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CODIMENSION TWO POLAR HOMOGENEOUS FOLIATIONS ON

SYMMETRIC SPACES OF NONCOMPACT TYPE

JOSÉ CARLOS DÍAZ-RAMOS AND JUAN MANUEL LORENZO-NAVEIRO

Abstract. We classify homogeneous polar foliations of codimension two on irre-
ducible symmetric spaces of noncompact type up to orbit equivalence. Any such foli-
ation is either hyperpolar or the canonical extension of a polar homogeneous foliation
on a rank one symmetric space.

1. Introduction

A proper isometric action of a Lie group G on a Riemannian manifold M is said to
be polar if there exists a connected and complete submanifold Σ that intersects every
orbit orthogonally. The action is hyperpolar if it admits a flat section (with the induced
metric). Many results in Algebra and Geometry can be thought of in terms of polar
actions. For instance, the system of polar coordinates in the Euclidean plane R2 is
connected to the polarity of the standard representation of the orthogonal group O(2)
in the plane. In a similar fashion, the spectral theorem for hermitian matrices can be
restated as follows: the action of the unitary group U(n) on the vector space of n × n
hermitian matrices by conjugation is hyperpolar; a section is given by the subspace of
diagonal matrices. Based on this last example, we usually refer to the points of a section
as canonical forms of the elements of the ambient space (see [21] for more details). A
final example with a more Lie-theoretic flavor can be seen in the adjoint action of a
compact Lie group, whose sections are the maximal tori.
Broadly speaking, we should not expect a generic Riemannian manifold to admit a

nontrivial polar action. Indeed, sections are known to be totally geodesic submanifolds
of the ambient space, so the existence of polar actions implies the existence of (suffi-
ciently large) families of globally defined Killing fields and totally geodesic submanifolds
orthogonal to each other; both objects are rare in a space with no restrictions [20, The-
orem A]. Thus, it should not come as a surprise that polar actions can only be possible
in Riemannian spaces with a certain degree of symmetry. Some structural results con-
cerning spaces that do admit polar actions can be seen for example in [11, Theorem A],
and [17, Theorem 1], and its subsequent generalization in [22, Theorem 1.1]. Con-
sequently, the most natural classes of Riemannian manifolds where we can develop a
fruitful study of these actions are those of homogeneous and symmetric spaces.
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Our main interest in this paper concerns the classification of polar actions (up to
orbit equivalence) on manifolds with symmetries. Dadok [7] proved that any polar
representation on a Euclidean space is orbit equivalent to the isotropy representation of
a symmetric space, thus solving the problem in the round sphere Sn. The classification
in Euclidean spaces follows easily from Dadok’s result. The corresponding classification
of polar actions in the real hyperbolic space RHn was given by Wu in [25].
As for symmetric spaces, while the problem is nearing its full conclusion in the com-

pact setting (see [16] and the references therein), little is known about polar actions on
noncompact symmetric spaces, our main interest for this article. Nevertheless, there
are already complete classifications in real and complex hyperbolic spaces [8]. For the
special case of cohomogeneity one actions, we have the works of Berndt and Tamaru
(see [4] and the references in it) as well as a more recent structural result given by the
first author, Domı́nguez-Vázquez and Otero [9].
We say that the orbits of a proper action form a homogeneous foliation if they all

have the same orbit type. Cohomogeneity one foliations have been classified up to orbit
equivalence in irreducible noncompact symmetric spaces by Berndt and Tamaru in [3].
This result has been extended by Solonenko [23] for the reducible case. In addition,
Berndt, Tamaru and the first author give in [2] a procedure to construct all possible
hyperpolar homogeneous foliations on any symmetric space of noncompact type; it is
also shown that there are polar foliations on noncompact irreducible symmetric spaces
of higher rank that are not hyperpolar. The results presented in these two papers make
extensive use of tools from the theory of real semisimple Lie algebras, especially the
root space and Iwasawa decompositions for these objects. At any rate, we are yet to
obtain general results concerning polar homogeneous foliations that are not hyperpolar.
The aim of this paper is to start the study of polar nonhyperpolar homogeneous

foliations on symmetric spaces of noncompact type. We determine all of these that
have the hyperbolic plane RH2 as a section. As a consequence, combining this work
with [2], we obtain a list of all polar homogeneous foliations of codimension two in any
such space. In order to state the main result of this paper we need to introduce some
concepts. See Section 2 for further details.
A Riemannian symmetric space of noncompact type can be written as a quotient

M = G/K, where G is a semisimple Lie group and K is the isotropy group at a point
o ∈ M . The Lie algebra g of G has a Cartan decomposition g = k⊕p, where p ∼= ToM is
the orthogonal complement of k in g with respect to the Killing form. We normalize the
metric on M so that its restriction to p coincides with the Killing form of g restricted
to p. We choose a maximal abelian subspace a of p. This determines a root space
decomposition g = g0 ⊕

(⊕
λ∈Σ gλ

)
, where Σ is the set of roots with respect to a. We

choose a positivity criterion on Σ and denote by Σ+ the set of positive roots. Let
Λ ⊆ Σ+ be the corresponding set of simple roots. We define n =

⊕
λ∈Σ+ gλ. Then we

have an Iwasawa decomposition g = k⊕ a⊕ n.
Let Φ ⊆ Λ be a subset of simple roots. Then Φ determines a so-called parabolic

subgroup QΦ with Langlands decomposition QΦ = MΦAΦNΦ, where MΦ is reductive,
AΦ is abelian, and NΦ is nilpotent. The totally geodesic submanifold BΦ = MΦ · o is a
symmetric space of noncompact type of rank |Φ| that is called the boundary component
associated with Φ. If HΦ is a subgroup of the isometry group of BΦ, then HΦAΦNΦ
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induces an isometric action on M . We call this action the canonical extension of the
isometric action on the boundary component BΦ to the symmetric space M . See [4] for
further details.
The main result of this paper is the following:

Theorem A. Every codimension two polar nonhyperpolar homogeneous foliation on M
is orbit equivalent to the canonical extension of a codimension two polar nonhyperpolar
homogeneous foliation on a boundary component of rank one in M .

More explicitly, we prove:

Theorem B. Let M = G/K be a connected Riemannian symmetric space of noncom-
pact type. Then, a codimension two homogeneous polar nonhyperpolar foliation on M
is orbit equivalent to the orbit foliation of the closed connected Lie group whose Lie
algebra is given by one of the following possibilities:

(i) (kerα)⊕ (n⊖ ℓα), where α ∈ Λ is a simple root, and ℓα is a line in gα, or
(ii) a ⊕ (n ⊖ vα), where α ∈ Λ is a simple root, and vα is a 2-dimensional abelian

subspace of gα.

We will show in Section 3 that different choices of ℓα or vα above give rise to congruent
foliations. We also determine the mean curvature of their leaves. A direct consequence
of this computation is that

Corollary 1.1. If F is a codimension two polar nonhyperpolar homogeneous foliation
on M , then F is harmonic if and only if F is orbit equivalent to the canonical extension
of the trivial action on a boundary component homothetic to the hyperbolic plane RH2.

We say that a foliation F is harmonic if all of its leaves are minimal submanifolds of
M . Equivalently, F is harmonic when the canonical projection from M to the space of
leaves of F is a harmonic map.
As a result of combining Theorem B with [2], Corollary 1.2 states the complete

classification of homogeneous polar foliations of codimension two. Recall that two
roots α, β ∈ Λ are said to be disconnected if α + β is not a root (equivalently, if they
are orthogonal).

Corollary 1.2. A codimension two homogeneous polar foliation on M is orbit equiva-
lent to the orbit foliation of a closed connected Lie group whose Lie algebra is:

(a) (a⊖ v)⊕ n, where v is a 2-dimensional subspace of a, or
(b) (a⊖ ℓ)⊕ (n⊖ ℓα), where α ∈ Λ is a simple root, ℓα is a line in gα, and ℓ is a line

in kerα, or
(c) a⊕

(
n⊖ (ℓα ⊕ ℓβ)

)
, where α, β ∈ Λ are orthogonal simple roots, and ℓλ is a line in

gλ, λ ∈ {α, β}, or
(d) (kerα)⊕ (n⊖ ℓα), where α ∈ Λ is a simple root, and ℓα is a line in gα, or
(e) a ⊕ (n ⊖ vα), where α ∈ Λ is a simple root, and vα is a 2-dimensional abelian

subspace of gα.

Examples (a) to (c) of Corollary 1.2 are hyperpolar.

Remark 1.3. Recall that there is an implicit assumption on the metric imposed on
M so that it coincides with the Killing form at o. In the case that M is irreducible,
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Schur’s lemma implies that all symmetric metrics on M differ by a scalar, and thus
the classification remains true independently of the chosen metric. If M is reducible,
the symmetric metrics are given by rescaling each De Rham factor of M by (possibly
different) positive constants. As a consequence, an isometric action that is polar and
of cohomogeneity greater than one may not admit a section upon alterations of the
metric.

The trivial action is always polar and the whole space is a section of this action.
On the other hand, cohomogeneity one polar actions are automatically hyperpolar. An
easy consequence of Theorem B is that the action corresponding to case (i) exists and
is nontrivial unless Σ+ = {α} and dim gα = 1. Thus,

Corollary 1.4. If M is an irreducible symmetric space of noncompact type where all
polar actions are hyperpolar, then M is the real hyperbolic space RH2.

This contrasts sharply with the situation in the compact setting: polar actions on
irreducible symmetric spaces of compact type and higher rank are always hyperpolar.
This follows from a series of papers by Kollross that concluded in the paper [16] by
Kollross and Lytchak.
We now describe the structure of this paper. In Section 2 we review the basic theory

of real semisimple Lie algebras and symmetric spaces that is needed for our purposes.
In Section 3, we present the list of codimension two polar nonhyperpolar homogeneous
foliations that appear in Theorem B. We also determine the curvature of their sections,
the extrinsic geometry of their orbits, and prove Theorem A. Finally, Section 4 contains
the proof of Theorem B.

2. Preliminaries

In this section we introduce the concepts, notations, and preliminary results that are
used throughout this paper. We follow [13] for the theory on symmetric spaces, and [15]
for semisimple Lie algebras. Since symmetric spaces of noncompact type are Hadamard
manifolds, another interesting source of information is [10].

2.1. Semisimple Lie algebras and symmetric spaces.

A connected Riemannian symmetric space of noncompact type can be represented
as a quotient M = G/K, where (G,K) is a symmetric pair. The group G acts almost
effectively on M , and K is taken to be the isotropy group of G at a point o ∈ M that
we fix from now on. Thus, the group G is semisimple and K is a maximal compact
subgroup of G. The Lie algebra of G is denoted by g. The Killing form B of g is
nondegenerate because g is a real semisimple Lie algebra; B is known to be negative
definite on k, the Lie algebra of K. Let p denote the orthogonal complement of k in g

with respect to the Killing form. Then, g = k ⊕ p is a Cartan decomposition of g, and
p can be identified with the tangent space ToM . The Killing form B restricted to p is
positive definite. Let θ be the Cartan involution associated with the previous Cartan
decomposition, that is, θ|k = idk, and θ|p = − idp. The equation 〈X, Y 〉 = −B(X, θY ),
X , Y ∈ g, defines a positive definite inner product on g that will be used extensively
from now on. We normalize the metric on M so that its restriction to p× p is precisely
the inner product defined above.
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As a matter of notation, if v and w are subspaces of g we denote the orthogonal
complement of w in v as

v⊖w = {X ∈ v : 〈X, Y 〉 = 0, for all Y ∈ w}.
We also denote by vw the orthogonal projection of v onto w. The norm of X ∈ g is
denoted by |X|.
If F : g → g is a linear map, its adjoint is the map F ∗ : g → g satisfying 〈F (X), Y 〉 =

〈X,F ∗(Y )〉 for any X , Y ∈ g. Recall that, for g ∈ G, conjugation by g is denoted by
Ig : G → G, h 7→ ghg−1. The map Ad: G → GL(g), g 7→ Ad(g) = Ig∗, is called the
adjoint representation of g, and the differential of Ad is the adjoint map ad: g → gl(g)
given by ad(X)(Y ) = [X, Y ]. Since Ad is a homomorphism of Lie groups and ad is its
differential, they are related by the Lie exponential map Exp: g → G and the matrix
exponential map of GL(g) as Ad(Exp(X)) = ead(X), X ∈ g. Then, it follows that

ad(X)∗ = − ad(θX), Ad(Exp(X))∗ = e− ad(θX).

Note that ad(X) is skew-adjoint if X ∈ k and self-adjoint if X ∈ p.
We choose a maximal abelian subspace a of p. Any two maximal abelian subspaces

of p are conjugate by an element of K; in particular they have the same dimension,
which is called the rank of M , denoted by r = dim a. If a∗ denotes the dual vector
space of a, for each λ ∈ a∗ we define

gλ = {X ∈ g : ad(H)X = λ(H)X, for all H ∈ a}.
If λ 6= 0 and gλ 6= {0} then λ is called a restricted root (or simply root). We denote
by Σ the set of restricted roots. Since a is abelian, ad(a) is a commuting family of
self-adjoint operators. The corresponding simultaneous diagonalization

g = g0 ⊕
(⊕

λ∈Σ

gλ

)
,

is called the restricted root space decomposition of g determined by a. Here, we have
g0 = k0 ⊕ a, where k0 = g0 ∩ k = Zk(a) is the centralizer of a in k. Moreover, θgλ = g−λ

and [gλ, gµ] ⊆ gλ+µ for any λ, µ ∈ Σ.
We also use the following notation: for λ ∈ Σ we denote by Hλ ∈ a the metric dual

of λ, which is defined as 〈Hλ, H〉 = λ(H), H ∈ a. The inner product on g induces an
inner product on a by restriction, and on a∗ by duality as 〈λ, µ〉 = 〈Hλ, Hµ〉, λ, µ ∈ Σ.
The set Σ is a (nonreduced) root system. We choose a subset Σ+ of positive roots,

and Λ the corresponding set of simple roots. Then, the cardinality of Λ is equal to the
rank of g, and Λ is a basis of the vector space a. We define n =

⊕
λ∈Σ+ gλ, which is a

nilpotent subalgebra of g. Then, g = k ⊕ a ⊕ n is a direct sum of vector spaces called
the Iwasawa decomposition of g. The Lie algebra a⊕ n is solvable and its derived Lie
algebra is n. If A and N denote the connected subgroups of G whose Lie algebras are a
and n, respectively, the map K×A×N → G, (k, a, n) 7→ kan, is a diffeomorphism. The
corresponding decomposition G = KAN is called the Iwasawa decomposition of G. The
connected subgroup AN whose Lie algebra is a⊕ n is simply connected, solvable, and
acts simply transitively on M . Therefore, M is isometric to the Lie group AN endowed
with a left-invariant Riemannian metric. Moreover, the tangent space ToM can be
identified with a⊕ n. The Lie exponential map Exp: a⊕ n → AN is a diffeomorphism.
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Since AN acts simply transitively on M , we may endow AN with a left invariant
metric 〈·, ·〉AN such that M and AN are isometric via the map g ∈ AN 7→ g · o. The
differential of this map at e is precisely the orthogonal projection of a⊕ n onto p, and
the metric in AN satisfies 〈X, Y 〉AN = 〈Xa, Ya〉 + 1

2
〈Xn, Yn〉 for every X , Y ∈ a ⊕ n.

Furthermore, the Levi-Civita connection of AN is given in terms of left invariant vector
fields as 4〈∇XY, Z〉AN = 〈[X, Y ] + (1− θ)[θX, Y ], Z〉, where X , Y , Z ∈ a⊕ n.
Note that for any X ∈ g we have 2X = (1 + θ)X + (1 − θ)X , where (1 + θ)X ∈ k

and (1− θ)X ∈ p. We use the following notation in what follows:

kλ = (1 + θ)gλ = (1 + θ)g−λ = k ∩ (gλ ⊕ g−λ),

pλ = (1− θ)gλ = (1− θ)g−λ = p ∩ (gλ ⊕ g−λ).

Obviously kλ = k−λ, pλ = p−λ, and kλ ⊕ pλ = gλ ⊕ g−λ for each λ ∈ Σ+. For X , Y ∈ gλ,
we also use the equality (1− θ)[θX, Y ] = 2〈X, Y 〉Hλ.
Let Λ = {α1, . . . , αr} be the set of simple roots, and {H1, . . . , Hr} ⊆ a its dual basis,

that is, αi(H
j) = δji is the Kronecker delta. We define HΛ =

∑r
i=1H

i. If λ ∈ Σ, then
λ =

∑r
i=1 ciαi, where the ci are integers and ci ≥ 0 for all i ∈ {1, . . . , r} if λ is positive,

or ci ≤ 0 for all i if λ is negative. The integer λ(HΛ) =
∑r

i=1 ci is called the level of the
root λ. This determines a gradation of g as

g =
⊕

k∈Z

gk, where gk =
⊕

λ∈Σ
λ(HΛ)=k

gλ.

Then, θgk = g−k, k ∈ Z, and g0 = g0. According to [14], we have gk+1 = [g1, gk],
g−k−1 = [g−1, g−k], k ≥ 1. We also set nk = gk, k ≥ 1. Thus, n is generated by
n1. We also define pk = p ∩ (gk ⊕ g−k). Finally, there is a highest root of the root
space decomposition of g. Let m denote its level. In reality we have g =

⊕m
k=−m gk,

n =
⊕m

k=1 n
k, and p = a⊕

(⊕m
k=1 p

k
)
.

We define the element

δ =
1

2

∑

λ∈Σ+

(dim gλ)λ.

If sα : a
∗ → a∗ is the root reflection with respect to a simple root α ∈ Λ, it follows

from [15, Theorem 6.57] that sα is induced by an element of NK(a), the normalizer of
a in K. In particular, dim gsα(λ) = dim gλ for every λ ∈ Σ. On the other hand, by [15,
Lemma 2.61] sα permutes all positive roots linearly independent from α, while sending
α to −α. As a consequence, sα(δ) = δ − (dim gα)α − 2(dim g2α)α. Taking the inner
product with α yields

(1) 2〈δ, α〉 = |α|2(dim gα + 2dim g2α).

2.2. Parabolic subalgebras and canonical extensions.

Let Φ be a subset of simple roots. We denote by ΣΦ the subset of Σ spanned by
Φ, and by Σ+

Φ the corresponding set of positive roots inside ΣΦ. Then ΣΦ is a root
subsystem of Σ and Φ is a simple system for ΣΦ. We define

aΦ =
⋂

α∈Φ

kerα, lΦ = g0 ⊕
⊕

λ∈ΣΦ

gλ, nΦ =
⊕

λ∈Σ+\Σ+
Φ

gλ.
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Then, aΦ is abelian, lΦ is reductive, and nΦ is nilpotent. Moreover, [lΦ, nΦ] ⊆ nΦ.
By definition, qΦ = lΦ ⊕ nΦ is called the parabolic subalgebra of g determined by

Φ [6]. Let mΦ = lΦ⊖aΦ and gΦ = [lΦ, lΦ] = [mΦ,mΦ]. It is known that gΦ is semisimple,
and that mΦ normalizes aΦ ⊕ nΦ. The decomposition qΦ = mΦ ⊕ aΦ ⊕ nΦ is called the
Langlands decomposition of qΦ.
We denote by QΦ, MΦ, GΦ, AΦ, and NΦ the connected subgroups of G whose Lie

algebras are qΦ, mΦ, gΦ, aΦ, and nΦ, respectively. The subgroup QΦ is the parabolic
subgroup of G associated with Φ, and QΦ = MΦAΦNΦ is the corresponding Langlands
decomposition of QΦ at Lie group level.
We define BΦ = MΦ · o = GΦ · o. Then, BΦ is a totally geodesic submanifold of M ,

and since GΦ is semisimple, it is a symmetric space of noncompact type and of rank
|Φ|. This submanifold is called the boundary component associated with Φ.
Let HΦ be a subgroup of the isometry group of BΦ. Since GΦ contains the isometry

group of BΦ, it follows that HΦ ⊆ GΦ ⊆ MΦ. As MΦ normalizes AΦNΦ, H = HΦAΦNΦ

is a subgroup of G acting isometrically on M , and its Lie algebra is hΦ ⊕ aΦ ⊕ nΦ. The
action of H on M is called the canonical extension to M of the action of HΦ on BΦ [2].

2.3. Maximal solvable subalgebras.

We say that a subalgebra b ⊆ g is a Borel subalgebra if it is a maximal solvable
subalgebra of g. On the other hand, a subalgebra h ⊆ g is a Cartan subalgebra if its
complexification h ⊗ C is a Cartan subalgebra of the complex semisimple Lie algebra
g ⊗ C. In particular, h is abelian [15, Proposition 2.10]. Note, however, that Cartan
subalgebras of real semisimple Lie algebras are not necessarily conjugate.
Any Cartan subalgebra h of g is conjugate to a θ-stable subalgebra [15, Proposi-

tion 6.59]. Thus, we can assume that θh = h, which means that h splits as a direct sum
t̃⊕ ã, where t̃ ⊆ k and ã ⊆ p. Both t̃ and ã are abelian subspaces of g. In this case, dim t̃

is called the compact dimension of h, and dim ã is called the noncompact dimension
of h. The subalgebra t̃ is called the torus part of h, and ã is called the vector part of
h. We have that ã induces a root space decomposition on g. Note that, in principle,
ã does not have to be a maximal abelian subspace of p in this case. Root spaces are
defined analogously: for each λ̃ ∈ ã, let

g̃λ̃ = {X ∈ g : ad(H)X = λ̃(H)X for all H ∈ ã},

and define Σ̃ to be the set of all λ̃ ∈ ã such that λ̃ 6= 0 and g̃λ̃ 6= 0. Since the
family ad(ã) consists again of commuting self-adjoint endomorphisms, it follows that
g = g̃0 ⊕

(⊕
λ̃∈Σ̃ g̃λ̃

)
. Observe that t̃ ⊆ g̃0 ∩ k since h is abelian.

We now relate the previous decomposition to the root space decomposition induced
by a maximal abelian subspace a ⊆ p containing ã. Let Σ′ ⊆ Σ be the subset of roots
that annihilate ã. We then have the following equalities:

ã =
⋂

λ∈Σ′

ker λ, g̃0 = g0 ⊕
(⊕

λ∈Σ′

gλ

)
, g̃λ =

⊕

λ∈Σ
λ|

ã
=λ̃

gλ.
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Since Σ′ is an abstract root system in (a⊖ ã)∗, we may give a notion of positivity on Σ

that is compatible with that of Σ′ and Σ̃, that is, λ ∈ Σ is positive if and only if λ ∈ Σ′

is positive or λ ∈ Σ \ Σ′ and λ|ã ∈ Σ̃+.

Remark 2.1. For the sake of completeness we explain here how these notions of positivity
can be made compatible. One can define a notion of positivity on Σ̃ by fixing a regular
element H̃0 ∈ ã (that is, λ̃(H̃0) 6= 0 for all λ̃ ∈ Σ̃) and declaring λ̃ ∈ Σ̃ to be positive if

λ̃(H̃0) > 0. We also take a regular element H ′ ∈ a⊖ ã and define λ ∈ Σ′ to be positive
whenever λ(H ′) > 0. We now define H0 = H̃0 + εH ′, where ε is a positive constant.
Note that for every λ ∈ Σ′, λ(H0) = ελ(H ′), so λ(H0) and λ(H ′) have the same sign.
Furthermore, if λ ∈ Σ \Σ′, we have λ(H0) = λ|ã(H̃0) + ελ(H ′). Since the set of roots is

finite, we can choose ε > 0 sufficiently small so that λ(H0) and λ|ã(H̃0) have the same
sign for all λ ∈ Σ \ Σ′.

By [19, Theorem 4.1], any Borel subalgebra b of g is of the form b = t̃⊕ ã⊕ ñ for an
adequate choice of a Cartan subalgebra h = t̃ ⊕ ã, a set of positive elements Σ̃+ ⊆ Σ̃,
and where ñ =

⊕
λ̃∈Σ̃+ g̃λ̃. We aim to restate this description of b directly in terms of

the root system induced by a.
We consider the subset Φ ⊆ Σ′ of simple roots associated with the positivity criterion

in Σ′. Note that Φ ⊆ Λ. Indeed, by the construction of our set of positive roots in Σ,
we have Φ ⊆ Σ+. Suppose α ∈ Φ is not simple, so that α = β+ γ for two positive roots
β, γ ∈ Σ+. Since α is simple in Σ′, we have that β and γ cannot be simultaneously in
Σ′, and combining this with the equation 0 = α(H0) = β(H0) + γ(H0), we deduce that
neither β nor γ are in Σ′, and either β or γ is negative, a contradiction.
To summarize, we have found a subset Φ ⊆ Λ of simple roots for which Σ′ = ΣΦ is

the root system generated by Φ and the following identities hold: ã = aΦ, g̃0 = lΦ and
ñ = nΦ.
We have thus arrived at the following result.

Theorem 2.2. Let g be a real semisimple Lie algebra and b a Borel subalgebra of g.
Then b contains a Cartan subalgebra h. Furthermore, there exists a Cartan decomposi-
tion g = k ⊕ p, a maximal abelian subspace a ⊆ p, a choice of simple roots Λ ⊆ Σ,
and a set Φ ⊆ Λ such that b = t̃ ⊕ aΦ ⊕ nΦ, where t̃ is an abelian subspace of
kΦ = k ∩ lΦ = k0 ⊕

(⊕
λ∈Σ+

Φ
kλ
)
.

We say that a Cartan subalgebra h (resp. Borel subalgebra b) is maximally compact
if its compact dimension is maximal, and maximally noncompact if its noncompact
dimension is maximal. Since ã is abelian in p, we have that h (resp. b) is maximally
noncompact if and only if ã is a maximal abelian subspace of p [15, Proposition 6.47].
If a Borel subalgebra corresponds to a maximally noncompact Cartan subalgebra,

then Φ = ∅ is the empty set, ã = a∅ = a is a maximal abelian subspace of p, and t = t̃ is
a maximal abelian subspace of k0 [15, Proposition 6.47 and Lemma 6.62]. This implies
n∅ = n, and thus, b = t⊕ a⊕ n.

2.4. Polar actions.

Let M be a Riemannian manifold and H a connected Lie group acting on M isomet-
rically. Given any point p ∈ M , we denote by Hp the isotropy subgroup at p, and by
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H · p the H-orbit through p. We assume that the action of H on M is proper, that is,
the map H×M → M×M , (g, p) 7→ (p, g ·p) is proper. In this case, isotropy groups are
compact, the orbit space is Hausdorff, and the orbits of the action are closed and embed-
ded submanifolds. If the action is also effective, that is, the only element of the group
acting trivially is the identity element, then H can be assumed to be a closed subgroup
of the isometry group of M acting on M in the natural way. If p ∈ M is any point, we
define the isotropy representation of H at p as the map g ∈ Hp 7→ g∗p ∈ O(TpM), and
the slice representation of H at p as its restriction to O(νp(H · p)). Here, the notation
νpN refers to the normal subspace of the submanifold N ⊆ M at p.
Two isometric actions on M are said to be orbit equivalent if there is an isometry of

M that maps the orbits of one action to the orbits of the other action. They are said
to be conjugate if there is an isometry of M that is equivariant with respect to both
actions.
We start by mentioning the following result, which is a refinement of [8, Lemma 2.5].

Lemma 2.3. Let M be a complete Riemannian manifold and H and H̃ be connected,
not necessarily closed, subgroups of the isometry group of M such that H ⊆ H̃. Suppose
that there exists o ∈ M such that H · o = H̃ · o is a closed subset of M , and the slice
representation of H̃ at o is trivial. Then H and H̃ act with the same orbits.

Proof. Let p ∈ M be arbitrary. Since H · o is closed in M , we may find a point q ∈ H · o
such that the distance from q to p is minimum among all points of H · o. The first
variation formula implies that the minimizing geodesic joining q and p must leave H · o
perpendicularly. Thus, by homogeneity we may assume that q = o and p = expo(ξo),
with ξo ∈ νo(H · o). Let ξ ∈ Γ(ν(H · o)) be the unique H̃-equivariant vector field whose

value at o is ξo (which exists because ξo is fixed by the slice representation of H̃). Since
H ⊆ H̃ , ξ is also the unique H-equivariant normal vector field along H · o generated by
ξo. Due to [1, Section 2.1.8], we obtain H · p = {expx(ξx) : x ∈ H · o} = H̃ · p. �

If H is a closed subgroup of the isometry group of M , we say that the action of H
on M is polar if there exists a submanifold Σ in M such that:

(i) Σ intersects all the orbits of H , and
(ii) if p ∈ Σ, then TpΣ and Tp(H · p) are orthogonal.

The submanifold Σ is called a section. Sections are known to be totally geodesic (see for
example [18]). If the section of a polar action is flat, then the action is called hyperpolar.
In this paper we assume that the action of H on M induces a foliation. We say that

M is a Hadamard manifold if it is a simply connected complete Riemannian manifold
with nonpositive sectional curvature. Riemannian symmetric spaces of noncompact
type are examples of Hadamard manifolds. If follows from [2, Proposition 2.1] that all
the orbits of H are principal, that is, all isotropy groups are conjugate in H .
From [2, Theorem 4.1] we have the following criterion of polarity:

Proposition 2.4. Let M = G/K be a Riemannian symmetric space of noncompact
type with Cartan decomposition g = k ⊕ p. Let H ⊆ G be a closed subgroup acting on
M in such a way that its orbits form a foliation on M . We define

h⊥p = {ξ ∈ p : 〈ξ,X〉 = 0, for all X ∈ h}.
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Then:

(i) The group H acts polarly on M if and only if h⊥p is a Lie triple system in p and

[h⊥p , h
⊥
p ] is orthogonal to h.

(ii) The group H acts hyperpolarly on M if and only if h⊥p is an abelian subspace of p.

Moreover, if H⊥
p denotes the subgroup of G whose Lie algebra is [h⊥p , h

⊥
p ] ⊕ h⊥p , then

H⊥
p · o is a section of the action of H on M .

The first criterion of polarity is credited to Gorodski [12].
Recall that a subspace v of p is called a Lie triple system if [v, [v, v]] ⊆ v. In this case

[v, v] ⊕ v is a θ-stable subalgebra of g and the orbit through o ∈ M of the connected
subgroup of G whose Lie algebra is [v, v]⊕ v is a totally geodesic submanifold of M .

3. Examples of homogeneous polar foliations

We now introduce the two families of polar homogeneous foliations on M = G/K
whose section is homothetic to the hyperbolic plane, and describe their extrinsic geom-
etry. We assume the notation used in Section 2.

Theorem 3.1. Let M = G/K be a symmetric space of noncompact type and choose
an Iwasawa decomposition g = k⊕ a⊕ n of g. Let α ∈ Λ be a simple root, and consider
the following subspaces of a⊕ n:

(i) sξ = (a⊖ RHα)⊕ (n⊖ Rξ), where ξ ∈ gα is a nonzero vector.
(ii) sv = a⊕ (n⊖ v), where v ⊆ gα is an abelian plane inside gα.

The subspaces sξ and sv are Lie subalgebras of a ⊕ n. The corresponding connected
subgroups Sξ, Sv act polarly on M inducing a codimension two foliation whose section
is a totally geodesic RH2 with constant curvature −|α|2.
Proof. It is clear that sξ and sv are subalgebras of a ⊕ n, so we can consider the con-
nected Lie subgroups Sξ, Sv associated with these subalgebras. Since AN acts simply
transitively on M and Exp: a ⊕ n → AN is a diffeomorphism, it follows that Sξ and
Sv are closed subgroups inducing a homogeneous foliation on M of codimension 2. It
remains to show that both subgroups act polarly.
Firstly, if S = Sξ, we see that s⊥p = span{Hα, (1 − θ)ξ}. Now, a direct computation

shows that [s⊥p , s
⊥
p ] = R(1 + θ)ξ is orthogonal to s, and [s⊥p , [s

⊥
p , s

⊥
p ]] is spanned by

[Hα, (1 + θ)ξ] = |α|2(1 − θ)ξ and [(1 − θ)ξ, (1 + θ)ξ] = −(1 − θ)[θξ, ξ] = −2|ξ|2Hα.
We therefore obtain [s⊥p , [s

⊥
p , s

⊥
p ]] = s⊥p , which means that s⊥p is a Lie triple system.

By applying Proposition 2.4, we deduce that Sξ acts polarly, as desired. Note that if
S⊥
p ·o is the section through o, then S⊥

p ·o is a closed, simply connected, totally geodesic

surface whose tangent space is s⊥p . Its sectional curvature can be calculated using for
example [13, Chapter IV, Theorem 4.2], which yields

sec(S⊥
p · o) = −〈[[Hα, (1− θ)ξ], (1− θ)ξ], Hα〉

|(1− θ)ξ|2|Hα|2

=
−|[Hα, (1− θ)ξ]|2

2|ξ|2|α|2 =
−|(1 + θ)|α|2ξ|2

2|ξ|2|α|2 = −|α|2,

so S⊥
p · o is a real space form of constant curvature −|α|2.



CODIMENSION TWO POLAR HOMOGENEOUS FOLIATIONS 11

In the case S = Sv, the normal space is s⊥p = (1−θ)v. Choose two orthogonal vectors

ξ, η ∈ v with norm 1/
√
2. Since [(1 − θ)ξ, (1 − θ)η] = −2[ξ, θη] ∈ k0, it follows that

[s⊥p , s
⊥
p ] = R[ξ, θη] is perpendicular to s. Furthermore, θ[ξ, θη] = [ξ, θη] yields

[(1− θ)ξ, [ξ, θη]] = (1− θ)[ξ, [θξ, η]] = −(1− θ)[η, [ξ, θξ]]

= (1− θ)[η, |ξ|2Hα] = −|ξ|2|α|2(1− θ)η ∈ s⊥p ,

and a similar calculation gives [(1 − θ)η, [ξ, θη]] = |α|2|η|2(1 − θ)ξ ∈ s⊥p , and thus

[s⊥p , [s
⊥
p , s

⊥
p ]] = s⊥p . Proposition 2.4 readily implies that the action of Sv is polar with

section S⊥
p · o. The same argument given in the previous paragraph allows us to de-

termine the section by computing its curvature. In this case, taking into account our
previous calculations,

sec(S⊥
p · o) = −〈[[(1− θ)ξ, (1− θ)η], (1− θ)η], (1− θ)ξ〉

|(1− θ)ξ|2|(1− θ)η|2 = −|α|2,

which finishes the proof. �

The previous theorem shows that the examples that appear in Theorem B give rise
to homogeneous polar foliations. Furthermore, it follows from the next lemma that
different choices of ξ in case (i) or of v in (ii) given orbit equivalent actions.

Lemma 3.2. Let α ∈ Λ and k ≥ 1. Then, the group K0 acts transitively on the set of
abelian subspaces of dimension k of gα.

Proof. Following [13, Chapter IX, §2], we consider the Lie subalgebra gα generated by
gα and g−α. This Lie algebra is simple and its Cartan decomposition is gα = kα ⊕ pα,
with kα = k∩gα, pα = p∩gα. It turns out that RHα is a maximal abelian subspace of pα,
and the root space decomposition of gα is gα = g−2α⊕g−α⊕(kα0⊕RHα)⊕gα⊕g2α, where
kα0 is the centralizer of RHα in kα, and kα0 = k0 ∩ gα. Let Gα, Kα, Kα

0 be the connected
subgroups of G whose Lie algebras are gα, kα, and kα0 . Then, by [13, Chapter IX,
Lemma 2.3], we have Kα = K ∩ Gα and Kα

0 = K0 ∩ Gα. Therefore, in order to prove
this lemma, it suffices to show that Kα

0 acts transitively on the set of abelian subspaces
of gα.
Obviously, Gα/Kα is a Riemannian symmetric space of noncompact type and rank

one, that is, a hyperbolic space FHn, where F ∈ {R,C,H,O} and n ≥ 2 (n = 2 if
F = O). Note that gα ∼= Fn−1 and dim g2α = dimR F − 1. If F = R, then gα is
abelian and Kα

0
∼= SO(n − 1) acts in the standard way on gα; this action is transitive

on the Grassmannian of k-planes of Rn−1. If F = O, then the only nonzero abelian
subspaces of gα ∼= O are 1-dimensional, and Kα

0
∼= Spin(7) acts on O by its irreducible

8-dimensional spin representation, which is transitive in S7 [5]. Finally, if F ∈ {C,H},
recall that abelian subspaces of gα are precisely totally real subspaces of gα ∼= Fn−1. In
these cases we have the standard action of S(U(n− 1)U(1)) on C

n−1 if F = C, and the
standard action of Sp(n− 1)Sp(1) on Hn−1 if F = H. Thus, if v1 and v2 are two totally
real subspaces of gα of dimension k, choose an orthogonal basis of v1 and an orthogonal
basis of v2. Since v1 and v2 are totally real, these two bases are not only orthogonal,
but F-orthogonal. By definition of U(n − 1) or Sp(n − 1) it is then clear that there is
an element of Kα

0 that maps one basis to the other. This finishes the proof. �
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We now exhibit examples (i) and (ii) of Theorem B as canonical extensions of actions
on a rank one boundary component. Let α ∈ Λ be a simple root, ξ ∈ gα a unit vector
and v ⊆ gα an abelian plane. We consider the set Φ = {α} ⊆ Λ. Then, the subalgebras
constructed in Section 2.2 take the form

lΦ = g0 ⊕ g−2α ⊕ g−α ⊕ gα ⊕ g2α,

aΦ = kerα,

nΦ = n⊖ (gα ⊕ g2α),

mΦ = k0 ⊕ RHα ⊕ g−2α ⊕ g−α ⊕ gα ⊕ g2α,

and BΦ = MΦ · o is a rank one noncompact symmetric space whose tangent space at
o is ToBΦ = RHα ⊕ pα ⊕ p2α. Consider the subalgebras ŝξ = (gα ⊖ Rξ) ⊕ g2α and
ŝv = RHα ⊕ (gα ⊖ v)⊕ g2α of gΦ = [mΦ,mΦ]. The corresponding connected subgroups

Ŝξ and Ŝv act polarly on BΦ inducing a foliation, due to Theorem 3.1. Recall that the

canonical extensions of the actions of Ŝξ and Ŝv are the actions of the subgroups ŜξAΦNΦ

and ŜvAΦNΦ, respectively. Observe that ŝξ ⊕ aΦ ⊕ nΦ = sξ, while ŝv ⊕ aΦ ⊕ nΦ = sv,
and this readily implies that these canonical extensions are precisely the actions of Sξ

and Sv. We deduce that Theorem B implies Theorem A.
The remaining part of this section will be devoted to computing the mean curvature

of the orbits in each example. To this end, we consider the solvable model M = AN
discussed in Section 2.1. If s ⊆ a ⊕ n, we refer to its orthogonal complement in a ⊕ n

with respect to 〈·, ·〉AN as s⊥. Note that if S ⊆ AN is a Lie subgroup, the isometry
g ∈ AN 7→ g · o ∈ M induces an orbit equivalence between the action of S on M and
the action of S on AN by left multiplication.

Recall that if M ⊆ M̃ is a submanifold of a Riemannian manifold with second fun-
damental form II, we define the mean curvature vector of M at p as Hp =

∑
i II(ei, ei),

where {ei}i is an orthonormal basis of TpM . In other words, H is the trace of the
second fundamental form. If S ⊆ AN is a connected subgroup of AN , it is easy to see
from the formula for the Levi-Civita connection that the second fundamental form of
S ⊆ AN at e satisfies the identity

(2) 〈II(X,X), η〉AN =
1

4
〈(1− θ)[θX,X ], η〉

for each X ∈ s and η ∈ s⊥.
Let us start by discussing foliations of type (i).

Proposition 3.3. Let α ∈ Λ and ξ ∈ gα a vector such that 〈ξ, ξ〉 = 1. All the orbits
of Sξ are isometrically congruent. Furthermore, the mean curvature vector of Sξ at e
is given by the following expression:

He = (dim gα + 2dim g2α − 1)Hα.

Proof. Observe that sξ = kerα ⊕ (n ⊖ Rξ) is an ideal of a ⊕ n. As a consequence, if
g ∈ AN is an arbitrary point, we have Sξ · g = gg−1Sξg = gSξ, because Sξ is a normal
subgroup of AN . Thus, Sξ · g is isometric to Sξ via the left multiplication by g.
We proceed to compute Ho. For this, it suffices to determine the vectors II(H,H)

and II(X,X) for each H ∈ a and X ∈ gλ ⊖ Rξ, where λ is any positive root. Given
any H ∈ a, it is clear from (2) that II(H,H) = 0. On the other hand, if λ ∈ Σ+
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and X ∈ gλ is a unit vector orthogonal to ξ, we obtain that 1 = 〈X,X〉AN = |X|2/2
and 〈II(X,X), η〉AN = 1

2
〈|X|2Hλ, η〉 = 〈Hλ, η〉 = 〈 〈λ,α〉

|α|2
Hα, η〉AN for each η ∈ s⊥ =

span{Hα, ξ}, which means that II(X,X) = 〈λ,α〉
|α|2

Hα. In conclusion,

He =
1

|α|2
( ∑

λ∈Σ+\{α}

(dim gλ)〈λ, α〉+ (dim gα − 1)|α|2
)
Hα =

1

|α|2 (〈2δ, α〉 − |α|2)Hα

= (dim gα + 2dim g2α − 1)Hα,

where we have used (1) for the last equality. �

A direct consequence of the previous proposition is that the foliation induced by Sξ

consists of congruent minimal submanifolds if and only if 2α /∈ Σ and dim gα = 1. If
this is the case, then sξ = aΦ⊕nΦ for Φ = {α}, and BΦ is homothetic to the hyperbolic

plane. Furthermore, ŝξ = 0, which means that Ŝξ acts trivially on BΦ. More generally,
the extrinsic geometry of the orbits for the solvable part AΦNΦ of a parabolic subgroup
was studied by Tamaru in [24], where he proved that for any choice of Φ ⊆ Λ the
subgroup AΦNΦ induces a harmonic foliation on M whose orbits are congruent.
We now consider the foliations from case (ii). In this setting, the orbits are not

isometrically congruent, as their mean curvature does not have constant length. More
precisely:

Proposition 3.4. Let α ∈ Λ be a simple root and v ⊆ gα an abelian subspace of
dimension 2. Fix a vector ξ ∈ v with |ξ| = 1, and denote by Ht the mean curvature
vector of Sv · Exp(tξ) at Exp(tξ) and by LExp(tξ) : AN → AN the left translation by
Exp(tξ). Then,

(LExp(−tξ))∗Exp(tξ)Ht =
t|α|2

2 + t2|α|2 (dim gα + 2dim g2α − 1)(tHα − 2ξ).

In particular, the orbit through Exp(tξ) is minimal if and only if t = 0.

Proof. Firstly, if g = Exp(tξ) ∈ AN , we deduce that Sv · g = gg−1Svg = g(g−1Svg) is
isometric to g−1Svg by left translation. Thus, it suffices to compute the mean curvature
H̃t of S̃ = g−1Svg at e. To this end, we compute the Lie algebra s̃ = Ad(g−1)sv of
g−1Svg. Observe that Ad(g−1)sv ⊆ a ⊕ n is orthogonal to Ad(g)∗v = e−t ad(θξ)v with
respect to the inner product 〈·, ·〉. Given any η ∈ v, we have

e−t ad(θξ)η ≡ η − t[θξ, η] (mod θn)

= η − t〈ξ, η〉Hα −
t

2
(1 + θ)[θξ, η] (mod θn)

≡ η − t〈ξ, η〉Hα (mod k0 ⊕ θn).

Therefore, if we consider an orthonormal basis {ξ, η} of v, it is immediate that the
orthogonal complement of Ad(g−1)sv in a ⊕ n is span{tHα − ξ, η}. As a consequence,
s̃ = Ad(g−1)sv = kerα ⊕ (n ⊖ v) ⊕ R(Hα + t|α|2ξ). The normal spaec s⊥ is given by
s̃⊥ = Rη ⊕ R(tHα − 2ξ).
Assume H ∈ kerα. In this case, we directly have from (2) that II(H,H) = 0.
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Now, suppose that λ ∈ Σ+ and X ∈ gλ⊖v is such that 1 = 〈X,X〉AN = 1
2
|X|2. Then,

II(X,X) satisfies 〈II(X,X), ν〉AN = 1
2
〈|X|2Hλ, ν〉 = 〈Hλ, ν〉 = 〈 t〈λ,α〉

2+t2|α|2
(tHα−2ξ), ν〉AN

for every ν ∈ s⊥, and thus II(X,X) = t〈λ,α〉
2+t2|α|2

(tHα − 2ξ).

Finally, consider the vector Y = Hα + t|α|2ξ, whose norm squared is 〈Y, Y 〉AN =
|α|2+ 1

2
t2|α|4. Note that (1− θ)[θY, Y ] = 2t|α|4(tHα − (1− θ)ξ), so we deduce from (2)

that II(Y, Y ) = t|α|4

2
(tHα − 2ξ). As a consequence, the normalized vector Z = Y/|Y |AN

satisfies II(Z,Z) = t|α|2

2+t2|α|2
(tHα−2ξ). From these calculations, we obtain that the mean

curvature of S̃ at o is given by

H̃t =
t

2 + t2|α|2
( ∑

λ∈Σ+\{α}

(dim gλ)〈λ, α〉+ (dim gα − 1)|α|2
)
(tHα − 2ξ)

=
t

2 + t2|α|2 (〈2δ, α〉 − |α|2)(tHα − 2ξ)

=
t|α|2

2 + t2|α|2 (dim gα + 2dim g2α − 1)(tHα − 2ξ).

Finally, note that the existence of an abelian plane inside gα implies that the integer
dim gα + 2dim g2α − 1 is positive, so the orbit through Exp(tξ) is minimal if and only
if t = 0, as desired. �

In particular, the homogeneous foliation induced by Sv is never harmonic indepen-
dently of the choice of v. From here, Corollary 1.1 follows immediately.

Corollary 3.5. No polar homogeneous foliation constructed as in case (i) of Theorem B
is orbit equivalent to a homogeneous foliation given in case (ii).

4. Proof of Theorem B

Now we prove that the examples appearing in Theorem B are the only examples
of codimension two homogeneous polar foliations on symmetric spaces of noncompact
type.
From [2, Proposition 2.2] we obtain:

Proposition 4.1. Let M be a Hadamard manifold, and let H be a connected closed
subgroup of the isometry group of M acting on M in such a way that the orbits of H
form a foliation. Then, all the orbits of H are principal, and there is a connected closed
solvable group S acting isometrically on M whose orbits coincide with the orbits of H.

Let M = G/K be a symmetric space of noncompact type. We assume the notation
introduced in Subsection 2.1. Thus, K is the isotropy group at o ∈ M , we have a
Cartan decomposition g = k ⊕ p, a choice of maximal abelian subspace a of p that
determines a root space decomposition g = g0 ⊕

(⊕
λ∈Σ gλ

)
, and a positivity criterion

that selects a set of positive roots Σ+. We denote by Λ the set of simple roots. We
define n =

⊕
λ∈Σ+ gλ, and recall that k0 = g0 ∩ k.

Assume that H is a connected closed subgroup of the isometry group G that acts
polarly on M , and that the orbits of H on M induce a foliation. Proposition 4.1 says
that there exists a solvable subgroup S of G whose orbits coincide with the orbits of
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H . Let s be the Lie algebra of S. Then, s is contained in a Borel subalgebra b of g.
See Subsection 2.3 for further details. The next result states that we may assume that
s is contained in a maximally noncompact Borel subalgebra.

Proposition 4.2. The leaves of a homogeneous polar foliation on M = G/K coincide,
up to isometric congruence, with the orbits of a connected closed solvable subgroup S of
G whose Lie algebra s is contained in a maximally noncompact Borel subalgebra of the
form t⊕ a⊕ n, where t ⊆ k0 is abelian.

Proof. By Proposition 4.1 there is a solvable subgroup S of G whose orbits form the
homogeneous polar foliation under investigation. According to Proposition 2.2, we may
assume that s is contained in a maximal solvable subalgebra of the form t̃ ⊕ aΦ ⊕ nΦ,
with t̃ ⊆ kΦ an abelian subspace, and Φ ⊆ Λ a subset of simple roots. In particular,
the tangent space of S · o at o, as a subspace of p, is contained in (1− θ)(aΦ ⊕ nΦ). As
a consequence,

(a⊖ aΦ)⊕ (1− θ)(n⊖ nΦ) =
(⊕

α∈Φ

RHα

)
⊕
(⊕

λ∈Σ+
Φ

pλ

)
⊆ s⊥p ,

where s⊥p = {ξ ∈ p : 〈ξ, s〉 = 0}, according to the definition given in Proposition 2.4.

Let λ ∈ Σ+
Φ be arbitrary, and X ∈ gλ. Then, since Hλ, (1 − θ)X ∈ s⊥p , and the

action of S is polar, it follows from Proposition 2.4 that [Hλ, (1− θ)X ] = (1 + θ)|λ|2X
is orthogonal to s. Thus, s is orthogonal to

⊕
λ∈Σ+

Φ
kλ, and is therefore contained in

(̃t ∩ k0)⊕ aΦ ⊕ nΦ ⊆ (̃t ∩ k0)⊕ a⊕ n, with t = t̃ ∩ k0 abelian. �

In view of Proposition 4.2, if S is a closed solvable subgroup of G acting polarly on
M and such that its orbits induce a foliation on M , we may assume from now on that
the Lie algebra s of S is contained in a Borel subalgebra of the form t ⊕ a ⊕ n, where
t ⊆ k0 is abelian. From now on we assume that the action of S on M is polar, but
not hyperpolar. Recall from Proposition 2.4 that s⊥p is a Lie triple system (but not an

abelian subspace) and [s⊥p , s
⊥
p ] is orthogonal to s.

Moreover, [s⊥p , s
⊥
p ] ⊕ s⊥p is a reductive Lie algebra and the orbit through the origin

of the subgroup S⊥
p whose Lie algebra is this one is also a symmetric space. Since it

is two-dimensional and not flat, it must be homothetic to a real hyperbolic plane RH2.
Because RH2 has constant curvature, it follows from [13, Chapter IV, Theorem 4.2] that
there exists a constant C > 0 such that ad(ξ)2(η) = Cη for any pair of orthonormal
vectors ξ, η ∈ s⊥p .

Our next step is to prove that s⊥p is contained in a ⊕ p1. In order to do this, we
consider the vector subspace

s̃ = s⊕ (n⊖ n1) = s⊕
( ⊕

λ∈Σ+\Λ

gλ

)
.

Since t ⊕ a normalizes all root spaces and [n, n] ⊆ n ⊖ n1, it follows that s̃ is a
subalgebra of t⊕ a⊕ n containing s. In particular, sa⊕n ⊆ s̃a⊕n, so the codimension of
s̃a⊕n is less than or equal to two.

Lemma 4.3. Let q be a Lie subalgebra of t⊕ a⊕ n and λ ∈ Σ+. If gλ ⊆ qa⊕n and there
exists H ∈ a ∩ qa⊕n such that λ(H) 6= 0, then gλ ⊆ q.
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Proof. Take X ∈ gλ ⊆ qa⊕n. Then there exist vectors T , T ′ ∈ t such that T + H ,
T ′ +X ∈ q. In particular, ad(T )X + λ(H)X = [T +H, T ′ +X ] ∈ q. This means that
the linear map ad(T )+λ(H) idgλ preserves gλ and carries gλ to q. Since T ∈ t, the linear
transformation ad(T ) is skew-adjoint, so ad(T )+λ(H) idgλ is a linear isomorphism and
it follows that gλ ⊆ q. �

Now we can rule out the possibility that s̃a⊕n has codimension zero.

Lemma 4.4. s̃a⊕n 6= a⊕ n.

Proof. Assume that s̃a⊕n = a⊕ n. Both a and all root spaces corresponding to positive
roots are contained in s̃a⊕n. By Lemma 4.3, it follows that n ⊆ s̃.
Let m denote the maximum possible level of a root. We define k ∈ {0, . . . , m} to be

the smallest integer for which nk+1 ⊕ · · · ⊕ nm ⊆ s. We want to show that k = 0. On
the contrary, assume that k ≥ 1. Let λ ∈ Σ+ be a root of level k. As n1 generates n,
the root space gλ is generated by elements of the form

ad(X1) · · ·ad(Xk−1)Xk, Xi ∈ n1.

Since n ⊆ s̃ = s + (n ⊖ n1), we can choose Y1, . . . , Yk ∈ n ⊖ n1 such that Xi + Yi ∈ s

for each i ∈ {1, . . . , k}. Hence, ad(X1+ Y1) · · ·ad(Xk−1+Yk−1)(Xk +Yk) ∈ s. By using
the fact that [nr, ns] ⊆ nr+s, we have

ad(X1 + Y1) · · ·ad(Xk−1 + Yk−1)(Xk + Yk) ≡
ad(X1) · · · ad(Xk−1)Xk (mod nk+1 ⊕ · · · ⊕ nm),

so we obtain ad(X1) · · · ad(Xk−1)Xk ∈ s. This means that gλ ⊆ s, and as a result,
nk ⊆ s, contradicting the definition of k.
Therefore, k = 0 and n ⊆ s. In particular, s⊥p ⊆ a must be an abelian subspace,

contradicting the fact that our action is not hyperpolar. Thus, the case s̃a⊕n = a⊕ n is
not possible. �

Before analyzing the remaining possibilities for the codimension of s̃a⊕n we need the
following result.

Lemma 4.5. Assume that V ∈ a⊕ n is nonzero and orthogonal to s. Then:

(i) If V ∈ a, then s⊥p = RV ⊕ (1− θ)Rηα, where ηα ∈ gα is nonzero and α ∈ Λ.

(ii) If V ∈ gα for α ∈ Λ, then s⊥p = (1 − θ)
(
RV ⊕ R(aHα + ηα)

)
, where a ∈ R,

ηα ∈ gα ⊖ RV , and [V, ηα] = 0.
(iii) If V = Hα + ξα, where α ∈ Λ and ξα ∈ gα is a nonzero vector, and g =

Exp(−ξα/|ξα|2) ∈ N , then Ad(g)s ⊆ t ⊕ a ⊕ n is orthogonal to ξα. In partic-
ular, (Ad(g)s)⊥p = (1 − θ)

(
Rξα ⊕ R(aHα + ηα)

)
, for a ∈ R and ηα ∈ gα ⊖ Rξα.

Furthermore, [ξα, ηα] = 0.

Proof. We prove (i). Assume V ∈ a. Since a ⊆ p, this means V ∈ s⊥p . Choose any unit

vector η = η0 +
∑

λ∈Σ+(1 − θ)ηλ ∈ s⊥p orthogonal to V , where η0 ∈ a and ηλ ∈ gλ for
each λ ∈ Σ+. Since the action of S is polar nonhyperpolar, [V, η] is a nonzero vector
orthogonal to s. Note that

[V, η] = (1 + θ)
∑

λ∈Σ+

λ(V )ηλ,
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and recalling that θn is orthogonal to s, we obtain

(1− θ)
∑

λ∈Σ+

λ(V )ηλ ∈ s⊥p ⊖ RV = Rη,

so η0 = 0 and λ(V ) = µ(V ) for every pair of roots λ, µ ∈ Σ+ such that ηλ, ηµ 6= 0.
Suppose µ, ν ∈ Σ+ are two different roots such that ηµ, ην 6= 0. Hence, 〈Hµ−ν , V 〉 =

µ(V ) − ν(V ) = 0 and 〈Hµ−ν , η〉 = 0, so Hµ−ν ∈ sa⊕n. Therefore, we may choose a
T ∈ t such that T +Hµ−ν ∈ s. An analogous argument shows that ηµ + aην ∈ sa⊕n for
a = −|ηµ|2/|ην |2 < 0, so there is a vector T ′ ∈ t such that T ′ + ηµ + aην ∈ s. Hence,

[T, ηµ] + a[T, ην ] + 〈µ− ν, µ〉ηµ + a〈µ− ν, ν〉ην = [T +Hµ−ν , T
′ + ηµ + aην ] ∈ s ∩ n.

Since ad(T ) is skew-adjoint (because T ∈ k) we deduce [T, ηµ], [T, ην ] ∈ sa⊕n. Thus
〈µ− ν, µ〉ηµ + a〈µ− ν, ν〉ην is also in sa⊕n. Observe that

∣∣∣∣
1 a

〈µ− ν, µ〉 a〈µ− ν, ν〉

∣∣∣∣ = −a|µ− ν|2 > 0,

which implies that ηµ + aην and 〈µ − ν, µ〉ηµ + a〈µ − ν, ν〉ην are linearly independent
vectors in sa⊕n. Therefore, ηµ, ην ∈ sa⊕n must be orthogonal to η, contradicting the fact
that they are nonzero. We thus obtain that only one of the ηλ can be nonzero, that is,
η = (1− θ)ηµ ∈ pµ for some µ ∈ Σ+.
We now prove that µ is simple. If µ = β + γ were a sum of positive roots β, γ ∈ Σ+,

then ηµ ∈ gµ = [gβ , gγ], so we may write ην =
∑k

i=1[Xi, Yi], where Xi ∈ gβ and Yi ∈ gγ
for each i. Clearly, gβ + gγ ⊆ sa⊕n, which means that for each i there are vectors Ti,
T ′
i ∈ t such that Ti +Xi, T

′
i + Yi ∈ s. As a consequence,

k∑

i=1

[Ti, Yi] + [Xi, T
′
i ] + [Xi, Yi] =

k∑

i=1

[Ti +Xi, T
′
i + Yi] ∈ s.

Note that each [Ti, Yi] is in gγ ⊆ sa⊕n and each [Xi, T
′
i ] is in gβ ⊆ sa⊕n, which implies

that ηµ =
∑

i[Xi, Yi] ∈ sa⊕n, contradicting that ηµ is nonzero. We deduce that µ ∈ Λ,
so the first assertion is proved.
Now we prove (ii). Assume V ∈ gα for a simple root α ∈ Λ. Choose a nonzero vector

η = η0 +
∑

λ∈Σ+(1 − θ)ηλ ∈ s⊥p , where η0 ∈ a and ηλ ∈ gλ for each λ ∈ Σ+, such that
〈V, η〉 = 〈V, ηα〉 = 0. Let µ ∈ Σ+ be a positive root with ηµ 6= 0.
For now, let us suppose that we can choose µ so that µ 6= α.
We first prove that η0 ∈ RHµ. Assume otherwise, so there exists a vector H ∈ a

such that 〈H, η0〉 = 0 and 〈H,Hµ〉 = µ(H) 6= 0. Then H ∈ sa⊕n, so there exists T ∈ t

such that T +H ∈ s. On the other hand, η0 + aηµ is orthogonal to both V and η for
a = −|η0|2/|ηµ|2 < 0, which implies that η0 + aηµ ∈ sa⊕n, and there exists T ′ ∈ t such
that T ′ + η0 + aηµ ∈ s. In particular, a[T, ηµ] + aµ(H)ηµ = [T +H, T ′ + η0 + aηµ] ∈ s,
so 0 = 〈a[T, ηµ] + aµ(H)ηµ, η〉 = aµ(H)|ηµ|2, a contradiction.
We now prove that ηλ = 0 for every λ ∈ Σ+ \ {µ}. If λ is a positive root linearly

independent with µ, and ηλ 6= 0, we may find H ∈ a such that µ(H) = 0 6= λ(H). Since
η0 ∈ RHµ, this implies thatH ∈ sa⊕n, and hence, there exists T ∈ t such that T+H ∈ s.
Furthermore, ηµ+bηλ ∈ sa⊕n with b = −|ηµ|2/|ηλ|2 < 0, and there exists T ′ ∈ t satisfying
T ′+ηµ+bηλ ∈ s. As a consequence, [T, ηµ]+b[T, ηλ]+bλ(H)ηλ = [T+H, T ′+ηµ+bηλ] ∈ s.
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In particular, 0 = 〈[T, ηµ]+b[T, ηλ]+bλ(H)ηλ, η〉 = bλ(H)|ηλ|2, a contradiction. On the
other hand, if 2µ ∈ Σ+ and η2µ 6= 0, a similar argument yields that there is T ∈ t such
that T +Hµ + aηµ ∈ s, for a = −µ(η0)/|ηµ|2, and T ′ ∈ t such that T ′ + ηµ + bη2µ ∈ s,
where b = −|ηµ|2/|η2µ|2 < 0. Thus,

0 = 〈[T +Hµ + aηµ, T
′ + ηµ + bη2µ], η〉

= 〈[T, ηµ] + b[T, η2µ] + |µ|2ηµ + 2b|µ|2η2µ + a[ηµ, T
′], η〉 = −|µ|2|ηµ|2,

contradicting our choice of µ. This implies η2µ = 0 (and an analogous argument shows
that ηµ/2 = 0 in the case that µ/2 ∈ Σ+).
To summarize, we have obtained η = aHµ + (1− θ)ηµ for some constant a ∈ R, and

µ is a root different from α with ηµ 6= 0.
Assume a 6= 0. Since s⊥p is a Lie triple system, ad((1 − θ)V )2η is proportional to η.

Since for any H ∈ a we have

〈ad((1− θ)V )2η,H〉 = −〈[(1− θ)V, η], [H, (1− θ)V ]〉
= −〈(1 + θ)

(
−a〈α, µ〉V + [V, ηµ]− [θV, ηµ]

)
, α(H)(1 + θ)V 〉

= 2a〈α, µ〉|V |2α(H) = 〈2a〈α, µ〉|V |2Hα, H〉,

it follows that µ = α or µ = 2α. This last case is not possible, because by Proposi-
tion 2.4, (1+θ)(−2a|α|2V −[θV, η2α]) = [(1−θ)V, aH2α+(1−θ)η2α] would be orthogonal
to s. This would imply that [θV, η2α] is proportional to V , and thus,

0 = [V, [θV, η2α]] = −[η2α, [V, θV ]] = 2|V |2|α|2η2α,

contradicting the fact that η2α 6= 0. We conclude that µ = α.
Suppose now that a = 0, so η ∈ pµ. Since a, gα+µ ⊆ sa⊕n, we obtain gα+µ ⊆ s by

Lemma 4.3. The vector [(1 − θ)V, (1 − θ)ηµ] = (1 + θ)([V, ηµ] − [θV, ηµ]) is nonzero
and orthogonal to s. Combining this with the fact that gα+µ ⊆ s, we get [V, ηµ] = 0,
so (1 + θ)[θV, ηµ] is nonzero and orthogonal to s. This now implies µ − α ∈ Σ+ and
[θV, ηµ] ∈ (a ⊕ n) ⊖ s. Furthermore, we must have µ = 2α, and thus, [θV, ηµ] ∈
((a⊕ n)⊖ s) ∩ gα = RV . Therefore,

0 = [V, [θV, η2α]] = −[θV, [η2α, V ]]− [η2α, [V, θV ]] = −[|V |2Hα, η2α] = −2|α|2|V |2η2α,

which yields a contradiction.
We now assume ηµ = 0 for every µ ∈ Σ+ \{α}. As a consequence, η = η0+(1−θ)ηα,

with 〈V, ηα〉 = 0. We only need to prove that η0 ∈ RHα. Indeed, if η0 is not proportional
to Hα, there exists H ∈ a such that 〈H, η0〉 = 0 and α(H) 6= 0. Therefore, H ∈ sa⊕n,
so we may find T ∈ t satisfying T + H ∈ s. Similarly, by taking η0 + xηα with
x = −|η0|2/|ηα|2 < 0, we obtain η0 + xηα ∈ sa⊕n, so T ′ + η0 + xηα ∈ s for an adequate
T ′ ∈ t. Thus, 0 = 〈[T +H, T ′ + η0 + xηα], η〉 = xα(H)|ηα|2, contradiction. Hence, we
may write η = aHα + (1− θ)ηα with a ∈ R, ηα ∈ gα ⊖ RV , and s⊥p = R(1− θ)V ⊕ Rη.
If a = 0, then note that a, g2α ⊆ sa⊕n, and Lemma 4.3 implies g2α ⊆ s. Together

with the fact that [(1− θ)V, (1− θ)ηα] = (1+ θ)([V, ηα]− [θV, ηα]) is orthogonal to s by
Proposition 2.4, we get [V, ηα] = 0.
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If a 6= 0, we can take the triple bracket [η, [η, (1 − θ)V ]], which is in s⊥p ⊆ a ⊕ p1.
Then, for any X ∈ g2α:

0 = 〈[η, [η, (1− θ)V ]], X〉 = 〈[η, (1− θ)V ], [η,X ]]〉
= 〈(1 + θ)(a|α|2V + [ηα, V ]− [θηα, V ]), 2a|α|2X − [θηα, X ]〉
= −a|α|2〈V, [θηα, X ]〉+ 2a|α|2〈[ηα, V ], X〉 = −3a|α|2〈[V, ηα], X〉,

and this yields [V, ηα] = 0, as stated. This finishes the proof of (ii).
To prove (iii), assume V = Hα+ ξα for a nonzero ξα ∈ gα, where α ∈ Λ, and consider

g = Exp(−ξα/|ξα|2) ∈ N . Then, the isomorphism Ad(g) preserves the subalgebra
t⊕ a⊕ n, and therefore, Ad(g)s ⊆ t⊕ a⊕ n is the Lie algebra of gSg−1, which induces
a homogeneous polar foliation on M with a non flat section. Observe that

Ad(g−1)∗(Hα + ξα) = e
− 1

|ξα|2
ad(θξα)ξα = ξα − |α|2

2|ξα|2
θξα,

which means that Ad(g)s ⊆ t ⊕ a ⊕ n is orthogonal to ξα, as desired. The rest of the
assertion follows from (ii). �

Now we continue with the proof of Theorem B. Recall that s̃ = s+(n⊖n1). According
to Lemma 4.4, s̃a⊕n 6= a⊕ n, so either s̃a⊕n has codimension one or two in a⊕ n.
If s̃a⊕n has codimension two, we have s̃a⊕n = sa⊕n, which is equivalent to s⊥p ⊆ a⊕ p1.
On the other hand, if s̃a⊕n is a codimension one subspace of a ⊕ n, then by [3,

Proposition 5.4] we have s̃a⊕n = (a ⊕ n) ⊖ Rξ, where ξ satisfies one of the following
possibilities:1

(i) ξ ∈ a.
(ii) ξ ∈ gα for a simple root α ∈ Λ.
(iii) ξ = Hα + ξα, where ξα ∈ gα is a nonzero vector and α ∈ Λ.

Note that ξ is also orthogonal to s. Hence, by Lemma 4.5, we obtain that s⊥p may be

assumed to be in a ⊕ p1 after conjugation by an element of N . The next step is to
determine the orthogonal projection sa⊕n.

Lemma 4.6. The action of S is orbit equivalent to the action of a connected closed
subgroup S̄ whose Lie algebra s̄ is contained in t⊕a⊕n, the normal space s̄⊥p is contained

in a ⊕ p1, and s̄⊥p ∩ p1 6= 0. Equivalently, the orthogonal projection of s̄⊥p on a is not
two-dimensional.

Proof. Assume s⊥p ∩ p1 is trivial. Let Ψ = {α ∈ Λ: πgα(s
⊥
p ) 6= 0}, where πgα : g → gα

denotes the orthogonal projection. Since the action is not hyperpolar, Ψ is a nonempty
subset of Λ. We prove aΨ =

⊕
α∈Ψ RHα ⊆ πa(s

⊥
p ). Here πa denotes the orthogonal

projection onto a. Indeed, assume H ∈ a ⊖ πa(s
⊥
p ). Then there exists a vector T ∈ t

such that T + H ∈ s. On the other hand, let α ∈ Ψ. We may find two vectors
ξ = ξ0 +

∑
β∈Λ(1 − θ)ξβ and η = η0 +

∑
β∈Λ(1 − θ)ηβ in s⊥p such that ξα 6= 0 and

〈ξα, ηα〉 = 0. By our assumption, ξ0 and η0 are linearly independent, which implies that
there exist unique constants x, y ∈ R such that ξα + xξ0 + yη0 ∈ sa⊕n. In particular,
we may find T ′ ∈ t satisfying T ′ + ξα + xξ0 + yη0 ∈ s. Thus, [T, ξα] + α(H)ξα =

1Note that Berndt and Tamaru’s proof does not rely on the additional condition that they impose
on s, namely, that s ∩ t = 0.
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[T +H, T ′+ ξα+xξ0+ yη0] ∈ s. Taking the inner product with ξ, we deduce α(H) = 0.
All in all, we obtain a ⊖ πa(s

⊥
p ) ⊆ aΨ = ∩α∈Ψ kerα, so aΨ ⊆ πa(s

⊥) (in particular, Ψ
has either one or two elements).
In order to prove the result, we assume first that for all α ∈ Ψ, the orthogonal

projection πgα(s
⊥
p ) is one-dimensional. Thus, we can take two orthogonal vectors ξ =

ξ0+
∑

α∈Ψ(1−θ)ξα and η = η0+
∑

α∈Ψ(1−θ)ηα that span s⊥p . Since the action is polar
nonhyperpolar, the vector [ξ, η] is nonzero and orthogonal to s. Observe that, because
Ψ ⊆ Λ, [θξα, ηα] ∈ a for all α ∈ Ψ, and α− β /∈ Σ, we have

[ξ, η] = (1 + θ)

(
∑

α∈Ψ

(
α(ξ0)ηα − α(η0)ξα

)
+
∑

α,β∈Ψ

[ξα, ηβ]

)
.

Since θn and s are orthogonal, we obtain

(1− θ)

(
∑

α∈Ψ

(
α(ξ0)ηα − α(η0)ξα

)
+
∑

α,β∈Ψ

[ξα, ηβ]

)
∈ s⊥p ⊆ a⊕ p1,

which means that all terms in p2 cancel out and s⊥p ∩ p1 6= 0, a contradiction.

Now, assume that there exists α ∈ Ψ such that πgα(s
⊥
p ) is two-dimensional. Since

Hα ∈ πa(s
⊥
p ), we may find Hα+

∑
β∈Ψ(1−θ)ξβ ∈ s⊥p , with each ξβ ∈ gβ , and ξα 6= 0, for

dimension reasons. Consider the element g = Exp(−ξα/|ξα|2) ∈ N . Then the action of
S is orbit equivalent to the action of gSg−1, whose Lie algebra is Ad(g)s ⊆ t ⊕ a ⊕ n.
Note that the equality

Ad(g−1)∗
(
Hα +

∑

β∈Ψ

ξβ

)
=
∑

β∈Ψ

ξβ −
|α|2
2|ξα|2

θξα

and 〈θn, s〉 = 0 imply
∑

β∈Ψ(1− θ)ξβ ∈ (Ad(g)s)⊥p ∩ p1.

To conclude, it suffices to prove that (Ad(g)s)⊥p ⊆ a ⊕ p1. This is the case if the

projection of Ad(g)s + (n ⊖ n1) onto a ⊕ n has codimension 2. As the projection of
Ad(g)s+(n⊖n1) onto a⊕n cannot be a⊕n by Lemma 4.4, our assertion is false whenever
this projection is of codimension one, that is, when the orthogonal complement of
Ad(g)s in a ⊕ n is spanned by

∑
β∈Ψ ξβ. By [3, Proposition 5.4], ξβ = 0 for all simple

roots β 6= α, and by Lemma 4.5(ii) we have (Ad(g)s)⊥p = (1 − θ)
(
Rξα ⊕ (aHα + ηα)

)

for a ∈ R and ηα ∈ gα. Thus, (Ad(g)s)⊥p ⊆ a ⊕ p1, contradicting the fact that the

projection of Ad(g)s+ (n⊖ n1) onto a⊕ n has codimension one. �

Due to the previous lemma, we may assume that s⊥p ∩ p1 is a nonzero subspace of g.
First we need:

Lemma 4.7. Let S be a closed subgroup of G whose Lie algebra s satisfies s ⊆ t⊕a⊕n,
and the orbits of S form a homogeneous foliation on M . Let V ∈ n be a vector such
that (1− θ)V ∈ s⊥p and g = Exp(V ) ∈ N . Then s ∩ t = Ad(g)(s ∩ t) = Ad(g)(s) ∩ k.

Proof. Since the orbit S ·o is principal, we have [s∩ t, s⊥p ] = 0. Hence, [s∩ t, (1−θ)V ] =

(1−θ)[s∩t, V ] = 0, which means ad(V )(s∩t) = 0 and Ad(g)(s∩t) = ead(V )(s∩t) = s∩t.
On the other hand, s∩Ad(g−1)k is the isotropy algebra of S at g−1 ·o, and since all orbits
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have the same type, it follows that dimAd(g)s ∩ k = dim s ∩ Ad(g−1)k = dim s ∩ k =
dim s ∩ t. Since s ∩ t = Ad(g)(s ∩ t) ⊆ Ad(g)(s) ∩ k, the equality follows. �

The next result is needed later to handle the two examples in Theorem B simultane-
ously.

Proposition 4.8. Let S be a connected closed subgroup of G inducing a homogeneous
polar foliation on M . Assume that its Lie algebra is contained in a maximally noncom-
pact Borel subalgebra t⊕a⊕n, and sa⊕n = z⊕ (n⊖vα), where vα is an abelian subspace

of gα, α ∈ Λ, and z is a subspace of a. Let S̃ be the connected Lie subgroup of G whose
Lie algebra is s̃ = z⊕ (n⊖ vα). Then, S and S̃ have the same orbits.

Proof. Denote by st the orthogonal projection of s onto t. We start by proving that
ŝ = st ⊕ s̃ is a Lie subalgebra of g. Since [gλ, gµ] ⊆ gλ+µ, for λ, µ ∈ Σ+, and t

is abelian, centralizes a, and normalizes each root space, in reality this amounts to
proving [st, gα ⊖ vα] ⊆ gα ⊖ vα.
Let U , V ∈ vα and T ∈ st. We choose X ∈ a⊕ n, such that T +X ∈ s. Since the

action of S is polar, we know that [s⊥p , s
⊥
p ] is perpendicular to s. Thus,

0 = 〈[(1− θ)U, (1− θ)V ], T +X〉 = 〈−(1 + θ)[θU, V ], T 〉
= −2〈[U, θV ], T 〉 = −2〈U, [V, T ]〉.

This proves [st, vα] ⊆ gα ⊖ vα.
Let T ∈ s∩ t and V ∈ vα. Since s∩ t ⊆ st, we have [T, V ] ∈ gα⊖vα. Let X ∈ gα⊖vα.

Then there exists TX ∈ t such that TX +X ∈ s. Thus, [T,X ] = [T, TX +X ] ∈ s, and
hence, 〈[T,X ], V 〉 = 0. We have proved [s ∩ t, vα] = 0.
Let T : s̃ → st⊖(s∩ t), X 7→ TX , be defined by TX +X ∈ s. This map is well-defined:

if TX , T
′
X ∈ t are such that TX +X , T ′

X +X ∈ s, subtracting, TX − T ′
X ∈ s ∩ t. Note

that T is surjective.
Given a nonzero V ∈ vα, we define ΦV : gα ⊖ vα → gα ⊖ vα by ΦV (X) = [TX , V ].

We prove that ΦV is self-adjoint. Indeed, given X , Y ∈ gα ⊖ vα ⊆ s̃, we obtain
[TX , Y ] + [X, TY ] + [X, Y ] = [TX +X, TY + Y ] ∈ s, which means

0 = 〈V, [TX+X, TY +Y ]〉 = −〈[TX , V ], Y 〉+〈[TY , V ], X〉 = −〈ΦV (X), Y 〉+〈X,ΦV (Y )〉.

We now prove that ΦV = 0. Assume this is not the case, so by the spectral theorem,
there exists a nonzero vector X ∈ gα ⊖ vα and a nonzero constant λ ∈ R such that
ΦV (X) = λX .
Observe that [V, T[V,X]] = 0. Indeed, [V, T[V,X]] ∈ gα ⊖ vα, and given any Y ∈ gα ⊖ vα

we obtain

0 = 〈[TY + Y, T[V,X] + [V,X ]], V 〉 = 〈[TY , [V,X ]] + [Y, T[V,X]], V 〉
= 〈[Y, T[V,X]], V 〉 = −〈Y, [V, T[V,X]]〉,

which implies [V, T[V,X]] = 0.
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Now, consider g = Exp( 1
λ
V ) and Z = TX +X − 1

2λ

(
T[V,X] + [V,X ]

)
∈ s. Then

Ad(g)Z = e
1
λ
ad(V )

(
TX +X − 1

2λ
T[V,X] −

1

2λ
[V,X ]

)

= TX +X − 1

2λ
T[V,X] −

1

2λ
[V,X ] +

1

λ

(
−λX + [V,X ]

)
− 1

2λ2
λ[V,X ]

= TX − 1

2λ
T[V,X] ∈ Ad(g)(s) ∩ k.

By Lemma 4.7, we obtain Ad(g)Z ∈ s ∩ t, and thus, Z ∈ Ad(g−1)(s ∩ t) = s ∩ t, a
contradiction. We conclude that ΦV is the zero map for every V ∈ vα.
Since Φvα ≡ 0 we have [st ⊖ (s∩ t), vα] = 0. Together with [s∩ t, vα] = 0, this proves

[st, vα] = 0. Therefore, by skew-symmetry of the elements of t, we get 〈[st, gα⊖vα], vα〉 =
〈gα⊖vα, [st, vα]〉 = 0. Since t normalizes gα, we finally get [st, gα⊖vα] ⊆ gα⊖vα, which
in turn implies that ŝ = st ⊕ z⊕ (n⊖ vα) = st ⊕ sa⊕n is a Lie subalgebra of t⊕ a⊕ n.

We can therefore consider the connected subgroup Ŝ of G whose Lie algebra is ŝ. We
prove that Ŝ, S and S̃ have the same orbits. Note that a priori we do not know if Ŝ is
closed, and thus the action of Ŝ may not be proper. Since S ⊆ Ŝ and sa⊕n = ŝa⊕n =

z⊕(n⊖vα), we deduce that S ·o = Ŝ ·o. The same argument may be applied to see that

Ŝ · o = S̃ · o. In particular, S · o = Ŝ · o = S̃ · o is simply connected (because AN is an
exponential Lie group acting simply transitively on M), which means that the isotropy

subgroups S ∩K and Ŝ ∩K are connected. As a consequence, the slice representation
of Ŝ at o is trivial because [ŝ ∩ k, s⊥p ] = [st, (a ⊖ z) ⊕ (1 − θ)vα] = (1 − θ)[st, vα] = 0.

Hence, using Lemma 2.3 twice, the groups S, Ŝ, and S̃ act with the same orbits . �

Since we can assume that s⊥p ∩ p1 has dimension one or two, we tackle these two
possibilities separately.

4.1. The case s⊥p ⊆ p1.

Assume s⊥p is contained in p1. We have that a and n ⊖ n1 are subspaces of sa⊕n.
A direct application of Lemma 4.3 gives n ⊖ n1 ⊆ s. Let ξ =

∑
α∈Λ(1 − θ)ξα and

η =
∑

α∈Λ(1− θ)ηα be orthonormal vectors in s⊥p , where ξα, ηα ∈ gα. Since the action

is polar nonhyperpolar, [ξ, η] = (1 + θ)
(∑

α,β∈Λ[ξα, ηβ] − [θξα, ηβ]
)
is a nonzero vector

orthogonal to s. By using the fact that n ⊖ n1 ⊆ s and [θξα, ηβ] = 0 when β 6= α, we
deduce [ξα, ηα] = 0, and [ξα, ηβ] + [ξβ, ηα] = 0. Thus, [ξ, η] = −(1 + θ)

∑
α∈Λ[θξα, ηα].

Since s⊥p is a two-dimensional Lie triple system, it determines a totally geodesic
submanifold that is isometric to a real hyperbolic space. Hence, there exists C > 0
such that ad(ξ)2η = Cη. Thus, we have for every α ∈ Λ,

C〈ξα, ηα〉 = C〈ξα, η〉 = 〈ξα, ad(ξ)2η〉 = 〈[ξ, ξα], [ξ, η]〉

= −
〈∑

β∈Λ

[ξβ, ξα]− [θξα, ξα], (1 + θ)
∑

γ∈Λ

[θξγ, ηγ ]
〉

=
〈
|ξα|2Hα, (1 + θ)

∑

β∈Λ

[θξβ, ηβ]
〉
= 0.

Proposition 4.9. sa⊕n = (a⊕ n)⊖ vα, where vα is an abelian subspace of gα
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Proof. Let λ, µ ∈ Λ with ξλ, ξµ 6= 0. Since 〈ξα, ηα〉 = 0 for all simple roots α ∈ Λ,
taking x = −|ξλ|2/|ξµ|2 < 0 we have ξλ + xξµ ∈ sa⊕n. Hence, we may find a T ∈ t

such that T + ξλ + xξµ ∈ s. On the other hand, choose a vector H ∈ a with λ(H) = 0
and µ(H) 6= 0. Since a ⊆ sa⊕n, there exists T ′ ∈ t such that T ′ + H ∈ s. As a
consequence, [T ′, ξλ]+x[T ′, ξµ]+xµ(H)ξµ = [T ′+H, T +ξλ+xξµ] ∈ s. This means that
0 = 〈[T ′, ξλ]+x[T ′, ξµ]+xµ(H)ξµ,

∑
α(1−θ)ξα〉 = xµ(H)|ξµ|2, which is a contradiction.

Thus, ξ = (1− θ)ξα1
for a fixed simple root α ∈ Λ. The same argument can be applied

to conclude that η = (1 − θ)ξβ for a simple root β ∈ Λ. We now prove that α = β.
Indeed, if α 6= β, we have [ξ, η] = (1− θ)([ξα, ηβ]− [θξα, ηβ]) = 0, contradicting the fact
that S has a non flat section.
Finally, vα = Rξα ⊕ Rηα is abelian by Lemma 4.5(ii). �

The expression obtained in Proposition 4.12 together with Proposition 4.8 with z = a

imply now that the action of S is orbit equivalent to item (ii) of Theorem B.

4.2. The case dim(s⊥p ∩ p1) = 1.
In this setting, we can choose two orthonormal vectors ξ = ξ0 +

∑
α∈Λ(1− θ)ξα and

η =
∑

α∈Λ(1 − θ)ηα that span s⊥p , where ξ0 ∈ a is nonzero and ξα, ηα ∈ gα for each
α ∈ Λ.
Since α− β /∈ Σ for α, β ∈ Λ, α 6= β, we have

[ξ, η] = (1 + θ)
(∑

α∈Λ

(
α(ξ0)ηα − [θξα, ηα]

)
+
∑

α,β∈Λ

[ξα, ηβ]
)
.

Recall that ad(ξ)2η = Cη for a positive constant C ∈ R. In particular, for any H ∈ a,

0 = 〈Cη, H〉 = 〈ad(ξ)2η, H〉 = 〈[ξ, η], [ξ,H ]〉 = −
〈
[ξ, η], (1 + θ)

∑

γ∈Λ

γ(H)ξγ

〉

= −2
∑

α∈Λ

α(ξ0)α(H)〈ξα, ηα〉 =
〈
−2
∑

α∈Λ

α(ξ0)〈ξα, ηα〉Hα, H
〉
,

which implies −2
∑

α∈Λ α(ξ0)〈ξα, ηα〉Hα = 0. Therefore,

(3) α(ξ0)〈ξα, ηα〉 = 0, for every α ∈ Λ.

On the other hand, since ad(η)2ξ = Cξ, for any H ∈ a,

C〈ξ0, H〉 = 〈Cξ,H〉 = 〈ad(η)2ξ, H〉 = 〈[η, ξ], [η,H ]]〉 =
〈
[ξ, η], (1 + θ)

∑

γ∈Λ

γ(H)ηγ

〉

= 2
∑

α∈Λ

α(ξ0)α(H)|ηα|2 =
〈
2
∑

α∈Λ

α(ξ0)|ηα|2Hα, H
〉
,

we obtain

(4) Cξ0 = 2
∑

α∈Λ

α(ξ0)|ηα|2Hα.
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Similarly, let α, β ∈ Λ be arbitrary, and X ∈ gα+β . Then,

0 = 〈Cξ,X〉 = 〈ad(η)2ξ, X〉 = 〈[η, ξ], [η,X ]〉 = −
〈
[ξ, η],

∑

µ∈Λ

(
[X, ηµ]− [X, θηµ]

)〉

= −
〈∑

γ∈Λ

γ(ξ0)ηγ,
∑

δ∈Λ

[X, θηδ]
〉
=
∑

γ,δ∈Λ

γ(ξ0)〈[ηγ, ηδ], X〉

= 〈α(ξ0)[ηα, ηβ] + β(ξ0)[ηβ, ηα], X〉.
Consequently, for any two simple roots α, β ∈ Λ, [(α− β)(ξ0) ηα, ηβ] = 0.

Lemma 4.10. We have 〈ξα, ηα〉 = 0 for all α ∈ Λ.

Proof. We define Ψ = {α ∈ Λ: ηα 6= 0}. We show that 〈ξα, ηα〉 = 0 for each α ∈ Ψ.
From (4) the map α ∈ Ψ 7→ α(ξ0) cannot be identically zero. Thus, fix α ∈ Ψ such

that α(ξ0) 6= 0. Hence (3) already implies 〈ξα, ηα〉 = 0.
Assume β ∈ Ψ satisfies 〈ξβ, ηβ〉 6= 0. In particular, from (3) we have β(ξ0) = 0. If

〈α, β〉 6= 0, the linear map ad(ηβ) : gα → gα+β is injective. From [(α− β)(ξ0) ηα, ηβ] = 0
we deduce (α − β)(ξ0)ηα = 0, so α(ξ0) = β(ξ0) = 0, contradiction. Thus, 〈α, β〉 = 0.
In particular, Hβ ∈ sa⊕n, so there exists T ∈ t such that T + Hβ ∈ s. On the other
hand, ξ0 + xηα + yηβ ∈ sa⊕n for y = −|ξ0|2/〈ξβ, ηβ〉 6= 0 and x = −y|ηβ|2/|ηα|2 6= 0, so
T ′ + ξ0 + xηα + yηβ ∈ s for an adequate T ′ ∈ t. Thus,

0 = 〈[T +Hβ, T
′ + ξ0 + xηα + yηβ], η〉

= 〈x[T, ηα] + y[T, ηβ] + y|β|2ηβ, η〉 = y|β|2|ηβ|2,
which gives us a contradiction. Therefore, 〈ξβ, ηβ〉 = 0 for all β ∈ Λ. �

Proposition 4.11. There exists a simple root α ∈ Λ and a constant a ∈ R such that
ξ = aHα + (1− θ)ξα. If ξα = 0 (that is, if ξ ∈ a), then η = (1− θ)ηα.

Proof. Firstly, suppose ξ ∈ a. Then, a direct application of Lemma 4.5 implies that η =
(1− θ)ηα for a simple root α ∈ Λ. In particular, (4) is reduced to Cξ0 = 2α(ξ0)|ηα|2Hα,
so ξ0 ∈ RHα, and the proposition follows.
Now, assume ξ0 /∈ a, and let α ∈ Λ be a simple root such that ξα 6= 0. We prove that

ξ = aHα + (1− θ)ξα.
Suppose that ξ0 is not proportional to Hα. Then there exists H ∈ a such that

〈H, ξ0〉 = 0 and α(H) 6= 0. As a consequence, H ∈ sa⊕n, and there exists T ∈ t for
which T +H ∈ s. On the other hand, ξ0+xξα ∈ sa⊕n for x = −|ξ0|2/|ξα|2 < 0 (because
〈ξα, ηα〉 = 0 by Lemma 4.10), and we may choose T ′ ∈ t such that T ′ + ξ0 + xξα ∈ s.
Thus, [T +H, T ′ + ξ0 + xξα] = x[T, ξα] + xα(H)ξα ∈ s. Taking the inner product with
ξ yields xα(H)|ξα|2 = 0, a contradiction.
Hence ξ0 ∈ RHα for any α ∈ Λ. The fact that simple roots are linearly independent

together with (4) implies ξβ = 0 for every β ∈ Λ \ {α}. �

So far we have proved that ξ must take the form aHα+(1− θ)ξα for a nonzero a ∈ R

and ξα ∈ gα (which may be zero). If ξα = 0, then we also know that η = (1 − θ)ηα.
If ξα 6= 0, then the third statement of Lemma 4.5 implies that the action of S is orbit
equivalent to an action of another closed connected subgroup S̃ for which the normal
space of S̃ · o at o takes the form s̃⊥p = {ξα, bHα+ (1− θ)να} for a constant b ∈ R and a
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να ∈ gα. Because of this, we may assume without loss of generality that s⊥p is spanned
by two orthogonal vectors ξ = aHα + (1− θ)ξα, η = (1− θ)ηα, with a 6= 0, ξα, ηα ∈ gα.
Recall from Lemma 4.5 that [ξα, ηα] = 0.
The key to finishing the proof lies in the following result:

Proposition 4.12. Assume s⊥p = span{ξ, η}, where ξ = aHα + (1 − θ)ξα and η =
(1 − θ)ηα, where a 6= 0, ξα, ηα ∈ gα are orthogonal commuting vectors, and α ∈ Λ.
Then:

(i) If ξα = 0, then the action of S has the same orbits as the action of the connected
subgroup of G whose Lie algebra is (a⊖ RHα)⊕ (n⊖ Rηα).

(ii) If ξα 6= 0, then there exists an abelian subspace vα ⊆ gα such that the action of S
is orbit equivalent to the action of the connected subgroup of G whose Lie algebra
is a⊕ (n⊖ vα).

Proof. If ξα = 0, then s⊥p = RHα⊕R(1−θ)ηα and sa⊕n = (a⊖RHα)⊕ (n⊖Rηα). Then,
statement (i) follows directly from Proposition 4.8.
We prove (ii). We consider the element g = Exp(− a

|ξα|2
ξα) ∈ N . Since s is orthogonal

to aHα + ξα and ηα, it follows that Ad(g)s is orthogonal to Ad(g−1)∗(aHα + ξα) and
Ad(g−1)∗ηα. By direct computation,

Ad(g−1)∗(aHα + ξα) = e
− a

|ξα|2
ad(θξα)

(aHα + ξα) ≡ ξα (mod θn),

Ad(g−1)∗ηα = e
− a

|ξα|2
ad(θξα)ηα ≡ ηα − a

|ξα|2
[θξα, ηα] (mod θn),

and since Ad(g)s ⊆ t ⊕ a ⊕ n, it follows that the vectors ξα and ηα − a
|ξα|2

[θξα, ηα] are

orthogonal to Ad(g)s. On the other hand, the action of S is polar, so [ξ, η] = a|α|2(1+
θ)ηα − 2[θξα, ηα] is also orthogonal to s. As a consequence, 〈a|α|2ηα− 2[θξα, ηα], s〉 = 0.
We deduce that

Ad(g−1)∗(a|α|2ηα − 2[θξα, ηα]) ≡ a|α|2ηα −
(
2 +

a2|α|2
|ξα|2

)
[θξα, ηα] (mod θn)

is also orthogonal to Ad(g)s. Because θn is already orthogonal to s, it follows that

a|α|2ηα −
(
2 + a2|α|2

|ξα|2

)
[θξα, ηα] is perpendicular to s. Since

∣∣∣∣∣
1 − a

|ξα|2

a|α|2 −2 − a2|α|2

|ξα|2

∣∣∣∣∣ = −2 < 0,

we deduce that ηα and [θξα, ηα] are both orthogonal to s. We conclude that (Ad(g)s)⊥p =
(1− θ)vα, where vα = span{ξα, ηα}, and thus, gSg−1 and the connected subgroup of G
whose Lie algebra is a⊕ (n⊖ vα) act with the same orbits due to Proposition 4.8. �

The proof of Theorem B follows now from the observation that Proposition 4.12(i)
corresponds to case (i), and Proposition 4.12(ii) corresponds to case (ii).
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