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Abstract. Volume comparison results are obtained for the volume of geo-
desic celestial spheres in Lorentzian manifolds and the corresponding objects

in Lorentzian space forms. Also, as a rigidity result it is shown that the vol-
ume of geodesic celestial spheres is independent of the instantaneous observer
if and only if the spacetime has constant curvature.

1. Introduction

Comparison theorems for the volumes of subregions of Riemannian manifolds
under some curvature hypothesis have played an important role in Riemannian ge-
ometry. For instance, the Bishop-Günther inequalities show lower (resp., upper)
bounds for volumes of geodesic balls and tubes by imposing upper (resp., lower)
bounds on the sectional curvature. These inequalities have been improved by as-
suming weaker conditions on the Ricci tensor or by considering the ratio between
the volumes of geodesic balls in the manifold and the model spaces (see, for example
[11] and the references therein).

When the attention is turned from Riemannian manifolds to spacetimes, various
difficulties emerge. For example, conditions on bounds for the sectional curvature
(resp., the Ricci tensor) easily produce manifolds of constant sectional curvature
(resp., Einstein) [3], [14]. This demands a revision of such conditions (see, for ex-
ample [2]). However, a most difficult task is related to the consideration of those
regions under investigation. An important characteristic of Riemannian manifolds
is that they have a Riemannian distance function which is continuous and whose
induced topology is the same as the topology of the manifold itself. Thus, several
geometric objects like geodesic spheres and tubes can be defined, at least locally,
by means of this function. These objects are also Riemannian manifolds whose geo-
metric properties influence and can even characterize the geometry of the ambient
manifold. Also, they have nice properties, such as compactness and an accept-
able behaviour with respect to other constructions. When dealing with general
semi-Riemannian manifolds, several difficulties arise, one of the most important
being that there is no “semi-Riemannian distance” function. In fact, a distance-
like function is only defined for spacetimes, but even in this case its properties are
completely different from those in the Riemannian setting (cf. [3].) For example,
the “Lorentzian distance” may not be continuous or bounded and geometric ob-
jects defined from it usually have awkward properties. Moreover, level sets of the
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Lorentzian distance function with respect to a given point are not compact and, al-
though some properties of those sets have been previously investigated (cf. [1], [9]),
they do not seem to be adequate for the investigation of volume-properties. There-
fore, different families of objects have been considered in Lorentzian geometry for
the purpose of investigating their volume properties. Among those, truncated light
cones [15], slabs bounded by spacelike hypersurfaces [2], compact geodesic wedges
in the chronological future of some point [7] and more generally some neighborhoods
covered by timelike geodesic emanating from a given point [8].

In this paper we consider a different family of geometric objects, namely the
geodesic celestial spheres. Roughly speaking, they are the set of points reached
after a fixed time travelling along radial geodesics emanating from a point m which
are orthogonal to a given timelike direction. In Relativity, a unit timelike vector
represents an instantaneous observer and the vector subspace which is orthogonal
to it is called the infinitesimal restspace, that is, the infinitesimal Newtonian uni-
verse where the observer perceives particles as Newtonian particles relative to his
rest position. Then, a geodesic celestial sphere is nothing but the image by the
exponential map of the celestial sphere in the infinitesimal restspace.

The paper is organized as follows. In Section 2 we introduce the notations and
conventions used throughout the paper and state the main results as theorems 2.2
and 2.3, which compare the volumes of sufficiently small geodesic celestial spheres
on a Lorentzian manifold with the corresponding ones in a Lorentzian space form.
Theorem 2.6 shows that local isotropy of Lorentzian manifolds can be recovered
from the properties of the volume of geodesic celestial spheres. The corresponding
proofs are carried out in Section 3. Finally, in Section 4 we state some results anal-
ogous to Theorem 2.6, showing that local isotropy can be detected by considering
the total curvatures of geodesic celestial spheres.

2. Geodesic celestial spheres

Let
(
Mn+1, g

)
be a Lorentzian manifold of dimension n+1 and signature (− +

· · ·+). We denote by ∇ the Levi-Civita connection of M . The curvature tensor
R is defined by using the convention RXY = ∇[X,Y ] − [∇X ,∇Y ] and RXY VW =
g(RXY V,W ), where X, Y , V and W are vector fields on M . We will also denote
by ρ(x, y) = trace{z 7→ R(x, z)y} and τ = traceρ the Ricci tensor and the scalar
curvature, respectively. With respect to an orthonormal basis {ei} they are written
as

ρ(X,Y ) =
n∑

i=0

ϵiRXeiY ei and τ =
n∑

i=0

ϵiρeiei ,

where ϵi = g(ei, ei).
A unit timelike vector ξ ∈ TmM is called an instantaneous observer, and ξ⊥

is called the restspace of ξ. The celestial sphere of radius r of ξ is defined by
Sξ(r) = {x ∈ ξ⊥; g(x, x) = 1} (c.f. [16]). If U is a sufficiently small neighborhood

of the origin in TmM , M̃ = expm(U∩ξ⊥) is an embedded Riemannian submanifold
of M , where expm : TmM → M denotes the exponential map of M at m. We will

denote by ∇̃ its Levi-Civita connection, R̃ is the curvature tensor, and in general,

we use the symbol ˜ to denote the corresponding geometrical objects in M̃ . We
define the geodesic celestial sphere of radius r associated to ξ as

(2.1) Sξ
m(r) = expm

({
x ∈ ξ⊥; ∥x∥ = r

})
= expm(Sξ(r)).
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For r sufficiently small, Sξ
m(r) is a compact submanifold of M̃ . Therefore, by

studying the volumes of geodesic celestial spheres in comparison to the volumes of
the corresponding celestial spheres one obtains a measure of how the exponential
map distorts volumes on spacelike directions.

As an immediate observation, note that for a given radius, the volume of celestial
geodesic spheres depends both on the observer field ξ ∈ TmM and the center point
m ∈ M . However, if (M, g) is assumed to be of constant sectional curvature, then
the volumes depend only on the radii, since Lorentzian space forms are locally
isotropic and conversely [17]. Indeed one may compute the volume of geodesic
celestial spheres as in the following.

Theorem 2.1. Let Mn+1(λ) be a Lorentzian manifold of constant sectional cur-
vature λ. Then, for each point m ∈ M and any instantaneous observer ξ ∈ TmM ,
the volume of the geodesic celestial sphere Sξ

m(r) satisfies

voln−1

(
Sξ
m(r)

)
=


cn−1

(
sin t

√
λ√

λ

)n−1

λ > 0

cn−1 λ = 0

cn−1

(
sinh t

√
−λ√

−λ

)n−1

λ < 0

where cn−1 = nπ
n
2 /
(
n
2

)
! is the volume of the (n− 1)-dimensional Euclidean sphere

of radius 1. Here
(
n
2

)
! = Γ

(
n
2 + 1

)
, where Γ is the Gamma function defined by

Γ(α) =

∫ ∞

0

e−ttα−1dt =

∫ ∞

−∞
e−t2 |t|2α−1dt

Proof. Let ξ ∈ TmM be an instantaneous observer and let γ be a radial geo-
desic leaving m orthogonally to ξ. Complete ξ to an orthonormal basis {e0 =
ξ, e1, . . . , en} of TmM in such a way that e1 = γ′(0). Let (x0, . . . , xn) denote the
normal coordinates on M in a neighborhood of m associated to {e0, . . . , en}. Then
the (n− 1)-dimensional volume of the geodesic celestial sphere is given by

(2.2) voln−1

(
Sξ
m(r)

)
= rn−1

∫
Sξ(1)

(√
det g

)
(expm(ru)) du

where du is the volume element of Sξ and gij = g
(

∂
∂xi ,

∂
∂xj

)
, i, j ∈ {1, . . . , n}.

Now, if M is a Lorentzian space form, the components of the metric tensor can
be expressed as follows. Along the geodesic γ, t ∂

∂xi (γ(t)) with i ∈ {2, . . . , n} is the
variational vector field of the variation Γ(t, s) = expm(t(e1+s ei)), and hence, it is a

Jacobi vector field with initial conditions
(
t ∂
∂xi

)
(γ(0)) = 0 and

(
t ∂
∂xi

)′
(γ(0)) = ei.

Put {E1, . . . , En} the parallel translation of {e1, . . . , en} along γ in M . Since
M has constant sectional curvature λ and γ is a spacelike geodesic, by solving the
Jacobi equation with the initial conditions above we have:

∂

∂x1
(γ(t)) = E1(γ(t))(

t
∂

∂xi

)
(γ(t)) = f(t)Ei(t), i ∈ {2, · · · , n}

where

f(t) =


(

sin t
√
λ√

λ

)
λ > 0

1 λ = 0(
sinh t

√
−λ√

−λ

)n−1

λ < 0
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Thus, one has

g(γ(t)) =

(
1 0

0
f(t)2

t2 Idn−1

)
and hence it follows from (2.2) that

voln−1

(
Sξ(r)

)
= rn−1

∫
Sξ

(
f(r)

r

)n−1

du = cn−1f(r)
n−1

which proves the result. �
If N(λ) is a Lorentzian manifold of constant sectional curvature λ, by Theorem

2.1, the volume of a geodesic celestial sphere is independent of the base point
m ∈ N and the instantaneous observer ξ ∈ TmN , so in this case we can use the
unambiguous notation

voln−1 (S(r)) = voln−1

(
Sξ
m(r)

)
For the purpose of stating the comparison results below, we will also denote by
volMn−1

(
Sξ
m(r)

)
the (n−1)-dimensional volume of the geodesic celestial sphere Sξ

m(r)
in the manifoldM of radius r and centerm associated to the instantaneous observer
ξ.

It is well known that the existence of a lower or upper bound on the sectional
curvature of a Lorentzian manifold (or more generally, a semi-Riemannian manifold)
forces it to be constant [13]. Therefore, it is natural to impose such curvature
bounds on the curvature tensor itself. Following [2], we will say that R ≥ λ or
R ≤ λ if and only if for all X, Y ,

(2.3) R(X,Y,X, Y ) ≥ λ
(
⟨X,X⟩⟨Y, Y ⟩ − ⟨X,Y ⟩2

)
,

or

(2.4) R(X,Y,X, Y ) ≤ λ
(
⟨X,X⟩⟨Y, Y ⟩ − ⟨X,Y ⟩2

)
,

respectively.
Note that condition (2.3) (resp., (2.4)) is equivalent to the sectional curvature

be bounded from below (resp., from above) on planes of signature (++) and from
above (resp., from below) on planes of signature (+−). It is interesting to point
out that such boundedness conditions hold for Robertson-Walker spacetimes, but
the behavior of the curvature may change from point to point. In general, let
(M, g) be a conformally flat Lorentz manifold whose Ricci tensor is diagonalizable,
ρ = diag[µ0, µ1, . . . , µn], where the distinguished eigenvalue µ0 corresponds to a
timelike eigenspace. If µ0 ≥ max{µ1, . . . , µn} (resp., µ0 ≤ min{µ1, . . . , µn}) then
R ≤ λ (resp., R ≥ λ) for some constant λ.

Theorem 2.2. Let (Mn+1, g) be a n + 1-dimensional Lorentzian manifold and
Nn+1(λ) a Lorentzian manifold of constant sectional curvature λ. The following
statements hold:

(i) If R ≥ λ then

volMn−1

(
Sξ
m(r)

)
≤ vol

N(λ)
n−1 (S(r))

for all sufficiently small r and all instantaneous observer ξ ∈ TmM .
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(ii) If R ≤ λ then

volMn−1

(
Sξ
m(r)

)
≥ vol

N(λ)
n−1 (S(r))

for all sufficiently small r and all instantaneous observer ξ ∈ TmM .

Moreover, the equality holds at (i) or (ii) for all ξ ∈ TmM if and only if M has
constant sectional curvature λ at m.

The previous theorem shows that the quotient volMn−1

(
Sξ
m(r)

)
/vol

N(λ)
n−1 (S(r)) ≤

1 (resp., ≥ 1) if (2.3) (resp., (2.4)) hold. Now, a more precise result can be stated
as follows

Theorem 2.3. Let (Mn+1, g) be a n + 1-dimensional Lorentzian manifold and
Nn+1(λ) a Lorentzian manifold of constant sectional curvature λ.

(i) If R ≥ λ then

volMn−1

(
Sξ
m(r)

)
vol

N(λ)
n−1 (S(r))

is nonincreasing for sufficiently small r and all instantaneous observer ξ ∈
TmM .

(ii) If R ≤ λ then

volMn−1

(
Sξ
m(r)

)
vol

N(λ)
n−1 (S(r))

is nondecreasing for sufficiently small r and all instantaneous observer ξ ∈
TmM .

Remark 2.4. Under the hypothesis in Theorem 2.3, if there exists 0 < r0 < r1 such

that
volMn−1

(
Sξ
m(r0)

)
vol

N(λ)
n−1 (S(r0))

=
volMn−1

(
Sξ
m(r1)

)
vol

N(λ)
n−1 (S(r1))

, then the sectional curvature is constant.

Indeed, since the quotient above is monotone, then it must be constant and thus
R = λ (see proof of Theorem 2.3).

Remark 2.5. We point out here that the proofs of Theorem 2.2 and Theorem 2.3
will only require conditions (2.3) - (2.4) to hold for spacelike planes.

Recall here that a Lorentzian manifold is said to be locally isotropic if for any
point m ∈ M and nonzero vectors X,Y ∈ TmM , with ⟨X,X⟩ = ⟨Y, Y ⟩ there exists

a local isometry of (M, g) fixing m which sends X to Y . Thus, volMn−1

(
Sξ
m(r)

)
does not depend on the instantaneous observer ξ ∈ TmM for such manifolds.
Moreover, since locally isotropic manifolds are locally homogeneous, it follows that
volMn−1

(
Sξ
m(r)

)
does not depend on the center m ∈ M either. The next theorem

shows that local isotropy can be recovered from the properties of the volume of
geodesic celestial spheres.

Theorem 2.6. Let
(
Mn+1, g

)
be a Lorentzian manifold. If the volume of the

geodesic celestial spheres Sξ
m(r) is independent of the observer field ξ ∈ TM , then

M has constant sectional curvature.
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3. Proofs of the theorems

The technique we will use to prove the theorems above relies on the possibility
of writing down the first terms in the power series expansion of the function r 7→
volMn−1

(
Sξ
m(r)

)
, for sufficiently small r. Recall that a scalar curvature invariant is

a polynomial in the components of the curvature tensor that does not depend on
the choice of orthonormal basis used to build it. For instance, τ =

∑
ij ϵiϵjRijij is

a first order scalar curvature invariant while

(3.1)
∥R∥2 =

∑
ijkl ϵiϵjϵkϵlR

2
ijkl,

∥ρ∥2 =
∑

ij ϵiϵjρ
2
ij ,

τ2,

∆τ =
∑

i ϵi∇2
iiτ,

are second order scalar curvature invariants, where {e0, . . . , en} is an orthonormal
basis of M and ∆ is the Laplacian operator in (M, g). Scalar curvature invariants
are a powerful tool in Riemannian geometry, but they may become useless when
the metric is allowed to have indefinite signature [4], [5].

Theorem 3.1. Let
(
Mn+1, g

)
be a Lorentzian manifold and ξ ∈ TmM an instan-

taneous observer. The (n− 1)-dimensional volume of the geodesic celestial spheres
associated to ξ ∈ TmM satisfies

voln−1

(
Sξ
m(r)

)
= cn−1r

n−1

(
1 +

A(ξ)

n
r2 +

B(ξ)

n(n+ 2)
r4 +O(r6)

)
(m)

where

A(ξ) = −1

6
(τ + 2ρξξ),

B(ξ) = − 1

120
∥R∥2 + 1

45
∥ρ∥2 + 1

72
τ2 − 1

20
∆τ − 1

15

n∑
i,j,k=1

R2
ξijk

+
1

18

n∑
i,j=1

R2
ξiξj +

2

45

n∑
i,j=1

ρijRξiξj +
1

45

n∑
i=1

ρ2ξi

+
1

30
ρ2ξξ +

1

18
τρξξ −

1

10
∆ρξξ −

1

20
∇2

ξξτ − 1

10
∇2

ξξρξξ.

Since radial geodesics starting from m orthogonally to ξ are the same for M

and M̃ , it is clear that the geodesic celestial sphere Sξ
m(r) of (M, g) associated to

the instantaneous observer ξ ∈ TmM coincides with the geodesic sphere GM̃
m (r) of

radius r centered at m on the Riemannian manifold M̃ for sufficiently small radius.
Now, the first terms in the power series expansion of the volume of sufficiently small
geodesic spheres are well known [11]:

(3.2)

vol
(
GM̃

m (r)
)

= cn−1r
n−1

{
1− τ̃

6n
r2

− r4

n(n+ 2)

(
∥R̃∥2

120
− ∥ρ̃∥2

45
− τ̃2

72
+

∆̃τ̃

20

)
+O(r6)

}
(m)
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For our purpose it is necessary to relate the scalar curvature invariants of the

Lorentzian manifold (M, g) with those of the Riemannian (M̃, g̃) at the base point
m as follows

Lemma 3.2. The first and second order curvature invariants of (M, g) and (M̃, g̃)
at the base point m satisfy

∥R̃∥2 = ∥R∥2 + 4

n∑
i,j,k=1

R2
ξijk − 4

n∑
i,j=1

R2
ξiξj

∥ρ̃∥2 = ∥ρ∥2 + 2
n∑

i=1

ρ2ξi − ρ2ξξ +
n∑

i,j=1

R2
ξiξj + 2

n∑
i,j=1

ρijRξiξj

τ̃ = τ + 2ρξξ

∆̃τ̃ = ∆τ + 2∆ρξξ +∇2
ξξτ + 2∇2

ξξρξξ +
4

9

n∑
i=1

ρ2ξi +
2

3

n∑
i,j,k=1

R2
ξijk.

Proof. It will follow from equations (3.12), (3.14) and (3.15) after straightforward
calculations. To prove the desired (3.12), (3.14) and (3.15) we proceed as follows.

Denote by ξ a local extension of ξ ∈ TmM to the normal bundle of M̃ . We recall the

following conventions for the shape tensor II, defined by ∇̃XY = ∇XY + II(X,Y ),
the second fundamental form σ given by II(X,Y ) = −σ(X,Y )ξ and the shape
operator T defined as g̃(TX, Y ) = σ(X,Y ) = g(II(X,Y ), ξ). Then the Weingarten,
Gauss and Codazzi equations read as follows:

TX = ∇Xξ(3.3)

R̃XY VW = RXY VW − σXV σYW + σXWσY V(3.4)

RXY Zξ = ∇̃XσY Z − ∇̃Y σXZ(3.5)

If γ is a radial geodesic in M̃ starting from m, then

∇̃γ′γ′ = ∇γ′γ′ = II(γ′, γ′) = 0

since M̃ = expm(ξ⊥). Thus taking covariant derivatives and evaluating at m, we
get

(3.6) ∇̃k
u···uσuu = 0, k ≥ 0,

for all u ∈ TmM̃ . For k = 0 we immediately get by polarization that

(3.7) σuv = 0 for all u, v ∈ TmM̃.

Now put k = 1 and take arbitrary a, b, c ∈ R, u, v, w ∈ TmM̃ . Then

0 = ∇̃au+bv+cwσau+bv+cw,au+bv+cw

= · · ·+ 2abc
(
∇̃uσvw + ∇̃vσuw + ∇̃wσuv

)
+ · · ·

and hence

(3.8) ∇̃uσvw + ∇̃vσuw + ∇̃wσuv = 0.

Then it follows from the Riccati equation that

Ruvwξ = ∇̃uσvw − ∇̃vσuw(3.9)

Ruwvξ = ∇̃uσvw − ∇̃wσuv(3.10)
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and from the last three equations we get

(3.11) ∇̃uσvw =
1

3
(Ruvwξ +Ruwvξ) .

Now, an immediate application of the Gauss equation and (3.7) shows that

(3.12) R̃xyvw = Rxyvw

for all x, y, v, w ∈ TmM̃ . Also, taking covariant derivatives in (3.4) we get

(3.13)

∇̃ZR̃XY VW = ∇ZRXY VW + σZXRξY VW + σZY RXξVW

+σZV RXY ξW + σZWRXY V ξ − σYW ∇̃ZσXV

−σXV ∇̃ZσYW + σY V ∇̃ZσXW + σXW ∇̃ZσY V

for all X, Y , Z, V , W vector fields on M̃ . Using (3.7) we get

(3.14) ∇̃zR̃xyvw = ∇zRxyvw

for all z, x, y, v, w ∈ TmM̃ .
Finally, taking covariant derivatives in (3.13) we obtain

∇̃2
XXR̃Y ZY Z = ∇2

XXRY ZY Z + σXX∇ξRY ZY Z + 2σ2
XY RξXξZ

+2σ2
XZRξY ξY − 4σXY σXZRξY ξZ + 2σXY RTXZY Z

+2σXZRY TXY Z + 2 ∇̃XσXY RξZY Z + 2 ∇̃XσXZRY ξY Z

−σY Y ∇̃XXσZZ − σZZ∇̃XXσY Y + σY Z∇̃XXσY Z

−2∇̃XσY Y ∇̃XσZZ + 2
(
∇̃XσY Z

)2
+4σXY ∇XRξZY Z + 4σXZ∇XRY ξY Z ,

and using (3.7) and (3.11) we get

(3.15)
∇̃2

xxR̃yzyz = ∇2
xxRyzyz +

2
3RxyxξRyzξz +

2
3RxzxξRyzyξ

−8
9RxyξyRxzξz +

2
9R

2
xyzξ +

2
9R

2
xzyξ +

4
9RxyzξRxzyξ

for all x, y, z ∈ TmM̃ .
Now Lemma 3.2 follows from the definitions of τ , ∥R∥2, ∥ρ∥2 and ∆τ . �

Proof of Theorem 3.1. It follows immediately from (3.2) using the relations in
Lemma 3.2.

Proof of Theorem 2.2. Let {e0 = ξ, e1, . . . , en} be an orthonormal basis of TmM .
It follows after some calculations that τ +2ρξξ =

∑n
i,j=1 Rijij . Hence by assuming

(i) (resp. (ii)) to hold for spacelike planes, we have τ + 2ρξξ ≥ n(n − 1)λ (resp.,
≤ n(n − 1)λ). Thus, by Theorem 2.1 and Theorem 3.1, we have for sufficiently
small r

volMn−1

(
Sξ
m(r)

)
= cn−1r

n−1

(
1− τ + 2ρξξ

6n
r2 +O(r4)

)
≤ cn−1r

n−1

(
1− n− 1

6
λ r2 +O(r4)

)
= vol

N(λ)
n−1 (S(r)) ,

which proves (i). (ii) is obtained in an analogous way.
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Now, suppose the equality holds for sufficiently small r and all ξ ∈ TmM . Then
τ+2ρξξ = n(n−1)λ for all ξ ∈ TmM and thus the sectional curvature K is constant
λ on planes of signature (++), since R ≥ λ. Indeed, given π a plane of signature
(++), take an orthonormal basis {x, y} of π and complete it to an orthonormal
basis {e0, e1 = x, e2 = y, . . . , en} of TmM with e0 timelike. Then

n∑
i,j=1

Rijij = τ + 2ρe0e0 = n(n− 1)λ

and since Rijij ≥ λ by assumption, it follows that the sectional curvatureK(π) = λ.
Now the constancy of the sectional curvature at m follows from [14]. �

Proof of Theorem 2.3. By using the results in Theorem 2.1 and Theorem 3.1 one
gets the first terms in the power series expansion of the quotient

volMn−1

(
Sξ
m(r)

)
vol

N(λ)
n−1 (S(r))

= 1 +

(
n(n− 1)λ− (τ + 2ρξξ)

6n

)
r2 +O(r4).

Therefore, if R > λ, then τ+2ρξξ > n(n−1)λ. Hence the derivative of the quotient
is negative for small r, and thus the quotient is decreasing, which shows (i), since
in case R = λ the quotient above is constant for sufficiently small r. The proof of
(ii) is completely analogous. �

Recall at this point that, by Theorem 2.1, the volume of a geodesic celestial
sphere in a constant curvature Lorentzian manifold is independent of center m ∈ M
and the instantaneous observer ξ ∈ TmM . In what follows we will show the converse
result in proving Theorem 2.6. For that, we need some algebraic preliminaries:

Lemma 3.3. Let (V, ⟨ , ⟩) a Lorentzian vector space and let W denote a covariant
tensor of type (0, 2k). If Wζ···ζ = 0 for all ζ with ⟨ζ, ζ⟩ = −1, then Wx···x = 0 for
all x ∈ V .

Proof. If ζ is a timelike vector, we have

0 = W

(
ζ√

−⟨ζ, ζ⟩
, . . . ,

ζ√
−⟨ζ, ζ⟩

)
=
(
−⟨ζ, ζ⟩

)−k

Wζ···ζ

and thus Wζ···ζ = 0. Now, if x is an arbitrary vector, for sufficiently small ϵ, ζ + ϵx
is timelike if ζ is timelike. Then,

0 = W (ζ + ϵx, . . . , ζ + ϵx) = Wζ···ζ + · · ·+ ϵ2kWx···x

Taking into account that ϵ is arbitrary, this immediately implies that

Wx···x = 0

which proves the result. �
Lemma 3.4. Let

(
Mn+1, g

)
be a Lorentzian manifold and let a, b, c be real numbers

with b ̸= 0. If a τ + b ρζζ = c at some point m ∈ M for all vector ζ ∈ TmM with
⟨ζ, ζ⟩ = −1, then the manifold is Einstein at m.

Proof. The hypothesis can equivalently be written as

(3.16) −a⟨ζ, ζ⟩τ + bρζζ + c⟨ζ, ζ⟩ = 0

which, using Lemma 3.3, implies that

(3.17) −a⟨x, x⟩τ + bρxx + c⟨x, x⟩ = 0
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for all x ∈ TmM . The result follows by linearity and symmetry of the Ricci tensor.
�

For the purpose of analyzing the coefficient B(ξ) in Theorem 3.1, we define the
following two tensors:

η(x, y) =

n∑
i,j,k=0

ϵiϵjϵkR(x, ei, ej , ek)R(y, ei, ej , ek)(3.18)

ω(x, y, v, w) =
n∑

i,j=0

ϵiϵjR(x, ei, y, ej)R(v, ei, w, ej)(3.19)

where, ϵi = ⟨ei, ei⟩ and x, y, v, w ∈ TmM . Note that the definitions above are
independent of the orthonormal basis chosen, and thus ω and η are well defined
tensors at a given point m ∈ M . We have the following result:

Lemma 3.5. Let
(
Mn+1, g

)
be an Einstein Lorentzian manifold. If

a ∥R∥2 + b ηζζ + c ωζζζζ = d

for all vectors ζ ∈ TmM with ⟨ζ, ζ⟩ = −1 and some a, b, c, d ∈ R with c ̸= 0,
3c ̸= (n+ 5)b, then M has constant sectional curvature at m.

Proof. Using Lemma 3.3, the hypothesis can be rewritten as

(3.20) a∥R∥2⟨x, x⟩2 − b⟨x, x⟩η(x, x) + c ω(x, x, x, x) = d⟨x, x⟩2

for all x ∈ TmM . For arbitrary α, β ∈ R and tangent vectors x and y we get

a∥R∥2⟨αx+ βy, αx+ βy⟩2 − b⟨αx+ βy, αx+ βy⟩η(αx+ βy, αx+ βy)

+c ω(αx+ βy, αx+ βy, αx+ βy, αx+ βy) = d⟨αx+ βy, αx+ βy⟩2

Hence, expanding the above equality and comparing the coefficients of α2β2 we get,
since α and β are arbitrary

(3.21)
2a∥R∥2(⟨x, x⟩⟨y, y⟩+ 2⟨x, y⟩2)− b(⟨x, x⟩ηyy + 4⟨x, y⟩ηxy + ⟨y, y⟩ηxx)

+2c(ωxxyy + ωxyxy + ωxyyx) = 2d(⟨x, x⟩⟨y, y⟩+ 2⟨x, y⟩2)
Setting y = ei in the above equality and contracting we have

(3.22)

2a(n+ 3)∥R∥2⟨x, x⟩ − b(∥R∥2⟨x, x⟩+ (n+ 5)ηxx)

+c

(
3ηxx + 2

n∑
i,j=0

⟨ei, ei⟩⟨ej , ej⟩ρijRxixj

)
= 2(n+ 3)d⟨x, x⟩

Since M is Einstein,
∑n

i,j=0⟨ei, ei⟩⟨ej , ej⟩ρijRxixj = τ2

(n+1)2 ⟨x, x⟩, and (3.22) be-
comes

(3.23)

(−b(n+ 5) + 3c)ηxx =

(
−2a(n+ 3)∥R∥2 + b∥R∥2

−2c
τ2

(n+ 1)2
+ 2d(n+ 3)

)
⟨x, x⟩

Contracting again,

(3.24)

(−b(n+ 5) + 3c)∥R∥2 =

(
−2a(n+ 3)∥R∥2 + b∥R∥2

−2c
τ2

(n+ 1)2
+ 2d(n+ 3)

)
(n+ 1)
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Substituting in (3.23) we get

(3.25) ηxx =
∥R∥2

n+ 1
⟨x, x⟩

which, by symmetry of η and the metric tensor, is equivalent to η = ∥R∥2

n+1 g. As a

consequence, using (3.20) we have

(3.26) ωxxxx =
1

c

(
−a∥R∥2 + b

∥R∥2

n+ 1
+ d

)
⟨x, x⟩2.

Next we show that (3.26) is an equivalent condition to constant sectional cur-
vature for Lorentzian manifolds. We proceed as follows: Let π ⊂ TmM be a
plane of signature (−+) and let {ζ, ϑ} be an orthonormal basis of π with ⟨ζ, ζ⟩ =
−1 = −⟨ϑ, ϑ⟩. The Jacobi operator Rζ(x) = R(ζ, x)ζ restricts to ζ⊥ by curvature
identities and thus, since it is self-adjoint, it is diagonalizable with respect to an
orthonormal basis {e1, . . . , en} of ζ⊥ with eigenvalues λ1(ζ), . . . , λn(ζ). Now, with
respect to the orthonormal basis of TmM , {e0 = ζ, e1, . . . , en}, equation (3.26) gives

n∑
i,j=1

R2
ζeiζej =

1

c

(
b− (n+ 1)a

n+ 1
∥R∥2 + d

)
.

Hence, the eigenvalues λα(ζ) are bounded independently of the timelike unit ζ as

λα(ζ)
2 = R2

ζeαζeα ≤
n∑

i,j=1

R2
ζeiζej =

1

c

(
b− (n+ 1)a

n+ 1
∥R∥2 + d

)
for all α = 1, . . . , n. Next, writing ϑ =

∑n
i=1 ϑ

iei on the basis above, one has for
the sectional curvature of π:

K(π) = −Rζϑζϑ = −
n∑

i,j=1

ϑiϑjRζeiζej = −
n∑

i=1

(ϑi)2λi(ζ).

Since ⟨ϑ, ϑ⟩ = 1 =
n∑

i=1

(ϑi)2, one has

|K(π)| ≤
n∑

i=1

(ϑi)2|λi(ζ)| ≤ K,

for some constant K. This shows that the sectional curvature is bounded on planes
of signature (+,−) and, therefore, M has constant curvature at m (cf. [3], [13],
[14]). �

Remark 3.6. Einstein Lorentzian manifolds satisfying (3.26) are called 2-stein. See
[10] for a different proof that 2-stein Lorentz manifolds have constant curvature.

Proof of Theorem 2.6. If the volume of each geodesic celestial spheres Sξ
m(r) is

independent of the instantaneous observer ξ ∈ TmM , then the coefficients A(ξ) and
B(ξ) in the power series expansion of voln−1(S

ξ
m(r)) in Theorem 3.1 are independent

of ξ. Now, if − τ+2ρξξ

6 = A(ξ) = constant, by Lemma 3.4, one has that that M is
Einstein, and thus ρ = τ

n+1g. Hence, it follows from the second coefficient B(ξ) in
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Theorem 3.1 that

constant = B(ξ) = − 1

120
∥R∥2 + 5n2 + 38n+ 61

360(n+ 1)2
τ2

+
1

18

n∑
i,j=1

R2
ξiξj −

1

15

n∑
i,j,k=1

R2
ξijk.

Now, as a consequence of Lemma 3.5, the sectional curvature of M is necessarily
constant. �

4. Total curvatures of geodesic celestial spheres

Since geodesic celestial spheres of sufficiently small radius are compact manifolds,
it makes sense to consider the total scalar curvatures obtained by integrating on
Sξ
m(r) the corresponding scalar curvature invariants. Clearly such total curvatures

are independent of the center of Sξ
m(r) and the instantaneous observer provided that

(M, g) is isotropic. The next theorems show a converse of this result in the spirit
of Theorem 2.6. In what follows, geometric objects defined on geodesic celestial
spheres will be denoted by τ̂ , ∥ρ̂∥2, and so on.

Theorem 4.1. Let (Mn+1, g) be a Lorentzian manifold with n > 3 such that∫
Sξ
m(r)

τ̂ only depends on the radius. Then, M has constant sectional curvature.

Proof. It follows as in Theorem 2.6 just considering the following expansion of the
total scalar curvature of Sξ

m(r) as:∫
Sξ
m(r)

τ̂ = cn−1r
n−1

{
(n−2)(n−1)

r2 − (n−3)(n−2)
6n (τ + 2ρξξ)

+ 1
n(n+2)

(
− (n+2)(n+3)

120 ∥R∥2 + n2+5n+21
45 ∥ρ∥2 + n2−7n−6

72 τ2

− (n−3)(n−2)
20 ∆τ − n2+6

15

n∑
i,j,k=1

R2
ξijk + n2+5n+12

18

n∑
i,j=1

R2
ξiξj

+2(n2+5n+21)
45

n∑
i,j=1

ρijRξiξj +
(n+3)(n+12)

45

n∑
i=1

ρ2ξi

+n2−15n−24
30 ρ2ξξ +

n2−7n−6
18 τρξξ − (n−3)(n−2)

20 ∇2
ξξτ

− (n−3)(n−2)
10 ∇2

ξξρξξ −
(n−3)(n−2)

10 ∆ρξξ

)
+O

(
r4
)}

�

Remark 4.2. If n = 2 then the geodesic celestial spheres are flat and thus their
total scalar curvatures vanish identically. Furthermore geodesic celestial spheres
are diffeomorphic with the Euclidean spheres if n = 3, and hence the total scalar
curvature is a topological invariant equal to 8π by the Gauss–Bonnet Theorem.
Therefore, it is useless for the purpose of geometrical characterizations.

Next, consider the second order scalar curvature invariants as defined in (3.1)

and note that
∫
Sξ
m(r)

∆̂τ̂ = 0. Hence, we will only consider the L2-norms of the

curvature tensor, the Ricci tensor and the scalar curvature of geodesic celestial
spheres.
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Theorem 4.3. Let (Mn+1, g) be a Lorentzian manifold with 2 < n ̸= 5. Then the
following statements are equivalent:

(i) The L2-norm of the curvature tensor of sufficiently small geodesic celestial
spheres only depends on the radius.

(ii) The L2-norm of the Ricci tensor of sufficiently small geodesic celestial
spheres only depends on the radius.

(iii) The L2-norm of the scalar curvature of sufficiently small geodesic celestial
spheres only depends on the radius.

(iv) (M, g) has constant sectional curvature.

Proof. Once again, the result follows from the following expansions

∫
Sξ
m(r)

∥R̂∥2 = cn−1r
n−1

{
2(n−2)(n−1)

r4 − (n−5)(n−2)
3n (τ + 2ρξξ)

+ 1
n(n+2)

(
59n2−93n−10

60 ∥R∥2 + 2(n2−37n+60)
45 ∥ρ∥2 + n2−11n+2

36 τ2

− (n−5)(n−2)
10 ∆τ + 2(29n2−43n−10)

15

n∑
i,j,k=1

R2
ξijk + (n+10)(3n−11)

45 ρ2ξξ

+ 4(n2−37n+60)
45

n∑
i,j=1

ρijRξiξj +
2(n2−67n+110)

45

n∑
i=1

ρ2ξi

− 35n2−41n−30
9

n∑
i,j=1

R2
ξiξj +

n2−11n+2
9 τρξξ − (n−5)(n−2)

10 ∇2
ξξτ

− (n−5)(n−2)
5 ∇2

ξξρξξ −
(n−5)(n−2)

5 ∆ρξξ

)
+O

(
r4
)}

∫
Sξ
m(r)

∥ρ̂∥2 = cn−1r
n−1

{
(n−2)2(n−1)

r4 − (n−5)(n−2)2

6n (τ + 2ρξξ)

+ 1
n(n+2)

(
−n3−9n2+16n−20

120 ∥R∥2 + n3+31n2−16n−120
45 ∥ρ∥2

+n3−13n2−16n+44
72 τ2 − (n−5)(n−2)2

20 ∆τ

−n3−9n2+4n−20
15

n∑
i,j,k=1

R2
ξijk + n3+7n2−16n−60

18

n∑
i,j=1

R2
ξiξj

+2(n3+31n2−16n−120)
45

n∑
i,j=1

ρijRξiξj +
n3+71n2−56n−220

45

n∑
i=1

ρ2ξi

+3n3−127n2−48n+460
90 ρ2ξξ +

n3−13n2−16n+44
18 τρξξ

− (n−5)(n−2)2

20 ∇2
ξξτ − (n−5)(n−2)2

10 ∇2
ξξρξξ

− (n−5)(n−2)2

10 ∆ρξξ

)
+O

(
r4
)}
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∫
Sξ
m(r)

τ̂2 = cn−1r
n−1

{
(n−2)2(n−1)2

r4 − (n−5)(n−2)2(n−1)
6n (τ + 2ρξξ)

+ 1
n(n+2)

(
− (n−2)(n−1)(n2+13n+10)

120 ∥R∥2 + n4−14n3+29n2−60n−188
72 τ2

+n4+10n3+43n2−14n+120
45 ∥ρ∥2 − (n−5)(n−2)2(n−1)

20 ∆τ

− (n−2)(n−1)(n2+3n+10)
15

n∑
i,j,k=1

R2
ξijk + n4+10n3+n2−8n+60

18

n∑
i,j=1

R2
ξiξj

+ 2(n4+10n3+43n2−14n+120)
45

n∑
i,j=1

ρijRξiξj − (n−5)(n−2)2(n−1)
10 ∇2

ξξρξξ

+ 3n4−90n3+59n2−272n−1180
90 ρ2ξξ +

n4+30n3+53n2+16n+220
45

n∑
i=1

ρ2ξi

− (n−5)(n−2)2(n−1)
20 ∇2

ξξτ + n4−14n3+29n2−60n−188
18 τρξξ

− (n−5)(n−2)2(n−1)
10 ∆ρξξ

)
+O

(
r4
)}

�
The expansions in theorems 4.1 and 4.3 above are obtained after some tedious

but straightforward calculations as in [6], so we omit them.
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