A note on the structure of algebraic curvature tensors ${ }^{1}$

J. Carlos Díaz-Ramos Eduardo García-Río

Abstract

It is shown that any algebraic curvature tensor on an n-dimensional vector space can be represented by at most $n(n+1) / 2$ symmetric bilinear forms.

2000 Mathematics Subject Classification: 53B20.
Key words and phrases: Algebraic curvature tensor, normal coordinates, Nash embedding theorem.

[^0]Let V be an n-dimensional vector space with an inner product \langle,$\rangle . An$ algebraic curvature tensor is an $F \in \otimes^{4}\left(V^{*}\right)$ satisfying the algebraic identities of the curvature tensor of a Riemannian manifold:

$$
\begin{aligned}
& F(x, y, z, w)=-F(y, x, z, w)=F(z, w, x, y) \\
& F(x, y, z, w)+F(y, z, x, w)+F(z, x, y, w)=0
\end{aligned}
$$

The space of algebraic curvature tensors $\mathcal{R}(V)$ is a $n^{2}\left(n^{2}-1\right) / 12$-dimensional vector space. Let $S(V)$ and $A(V)$ denote the spaces of symmetric and antisymmetric bilinear forms on V and define

$$
\begin{equation*}
F^{\phi}(x, y, z, w)=\phi(x, z) \phi(y, w)-\phi(y, z) \phi(x, w) \tag{1}
\end{equation*}
$$

for any $\phi \in S(V)$, and

$$
\begin{equation*}
F^{\psi}(x, y, z, w)=\psi(x, z) \psi(y, w)-\psi(y, z) \psi(x, w)-2 \psi(x, y) \psi(z, w) \tag{2}
\end{equation*}
$$

for any $\psi \in A(V)$. Then it follows that F_{ϕ} and F_{ψ} are algebraic curvature tensors. Further put

$$
\mathcal{A}(V)=\operatorname{span}\left\{F^{\phi}\right\}_{\phi \in A(V)} \subset \mathbb{R}(V), \quad \mathcal{S}(V)=\operatorname{span}\left\{F^{\psi}\right\}_{\psi \in S(V)} \subset \mathbb{R}(V) .
$$

Then the space of algebraic curvature tensors coincides with $\mathcal{S}(V)$ and $\mathcal{A}(V)$ (see also [1]):

Theorem 1 [3],[4] Let $\left(V^{n},\langle\rangle,\right)$ be an n-dimensional vector space with an inner product \langle,$\rangle . Then,$

$$
\mathcal{R}(V)=\mathcal{S}(V)=\mathcal{A}(V)
$$

Here, it is worth to emphasize that the proof of theorem above is constructive and it relies on basic linear algebra (cf. [3, Thm. 1.8.2]). By following that proof, one can obtain an estimate of the number of different symmetric tensor fields needed to express a given algebraic curvature tensor as follows. Let F be an algebraic curvature tensor and decompose it as $F=\sum_{i=1}^{\nu} \lambda_{i} F^{\phi_{i}}$ where ϕ_{i} belong to one of the following:
(i) For $i<j$ define $\phi_{i j}=\phi_{j i}=1, \phi_{a b}=0$ otherwise.

$$
i \rightarrow\left(\begin{array}{ccccccc}
& & & & & j & \tag{3}\\
0 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
& \cdot & & & & \cdot & \\
& & \cdot & \cdot & \cdot & 1 & \cdot \\
& & & \cdot & & \cdot & \\
& & & & \cdot & \cdot & \\
& & & & & \cdot & \\
& & & & & & \\
& & & & & & \cdot \\
& & & & & & 0
\end{array}\right)
$$

(ii) For $j \neq i \neq k, j<k$ define $\phi_{i j}=\phi_{j i}=\phi_{i k}=\phi_{k i}=1, \phi_{a b}=0$ otherwise. Then we have:
(iii) For i, j, k, l different, define $\phi_{i k}=\phi_{k i}=\phi_{j l}=\phi_{l j}=1, \phi_{a b}=0$ otherwise.

Then in matrix representation:
(5)

Therefore, the number of different symmetric tensors ϕ needed to express any given algebraic curvature tensor is at most $n(n-1)\left(n^{2}-n+2\right) / 8$. Our purpose in this note is to provide an alternative proof of $\mathcal{R}(V)=\mathcal{S}(V)$ which gives a better (although not optimal) estimation.
Theorem 2 Let $\left(V^{n},\langle\rangle,\right)$ be an n-dimensional vector space with an inner product \langle,$\rangle . Then, for any algebraic curvature tensor F \in \otimes^{4}\left(V^{*}\right)$ there exists at most $\frac{1}{2} n(n+1)$ symmetric tensor ϕ on V such that F is a linear combination of the associated algebraic curvature tensors F^{ϕ}.
Proof. First of all note that any algebraic curvature tensor F is geometrically realizable, i.e., there exists a smooth manifold M and a metric g on M such that the curvature tensor of (M, g) at some point $m \in M$ is exactly F. We mean that there is a linear isometry $\Phi:(V,\langle\rangle,) \rightarrow\left(T_{m} M, g_{m}\right)$ such that $F=\Phi^{*} R_{m}$, where R is the curvature tensor of g. For example, by using the theory of normal coordinates, define a metric in a neighborhood of the origin of \mathbb{R}^{n} as follows:

$$
\begin{equation*}
g_{i j}\left(x^{1}, \ldots, x^{n}\right)=\delta_{i j}-\frac{1}{3} \sum_{\alpha, \beta=1}^{n} F_{i \alpha j \beta} x^{\alpha} x^{\beta} \tag{6}
\end{equation*}
$$

where $F_{i j k l}=F\left(e_{i}, e_{j}, e_{k}, e_{l}\right)$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of \mathbb{R}^{n}. Then, we have at the origin $R_{m}=F$ with the identification $V=\mathbb{R}^{n}$ by means of the previous basis.

Now, it follows from the Nash embedding theorem [6] that M is isometrically embedded in $\mathbb{R}^{n+\nu}$ for some $\nu=\frac{3 n(n+3)}{2}$. Next, let $\left\{e_{1}, \ldots, e_{\nu}\right\}$ be an orthonormal basis of the normal space $T_{m}^{\perp} M$ at m and let $I I$ denote the second fundamental form of the immersion. For each tangent vectors $x, y \in T_{m} M$ one has $I I(x, y)=\sum_{i=1}^{\nu} \phi_{i}(x, y) e_{i}$, where $\phi_{i}(x, y)=g\left(I I(x, y), e_{i}\right)$ is a symmetric bilinear tensor for all $i=1, \ldots, \nu$.

Now, it follows from the Gauss Equation that

$$
\begin{aligned}
F(x, y, v, w) & =R_{m}(x, y, v, w) \\
& =g(I I(x, v), I I(x, v))-g(I I(x, w), I I(y, v)) \\
& =\sum_{i=1}^{\nu}\left\{\phi_{i}(x, v) \phi_{i}(y, w)-\phi_{i}(x, w) \phi_{i}(y, v)\right\} \\
& =\sum_{i=1}^{\nu} F^{\phi_{i}}(x, y, v, w)
\end{aligned}
$$

which proves the result.
Finally note that a geometric realization of an algebraic curvature tensor can be done locally in an analytic manifold, and thus the codimension in Nash's theorem can be reduced to $n(n+1) / 2$ as desired [5].

Remark 3 A tensor $K \in \otimes^{5}\left(V^{*}\right)$ is called an algebraic covariant derivative curvature tensor if it satisfies

$$
\begin{aligned}
& K(x, y, z, v, w)=-K(x, z, y, v, w)=K(x, v, w, y, z) \\
& K(x, y, z, v, w)+K(x, z, v, y, w)+K(x, v, y, z, w)=0 \\
& K(x, y, z, v, w)+K(y, z, x, v, w)+K(z, x, y, v, w)=0
\end{aligned}
$$

Systems of generators of the space of algebraic covariant derivative curvature tensors have been investigated by Fiedler [2], where such generators are constructed from symmetric tensors of type 2 and 3 . Next, consider

$$
\bar{S}(V)=\left\{\Phi \in \otimes^{3}\left(V^{*}\right): \Phi(x, y, z)=\Phi(x, z, y) \forall x, y, z \in V\right\}
$$

and define an algebraic covariant derivative curvature tensor $K^{\phi, \Phi}$ by

$$
\begin{aligned}
K^{\phi, \Phi}(x, y, z, v, w)= & \Phi(x, y, v) \phi(z, w)+\phi(y, v) \Phi(x, z, w) \\
& -\Phi(x, y, w) \phi(z, v)-\phi(y, v) \Phi(x, z, w)
\end{aligned}
$$

where ϕ is symmetric 2 -tensor $\phi \in S(V)$ and $\Phi \in \bar{S}(V)$.

Now, let K be an algebraic covariant derivative curvature tensor and note that it is geometrically realizable just extending (6) to

$$
g_{i j}\left(x^{1}, \ldots, x^{n}\right)=\delta_{i j}-\frac{1}{3} \sum_{\alpha, \beta=1}^{n} F_{i \alpha j \beta} x^{\alpha} x^{\beta}-\frac{1}{6} \sum_{\alpha, \beta, \gamma=1}^{n} K_{\alpha i \beta j \gamma} x^{\alpha} x^{\beta} x^{\gamma}
$$

Now, proceeding in the same way as in Theorem 2 we get

$$
\begin{equation*}
K(x, y, z, v, w)=\sum_{i=1}^{\nu} K^{\phi, \Phi}(x, y, z, v, w) \tag{7}
\end{equation*}
$$

where $\Phi_{i}(x, y, z)=\left(\nabla_{x} \phi_{i}\right)(y, z)$ in the notation of Theorem 2. This shows that the $K^{\phi, \Phi}$'s are a system of generators, and moreover an estimate for number of terms in (7) is obtained as $\nu=\frac{n(n+1)}{2}$.

1 Examples and applications

First of all, observe that for any two-dimensional manifold, the curvature tensor is expressed by the Ricci tensor and thus, any algebraic curvature tensor on a two-dimensional vector space is completely determined by exactly one F^{ϕ}.

The situation is more complicated in dimension three but, since the curvature tensor in that dimension is completely determined by the Ricci tensor, we still have the following

Theorem 4 Let F be an algebraic curvature tensor in a three-dimensional vector space. Then
(a) there exists exactly one symmetric $(0,2)$-tensor ϕ such that $F=F^{\phi}$ or, otherwise
(b) there exists exactly two distinct symmetric (0,2)-tensors ϕ_{1} and ϕ_{2} such that

$$
F=\kappa_{1} F^{\phi_{1}}+\kappa_{2} F^{\phi_{2}}
$$

the second case occurs if and only if the Ricci tensor has eigenvalues $\lambda_{1} \neq 0 \neq$ $\lambda_{2}, \lambda_{3}=\lambda_{1}+\lambda_{2}$.

Proof. Let F be an algebraic curvature tensor in a three-dimensional vector space V with inner product $\langle\rangle=,g(\cdot, \cdot)$. Let ρ^{F} denote the Ricci tensor and τ^{F} the scalar curvature of F. Then, it is known that:
(8) $F_{x y v w}=\frac{\tau^{F}}{2}\left(g_{x v} g_{y w}-g_{x w} g_{y v}\right)-\left(\rho_{x v}^{F} g_{y w}+\rho_{y w}^{F} g_{x v}-\rho_{x w}^{F} g_{y v}-\rho_{y v}^{F} g_{x w}\right)$.

Next, let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal basis diagonalizing ρ^{F} and put

$$
\rho^{F}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right) .
$$

Then, using (8) we have

$$
F_{i j k l}=\left(\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}}{2}-\lambda_{i}-\lambda_{j}\right) F_{i j k l}^{I d}
$$

where $F_{i j k l}^{I d}=\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}$. Define:

$$
\begin{gathered}
\alpha_{1}=\lambda_{1}-\lambda_{2}-\lambda_{3}=2 F_{2323} \\
\alpha_{2}=-\lambda_{1}+\lambda_{2}-\lambda_{3}=2 F_{1313} \\
\alpha_{3}=-\lambda_{1}-\lambda_{2}+\lambda_{3}=2 F_{1212}
\end{gathered}
$$

and consider the following cases:
(a.1) α_{1}, α_{2} and α_{3} are different from zero.

Let $\epsilon_{i}= \pm 1$ denote the sign of α_{i} and put

$$
\epsilon=\epsilon_{1} \epsilon_{2} \epsilon_{3} \quad \text { and } \quad \beta=\sqrt{\frac{\epsilon \alpha_{1} \alpha_{2} \alpha_{3}}{2}} .
$$

Now, define a symmetric tensor ϕ with respect to the basis above by

$$
\phi=\beta\left(\begin{array}{ccc}
\frac{1}{\alpha_{1}} & 0 & 0 \\
0 & \frac{1}{\alpha_{2}} & 0 \\
0 & 0 & \frac{1}{\alpha_{3}}
\end{array}\right)
$$

or, $\phi_{i j}=\frac{\beta}{\alpha_{i}} \delta_{i j}$. Then $F=\epsilon F^{\phi}$.
(a.2) $\alpha_{1} \neq 0$ and $\alpha_{2}=\alpha_{3}=0$.

Define

$$
\phi=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{\alpha_{1}}{2}
\end{array}\right)
$$

It is straightforward to check that $F=F^{\phi}$.
(a.3) If $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$, then $F=0$.
(b) $\alpha_{1}, \alpha_{2} \neq 0$ and $\alpha_{3}=0$.

Next we will show that it is not possible to express the given algebraic curvature tensor as $F=\gamma F^{\phi}$. On the contrary, suppose this can be achieved for certain γ and ϕ. Since $\alpha_{1}, \alpha_{2} \neq 0$ we have $F \neq 0$ and hence $\gamma \neq 0$. Then $F=\gamma F^{\phi}$ is equivalent to solving the following system:

$$
\begin{aligned}
\phi_{11} \phi_{22}-\phi_{12}^{2} & =0 \\
\phi_{11} \phi_{23} & =\phi_{13} \phi_{12} \\
\phi_{12} \phi_{23} & =\phi_{13} \phi_{22} \\
\phi_{11} \phi_{33}-\phi_{13}^{2} & =\frac{\alpha_{2}}{2 \gamma} \\
\phi_{12} \phi_{33} & =\phi_{13} \phi_{23} \\
\phi_{22} \phi_{33} & =\frac{\alpha_{1}}{2 \gamma}
\end{aligned}
$$

which is not hard to see that has no solution.
Nevertheless, it is possible to write $F=F^{\phi_{1}}+F^{\phi_{2}}$. For example take

$$
\phi_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{\alpha_{1}}{2}
\end{array}\right) \quad \phi_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \frac{\alpha_{2}}{2}
\end{array}\right)
$$

and the equality follows after a simple computation.

Remark 5 Note that, as an immediate application of Theorem 2, we obtain a criteria for non existence of immersions of a given manifold into a space of constant curvature. For instance, no Riemannian 3-manifold whose curvature tensor is as in Theorem 4-(b) at some point can be isometrically immersed as a hypersurface in a space of constant curvature.

References

[1] B. Fiedler; Determination of the structure of algebraic curvature tensors by means of Young symmetrizers, Sém. Lothar. Combin. 48 (2002), Art. B48d, 20 pp. (Electronic).
[2] B. Fiedler; Short formulas for algebraic covariant derivative curvature tensors via algebraic combinatorics, to appear.
[3] P. Gilkey; Geometric properties of natural operators defined by the Riemann curvature tensor, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
[4] P. Gilkey, R. Ivanova; The Jordan normal form of Osserman algebraic curvature tensors, Comment. Math. Univ. Carolin 43 (2002), no. 2, 231242.
[5] R. E. Greene; Isometric embeddings, Bull. Amer. Math. Soc. 75 (1969) 1308-1310
[6] J. Nash; The imbedding problem for Riemannian manifolds, Ann. of Math., (2) 63 (1956), 20-63.

Authors's address

Department of Geometry and Topology, Faculty of Mathematics
University of Santiago de Compostela
15782 Santiago de Compostela, (SPAIN)
E-mail: tjosec@usc.es, xtedugr@usc.es

[^0]: ${ }^{1}$ Supported by projects BFM2001-3778-C03-01 and BFM 2003-02949 (Spain)

