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Abstract

We discuss some volume comparison results for geodesic celestial
spheres, and the corresponding objects in Lorentzian space forms.
Also, some rigidity results are shown which allow one to detect lo-
cally isotropic Lorentzian manifolds by some instrinsic properties of
their celestial geodesic spheres.
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1 Introduction

In order to study the geometry of a semi–Riemannian manifold it is usual to
consider geometric objects associated to the metric structure of such manifold.
The geodesic spheres of a Riemannian manifold are a good example of this in the
definite setting. We could define a geodesic sphere in a Riemannian manifold as
the set of points which are at a fixed Riemannian distance from another point
called the center. One important problem in Riemannian geometry consists of
answering the following question: ‘to what extend do the properties of a geodesic
sphere influence or even determine the geometry of the ambient manifold?’. This
problem is difficult to solve in such a generality although some results where
obtained. See for example [2] and [3].

When we turn our attention to Lorentzian manifolds several difficulties arise.
The Riemannian distance function is continuous and it induces the topology of
the Riemannian manifold as a topological manifold. Also, this function has
several nice properties. For example, its level sets are compact submanifolds
of the ambient manifold. In the Lorentzian setting there is no such distance.
Certainly, in a spacetime a distance–like function can be defined, but its prop-
erties are completely different from those of its Riemannian counterpart. For
example, this ‘Lorentzian distance’ may fail to be continuous or bounded and
geometric objects defined from it usually have a weird behavior. Furthermore,
the level sets of this distance function are no longer compact and they do not
seem to be adequate for the investigation of volume properties.

As a consequence, one important issue in Lorentzian geometry is to find an
interesting family of submanifolds whose properties reflect those of the ambient
manifold and which are defined from the Lorentzian structure itself. Previous
attempts have been done with the following families: truncated light cones
[11], slabs bounded by spacelike hypersurfaces [1], compact geodesic wedges in
the chronological future of some point [6] and some neighborhoods covered by
timelike geodesics emanating from a given point [7].

In [4] a different family was introduced, the so called geodesic celestial
spheres. Intuitively speaking, a geodesic celestial sphere is the set of the points
reached after a fixed time, called the radius, travelling along radial geodesics
emanating from a fixed point, called the center, which are orthogonal to a given
timelike direction. Such a timelike direction represents in General Relativity the
infinitesimal Newtonian universe where the observer perceives particles as New-
tonian particles relative to its rest position. Thus, a geodesic celestial sphere is
exactly the image by the exponential map of the celestial sphere in the infinites-
imal restspace. Indeed, we will see how the geometry of Lorentzian manifolds
of constant sectional curvature can be characterized by means of the volume of
geodesic celestial spheres and what we will call the total scalar curvatures of
geodesic celestial spheres.

The paper is organized as follows. In Section 2 we introduce the basic con-
cepts and notation. We define a geodesic celestial sphere in detail and establish
the concept of simple Weyl invariant together with the total scalar curvatures of
a geodesic celestial sphere associated to a simple Weyl invariant. Also, we give
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some formulae which we will use in Section 3 to achieve the desired characteri-
zation. In fact, in Section 3 we remind some previous results obtained in [4] and
then we state Theorem 3.4 which is the core of this paper. We also give some
consequences of this theorem which essentially consist of the characterization of
constant curvature Lorentzian manifold by means of integrals of low order Weyl
invariants along geodesic celestial spheres.

2 Geodesic Celestial Spheres and simple Weyl
invariants

Let
(
Mn+1, g

)
be a Lorentzian manifold of dimension n+1 and signature (− +

· · ·+). We will always supose n > 2. We denote by∇ the Levi-Civita connection
of M . The curvature tensor R is defined by using the convention RXY =
∇[X,Y ] − [∇X ,∇Y ] and RXY VW = g(RXY V,W ), where X, Y , V and W are
vector fields on M . We will also denote by ρ(x, y) = trace{z 7→ R(x, z)y} and
τ = trace ρ the Ricci tensor and the scalar curvature, respectively. With respect
to an orthonormal basis {ei} they are written as

ρ(X,Y ) =
n∑

i=0

ϵiRXeiY ei and τ =
n∑

i=0

ϵiρeiei ,

where ϵi = g(ei, ei).
A unit timelike vector ξ ∈ TmM is called an instantaneous observer, and ξ⊥ is

called the restspace of ξ. The celestial sphere of radius r of ξ is defined by Sξ(r) =
{x ∈ ξ⊥; g(x, x) = 1} (c.f. [10]). If U is a sufficiently small neighborhood of the

origin in TmM , M̃ = expm(U ∩ ξ⊥) is an embedded Riemannian submanifold
of M , where expm : TmM → M denotes the exponential map of M at m. We
will denote by ∇̃ its Levi-Civita connection, R̃ is the curvature tensor, and in
general, we use the symbol ˜ to denote the corresponding geometric objects in
M̃ . We define the geodesic celestial sphere of radius r associated to ξ as

Sξ(r) = expm
({

x ∈ ξ⊥; ∥x∥ = r
})

= expm(Sξ(r)). (1)

For r sufficiently small, Sξ(r) is a compact Riemannian submanifold of M̃ .
From now on, all geometric objects defined on a geodesic celestial sphere will
be denoted using the symbol ˆ.

Following [9], we say that a simple Weyl invariant of order 2ν, W , is a
differentiable map

W : M −→ R
x 7→ W (x) = trace(⊗νR)

where trace is a product of traces with respect to some permutation of the
indexes of the ν–fold tensor product of the curvature tensor ⊗νR. We note here
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that the above construction does not require the manifold M to be a Lorentzian
manifold.

More generally, a Weyl invariant is a differentiable map which consists of the
product of traces of the tensor product of the curvature tensor and its covariant
derivatives. The order of a Weyl invariant is the number of derivatives of the
metric tensor involved in its construction. A scalar curvature invariant is a linear
combination of Weyl invariants, and hence, the vector space of scalar curvature
invariants is generated by Weyl invariants. As a consequence, a simple Weyl
invariant is nothing but a Weyl invariant whose definition does not involve
covariant derivatives of the curvature tensor. We say that two simple Weyl
invariants W1 and W2 are equal if and only if their value is the same for each
point x ∈ M and each manifold M .

Let {e1, . . . , en} be an orthonormal basis. The easiest simple Weyl invariant
is the scalar curvature τ =

∑
i,j Rijij , which is a simple Weyl invariant of order

2. Moreover, we have the following basis for the vector space of scalar curvature
invariants of order 4:

∥R∥2 =
∑

ijkl ϵiϵjϵkϵlR
2
ijkl,

∥ρ∥2 =
∑

ij ϵiϵjρ
2
ij ,

τ2,

∆τ =
∑

i ϵi∇2
iiτ,

(2)

where ϵi = g(ei, ei). Among them, ∥R∥2, ∥ρ∥2 and τ2 are simple Weyl invariants.

Remark 2.1 Let us define W = trace(⊗νR) a simple Weyl invariant of order
2ν. In a manifold of constant sectional curvature λ the curvature tensor can be
written as R = λR0 where

R0
xyvw = g(x, v)g(y, w)− g(x,w)g(y, v).

It is clear that

W = trace(⊗νR) = λνtrace(⊗νR0) = ĀW (n+ 1)λν ,

where n + 1 is the dimension of the manifold and ĀW is a polynomial that
only depends on W . Moreover, if the manifold has dimension 0 or 1 then
R = 0 and hence we have ĀW (0) = ĀW (1) = 0. Thus, ĀW can be written as
ĀW (n+ 1) = n(n+ 1)AW (n), where AW is another polynomial. Then, for the
constant curvature case

W = n(n+ 1)AW (n+ 1)λν .

We again emphasize that this construction does not use the fact that M is
Lorentzian, so it is true for all semi–Riemanian manifold.

Let W be a simple Weyl invariant. We define

W(ξ, r) =

∫
Sξ
m(r)

Ŵ ,
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which we will call the total scalar curvature of the geodesic celestial sphere Sξ(r)
associated to the simple Weyl invariant W . Here, Ŵ denotes the corresponding
simple Weyl invariant in the geodesic celestial sphere Sξ(r).

The aim of this paper is to use the total scalar curvatures of geodesic celestial
spheres to characterize the Lorentzian manifolds of constant sectional curvature.
In order to achieve such an objective we will proceed as follows. A geodesic
celestial sphere of the manifold M at m is a geodesic sphere of the Riemannian
submanifold M̃ = expm(U ∩ ξ⊥), where U is a sufficiently small neighborhood
of 0 ∈ TmM . It is possible to obtain a power series expansion for a total scalar
curvature of a geodesic sphere in terms of the scalar curvature invariants of the
ambient Riemannian manifold. Thus, it suffices to write the scalar curvature
invariants of M̃ in terms of the curvature tensors of M if we want to express the
total scalar curvatures of geodesic celestial spheres in terms of geometric objects
of the ambient manifold M . This is essentially what the subsequent theorems
describe in more detail.

We have the following result [5]:

Proposition 2.2 Let (Mn+1, g) be a Lorentzian manifold and W a Weyl in-
variant. Denote by W(ξ, r) the corresponding total scalar curvature of Sξ(r)
associated to the Weyl invariant W of order 2ν. Then, we have the following
series expansion:

W(ξ, r)= cn−1r
n−1−2ν

{
(n− 1)(n− 2)AW (n− 1)

− (n− 2)(n− 2ν − 1)

6n
AW (n− 1)τ̃(m)r2

+
r4

n(n+ 2)

(
B1

W (n)∥R̃∥2 +B2
W (n)∥ρ̃∥2 +B3

W (n)τ̃2

− (n− 2)(n− 2ν − 1)

20
AW (n− 1)∆̃τ̃

)
(m) +O (r6)

}
,

(3)

where AW is the polynomial defined in Remark 2.1 and B1
W , B2

W and B3
W are

polynomials verifying

2B1
W (n) + (n− 1)B2

W (n) + n(n− 1)B3
W (n)

=
(n− 2) (n+ 2) (n− 1− 2 ν) (5n− 10 ν − 7)

360
AW (n− 1).

(4)

Thus, the above theorem gives us a power series expansion for the total scalar
curvature of a geodesic celestial sphere associated to a simple Weyl invariant in
terms of scalar curvature invariants of the submanifold M̃ at the point m. So,
our aim now is to express the scalar curvature invariants of M̃ in terms of the
the curvature tensor of M at m. This is achieved by means of the following
theorem [4]:
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Proposition 2.3 Let (Mn+1, g) be a Lorentzian manifold. Let us denote by

M̃ = expm(U∩ ξ⊥) where U is a sufficiently small neighborhood of 0 ∈ TmM so

that M̃ is an embedded submanifold of M . Then, we have the following relations
at m:

∥R̃∥2 = ∥R∥2 + 4

n∑
i,j,k=1

R2
ξijk − 4

n∑
i,j=1

R2
ξiξj

∥ρ̃∥2 = ∥ρ∥2 + 2

n∑
i=1

ρ2ξi − ρ2ξξ +

n∑
i,j=1

R2
ξiξj + 2

n∑
i,j=1

ρijRξiξj

τ̃ = τ + 2ρξξ

∆̃τ̃ = ∆τ + 2∆ρξξ +∇2
ξξτ + 2∇2

ξξρξξ +
4

9

n∑
i=1

ρ2ξi +
2

3

n∑
i,j,k=1

R2
ξijk.

Now using theorems 2.2 and 2.3 we get:

Theorem 2.4 Let (Mn+1, g) be a Lorentzian manifold and let W be a simple
Weyl invariant. Denote by W(ξ, r) the corresponding total scalar curvature
of Sξ(r) associated to the Weyl invariant W of order 2ν. Then, we have the
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following series expansion:

W(ξ, r)= cn−1r
n−1−2ν

{
(n− 1)(n− 2)AW (n− 1)

− (n− 2)(n− 2ν − 1)

6n
AW (n− 1) (τ + 2ρξξ) (m) r2

+
r4

n(n+ 2)

(
B1

W (n)∥R∥2 +B2
W (n)∥ρ∥2 +B3

W (n)τ2

− (n− 2)(n− 2ν − 1)

20
AW (n− 1)∆τ

+
(
4B1

W (n)− (n− 2)(n− 2ν − 1)

30
AW (n− 1)

) n∑
i,j,k=1

R2
ξijk

+
(
−4B1

W (n) +B2
W (n)

) n∑
i,j=1

R2
ξiξj

+

(
2B2

W (n)− (n− 2)(n− 2ν − 1)

45
AW (n− 1)

) n∑
i=1

ρ2ξi

+
(
−B2

W (n) + 4B3
W (n)

)
ρ2ξξ + 4B3

W (n)τρξξ

− (n− 2)(n− 2ν − 1)

10
AW (n− 1)∆ρξξ

− (n− 1)(n− 2ν − 1)

20
∇2

ξξτ + 2B2
W (n)

n∑
i,j=1

ρijRξiξj

− (n− 2)(n− 2ν − 1)

10
∇2

ξξρξξ

)
(m) +O (r6)

}
,

(5)
where AW is the polynomial defined in Remark 2.1 and B1

W , B2
W and B3

W are
polynomials satisfying Equation (4).

Of particular interest is the case W = 1, where we consider W as a simple
Weyl invariant of order 0. Then W(ξ, r) is nothing but the volume of a geodesic
celestial sphere [4].

Theorem 2.5 Let
(
Mn+1, g

)
be a Lorentzian manifold and ξ ∈ TmM an in-

stantaneous observer. The (n− 1)–dimensional volume of the geodesic celestial
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spheres associated to ξ ∈ TmM satisfies

voln−1

(
Sξ
m(r)

)
= cn−1r

n−1
{
1− r2

6n
(τ + 2ρξξ)(m)

+
r4

n(n+ 2)

(
− 1

120
∥R∥2 + 1

45
∥ρ∥2 + 1

72
τ2 − 1

20
∆τ

− 1

15

n∑
i,j,k=1

R2
ξijk +

1

18

n∑
i,j=1

R2
ξiξj +

2

45

n∑
i,j=1

ρijRξiξj

+
1

45

n∑
i=1

ρ2ξi +
1

30
ρ2ξξ +

1

18
τρξξ −

1

10
∆ρξξ

− 1

20
∇2

ξξτ − 1

10
∇2

ξξρξξ

)
(m) +O (r6)

}
.

3 Characterization of constant curvature Loren-
tzian manifolds

The most trivial simple Weyl invariant one think of is W = 1, which has order 0.
As we have seen, the total scalar curvature of geodesic celestial spheres associ-
ated to this invariant is nothing but the the (n−1)–dimensional volume of those
geodesic celestial spheres. In [4] several results were obtained for this volume.
We briefly state here the main theorems of that work. The proof is not difficult
to obtain from the power series expansion of Theorem 2.5. Afterwards, we will
see how these results can be generalized for total scalar curvatures associated
to simple Weyl invariants of arbitrary order.

First, we fix some notation. We will denote by volMn−1

(
Sξ(r)

)
the (n −

1)–dimensional volume of the geodesic celestial sphere Sξ(r). For the special
case when M is isotropic we can simply denote by volMn−1 (S(r)) the (n − 1)–
dimensional volume of any geodesic celestial sphere Sξ(r) with ξ unit timelike.

Theorem 3.1 Let (Mn+1, g) be a Lorentzian manifold and Nn+1(λ) a Lorent-
zian manifold of constant sectional curvature λ. The following statements hold:

(i) If R(x, y, x, y) ≥ λ
(
g(x, x)g(y, y)− g(x, y)2

)
for all spacelike x, y ∈ TM

then
volMn−1

(
Sξ(r)

)
≤ vol

N(λ)
n−1 (S(r))

for all sufficiently small r and all instantaneous observer ξ ∈ TmM .

(ii) If R(x, y, x, y) ≤ λ
(
g(x, x)g(y, y)− g(x, y)2

)
for all spacelike x, y ∈ TM

then
volMn−1

(
Sξ(r)

)
≥ vol

N(λ)
n−1 (S(r))

for all sufficiently small r and all instantaneous observer ξ ∈ TmM .

Moreover, the equality holds at (i) or (ii) for all unit timelike ξ if and only if
M has constant sectional curvature λ at m.
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We also have a Gromov like theorem.

Theorem 3.2 Let (Mn+1, g) be a Lorentzian manifold and Nn+1(λ) a Loren-
tzian manifold of constant sectional curvature λ.

(i) If R(x, y, x, y) ≥ λ
(
g(x, x)g(y, y)− g(x, y)2

)
for all spacelike x, y ∈ TM

then
volMn−1

(
Sξ
m(r)

)
vol

N(λ)
n−1 (S(r))

is nonincreasing for sufficiently small r and all instantaneous observer
ξ ∈ TmM .

(ii) If R(x, y, x, y) ≤ λ
(
g(x, x)g(y, y)− g(x, y)2

)
for all spacelike x, y ∈ TM

then
volMn−1

(
Sξ
m(r)

)
vol

N(λ)
n−1 (S(r))

is nondecreasing for sufficiently small r and all instantaneous observer
ξ ∈ TmM .

We also have a rigidity result which is the one we would like to generalize
for total scalar curvatures of geodesic celestial spheres. First, we introduce the
concept of isotropy.

A Lorentzian manifold is said to be locally isotropic if for any point m ∈ M
and vectors X,Y ∈ TmM with g(X,X) = g(Y, Y ) there exists a local isometry
of (M, g) fixing m and sending X to Y . A locally isotropic Lorentzian manifold
is always locally homogeneous. Obviously, in this case, W(ξ, r) is independent
of ξ ∈ TM . The following theorem shows that local isotropy can be recovered
from the properties of the volume of geodesic celestial spheres.

Theorem 3.3 Let (Mn+1, g) be a Lorentzian manifold. If the volume of the
geodesic celestial spheres Sξ

m(r) is independent of the observer field ξ ∈ TM ,
then M has constant sectional curvature.

In what follows we will generalize the above theorem. Then we will get some
consequences paying special attention to simple Weyl invariants of low order.

The main theorem of this paper is the following:

Theorem 3.4 Let (Mn+1, g) be a Lorentzian manifold and W a simple Weyl
invariant of order 2ν. Let us denote by W(ξ, r) the total scalar curvature of
Sξ(r) associated to W . Suppose W(ξ, r) is independent of the infinitesimal
observer ξ ∈ TM and

n ̸= 2ν + 1,

AW (n− 1) ̸= 0

4B1
W (n) +B2

W (n)− (n− 2)(n− 1− 2ν)

15
AW (n− 1) ̸= 0,

4(n+ 2)B1
W (n)− 3B2

W (n)− (n− 2)(n− 1)(n− 1− 2ν)

30
AW (n− 1) ̸= 0.

(6)
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Then M has constant sectional curvature.

Proof. As W(ξ, r) is independent of ξ it is clear that the coefficient of r2 in
the power series expansion (3) of Theorem 2.2 must be constant, which means,
taking into account our hypotesis that

τ + 2ρξξ = k,

with k constant. This implies −τ gξξ + 2ρξξ + k gξξ = 0 for all timelike vector
ξ. Therefore, for sufficiently small ϵ, ξ + ϵ v is timelike if ξ is timelike. Then,

−τ gξξ + 2ρξξ + k gξξ

+2ϵ(−τ gξv + 2ρξv + k gξv)

+ϵ2(−τ gvv + 2ρvv + k gvv) = 0.

As ϵ is arbitrary small, we finally get

−τ gvv + 2ρvv + k gvv = 0

for all v ∈ TM . Taking traces in the above equality shows that τ is constant, and
hence the manifold is Einstein. As a consequence, the power series expansion
(3) becomes

W(ξ, r)= cn−1r
n−1−2ν

{
(n− 1)(n− 2)AW (n− 1)

− (n− 2)(n− 2ν − 1)(n− 1)

6n(n+ 1)
AW (n− 1)τ r2

+
r4

n(n+ 2)

(
B1

W (n)∥R∥2(m)

+
(
4B1

W (n)− (n− 2)(n− 2ν − 1)

30
AW (n− 1)

) n∑
i,j,k=1

R2
ξijk

+
(
−4B1

W (n) +B2
W (n)

) n∑
i,j=1

R2
ξiξj

+
τ2

(n+ 1)2

[
(n− 2)B2

W (n) + (n− 1)2B3
W (n)

])
+O (r6)

}
,

So, as the coefficient of r4 must also be constant we get

B1
W (n)∥R∥2

+
(
4B1

W (n)− (n− 2)(n− 2ν − 1)

30
AW (n− 1)

) n∑
i,j,k=1

R2
ξijk

+
(
−4B1

W (n) +B2
W (n)

) n∑
i,j=1

R2
ξiξj = constant
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Using a similar argument as before it can be shown that the manifold is 2–stein
(see [4]) provided that

4B1
W (n) +B2

W (n)− (n− 2)(n− 1− 2ν)

15
AW (n− 1) ̸= 0,

4(n+ 2)B1
W (n)− 3B2

W (n)− (n− 2)(n− 1)(n− 1− 2ν)

30
AW (n− 1) ̸= 0.

But 2–stein Lorentzian manifolds have constant sectional curvature [4], [8], so
the result follows. �

Corollary 3.5 Let (Mn+1, g) be a Lorentzian manifold and W a simple Weyl
invariant. If for each small radius r and each ξ ∈ TM , W(ξ, r) is the same
as in a (n + 1)–Lorentzian manifold of constant sectional curvature λ and the
conditions in (6) hold, then M is a Lorentzian manifold of constant sectional
curvature λ.

Proof. A Lorentzian manifold of constant sectional curvature is locally isotro-
pic, so the total scalar curvatures of geodesic celestial spheres do not depend
on the infinitesimal observer ξ. Thus, from Theorem 3.4 it follows that M has
also constant sectional curvature. Moreover, it is easy to see that the power
series expansion (5) of W(ξ, r) for a Lorentzian manifold of constant sectional
curvature becomes:

W(ξ, r) = cn−1 (n− 1)(n− 2)AW (n− 1) rn−1−2ν
{
1− (n− 2ν − 1)

6
λ r2

+
(n− 1− 2ν)(5n− 10ν − 7)

360
λ2 r4 +O (r6)

}
.

Comparing the coefficient of r2 in (5) with the corresponding one in the equation
above gives τ = n(n+ 1)λ, and hence the curvature is exactly λ. �

As an example of Theorem 3.4 we will show how the low order simple Weyl
invariants can be used for characterizing the Lorentzian manifolds of constant
sectional curvature.

Corollary 3.6 Let (Mn+1, g) be a Lorentzian manifold with n > 3 such that∫
Sξ(r)

τ̂ only depends on the radius. Then, M has constant sectional curvature.

Proof. Just use Theorem 3.4 taking into account that [3]:

Aτ (n− 1) = 1,

B1
τ (n) = − (n+ 2)(n+ 3)

120
,

B2
τ (n) =

n2 + 5n+ 21

45
,

B3
τ (n) =

n2 − 7n− 6

72
.
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As a matter of fact we note here that when n = 2, geodesic celestial spheres are
flat, and hence all scalar curvature invariants vanish. When n = 3 geodesic ce-
lestial spheres are 2–dimensional Riemannian manifolds. Therefore, by Gauss–
Bonnet Theorem

∫
Sξ(r)

τ̂ = 8π, which makes τ useless for the purpose of char-

acterizing Lorentzian manifolds by means of total scalar curvatures. �

Corollary 3.7 Let (Mn+1, g) be a Lorentzian manifold with n ̸= 5. The fol-
lowing statements are equivalent:

(i)
∫
Sξ(r)

∥R̂∥2 depends only on the radius;

(ii)
∫
Sξ(r)

∥ρ̂∥2 depends only on the radius;

(iii)
∫
Sξ(r)

τ̂2 depends only on the radius;

(iv) M has constant sectional curvature.

Proof. Using the results in [3] we get (we do not include B3
W (n) in the following

table as it can be obtained form (4)):

W AW (n− 1) B1
W (n) B2

W (n)

∥R∥2 2 59n2−93n−10
60

2(n2−37n+60)
15

∥ρ∥2 n− 2 −n3−9n2+16n−20
120

n3+31n2−16n−120

τ2 (n− 1)(n− 2) − (n−2)(n−1)(n2+13n+10)
120

n4−14n3+29n2−60n−188
72

Now the result follows from Theorem 3.4. �
for n > 3, n ̸= 7

W AW (n − 1) B1
W (n) B2

W (n)

τ3 (n − 2)2(n − 1)2 − (n−2)2(n−1)2(n2+21n+14)
120

(n−2)(n−1)(n4+18n3+118n2+105n)
45

τ∥ρ∥2 (n − 2)2(n − 1) − (n−2)(n−1)(n3−n2−28n−28)
120

(n−2)(n4+38n3+28n2+15n+238)
45

τ∥R∥2
120 45

ρ̆ 120 45

⟨ρ ⊗ ρ, R̄⟩ 120 45

⟨ρ, Ṙ⟩ 120 45

R̆ 120 45

˘̄R 120 45
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For the L2–norma of the super–Ricci tensor η (call it however you want)
everything works:

A∥η∥2(n− 1) = 4(n− 2),

B1
∥η∥2(n) =

119n3 − 347n2 + 360n+ 36

30
,

B2
∥η∥2(n) =

4(n3 + 7n2 + 140n− 396)

45
,

B3
∥η∥2(n) =

n3 − 21n2 − 56n+ 60

18
.
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