o and f are orthogonal simple roots with dim g, = dim gz and
dim go, = dim gog. Equivalently, By = B, X Bygy = FH" x FH" is a reducible
boundary component of rank two whose factors are mutually homothetic hyperbolic
spaces of the same dimension and over the same normed division algebra F. By
cohomogeneity one diagonal action on such a Bg we understand the action of the
connected subgroup Hg of G with Lie algebra he = {X +0X : X € 5403} Z 540} =
548}, for some Lie algebra isomorphism o: 57,3 — Sy, between the Lie algebras of
the isometry groups of By, and Bygy. Such an Hg-action on Bg has a diagonal
totally geodesic singular orbit Hg - 0 homothetic to By, = Bygy.

In order to describe the nilpotent construction we can and will restrict our attention
to subsets ® of simple roots of the form ® = A\ {a}, for some simple root a. Given
any A € X7\ 3F . the coefficient of a in the expression of A as a sum of simple roots is a
positive integer k. This determines a grading ne = @,y n%. Define Ly = Zg(as) as the
centralizer of ag in G, whose Lie algebra is lp = go © (D), 91), and consider the group
K¢ = Ly N K and the totally geodesic submanifold Fo = Lg - 0 = (Ag - 0) X Beg.

(NC) Let v be a subspace of n} with dimv > 2. Let N.(-) denote a normalizer, and
assume that the following two conditions are satisfied:
(NC1) Ni,(ng ©v) acts transitively on Fg, and
(NC2) Nk, (v) acts transitively on the unit sphere of v.
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Then the connected subgroup Hg, of G with Lie algebra
Hoo = N[q>(n<1> Ov)d (ng O0)

acts with cohomogeneity one and a minimal singular orbit Hg, - 0 on M. In this
case, we say that such action has been obtained by nilpotent construction from the
choice of the simple root o and the subspace v.

As already mentioned, the determination of the possible subspaces v giving rise to co-
homogeneity one actions via nilpotent construction may be a complicated task for many
spaces M, due to the difficulty of checking conditions (NC1) and (NC2) simultaneously. It
is important to remark that many actions obtained by nilpotent construction may be ob-
tained via canonical extension as well. Indeed, so far, examples of nilpotent constructions
that cannot be achieved as canonical extensions have only been found in the hyperbolic
spaces of nonconstant curvature, and in the two spaces of (Gz)-type (see [8], [4]).

As a first application of the structural result in Theorem [A] we derive the explicit clas-
sification of cohomogeneity one actions on the symmetric space SL,+1(R)/SO,41, n > 1,
whose rank is n. We recall that this family of spaces of noncompact type is universal in the
sense that any symmetric space of noncompact type (maybe after rescaling the metric on
its irreducible factors) can be isometrically embedded in SL,,;;(R)/SO,,41 in an equivariant
and totally geodesic manner, for some n > 1 (see [19, §2.6.5]).

Theorem B. Let M = G/K = SL,+1(R)/SOp41, n > 1, and let A = {ay,...,a,} be a
set of simple roots for g = sl,11(R) whose Dynkin diagram is

651 (%) Qn—1 Oy

Any cohomogeneity one action on M is orbit equivalent to one of the following actions:

(FH) The action of the connected subgroup of SL,+1(R) with Lie algebra (a © £) & n, for
some one-dimensional linear subspace { of a.

(FS) The action of the connected subgroup of SL,.1(R) with Lie algebra a © (n © ga,),
for some simple root o;j € A.

(CE) The canonical extension Hjy of the action of the connected subgroup Hey of G on a
boundary component By, for one of the cases listed on the table below.

Ho o Bg codim(H2 - 0) Comments
Eo) =500 {o} RH? 2 1<5<n
sl (R)®R {aj,...,a0}  SLp_jro(R)/SO4_jue k—j+1 1<j<k<n
spy(R) {aj, 541, 05421 SLa(R)/SO4 3 1<j<n-—2
Sike =sh(R)  {oj,ax} RH? x RH? 2 |k —j]>1

In the table, we use the notation 5, = {X +0X : X € s(4,}} for some isomorphism
0% 8(a;} —> 5{a,) Detween the Lie algebras of the isometry groups of By,;; and B,
Without loss of generality, the only singular orbit of the Hj-action on M is assumed to
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pass through the base point o. It is important to remark that the group He does not have
to be “canonically embedded” or “embedded in the standard way” into the isometry group
Sg of Bg: its Lie algebra is only of the form 7(h3*d2d) for some automorphism 7 of sg,
and where h3*dard denotes a standard matrix group embedding. This is important since
we have a priori no guarantee that the canonical extensions of orbit equivalent actions (for
instance, those corresponding to h§adad and r(h§andard)) are orbit equivalent.

Remark 1.1. (Orbit equivalence of the examples.) Although the classification results in
this article are obtained up to orbit equivalence, the explicit determination of the moduli
space of cohomogeneity one actions on a given space entails an added difficulty whose
solution lies outside the scope of this article. The reason is that two orbit equivalent
cohomogeneity one actions with a totally geodesic singular orbit on a boundary component
Bg may (in principle) produce non-orbit equivalent canonical extended actions on M. This
can happen if the orbit equivalence in By is only obtained via an outer isometry of Bg (that
is, an isometry not lying in the connected component of the identity of the isometry group
of Bg), since such outer isometry might not be the restriction of an isometry of M. Berndt
and Tamaru’s classification of cohomogeneity one actions with a totally geodesic singular
orbit on irreducible symmetric spaces [6] is given up to orbit equivalence by a possibly
outer isometry. But we do not know if considering the relation of orbit equivalence by
an inner isometry (which Solonenko called “strong orbit equivalence” in [28]) would yield
more classes. Addressing this problem would require, in particular, understanding the
analogous congruence problem for reflective totally geodesic submanifolds, as [6] rests in
part on Leung’s classification of such submanifolds [25], where again only congruence by
the full group of isometries is considered. In short, this difficulty concerns the actions of
type (CEI), as well as of type (CER), where there is a similar problem. The moduli space
of actions of foliation types (FH) and (FS) has been determined in [5] in the irreducible
case, and in [I6] and [29] in the reducible setting, whereas the orbit equivalence involving
actions obtained by nilpotent construction may in principle require a case-by-case study.

As a second application of our structural result we reduce the classification problem of
cohomogeneity one actions (up to orbit equivalence) on a reducible symmetric space of
noncompact type to the classification problem on each one of its irreducible factors. The
result basically says that if the action is not of (FH) or (CER) types, then it is a product
action. It is interesting to point out that there is no known analog of Theorem [Cl below in
the compact setting, cf. [24].

Theorem C. Let M be a symmetric space of noncompact type with De Rham decomposition
M = M; x -+ x M, where M; = G;/K;, i = 1,...,s, and let G = [[;_; Gi. Then, a
cohomogeneity one action on M 1is orbit equivalent to one of the following actions:
(Prod) The product action of a subgroup H; X Hfs«:él G, of G, where H; is a connected Lie
i#]

subgroup of G that acts with cohomogeneity one on the irreducible factor M;.
(FH) The action of the connected subgroup of G with Lie algebra b = (a © £) © n, for
some one-dimensional linear subspace { of a.
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(CER) The canonical extension of a cohomogeneity one diagonal action on a reducible
rank two boundary component of M whose two factors are homothetic.

Since actions of types (FH) and (CER) are well understood, Theorem [C] easily allows
to derive explicit classifications on any product of irreducible spaces M = M; x - -+ x M,
whenever we know the classification of cohomogeneity one actions up to orbit equivalence
on each irreducible factor M;, i = 1,...,s. This is the case, in particular, of the rank
one symmetric spaces of noncompact type. These are precisely the hyperbolic spaces FH",
F € {R,C,H,0}, n > 2, over the normed division algebras of the reals R, the complex
numbers C, the quaternions H, and the octonions O (in this case, n = 2). We recall that
the real hyperbolic spaces RH" have a root system of type (A1), whereas the other rank
one symmetric spaces FH", F # R, n > 2, have a root system of type (BCy). Thus, the set
of simple roots associated with a product M = M; X - - - X M,., where M; = G;/ K; = F;H™|
consists of r mutually orthogonal roots, A = {a, ..., a,.}. We will also denote by ¢;@a; dn;
the Twasawa decomposition of the Lie algebra g; of G; (in particular, n; = g, ® @24, ), and
put (€)o = Ng,(a;). In this context, the application of Theorem [C] leads to the following
classification result.

Theorem D. Let M = M; X --- x M, be a Riemannian product of rank one symmetric
spaces of noncompact type M; = G;/K; = F;H" | where F; € {R,C,H, 0}, i = 1,...,r,
and let G = [[;_, G;. Then, a proper isometric action on M is of cohomogeneity one if
and only if it is orbit equivalent to the action of the connected subgroup H of G with one
of the following Lie algebras:

Type b Comments

(FH) (ae{l)&n ¢Ca,diml=1.

(FS) a®(nol) {C o, diml =1, a; € A.
r H; C G; acts on M; with cohom. 1
i=19; Db J J j

(CED) eazsﬁ; 6 &b, and a totally geodesic singular orbit.

gj,k,o = {X+UX : X € g]}) .] # k}

i1 8 D Gjko
(CER) @#jvkg 8ik o:g; — g Lie algebra isomorphism.

g ® Ney (0)®a; @ (n;o0) °C B protohomogeneous subspace,
(NC) GB#}Q t0(0) ® 8, & (n; S ) a; € A, dimb > 2.

As already mentioned, the cohomogeneity one H;-actions with a totally geodesic singular
orbit on a rank one space M; mentioned in item (CEI) above are well known (up to orbit
equivalence), see [I, §6]. The protohomogeneous subspaces v of g,, = F?j_l are, by
definition, those subspaces such that Nx;),(v) acts transitively on the unit sphere of v,
where (K)o = Nk, (a;) (equivalently, v is protohomogeneous if it satisfies condition (NC2)
of the nilpotent construction). Protohomogeneous subspaces in the rank one setting have
been classified in [I], §7] and [7, §4] for F; € {R,C, O}, and in [I4] for F; = H.

It is important to remark that, unlike the result for SL,,(R)/SO,, in the case considered in
Theorem [D| one can easily determine when two given actions are orbit equivalent. Indeed,
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on the one hand, two orbit equivalent actions must be of the same type in Theorem [D]
except when v = F} C IE‘;”_I, 1 €{0,...,n; —2} in type (NC) (which yields also an action
of type (CEI)). On the other hand, the moduli space of cohomogeneity one actions on
rank one spaces up to orbit equivalence has been completely determined [7], [I4] (which
immediately gives the moduli space of actions of types (FS), (CEI) and (NC) in Theorem D]
since all these fit into type (Prod) of Theorem [C)), as well as for actions of (FH) type [5],
[16], [29]. Finally, two actions of type (CER) with the same pair (j, k) are orbit equivalent
(with independence of the isomorphism o), see Proposition B4l We illustrate how this
determination of the moduli space can be carried out by considering the case of the product
of two real hyperbolic spaces.

Example 1.2. (Cohomogeneity one actions on M = RH™ x RH™.) Assume first that
m = n. Then, the moduli space of cohomogeneity one actions up to orbit equivalence is
(In X Fl) (] RPI/FQ (] {917270}, where Ik = {O, ey k — ]_}, and (Fl, Pg) = ({O}, Zg) if both
RH™ factors are isometric, or (I'y,'y) = (Zs, {id}) otherwise. Given H; = SO(I)JC X SO, —k
(whose action on RH™ has a totally geodesic orbit homothetic to RH*) and H, = SO(I],n,
(k,0) € I, x 'y represents the H; x Hs-action, and (k,1) € I, x I'; the Hy x H;-action.
Both actions are orbit equivalent if and only if both RH" factors of M are isometric, which
motivates the definition of I';. The quotient RP! /T’y represents the actions of type (FH),
where the space of lines ¢ in a is represented by RP!, and I'y is the group of automorphisms
of a of the form Ad(k)|, and inducing a symmetry of the Dynkin diagram of M, where k is
an isometry of M fixing o and such that Ad(k)a C a (see [16]). Finally, {g12,} represents
the unique diagonal action of type (CER). If both factors have different dimensions n and
m, the moduli space is I,, U I,,, URP*.

The tools developed in this paper can be applied to derive explicit classifications on
other symmetric spaces of noncompact type. Basically, the only difficulty to do this stems
from determining the actions that arise via nilpotent construction. Even in the seemingly
simpler case of spaces whose isometry Lie algebra is split real semisimple, this study would
entail a long, case-by-case analysis involving various representations of real semisimple
Lie algebras. In other cases, the problem seems to get even harder, as illustrated by the
solution to the problem for quaternionic hyperbolic spaces [14]. However, we expect that
combining the structural result in Theorem [A] with an appropriate generalization of the
ideas developed by Solonenko in [28] (which ultimately rely on [4] and [14]) may lead in
the future to the complete solution of the classification problem.

This paper is organized as follows. In Section [2] we introduce the concepts and facts
needed to state Berndt and Tamaru’s structural result for cohomogeneity one actions. In
Section [3] we discuss diagonal cohomogeneity one actions on reducible symmetric spaces.
Section M is devoted to the proof of our structural result stated in Theorem [Al Finally, in
Section 5l we will prove Theorems [Bl [C] and [Dl as an application of Theorem [Al

The authors would like to thank Alberto Rodriguez-Vazquez for helpful comments.
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2. PARABOLIC SUBGROUPS AND BERNDT-TAMARU’S RESULT

The aim of this section is to explain the different types of actions considered by Berndt
and Tamaru in [8], as well as their structural result for cohomogeneity one actions (§2.2)).
For that, we will first introduce in §2.1lthe basic facts, terminology and notation in relation
to the algebraic structure of symmetric spaces of noncompact type, and particularly, the
description of parabolic subgroups of real semisimple Lie groups. We will essentially follow
the notation in [8]; see also [2, Chapter 13|, [3], [4], [9, §I.1], [19, Chapter 2], [21, Chapter 7]
and [28] for more information.

2.1. Parabolic subgroups. Let M = G/K be a connected Riemannian symmetric space
of noncompact type. We can assume that (G, K) is a symmetric pair, which in particular
implies that G is a Lie group that acts almost effectively on M, and K is the isotropy
subgroup of GG at some point o € M that we fix from now on. Since M is of noncompact
type, the Lie group G is real semisimple, and K is a maximal compact subgroup of G.
As usual, we will use gothic letters for the Lie algebras. Thus, let g = € & p be a Cartan
decomposition of the real semisimple Lie algebra g of GG, where the subspace p is naturally
identified with the tangent space T,M. Let 6 be the associated Cartan involution, given
by (X +Y) = X =Y for X € £ and Y € p, and B the Killing form of g. Then
(X,Y) = —B(X,0Y) is a positive definite inner product on g such that (ad(X)Y, Z) =
—(Y,ad(#X)Y) for every X, Y, Z € g. From now on, we will consider g endowed with
this inner product. Also, given two subspaces V' C W C g, we will denote by W © V the
orthogonal complement of V' in W with respect to (-, -).

Let a be a maximal abelian subspace of p, and consider the corresponding restricted root
space decomposition g = go @ (@Aez gA), where X is the set of restricted roots, i.e. those
nonzero covectors A € a* such that the subspace

gr={X€g:[H,X]|=MNH)X forall H € a}

is nonzero. It turns out that go = € @ a, where ¢, = Z(a) is the centralizer (and the
normalizer) of a in €. For each root A € 3 we define the root vector H, € a by the relation
MH) = (Hy, H) for all H € a. Moreover, we have 0gy = g_» and [g), g,] C gr+,, for any
A€ X U{0}.

Let r = dima be the rank of M. The set ¥ constitutes a (possibly nonreduced) root
system on a*. Choose a subset 31 of ¥ of positive roots, and let A = {ay,...,a,} C X7 be
the corresponding set of simple roots. We define the nilpotent subalgebra n = @, s+ ga.
Then g = t®a®n is an Iwasawa decomposition of g, and the corresponding decomposition
at the Lie group level states that G is diffeomorphic to the Cartesian product K x A x N,
where A and N are the connected subgroups of G with Lie algebras a and n, respectively.
It follows that the solvable part of the Iwasawa decomposition, that is, the connected Lie
subgroup AN of G with solvable Lie algebra a @ n, acts simply transitively on M.

A parabolic subalgebra q of g is a Lie subalgebra containing Ad(g)(& ® a @ n), for some
g € G. Geometrically speaking, and except for g itself, each parabolic subalgebra of g
is the Lie algebra of the stabilizer G, of some point at infinity = in the ideal boundary
of M. The conjugacy classes of parabolic subalgebras of g are parametrized by the subsets
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® of A. Thus, for any subset ® of simple roots, we will denote by ¢ = X N span® the
root subsystem of ¥ generated by ®, and we will put X7 = X NS+, Define the following
Lie subalgebras of g:

[¢290@<@9)\)7 ap=[)kera, nma= P o

PYSIIN acd )\€2+\2$
which are reductive, abelian and nilpotent, respectively.

Remark 2.1. In this article, by a reductive subalgebra of a real semisimple Lie algebra g
we understand a f-invariant Lie subalgebra b of g, for some Cartan involution 6 of g,
or equivalently, a subalgebra b that is canonically embedded with respect to a Cartan
decomposition g = € ® p, namely h = (ENh) @ (p N h). This implies that h is a reductive
subalgebra in the sense that ad |,: h — gl(g) is completely reducible [10, §6], and hence, in
particular b is a reductive Lie algebra. If G is a real semisimple Lie group, we will say that
a Lie subgroup H of G is a reductive subgroup if its Lie algebra b is a reductive subalgebra
of g. If H is a reductive subgroup of GG, the orbit through the base point o that determines
the Cartan decomposition is totally geodesic, since p N b is a Lie triple system.

Let a® = a©ag = @a@ RH, (note that the direct sum in this equation is not necessarily
orthogonal). The centralizer and normalizer of ag in g is [3. Moreover, [l3, ng] C ng. Then,
the Lie algebra q¢ = lp @ ne is the parabolic subalgebra of g associated with the subset
® of A. The decomposition qe = lp P ne is known as the Chevalley decomposition of qe.
We also define the reductive subalgebra mg = [ © ag of g, which normalizes ag ©ng. The
decomposition q¢ = mg P ag P ng is called the Langlands decomposition of the parabolic
subalgebra q¢. Every parabolic subalgebra of g is conjugate to some of the subalgebras q¢
for some ® C A by means of an element in K. We will also consider the subalgebra £g of
¢ given by

eq):q@mezlwezm@mezeo@(@@),

rexy

where €, = m(gy) = €N (g_r D gr), A € X, and 7 is the orthogonal projection map onto €.
The subspace of p given by

b¢:m¢ﬂp:a¢@<@ pA)a

xexy

where py = m,(gx) = p N (g-r B 9)), is a Lie triple system in p. This means that it
corresponds to the tangent space at o of some connected totally geodesic submanifold Bg
of M. Associated with bg one can consider the semisimple Lie algebra s¢ = [bg, ba] @ be,
where [bg, by] C s. Then, 55 = [bg, by] @ bg is a Cartan decomposition of s, and a®
is a maximal abelian subspace of bg. Moreover, the set Xgp|e = {A|e : A € X} is a
root system for ¢ = [bg, ba] @ by with respect to the maximal abelian subspace a® of bg.
Since A|q, = 0 for each A € g, the restriction map ¢ — Xg|qe is bijective. Thus we
can naturally identify ¥ (resp. ®) with a root system for s¢ (resp. with a set of simple
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roots for s¢) simply by restricting the roots to a®. We will implicitly do this identification
in what follows. For example, if A € ¥4, the root space (s3)y = (s¢) Ao Of 5o coincides
with the root space g, of g, and the root space (sg)¢ of §¢ corresponding to the 0-weight
is (5¢)o = S0 N go = (50 N €) @ a®. In particular, we have the root space decomposition

Sp = (5@)0@ @(5¢)>\ = (5@ ﬁ?o)@aq)@ <@ g)\>.

AeXp AEXg

Now we consider some groups associated with the Lie algebras described so far. Write Ag,
Ng and Sg for the connected subgroups of G with Lie algebras ag, ne and s¢, respectively.
If we define the reductive group L = Zg(ag) as the centralizer of ag in G, then Q¢ =
Lg Ny is the parabolic subgroup of G associated with the subset ® of A. We also define
Ko = Lo N K = Zk(ag) and Mg = K¢Se. Then Mg is a (possibly disconnected) closed
reductive subgroup of L¢, Ko is a maximal compact subgroup of Mg, and Ly = Mg X Ag.

The orbit Sg - 0 of the Sg-action on M = G/K through o is the totally geodesic sub-
manifold Bg of M with T,Bgs = bg. Bsg is itself a symmetric space of noncompact type
whose rank agrees with the cardinality |®| of ®, and is called the boundary component (or
boundary symmetric space) of M associated with & C A. Moreover,

Bq>:S¢'0:M¢'02M¢/K¢gS@/(S@ﬂK@).

Since s is f-invariant and Sg is connected, (Sg, Se N K) = (S, Se N Kg) is a symmetric
pair, and in particular s4 is the Lie algebra of the isometry group of Bs. We also have a
diffeomorphism Ag X Ng X Mg — Qe which induces a diffeomorphism Ag X Ng X Be — M,
(a,n,m - 0) — (anm) - o, known as the horospherical decomposition of the symmetric
space M. Indeed, the action of A Ne on M turns out to be free, polar with section Bg,
and with mutually congruent minimal orbits [30], [I5]. We recall that a Lie group action is
called polar if there is a totally geodesic submanifold (called section) intersecting all orbits,
and at every intersection point between an orbit and the section both submanifolds meet
perpendicularly. In the case of the AgNg-action on M, the section Bg meets each orbit
exactly once.
Let A2 N?® be the connected subgroup of AN with Lie algebra a® @ n®, where

ﬂq): @ g

PYS 58

Then By = (A®N?) - o, since the solvable part of the Iwasawa decomposition of the real
semisimple Lie algebra sg is precisely a® @ n®, and hence, A*N?® acts transitively on Bsg.
Similarly, the connected subgroup AN?® of AN with Lie algebra a ®n® acts transitively on
the totally geodesic submanifold Fg = Lg -0 = (Ag-0) X Bg with Lie triple system ag @ bg.

Later in this paper, we will need to know the relation between the parabolic subalgebras
of the semisimple Lie algebra s and the parabolic subalgebras of g. Thus, let ¥ C & C A.
Then we have the following inclusions of boundary components: By C By C By = M. By
qu,o we will denote the parabolic subalgebra of s4 associated with the subset ¥ of the set
® of simple roots of s¢. The corresponding Chevalley and Langlands decompositions can
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then be written as qu o = ly,0 © Ny 6 = My o D ay e O Ny e, Where

lvo = (52)0 © (@ 9>\>> Ny.e = @ gr = n® Nng,

Ay AeTT\SE

Ay = ﬂ ker ale = a® & (@ RHa) =a® Nay, My = lye © avs.

aev acv

In particular, we have qy ¢ = qu N se. We also define
tyo =8Ny o =ty Nsos,

and the (possibly disconnected) Lie subgroups Ly o = Zs,(av.e), Kve = Lye N K and
My o = Ky 0S5y of Se, whose respective Lie algebras are ly ¢, ty ¢, and my ¢.

2.2. Berndt and Tamaru’s result. We will now describe the different classes of coho-
mogeneity one actions that appear in the structure result by Berndt and Tamaru [§], which
is also stated below in Theorem 2.2l We keep on using the notation described above.

Foliations of horospherical type. Let ¢ be a one-dimensional subspace of a. Then the
connected subgroup H, of G with Lie algebra b, = (a©¢)@®n acts on M with cohomogeneity
one giving rise to a regular Riemannian foliation whose orbits are congruent to each other.
The study of the orbit equivalence of these actions was carried out in [5] for irreducible
symmetric spaces G/K, and recently in [16] and in [29] for the general case. It turns out
that two choices ¢ and ¢ yield orbit equivalent actions if and only if ¢(¢) = ¢ for some
linear automorphism ¢ of a of the form ¢ = Ad(k)|, with k¥ € Ny, (a) and mapping
the set {H, : A € ¥} onto itself. Here, I(M), is the isotropy subgroup at o of the full
isometry group I(M) of M. We note that an automorphism ¢ as above is precisely an
automorphism of a induced by an isometry of M that is in turn induced by a symmetry
of the Dynkin diagram of g. The requirement that ¢ is induced by an isometry of M (i.e.
¢ = Ad(k)|, with k& € Ny, (a)) is superfluous if M is irreducible, but not if M has two
homothetic but not isometric factors.

Foliations of solvable type. Let ¢ be a one-dimensional subspace of a simple root space
8a,, @ € A. Then, the connected subgroup H; of G with Lie algebra b; = a® (n© () acts
on M with cohomogeneity one, and the orbits form a Riemannian foliation with exactly
one minimal leaf (the one through o). Two lines ¢,/ in the same simple root space g,
always yield orbit equivalent actions. More generally, two choices ¢ C go, and ¢’ C ga,
produce orbit equivalent actions if and only if there is an isometry of M induced by a
Dynkin diagram symmetry mapping «; to ay. See [5], [3] and [29] for more information.

Actions with a totally geodesic singular orbit. Cohomogeneity one actions with a totally
geodesic singular orbit on irreducible symmetric spaces of noncompact type M have been
classified up to orbit equivalence (by isometries of the full isometry group I(M)) in [6]. It
follows that a totally geodesic submanifold F of an irreducible space M is the singular orbit
of a cohomogeneity one action on M = G/K if and only if F' is a reflective submanifold
whose complementary reflective submanifold has rank one, or F' is one of five exceptions
(mysteriously related to the group Gs). These actions are induced by maximal proper
reductive subgroups of G. The converse is not true in general. However, if L is a maximal
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proper reductive subgroup of GG, and H is a subgroup of L acting on M with cohomogeneity
one, then the actions of H and L have the same orbits, one of which is totally geodesic,
being singular if M is irreducible and different from a real hyperbolic space.

Canonical extension. Consider the Langlands decomposition Q¢ = Mg AeNe of a max-
imal proper parabolic subgroup ()¢ of G obtained by the choice of some subset ® of A.
The corresponding boundary component Bg is a noncompact symmetric space of rank
|®| embedded in M as a totally geodesic submanifold. Since sg is the Lie algebra of the
isometry group of Bg, it follows that any isometric action (of a connected Lie group) on
B has the same orbits as the action of some connected Lie subgroup of Sg. Let Hg be
a Lie subgroup of Sp acting on Bg with cohomogeneity one. Then Hj = HpAgNg is a
connected Lie subgroup of Q¢ acting on M with cohomogeneity one. We say that this
action has been obtained by canonical extension of a cohomogeneity one action on the
boundary component Bg. If two connected closed subgroups Hg, Hj, of Se act on Bg with
cohomogeneity one and their actions are orbit equivalent by an isometry in the connected
component of the identity I°(Bg) of the isometry group of Bg (or equivalently, by an el-
ement in Sg), then their canonical extensions to M are orbit equivalent by an element of
G as well; see [§]. The orbits of the Ag Ngp-action on M are all minimal, but rarely totally
geodesic. In fact, they are totally geodesic if and only if ® and A\ ® are orthogonal [30].
This implies that the canonical extension of an Hg-action on Bg will have a minimal orbit
if there is a minimal Hg-orbit on Bg, but will only have a totally geodesic orbit if & and
A\ ® are orthogonal and there is a totally geodesic Hg-orbit on Bg, cf. [15].

Nilpotent construction. This construction method was introduced in [§] and revisited
in [4] and [28]. Here, it will be enough to consider subsets

@ = A\ {o}

of A with cardinality |A| — 1. Thus, Q¢ = LeNg is a maximal proper parabolic subgroup
of G. Recall also that Ly = MgAg. Consider the vector H’ € a such that ag(H?) = 5£ is
the Kronecker delta of j and k. Then H’ induces a gradation @ -, n% of ng, where nj is
the sum of all root spaces corresponding to positive roots A € X with A\(H?) = v. In fact,
A(H?) = v if and only if the coefficient of «; in the expression of A as a linear combination
of simple roots is precisely v. Let v be a subspace of n, with dimb > 2. Then ng, = neSv
is a subalgebra of n. Let Ng, be the corresponding connected subgroup of Ng. Denote by
O the Cartan involution of G associated with 6. If v satisfies the following conditions:

(NC1) Ny, (ne,) = ONj,, (v) acts transitively on By = Mg - 0,
(NC2) N§, (neo) = Ni, (v) acts transitively on the unit sphere of v,

then Heo = N7, (no0)Now = Ny, (Ne0)AeNe, is a connected subgroup of Qg that acts
on M with cohomogeneity one and singular orbit Hg, - 0. (Note that the equalities
Ny, (a) = ONY, (v) and Ny (ne.) = Ny, (v) are satisfied for any v.) We say that
the Hg y-action on M has been obtained by nilpotent construction from the choice of «;
and v. Moreover, if v and v’ are two such subspaces which are conjugate by an element
k € Kg, then the cohomogeneity one actions by Hg, and Hg, on M are orbit equivalent
via conjugation by k. Observe that condition (NC1) in the introduction is slightly different
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than the one here. The former is quicker to introduce, whereas the latter is more manage-
able in certain situations. It was shown in [4, Proposition 3.2] that both descriptions are
equivalent, due to the fact that Ng@(mpm) = N](\)J@(nq>7n)Aq>. We also note that a subspace v
satisfying (NC1) (resp. (NC2)) has been called admissible (resp. protohomogeneous) in [28§].

The main result of [§ guarantees that all cohomogeneity one actions on irreducible
symmetric spaces of noncompact type can be obtained by one of the five methods described
above. However, note that all these construction methods keep their validity for reducible

symmetric spaces.

Theorem 2.2. [§] Let M = G/K be a connected irreducible Riemannian symmetric space
of noncompact type and rank r, and let H be a connected closed subgroup of G acting on
M with cohomogeneity one. Then one of the following statements holds:

(1) The orbits form a Riemannian foliation on M, and one of the following two cases holds:

(i) The H-action is orbit equivalent to a foliation of horospherical type induced by
the action of Hy for some one-dimensional subspace { of a.

(ii) The H-action is orbit equivalent to a foliation of solvable type induced by the
action of H; for some j € {1,...,r}.

(2) The H-action has exactly one singular orbit, and one of the following two cases holds:

(i) H is contained in a mazximal proper reductive subgroup L of G, the actions of H
and L have the same orbits, and the singular orbit is totally geodesic.

(ii) Up to conjugation by an element of G, the group H is contained in a maximal
proper parabolic subgroup Qg of G, for some ® C A with cardinality |®| = |A] -1,
and one of the following two subcases holds:

(a) The H-action is orbit equivalent to the canonical extension of a cohomogeneity
one action with a singular orbit on the mazximal proper boundary component
Bq> Of M.

(b) The H-action is orbit equivalent to the action of a group He, obtained by
nilpotent construction, for some subspace v C n with dimv > 2.

Remark 2.3. In case Theorem 2.2] (1), either (1)-(i) or (1)-(ii) holds even if M is not nec-
essarily irreducible. This was proved in [3]. Moreover, it follows from the proof in [3] that
the orbit equivalence is obtained by an isometry g € G (i.e., in the connected component
of the identity of the isometry group of M).

Remark 2.4. In case (2)-(ii) of Theorem 2.2] it is stated that H C gQeg ™', for some
g € G. This is not explicitly stated in [8, Theorem 1.1], but implicitly understood. This
element g € G is precisely the one that gives the orbit equivalence stated in items (a) and
(b) of case (2)-(ii), as follows from the proof in [§] (specifically, the final paragraph of the
proof of [8 Theorem 3.2]). This actually shows that the orbit equivalence claimed in [8|
Theorem 5.8] is in fact an equality of orbit foliations. We also remark that, as stated in [8]
Theorem 5.8], even without the assumption that M is irreducible, if H is in the situation
described in case (2)-(ii) (i.e., H is a connected subgroup of a maximal proper parabolic
subgroup of G and acting with cohomogeneity one on M), then one of the cases (a) and
(b) above hold. This facts will be important later on in our proof of Theorem [Al
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Remark 2.5. If M = M; x --- x M, is reducible (where each M; = G;/K; is irreducible),
any symmetric metric on M is induced by (the restriction to p = T, M of) a weighted sum
a1 By, + - - - +asB,, of the Killing forms of the simple factors of g, where a4, ...,as > 0. The
proofs of Theorem 2.2] (1) in [3] and of Theorem 2.2 (2)-(ii) in [8, Theorem 5.8] assume

that the metric on M is induced by the Killing form of g (i.e., a; = --- = a; = 1 in the
previous expression). However, these results hold for an arbitrary symmetric metric on M
(i.e., for any aq,...,as > 0). Indeed, given symmetric metrics g, ¢ on M = G /K, we have

G =1%M,g) = I°(M,g') (possibly after effectivization), and then, a connected group of
isometries of (M, g) acts isometrically with cohomogeneity one on (M, g) if and only if it
acts isometrically with cohomogeneity one on (M, g'). Moreover, the orbit equivalences in
Theorem 2.2 (1) and (2)-(ii) are achieved by elements of G, as recalled in Remarks 2.3]
and [24] and hence they hold independently of the symmetric metric on M = G/K.

3. MAXIMAL SUBGROUPS AND DIAGONAL ACTIONS

In this section we show that a group acting with cohomogeneity one on a reducible
symmetric space of noncompact type is contained in a maximal proper subgroup that either
splits nicely with respect to the decomposition into irreducible factors, or is determined by
a diagonal action of a maximal proper reductive subgroup on the product of two rank one
irreducible factors.

Let M = G/K be a symmetric space of noncompact type. Let g = g1 ® -+ D gs
be the decomposition of the real semisimple Lie algebra g into simple ideals, and M =
My x - x My = G/Ky X -+ x G4/ K, the corresponding decomposition of M into irre-
ducible symmetric spaces of noncompact type. For each i € {1,..., s}, we have the Cartan
decomposition g; = & @ p;.

Let H be a connected closed Lie subgroup of G. Let [ be a maximal proper Lie subalgebra
of g containing h and with corresponding connected Lie subgroup L of G. Then, it follows
from [18, Theorem 15.1, p. 235] (cf. [22, Theorem 2.1]) that either

(=Pl

=1
i)
for an index j € {1,..., s} and a maximal proper subalgebra [; of g;, or
[ = @ i > gj,k,o’a
i=1
i),k
for two indices j, k € {1,...,s}, j # k, an isomorphism o: g; — gi, and where g;;, =

{X+0X:X €g;}. In this case, g;x, and [ are reductive subalgebras of g, and g, is a
maximal proper reductive subalgebra of g; @ gs.

Let us focus on the second case, namely, the maximal proper subalgebra [ has a simple
ideal which is diagonal with respect to the decomposition of g into simple ideals. Let us
recall first that there is a natural bijective correspondence between homothety classes of
irreducible symmetric spaces of noncompact type and noncompact real simple Lie algebras.
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Hence, since g; and g;, are isomorphic, the corresponding irreducible symmetric spaces M;
and M}, are homothetic. Let G, be the connected closed subgroup of G; x G}, with Lie
algebra g, ;.. Then, according to [8, Proposition 3.1] (it will also follow from Theorem [3.]
below), the action of G;j, on M; x Mj is not transitive. Hence, since H C L, if H acts
with cohomogeneity one on M, the actions of H and L have the same orbits.

It only remains to decide for which real simple Lie algebras g; = g; and corresponding
isomorphism ¢ the action of L on M is indeed of cohomogeneity one, and not higher.
Equivalently, we have to decide when the action of G x, on M; x M), has cohomogeneity
one. The following result answers this question. We recall that an action is said to be
hyperpolar if it is polar and its sections are flat.

Theorem 3.1. The action of Gjr, on M; x My is hyperpolar and its cohomogeneity
coincides with the rank of M;.

Proof. Without loss of generality, we will assume that o(€;) = €;. In other words, the base
point o we consider in My is the one whose isotropy Lie algebra is o(€;). Then the Lie
algebra of the isotropy group at (0j,0x) is &k ={T + 0T : T € &;} = ¢, = £,. Moreover,
the orbit of Gj, through (o0j,0;) € M; x M is singular and of minimum orbit type,
according to the proof of [13, Proposition 5.2].

The cohomogeneity of the action of G, agrees with the cohomogeneity of the slice
representation at (o;,0). We calculate this first. We have

T(Oj,ok)(ijk,U “(0j,01)) = Tp; ®py (Gjho) ={X +0X: X €p;},

where 7y gp, = ((id —0)/2)|q,@g, is the projection map onto p; @ py. For simplicity we will
assume that M; and M, are isometric, but the proof holds with minor changes if they are
only homothetic (cf. Remark 3.3]). The normal space to G,k - (0, 0k) is

V(Ojvok)(Gj7k70 ) (Oj’ Ok)) = {X —oX:X¢€ pj}
Now, the adjoint action of &, on V(o 0,)(Gjke - (05,0k)) is given by
ad(T+ oT)(X —oX) =[T,X]| - o[T, X],

for T+ 0T € &1, and X — 0X € Vo, 0,)(Gjro - (05,0r)). This representation is clearly
equivalent to the adjoint action of €; on p;. Therefore, the slice representation at (0;, 0x) is
equivalent to the isotropy representation of the symmetric space M;, whose cohomogeneity
is precisely the rank of M;.

Let 0,0, = {X —0X : X € a;} and = = Exp(a; 1) - (0j,01) C M; x My, where a; is
a maximal abelian subspace of p;. As usual we can identify T(,, o,)= with a;,, and this
is clearly a section for the slice representation of the G, ,-action on M; x M), at (o;, o).
It is also clear that (g k.o, k0 D [Gjk0; Giko)) = 0, siNCe @jro C Vio;,00)(Glko - (05, 01)) 18
abelian. Then, [I3| Proposition 2.3] guarantees that the G, ,-action is polar with section
=. Since a;;, is abelian, then = is flat, which shows that the action is hyperpolar. O

Remark 3.2. Being G » a reductive subgroup of G; x Gy, its action on M; x M}, induces
an action on a compact dual symmetric space of M; x M, see [23]. Such dual action turns
out to be an indecomposable, hyperpolar, Hermann action in the sense of [24].
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Remark 3.3. The singular orbit of G, , through (o0;,0r) € M; x M}, is a totally geodesic
submanifold of M; x My, since T{y;0,)(Gjro - (05,01) = {X +0X : X € p;} is a Lie
triple system in p; @ p;. Intrinsically, this singular orbit is homothetic to M; and to Mj.
More specifically, since g; and g; are isomorphic via o, we can assume that their Killing
forms are the same; denote both by B. Then the metrics at o; and oj of the irreducible
symmetric spaces M; and M;, can be canonically identified with \;B |pjxpj and A\, Bly, xpy.»
for some positive constants A;, Ay. Thus, the metric on G, - (0;,0) at (0, 0) is given
by (Aj 4+ ) B(my, (+), 7, (+)), where m,, : p; @ pr — p; is the projection onto the first factor.

We conclude this section by showing that, up to orbit equivalence in I(M), the role of
the automorphism o is irrelevant. More precisely:

Proposition 3.4. Let o, 7: g; — gi be two Lie algebra isomorphisms. Then the actions
of Gjro and of G- on M; X My, are orbit equivalent. Moreover, this orbit equivalence is
achieved by means of an element of G; X Gy, if o7~ is an inner automorphism of gy.

Proof. As above, we can assume that o(¢;) = € and that there exists ¢ € Gj such
that Ad(g)7(¢;) = &, since any two maximal compactly embedded subalgebras of a real
semisimple Lie algebra are conjugate by an inner automorphism [20, Chapter VI, §2]. Let
o =o' Ad(g7") € Aut(gx). Then ¢(&) = €&, and hence (py) = pi. Since ¢ is a Lie
algebra automorphism, it preserves the Lie bracket, and then also the curvature tensor of
M, at ok, and the Killing form of g,. Therefore, ¢|y, : pp = Tp, My, — pp = T, My, is a
linear isometry that preserves the curvature tensor at o,. Hence, by a well-known result
(see [31, Corollary 2.3.14)), ¢ is the differential at o of an isometry ¢ € I(M}) that fixes
ok. In other words, ¢ = Ad(¢), and hence 0 = Ad(vg)7, where Ad is the adjoint repre-
sentation of the Lie group I(Mj). Then the automorphism Ad(id,g) of g; & g satisfies
Ad(id, ¥¢)g;kr = 8j k., and therefore the connected Lie groups G;;, and G, . are con-
jugate by the isometry (id, g) € I(M; x My). In particular, their actions on M; x M), are
orbit equivalent. Finally, if o7~ is inner, then ¢ is also inner, and hence we can assume
that ¢ € Gy, so (id,vg) € G; x Gy, O

4. NEW STRUCTURAL RESULT

The aim of this section is to prove Theorem [Al which describes all possible types of
cohomogeneity one actions on symmetric spaces of noncompact type. We will first state
three lemmas about canonical extensions. The first two lemmas are rather simple, and
deal with canonical extensions on products (Lemma [4.1]) and compositions of canonical
extensions (Lemma [.2)). The third one (Lemma [£.3)) is more involved, and describes how
canonical extensions of nilpotent constructions look like. Finally, we will prove Theorem [Al

If one considers a Riemannian product M = M; x M5 of symmetric spaces of noncompact
type (where M; and M, are not necessarily irreducible), any set of simple roots associated
with M is a disjoint union A = A; U Ay, where each A; is a set of simple roots for M;,
and where the roots in A; are orthogonal to the roots in A;. The boundary component
associated with taking A; as a subset of A turns to be exactly M;, and the canonical
extension is in a way well behaved with respect to the Riemannian product.
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Lemma 4.1. Let My = G,/ K and My = Gy/ Ky be symmetric spaces of noncompact type,
and M = My x My their Riemannian product. Let A = Ay LI Ay be a set of simple roots
for g1 & g2, where A; is a set of simple roots for g;, i = 1,2. Let Hp, be a connected Lie
subgroup of G1 acting with cohomogeneity one on My. Then the cohomogeneity one action
of Hy, X Go on M has the same orbits as the action of the group Hf\\l obtained by canonical
extension of Hy, from the boundary component By, = My to M.

Proof. First observe that the roots in A; are perpendicular to the roots in A,. Hence,
ar, = a2 and ny, = n?2. Thus by, = by, @ ay, B np, = by, @ a2 & n’2 C hy, @ go. Since
both H /1\\1 and Hy, X G5 act with cohomogeneity one on M, we conclude that their actions
have the same orbits. O

The next lemma basically states that an iterated canonical extension is a canonical
extension itself.

Lemma 4.2. Let WV C ® C A be subsets of the set of simple roots A, and let Hy be a
subgroup of Sy acting on the boundary component By with cohomogeneity one. Denote
by HY the canonical extension of Hy from By to B, by (HE) the canonical extension
of HY from By to M, and by HE the canonical extension of Hy from By to M. Then
(Hy)" = Hy.

Proof. This is a straightforward calculation at the Lie algebra level. First, we have
(b3)* = by @ ae ®ne = (hy @ ay,o O Nye) D dp O Ne.
But
dp Dago = (a0 a®) @ (a® Nay) = ay

and, since (sg)) = gy for any A\ € Xg,
mone=( B o)o( @ o)-m
res i\ PIRRP I
which shows that (h$)* = by @ ay ® ng = bj. OJ

The following result is more complicated than the previous ones, and roughly states that
the canonical extension of a nilpotent construction in a boundary component of M is orbit
equivalent to a nilpotent construction on M.

Lemma 4.3. Let a; € & C A. Let
do\{a; 1,0 = [o\{a;},0 P No\(a;},0

be the Chevalley decomposition of the parabolic subalgebra of s associated with the subset
O\ {o;} of . Let

0
Hy = Ho\(o;},00 = NLq)\{aj},q)(né\{aj},q>,u)Nq>\{aj},c1>,n

be a subgroup of Se obtained by nilpotent construction acting on Be with cohomogeneity
one, where v is a subspace of n}D\{aj} o ANd N\ (o}.00 = No\{a,},0 O V.
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Then, v C n}x\{aj}, and Hp\{a,},0 = NgA\{aJ_}(nA\{aj},U)NA\{aj},t, 15 a subgroup of G ob-
tained by nilpotent construction and acting with cohomogeneity one on M. Moreover, the

action of Hy\{a;3,0 0n M has the same orbits as the H2-action obtained by canonical ex-
tension of the Hg-action from Be to M.

Proof. First of all, we check that v is indeed a subspace of n}x\ {oy}" This is easy, since

b C “i\{aj},cb = EB o C EB 9\ = ”1A\{aj}-

Y5 54 AEDT
A(HT)=1 A(H?)=1

We will now check that this choice of v as a subspace of n}x\ (o} gives rise to a nilpotent

construction, that is, v satisfies the conditions (NC1) and (NC2) in §2.2
We have the inclusion

[6\{a;}.0 = (50)0 D ( @ gx) Cgo® ( @ gx) = lA\fa, 1

AL\ {ay} AEXA\{ay}
and hence ?q;\{aj}@ = [<I>\{aj},<1> Nt C [A\{O{j} Ne= EA\{aj}. Therefore,
(1) NI@\{aj}@ (n<1>\{06j}7<1>,t’> = 9N[q>\{aj},q>(n) - HN[A\{aj}(U) = N[A\{aj}(nA\{O‘j}vn)’

and Neg, (1 4(0) C Ney (., (0).
By hypothesis, v C “<11>\ (a;},0 satisfies the two conditions for the nilpotent construc-
tion on Bg. In particular, Nlo(q)\ (o (v) acts transitively on the unit sphere of v. Since
aj},®

N?{q)\{aj}’@(u) C N?(A\{aj}(n), so does N?{A\{aj}(n). Thus v satisfies condition (NC2) for the

nilpotent construction on M.
In order to check condition (NC1), first note that N&A\{a‘}(n/\\{aj}m) leaves Ba\{a;} =
J

M\ {a;y - 0 invariant. Therefore, it will be enough to verify the inclusion
0
(2) bavtasy © To(Niry, ., (a\fa30) - 0)

to see that NZOMA\{ }(nA\{aj},u) acts transitively on Bj\(q,}. For this, decompose by\(q;} as
g

bav(a,y = M) @ < EB P A) = aa\{a;},A\{a;} D ba\(a;1 D To(Nev(a;},0\{a} " 0),

+
ACE N\ fay)

With Qg (o, ] A\ (0} = aA\{aj}maq)\{aj} = aMMeitga®\est bo\{a,} = a¢\{aj}@(@)\62$\{ ) px)
@

and To(No\{a;}1.A\{a;} " 0) = Drext pr. We will prove (2)) by showing that each

N3 (o
A\faj} \Zo\{a;}
one of the three addends in the rigflt-handj term of the previous relation for ba\(a;) is
contained in T, (NJ(\)/IA\{aj}(“A\{aj},v) . 0).

By assumption, N]?%\ (ot (Ne\{a,},0,0) acts transitively on B (a,}, 50
aj;}.@ )

0 0
bcb\{aj} = TO (NM<1>\{QJ.},<1> (né\{aj}ﬁb,n) ’ 0) - TO (NMA\{aj}(nA\{O‘j}vn) ' O)’
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where in the inclusion we have used (1) and mg\ (o e C Mp\(a,}-

Let H € ag\{a;} and X = erz;,\(m):l X, €0 C nclb\{aj}@, with X, € g,. Given
A € Xg such that A(H’) = 1, we can write A = aj + 3 ) (o} M@, for some nq € Zxq.
Then A(H) = a;(H), since H € ag\{a,}- Thus

HX]= Y MH)Xx= ) o(H)X\=o;(H)X,
rexy PYS 58
MHI)=1 MH)=1

which means that ag\(,,} normalizes v. Since ag\(a;3 C @ C [7\{q,}, this implies

(3) A\ {a;} = 6a¢\{aj} C HN[A\{QJ_}(U) = N[A\{aj}(nA\{aj}7u)'

Intersecting with a*\tes} ¢ M\ (o}, We get aA\{Oéj}mClcp\{aj} C NmA\{aj} (MA\{a,},v)- Therefore
we deduce ag(a;}A\fay) = M9 N agy (o) C T, (NJ(\)/IA\{aj}(“A\{aj},n) £0).

We now check that T, (Nan {a,},4\{a,} - 0) € To (N}

M (o) (MA\{a;},0) -o). We will first prove

(4) e N mA\f,} C Ny gy (B4 )0)-
Observe that v C n}b\{aj}’q) C Mg NNy fq,}- Then,

[B(ne N ma\(a;3), 0] C [0, 0] N [MAy(0;3, 0] C [One, me] N [MA\(0;}; BA\ (03]
C 9[n¢,m¢] N UA\{a;} = Ong N NA\{a;} C fhNn=0.

Thus, 0(ne N mp\(a;3) C NmA\{aj}(U) = HNmA\{aj}(nA\{aj},u), from where () follows. But
then g o, 3.4\ (ay} C B N MAv(a,} © Ny (. (R4\(a,3.0), and hence T, (N fa,3.4\(ay) - 0) C
T, (N&A\{aj}(nA\{O‘j}vn) . 0). This concludes the proof of (2)). Therefore, N&A\{aj}(n,\\{aj},n)
acts transitively on By (q,}, and thus, v satisfies the condition (NC1) for the nilpotent
construction on M. Since, as shown above, (NC2) also holds, we get that Ha\{q,;}, acts
on M with cohomogeneity one.

In order to conclude the proof of the lemma, we just have to see that the actions of

Hp\{a;3,0 and H have the same orbits. For this, we will show that h3 C b A\{a;}o- First
observe that

b = Nré\{ajm (Ne\ {0;},8,0) D N\ {o;},0,0 © Ao D N,
and recall
bavtas 3o = Nig oy (M40 {0, 1.0) D DAy )0

We have seen in (Il that N[q)\{aj}@(nq)\{aj},qw) C NIA\{aj}(“A\{aj},n)- Also, ng\(a;10 C
TA\{oy}> and hence e\ {a;},®,0 C NA\{a;},0- By (BD we have ae C aAp\{a;} C N[A\{aj}(nl\\{aj}m)’
Finally, we show that ng = @/\ezﬂzg g is contained in hay(a,1,0- Let A € YT\X]. Assume
first \ ¢ EX\{%}. Then gy C tia\{q,},0, SIDCE @x L Na\(a,1,0 DO 0 as A ¢ X5, Now suppose
A€ ZX\{%}. Then, by @), gy Cng N mA\{aj} C NmA\{aj}(nA\{aj}m) - N[A\{aj}(nl\\{aj}m)'

Altogether we have b3 C b A\{a;}0, and by connectedness, HY C H A\{a,},0- Oince both
groups act with cohomogeneity one on M, they must have the same orbits. 0
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We can now prove the first main result of this paper.

Proof of Theorem[4l. By construction, an action of any of the five types stated in Theo-
rem [Al is of cohomogeneity one.

In order to prove the converse, let H be a connected closed subgroup of G acting on
M = G/K with cohomogeneity one. If the action of H has no singular orbits, then
the results in [5] and [3] (see Remarks and [20]) guarantee that the H-action is orbit
equivalent to one of the actions of foliation type, namely (FH) or (FS).

Hence, we will assume from now on that the H-action on M has a singular orbit. Let
g=901 D - D gs be the decomposition of the real semisimple Lie algebra g into simple
ideals, and M = My x-+-x My = G1/K; X -+ - x G3/ K, the corresponding decomposition of
M into irreducible symmetric spaces of noncompact type. Let q be a maximal proper Lie
subalgebra of g containing the Lie algebra h of H, and let ) be the connected subgroup of G
with Lie algebra q. According to the exposition in Section [3] we must have q = @f;% g Dq

foranindex ! € {1, ..., s} and a maximal proper subalgebra q; of g;, or q = @s;zlk 9:DY; ko
7 -]7

for two indices j, k € {1,...,s}, j # k, and an isomorphism o: g; — gi, where g;,, =
{X +0X:X €g,}is amaximal proper reductive subalgebra of g; & gx.

In the second case, in view of Theorem [B.Il the cohomogeneity of the @-action on M
agrees with the rank of M;, and so it must be equal to one, since H C ) acts on M
with cohomogeneity one by assumption. Thus, the actions of H and () have the same
orbits. Hence, by Lemma .1l the H-action has the same orbits as a canonical extension
of a cohomogeneity one diagonal action on the boundary component By = M; x M), with
b = {ﬁj, Bk} C A, B{Bj} = Mj, B{Bk} = My, g9 = 5(8;}» and g = 548} Thus, the H-action
is orbit equivalent to an action of (CER) type.

We consider the first case from now on, ie. h C q = @f;% g; ® q; for an index [ €

{1,...,s} and a maximal proper subalgebra q; of g;. Then, by [8, Theorem 3.2] (which
ultimately relies on the work of Mostow [20]), ¢; is either a maximal proper reductive or
a maximal proper parabolic subalgebra of g;. If q; is a reductive subalgebra of g;, then q
is a reductive subalgebra of g, and the H-action and the QQ-action have the same orbits
by [8, Theorem 3.2]. By the same result and the assumption that H has a singular orbit,
we have that such singular orbit is totally geodesic. Using Lemma (.1l we see that the
actions of H and () have the same orbits as an action obtained by the canonical extension
of a cohomogeneity one ();-action with a totally geodesic singular orbit on the irreducible
boundary component By = M;, where ® is the subset of A consisting of all simple roots
of g;. This corresponds to an action of type (CEI).

Henceforth, we assume that q; is a maximal proper parabolic subalgebra of g;, and hence,
q is a maximal proper parabolic subalgebra of g. Then, there is an element g € G; C G
such that Ad(g)q is a standard maximal proper parabolic subalgebra qa\{a,}, for some
simple root a; € A corresponding to g; C g. Therefore, we know from [8, Theorem 5.8
(see Remarks 241 and 2] that the H-action on M is orbit equivalent (via g € G)) to a
cohomogeneity one action on M obtained by canonical extension of a cohomogeneity one
action on the boundary component Bj\{q,}, Or to a cohomogeneity one action on M of a
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group Ha\{a;},0 obtained by nilpotent construction, for some subspace v C n}\\ {as} This
second case corresponds to an action of type (NC) in the statement of Theorem [Al

Hence, we assume that the H-action is orbit equivalent to the canonical extension H 1‘\\\ (o)}
of certain connected closed subgroup H Aoy} C S A\{ay} acting on Bj\(a;3 with cohomo-
geneity one. We can and will also assume that the Hy\(q,}-action on By\(a,;} has a singular
orbit, since otherwise its canonical extension (and hence, the H-action) would yield a ho-
mogeneous regular foliation on M, contradicting the assumption that the H-action has a
singular orbit.

Let j; = j. Now we apply all the procedure described so far (for actions with singular
orbits) with Bi\{a,,} instead of M and with H Aoy} C SA\{ajl} instead of H C G. In
the case that the H A\{ajl}—action on BA\{%} is orbit equivalent to a canonical extension
of a group H A\fey, a5, C SA\{aj1 iy} acting on BA\{% )y We continue the procedure.
This algorithm ends at some point, since M has finite dimension and the dimensions of
successive boundary components BA\{%} D BA\{%1 b D e form a strictly decreasing
sequence. Say that the sequence of boundary components we get is

M:B¢ODB¢1DB¢ZD"'DB¢m,

where we put ®9 = A and ®; = A\{a,,...,a;}, fori =1,..., m, where m must be strictly
lower than the rank of M (otherwise Bg,, is just one point, and there are no cohomogeneity
one actions on it). Thus, our recurrence assumption is that we have a finite sequence of
groups

H:HchCG:Sq)O, Hq;l CSq)l, H<1>2 CS¢2, Ceey HcmeSc}m

such that each Hg -action on Bg, is orbit equivalent via an element ¢g; € Sg, (see Re-
marks [2.4] and [23)) to the canonical extension of the Hg,,,-action on Bg,,, to Bg,, for each
1=0,1,...,m—1, and the Hg, -action on Bg,, is no longer orbit equivalent to a canonical
extension from any smaller boundary component of Bg,,. Since g;Hg,g; ' and ngﬂ act on

Bg, with the same orbits, their canonically extended actions of (g;Hg,g; ')* and (hf;fjﬂ)A

on M have exactly the same orbits, by construction. Moreover, the actions of (g; He,g; *)*
and Hg on M are orbit equivalent, because the actions of He, and g;Hg,g; 'on By, are
trivially orbit equivalent by the inner isometry g; € Sg, of Bg, (see [8, Proposition 4.2] or
the description of the canonical extension in §2.2)). Also, by Lemma 2] (ngﬂ)A = Hp, -
Altogether, we obtain that the actions of HQZ_ and HQZ_H on M are orbit equivalent, for
each i = 1,...,m — 1. Therefore, the actions of Hf}}l and Hé,}m on M are orbit equivalent.
Since goHa,gy = and Hj act on M with the same orbits, we conclude that the action of
H = Hg, on M is orbit equivalent to the action of H3 on M.

Now we apply the procedure described at the beginning of the proof (for actions with
singular orbits) to the action of Hg, on Bg, instead of the action of H on M. Let
$p,, = ;" (54,,); be the decomposition of sg,, into simple ideals. Since by construction
the action of Hg, on Bg,  is not a canonical extension, we have one of the following
possibilities:
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(i) The Hg, -action on Bg, has the same orbits as the action of a maximal proper

Sm

reductive subgroup of Sg,, with Lie algebra B’ (5a,,)i © (5a,,)j k0., Where o, is

? -]7
an isomorphism between (ss,,); and (so,, )k, 7,k € {1,...,sm}, J # k.
(ii) The Hg,,-action on Bg, has the same orbits as the action of a maximal proper
reductive subgroup of Sg,, with Lie algebra @;™ (s, ); © q;, where q; is a maximal
i#l

proper reductive subalgebra of (se,, ).

(iii) The Hg, -action on Bg, has the same orbits as the action of g, Ha,\{ax}®m,00m >
where g, € Sg,,, o € Dy, 0 is a subspace of nclbm\{ak}@m, and Hgp,\ (o}, @m0 C S,
is obtained by nilpotent construction.

In case (i) we must have s,, = 2, ®,, has two elements and By, is the product of two
symmetric spaces of rank one, because otherwise (by Lemma [L]) the Hg -action on Bg,,
would be orbit equivalent to a canonical extension, which contradicts the definition of ®,,.
This situation corresponds to an action of type (CER) in the statement of Theorem [Al
where the reducible boundary component of rank two is precisely Bg,,.

Similarly, in case (ii) we have that s, is a simple Lie algebra for the same reason (and
thus s, = [ = 1), and this corresponds to an action of type (CEI), where the irreducible
boundary component is By .

Finally, in case (iii), since ¢, € Se,, is an inner isometry of B, we have that the
canonical extensions of the actions of Hg, and Hg,\{ay},&me 00 Bs,, to M are orbit
equivalent. As shown above, the H-action and the Hc/}}m—action on M are orbit equivalent,
so we get that the H-action is orbit equivalent to the Hé}m\{ak}’q)mm—action. But then,

Lemma [4.3] guarantees that the Hf}}m\ (o}, @ p-2CTION has the same orbits as the action of
the group Hp\{q,},» Obtained by nilpotent construction from the choice of v as a subset of
n}\\ {a}- This corresponds to case (NC) in the statement of Theorem [Al O

5. APPLICATIONS

The goal of this section is to prove Theorems [Bl, [C] and [D] as applications of Theorem [Al
This will give us explicit descriptions of the cohomogeneity one actions on the symmetric
spaces SL,1+1(R)/SO,41, n > 1 (§5.1), on the products of rank one spaces (§5.3]), and the
structure result for cohomogeneity one actions on reducible spaces (§5.2)).

5.1. Cohomogeneity one actions on SL,,1(R)/SO, 1.

For each integer n > 1, the symmetric space SL,,;1(R)/SO,4+1 has rank n and its root
system is of type (A,), which in particular means that X+ = {Zf:j ;11 <j<k<n}for
some set of simple roots A = {ay, ..., a,}. Moreover, ¢, = 0, go = a, and for each A € X,
the restricted root space g, has dimension one. See [2, Example 13.2.1] for a detailed
description.

Note that the case n = 1 leads to the real hyperbolic plane RH?, in which case the
classification is classical, whereas the case n = 2 has been studied in [§].
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Proof of Theorem|[B. Let us analyze the different cases arising in Theorem [Al First, the
foliation types (FH) and (FS) in Theorem [Al correspond directly to cases (FH) and (FS)
of Theorem [Bl

Let us focus now on case (CEI) of Theorem [Al that is, the cohomogeneity one actions
on M that arise as canonical extensions from irreducible boundary components.

Any connected subset ® of simple roots in the Dynkin diagram of A is of the form
¢ ={aj,..., o}, for some j, k € {1,...,n}, j < k. In this case, the boundary component
Bg is isometric to the irreducible symmetric space SLy_;+2(R)/SOk_j+2. By the description
of actions of type (CEI), we have to consider the possible cohomogeneity one actions on
Be with a totally geodesic singular orbit. Such actions are induced by maximal proper
reductive subgroups of SL;_;12(R).

If j = k, then By = RH? admits only one cohomogeneity one action with a totally
geodesic orbit, up to orbit equivalence. Such action is the one of the isotropy group at
some point of B = RH2, which is given by the action of K = SO, on Bg up to orbit
equivalence, and has a fixed point as singular orbit. The canonical extension of this action
to M leads to the the first row of the table of case (CE) in Theorem [Bl

If j < k, we have to consider the cohomogeneity one actions on By = SLy_;42(R)/SOk_j12
that have a totally geodesic singular orbit. These were classified in [6]. According to the
classification, these actions are orbit equivalent to the action of a maximal proper reductive
subgroup of SLy_;+2(R) isomorphic to SL;_;4+1(R) xR, or, exceptionally in the case that Be
has rank 3, i.e., K = j+ 2, to the action of a maximal proper reductive subgroup of SL4(RR)
isomorphic to Spy(R). The corresponding totally geodesic singular orbits are isometric to
(SLk—j11(R)/SOx_j+1) x R or to Spy(R)/Uz = SO3 4/S02503, respectively. The canonical
extensions of such actions from Bg to M yield the cohomogeneity one actions described in
the second and third rows of the table in Theorem [Bl

Now, it is straightforward that the actions of type (CER) in Theorem [A] give rise to
the actions of type (CE) described in the fourth row of the table in Theorem [Bl This is
so since any rank two reducible boundary component of M = SL,,1(R)/SO,,4; is of the
form By = RH? x RH?, where ® = {a, ax}, |k — j| > 2, is any disconnected subset of two
simple roots in the Dynkin diagram of A.

Finally, we have to determine the actions of type (NC) in Theorem [Al that is, those
obtained via nilpotent construction. For this, fix j € {1,...,n}. In our context, we have

Jj n
Aoy} = () = D 6D austtay =R @ (R,

i=1 I=j

& ga)@( D ga)%s[j(R)@s[n_jH(R).

aez{al ,,,,, O‘jfl} aez{aj+1 ,,,,, an}

Ma oy} = 01 (

Moreover, the adjoint Lie algebra representation of my\(a;) (resp. EA\{%}) On Np\{a;}
is equivalent to the exterior tensor product representation of sl;(R) @ sl,_;1(R) (resp.
50; B 50,_;11) on RI @ (R"7T1)* Let us choose orthonormal bases {ey,...,e;} of R/ and
{fY, ..., P9+ of (R™7+1)* in such a way that e; ® f! can be regarded as a generator of
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Ooj_ip1+ta4_1, and thus, {e; ® fl:1<i<j, 1<1<n—j+1}isan orthonormal basis
of A\ {a;} ~ RI ® (Rn—j—l—l)*‘

Let us assume, without loss of generality, that 7 < n —j 4+ 1; the case j > n —j+1
is completely analogous due to the symmetry of the Dynkin diagram of A. Since the
action of KX\ {a,} O1 BA\{a,} is equivalent to the isotropy representation of the symmetric

space SO?m_jH/SOjSOn_jH, such action is polar with = = span{e; ® f* : i =1,...,7}
as a section, that is, = intersects all KR\ {aj}—orbits and always perpendicularly. Thus, up
to conjugation by an element of KR\ {a,}» WE can assume that any nonzero subspace v of
n}\\{aj} = Np\{a,;} contains a unit vector v = Z?Zl vie; @ fi v; € R. By the condition
(NC2) of the nilpotent construction method, we want v to be such that N?(A\{aj}(n) acts

transitively on the unit sphere of v. Thus, v must admit the orthogonal decomposition
b =Rv & [NV, foy) (v),v], where the second addend is perpendicular to = by polarity.

Now we take an element in mu\(q;}, which we identify with some A + B € sl;(R) @
sl,—j11(R), where A = (ay){,_, and B = (b,l):ll_:]frl For the sake of convenience, let us
define v; = 0 for ¢ > 5. Then

i n—j+1 j
A+ B,ol =Y > (awv —byvi)e; ® f' =Y (aii —bis)vie; @ f1+ > (aqv — bavi)e; ® f'.
i=1 1=1 i=1 i#l

Note that the first sum after the second equal sign belongs to =, whereas the second sum
is perpendicular to =. Thus, if A+ B € NmA\{aj}(tJ), the first sum must be proportional
to v, which implies that there exists A € R such that a;; — b; = A for all i € {1,...,j}
with v; # 0. Hence, if there are at least two indices i1,i5 € {1,...,j} such that v, #
0 # v;,, then not every A+ B € sl;(R) & sl,_;1(R), with A and B diagonal, normalizes
v. Under the identification mu\ (o, = sl;(R) @ sl,,_;;1(R), this means that the orthogonal

projection of N, . , (MA\{a;}0) = 0Ny (o (v) onto p does not contain the whole subspace
J J

aterwai-1} @ glasrimant = gAei} In this case, the group NJ(\)/[A\{ }(nA\{aj}m) cannot act
oy

transitively on the boundary component By (o;3 = (SL;(R)/SO;) x (SL,—;j—1(R)/SO,—;_1)

since a’\Meit ¢ T, oBa\{a;}- This means that condition (NC1) does not hold in this case.

Therefore, we must have v; = 0 for all except one ¢ € {1,...,7}. Again, by conjugating
by an element of KR\ {a;} if necessary, we can assume that v = ¢; ® f! € go;- Now let

S+T e NgA\{aj}(U), where S € 4,0, =505 and T € (o, . an} = 50,_j11. Then the
element
[S+ T, 0] = (Ser) @ f' +e1 @ (Tf)

belongs to v © Rv. Assume Se; # 0 # Tf'. Then there exists P € SO; mapping the
orthogonal set (e;, Se;) to the orthogonal set (es, pieq), for some py # 0; and similarly,
there exists @ € SO,,_j41 sending (f',Tf") to (f*, paf?), for some py # 0. Thus, the
element g = (P,Q) € KR\{%_} >~ SO; x SO,,_;11 satisfies

(5) Ad(g)[S +T,v] = paer @ f' + paea ® f?, with pg # 0 # pa.



26 J. C. DIAZ-RAMOS, M. DOMINGUEZ-VAZQUEZ, AND T. OTERO

Thus, the subspace Ad(g)b of na\(a,} intersects = nontrivially. Also, it satisfies condi-
tions (NC1)-(NC2) because v does so by assumption. But we have shown in the pre-
vious paragraph that no subspace of ny\(a,) satisfying (NC1)-(NC2) and intersecting =
contains an element such as the one on the right hand side of (H). This yields a contra-
diction, which implies that, for each S + T € NeA\{aj}(U), either Se; = 0 or Tf! = 0.
Since NgA\{aj}(U) is a vector space, we actually have either Se; = 0 or T'f! = 0, for all
S+Te€ NBA\{QJ_}(U). In other words, [NEA\{%}(U),’U] Cspan{e; ® fi:i=1,...,n—j+1}
or [NeA\{aj}(u),v] C span{e; ® f' i =1,...,5}. Assume that we are in the second case,
that is, v = Rv @ [NEA\{%}(U),U] C span{e; ® fl:i=1,...,7}; the first case is completely
analogous. Let k = dimv. Again, up to conjugation by an element of K‘({)(le---yaj—l} = S0,
we can assume

(6) b= Yo ji1++a; S Yo ot +a S---D o1+ @ Ha;-
Let Q={a;:1<i<j—k—-1,orj—k+1<i<j—1,orj+2<1i¢<n}. Then the
connected subgroup of Kj\(q,; with Lie algebra

NBA\{QJ-}(U) = @ £\ =50, ®soy D50,

rexy
acts transitively on the unit sphere of v. Moreover, Nu,, {a‘}(nA\{aj},u) contains a*\lest @
J

n™Me} which is the solvable part of the Iwasawa decomposition of SA\{a,}, and hence,
N&A\{aj} (MA\{a,},0) acts transitively on Ba\(q;}. Thus, the subspace v of nj, , ; given in (G)
satisfies both conditions (NC1)-(NC2) of the nilpotent construction method. However, the
corresponding cohomogeneity one action on M is orbit equivalent to a canonical extension.
Indeed, on the one hand, the Lie algebra of the resulting group Ha\(q,},, that acts with
cohomogeneity one on M satisfies

Baviasho = Ny o) (181 (0;10) D Bav(aspo D 8 @ 0N @ g o0 = 0@ (MO ).

By dimension reasons, the singular orbit of the Hj\(q,}p-action is also an orbit of the
connected Lie subgroup of AN with Lie algebra a & (n © v). On the other hand, let
U = {ojkt1,---, -1} C {aj_gt1,...,a;} = ®. Consider the boundary component
Bg = SLy41(R)/SOg1 and the cohomogeneity one action on Bg of the reductive subgroup
LY o = SLi(R) xR of SLy41(R) with Lie algebra ly ¢ (recall the notation at the end of §2.T)).
Then the Lie algebra [{I\,’CI> of the group obtained by canonical extension of the action of
LY 4 = SLi(R) x R on Bg to M has the following projection onto a @ n:

(1.0)aon = (lo,0 D ae B Ng)agn = a® B0’ Bag Bne = a®® (M O0) DagBng = ad (nOw),

where we have used n®* ©n" =y, = ga, 144, D - D ga, = v. By dimension reasons,
the singular orbits of the cohomogeneity one actions of Hx\(a,},0 and (L%@)A on M coincide.
Hence, both actions have the same orbits. We conclude that the action of H A\{a;},0 18 Orbit
equivalent to one of the actions in the second row of the table of item (CE) in Theorem B
namely the canonical extension of the action of SLi(R) X R on Byqa,_,,,....a;} to M. O
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5.2. Cohomogeneity one actions on reducible symmetric spaces.

Consider a symmetric space of noncompact type M = M; x --- x My = G/K, where
each M; = G;/K;, i = 1,...,s, is irreducible, G = [[;_; G;, and K = [[]_, K;. Clearly,
the root system of g = @;_, g; splits as the orthogonal disjoint union ¥ = | |\_, ¥;, where
3 is the root system of g;. Similarly, a set of simple roots for g is given by A = | |;_, A,
where A; C Z;’ is a set of simple roots for g;, © = 1,...,s. We will denote by & ® a; Dn; the
associated Iwasawa decomposition of g;. Observe that a, = a® and n; =n, i =1,...,s.
Of course, we have orthogonal direct sums ¢ = @;_, ¢, a =@P;_, a; and n=P;_ n,.
Proof of Theorem[d. We have to analyze the different cases arising in Theorem [A] when
applied to a reducible M. First note that cases (FH) and (CER) in Theorem [Al correspond
directly to cases (FH) and (CER) in Theorem [D], respectively.

An action of type (FS) in Theorem [Alis induced by the Lie algebra a & (n © ¢), where
¢ is a subspace of a simple root space gg, B € A, with dim¢ = 1. Then 8 € A;, for some
je{l,...,s}, and hence
aomol)=ao (Pn)om o) = (Paon))o@emon)=a,on,ob,

2 2
where bh; = a; ® (n; ©¢). Then the corresponding action is the canonical extension of the
Hj-action on By, & M; to M, where H; is the connected subgroup of G; with Lie algebra
h;. By Lemma [.I] such action is orbit equivalent to the action of H; X Hfil G, which
i#j

corresponds to case (Prod) in the statement of Theorem [C]

Case (CEI) of Theorem [Al concerns canonical extensions of cohomogeneity one actions
with a totally geodesic singular orbit on an irreducible boundary component Bg, for some
connected subset ® of roots in the Dynkin diagram. The corresponding Lie algebras are of
the form b3 = ho @ ap S ng, for some maximal proper reductive subalgebra hg of 54 whose
corresponding Lie subgroup of Sg acts with cohomogeneity one on Bg. In our setting,
being By irreducible implies ® C A;, for some j € {1,...,s}. Hence

bo © as ©np = ho © (dpn;, D ap,) ® (Naa, Dny;) = (he @ ap s, Dnga;) Day, Ony,

which means that the action is a composition of canonical extensions, firstly from Bg to

By, = Mj, and secondly from By, = M; to M. Again by Lemma A we get that the

action of the connected subgroup of G with Lie algebra h4 has the same orbits as the

action of H; X HZ:&I G; on M, where H; is the connected subgroup of G with Lie algebra
i#j

bo © agp A, ® ne a,. This fits again into case (Prod) in the statement.
Finally, case (NC) of Theorem [Al describes a nilpotent construction from a subspace v
of n}\\{ﬂ} for some § € A, dimbv > 2. Let j € {1,..., s} such that 8 € A;. Then

A
Mhyg) = MAygepa, C MAVE) = May(era, C 0 =y,

since any root not spanned by A\ {/#} must be spanned by roots in A;. Note that [y\ (5 =
(@‘g;} gi) @ [a,\{p},0;- Hence the Lie algebra of the group Hj; (s}, built by nilpotent
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construction from the choice v C nj, (5, = My (g0, 15

(7) Niy g ({5 ©0) D (nar (5} O0) = (@gi)@NlAj\{m,Aj (1 (83,4; ©0) B (a5 (5),4,©0);
=

where the two last direct addends of the right-hand term constitute a Lie subalgebra of g;.

(Indeed, it is not difficult to show that the associated connected subgroup of G; yields the

cohomogeneity one action on M, obtained by nilpotent construction from the choice of v

as a subspace of n}\\ ), Aj.) We conclude that the group Hj (s, splits nicely with respect

to the decomposition of GG, and hence corresponds again to an action of type (Prod). O

5.3. Cohomogeneity one actions on products of rank one spaces.

In this subsection, M = Mj x - - - x M, will be a product of symmetric spaces of noncom-
pact type and rank one, M; = G;/K; = F;H" where F; € {R,C,H,0}, i = 1,...,7.
We will use the other notations stated at the beginning of §5.2l Moreover, we have
A =Aay,...,q} with Ay = {o;}, 27 = AU {205 : F; # R}, and a; & R, for each

1=1,...,7.

Proof of Theorem[D. We will go through the three types of actions in Theorem [ClL
First, assume we have an action of (Prod) type, that is, the action of a subgroup H =
H; x Hle G; of G, where H; is a connected subgroup of G; acting with cohomogeneity
i#]

one on the rank one space M; = By,;; = F;H". By the classification of cohomogeneity
one actions on rank one spaces [7], [14], we can distiguish four cases:

(1) H; produces a foliation of horospherical type. In this case, up to orbit equivalence,
we can assume f; = n; (since dima; = 1), and it is easy to realize that H induces
a foliation of horospherical type on M, with the same orbits as the action of the
connected subgroup of G with Lie algebra (a & a;) @ n. This corresponds to item
(FH) in the statement.

(2) H, produces a foliation of solvable type. In this case we can assume bh; = a,;H(n,;&¢),
for some one-dimensional subspace £ of g,,. Similarly as above, one can see that the
H-action is orbit equivalent to the action described in item (FS) of the statement.

(3) H, acts with cohomogeneity one and a totally geodesic singular orbit on M, which
translates directly into type (CEI) of the statement.

(4) H; acts with cohomogeneity one and a non-totally geodesic singular orbit on M.
In this case, h; can be taken of the form N, (v) @ a; @ (n; © v), for some proto-
homogeneous subspace v of g,, with dimbv > 2. This yields an action of type (NC)
in the statement.

Now, clearly an action of (FH) type in Theorem [C] corresponds to an action of the same
type in Theorem

Finally, actions of type (CER) are induced by groups Ha with Lie algebras of the type
hoDasPng, where @ C A determines a reducible rank two boundary component Bg, which,
in the current context, is of the form By = M; x My, for ® = {oj, i}, j, k€ {1,..., 7},
J # k. Hence, s(,,3 = g; and s(,,} = g, so the Lie algebra of the group acting diagonally
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on By is he ={X +0X : X € g;} = g0, for some Lie algebra isomorphism o: g; — gy.
Since ® and A\ @ are the sets of simple roots associated with g; & g, and G};é:;]‘C i,
7 -77

respectively, we can apply Lemma 1] to conclude that the Hj-action is orbit equivalent
to the action of the connected subgroup of G' with Lie algebra @;:;k 9i D gj k0, s in item
1 ]7

(CER) of the statement. O
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