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1 Introduction

The main purpose of this paper is to contribute to the study of the following
problem:

To what extent do the properties of sufficiently small geodesic spheres
determine the Riemannian geometry of the ambient space?

This program, originated mainly from the study of harmonic manifolds has been
intensively studied over the last years, with special attention to the relation be-
tween the curvature of a Riemannian manifold and the volume of sufficiently
small geodesic spheres. Indeed, it was conjectured by A. Gray and L. Vanhecke
that the two-point homogeneous spaces should be locally detected by the vol-
umes of their geodesic spheres [10]. Here, it is worth mentioning that although
the answer is known to be true for many important cases, it is still an open
problem. Other kinds of geometric objects, related to the extrinsic geometry of
geodesic spheres (the shape operator, the mean curvature, the quadratic norm of
the second fundamental form, etc.) have also been studied [8]. Moreover, many
intrinsic analytic and algebraic objects of geodesic spheres have been used to
understand the geometry of the ambient space. It was shown in [8] that two-
point homogeneous spaces can be characterized by comparing the spectrum of
the geodesic spheres with that of the geodesic spheres in these model spaces.
Also, Ricci and Weyl tensors, as well as scalar curvature and quadratic curvature
invariants were investigated by B. Y. Chen and L. Vanhecke in [8].

Motivated by the volume conjecture of A. Gray and L. Vanhecke above, many
attempts have been done in searching for geometric quantities which would al-
low to characterize the two-point homogeneous spaces (which will be called
model spaces) among Riemannian manifolds with holonomy group adapted to
the model space. However, in all such characterizations two quantities are re-
quired. In fact, any combination of the volume, the total scalar curvature and
the L2-norm of the second fundamental form lead to the desired result.

Our purpose in this paper is to complete the previous studies by considering
quadratic curvature invariants and investigating the corresponding L2-norms on
geodesic spheres. In doing that, we compute the first terms in their power series
expansions. Several conclusions are obtained from those coefficients, specially
we remark that the L2-norm of the curvature tensor of geodesic spheres suffices
to characterize the model spaces.

The paper is organized as follows. In Section 2 we recall some notation and
use the Gauss equation of the geodesic spheres to write down the first terms in
the power series expansions of their curvature tensor (Lemma 3). This allows us

to obtain the power series expansions of τ̃2, ∥ρ̃∥2 and ∥R̃∥2. The first terms in
the power series expansions of the corresponding total invariants are derived in
§3 and Section 4 is devoted to point out some applications of those expressions.
Here we would like to emphasize that we tried to keep calculations at minimum,
deleting almost all of them in order to make the paper more readable.

1



2 Preliminaries

Let (Mn, g) be an n-dimensional smooth Riemannian manifold of class C∞.
We will denote by ∇ the Levi–Civita connection and put RXY = ∇[X,Y ] −
[∇X ,∇Y ] for the curvature tensor, where X, Y are vector fields on M . Also,
RXY ZW = g(RXY Z,W ) and the Ricci tensor and the scalar curvature are given
by ρXY =

∑n
i=1 RXeiY ei and τ =

∑n
i=1 ρeiei , with respect to an orthonormal

basis {e1, . . ., en}. For simplicity, here and in what follows, we use the notation
ρij = ρeiej , Rijkl = Reiejekel , ∇ijk... = ∇eiejek... and so on. Also, by

∑
c,d... · · ·

we mean
∑n

c,d,...=1 · · ·.
A scalar curvature invariant is a polinomial in the components of the curva-

ture tensor that does not depend on the choice of the orthonormal basis used to
build it. The order of a scalar curvature invariant is, by definition, the number
of derivatives of the metric tensor involved in it. Let I(k, n) the vector space of
curvature invariants of order 2k, m ∈ M and {e1, . . . , en} an orthonormal basis
of the tangent space at m, TmM .

For n ≥ 2, I(1, n) has dimension 1 and is generated by τ . For n ≥ 4, I(2, n)
has dimension 4 and a basis is given by

τ2 ∥ρ∥2 =
∑

ρ2ij ∥R∥2 =
∑

R2
ijkl ∆τ =

∑
∇2

iiτ,(1)

For n ≥ 6, I(3, n) is generated by the following basis [10]:

τ3 τ∥ρ∥2 τ∥R∥2

ρ̆ =
∑

ρijρjkρik ⟨ρ⊗ ρ,R⟩ =
∑

ρijρklRikjl

⟨ρ, Ṙ⟩ =
∑

ρijRiklrRjklr R̆ =
∑

RijklRijrsRklrs

˘̄R =
∑

RijklRirksRjrls ∥∇τ∥2 =
∑

(∇iτ)
2

∥∇ρ∥2 =
∑

(∇iρjk)
2 α(ρ) =

∑
∇iρjk∇jρik

∥∇R∥2 =
∑

(∇iRjklr)
2 ⟨∆ρ, ρ⟩ =

∑
ρij∇2

kkρij

⟨∇2τ, ρ⟩ =
∑

(∇2
ijτ) ρij ⟨∆R,R⟩ =

∑
Rijkl∇2

rrRijkl

τ∆τ ∆2τ

(2)

2.1 Intrinsic geometry of geodesic spheres

In what follows, we denote by Gm(r) the geodesic sphere with center m and
radius r, that is Gm(r) = {p ∈ M/d(m, p) = r}. It is always supposed that
r < i(m), the injectivity radius at the point m ∈ M . Due to this, Gm(r) is
a hypersurface of M and moreover Gm(r) = expm(Sn−1(r)), where Sn−1(r) =
{x ∈ TmM/ ∥x∥ = r} is the sphere of radius r in the tangent space to M at m.

¿From now on we are interested in studying the intrinsic geometry of geodesic
spheres and its relation to the geometry of the ambient manifold. The Gauss
equation provides us an explicit relation between the curvature tensor R̃ of the
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submanifold and the curvature tensor R of the ambient manifold by means of
the second fundamental form σ:

R̃XY ZW = RXY ZW + σ(X,Z)σ(Y,W )− σ(X,W )σ(Y,Z)(3)

where X,Y, Z,W are vector fields on Gm(r). Further, let (x1, . . ., xn) be a
system of normal coordinates on M in a neighborhood around m. For our
purposes, the following expansion of the components of the second fundamental
form will be needed

Lemma 1 [8] We have the following series expansion for the second fundamen-
tal form of a geodesic sphere at p = expm(ru):

σij(p)=
{

1
r δij −

r
3Riuju − r2

4 ∇uRiuju − r3
(

1
10∇

2
uuRiuju + 1

45

∑
c RcuiuRcuju

)
− r4

24

(
2
3 ∇

3
uuuRiuju + 1

3

∑
c Rcuju∇uRcuiu + 1

3

∑
c Rcuiu∇uRcuju

)
− r5

720

(
30
7 ∇4

uuuuRiuju + 45
7

∑
c ∇uRcuiu∇uRcuju

+ 24
7

∑
c Rcuju∇2

uuRcuiu + 24
7

∑
c Rcuiu∇2

uuRcuju

+ 32
21

∑
c,d RcuduRcuiuRduju

)}
(m) +O(r6)

Next, recall that the relation, at every point p = expm(ru), between the
mean curvature hm of the geodesic sphere centered at m and the the volume
density function θm (with respect to normal coordinates at m) is ([7, p. 193])

hm(p) =
n− 1

r
+

∂

∂r
log θm(expm(ru)).(4)

Now, one has

Lemma 2 [8] We have the following series expansion for the volume density
function at p = expm(ru):

θm(p)=
{
1− r2

6 ρuu(m)− r3

12∇uρuu

+ r4

24

(
− 3

5∇
2
uuρuu + 1

3ρ
2
uu − 2

15

∑
c,d R

2
cudu

)
+ r5

120

(
− 2

3∇
3
uuuρuu + 5

3ρuu∇uρuu − 2
3

∑
c,d Rcudu∇uRcudu

)
+ r6

720

(
− 5

7∇
4
uuuuρuu + 3ρuu∇2

uuρuu + 5
2 (∇uρuu)

2
+ 2

3ρuu
∑

c,d R
2
cudu

− 5
9ρ

3
uu − 8

7

∑
c,d Rcudu∇2

uuRcudu − 15
14

∑
c,d (∇uRcudu)

2

− 16
63

∑
c,d,e RcuduRcueuRdueu

)}
(m) +O(r7)
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Thus, proceeding as in [8, Theorem 4.2] one obtains the first terms in the
power series expansion of the curvature tensor of a small geodesic sphere as
follows

Lemma 3 Let R̃ be the curvature tensor of a small geodesic sphere Gm(r) and
p = expm(ru). Then:

R̃ijkl(p) = R̃−2r
−2+ R̃0(m)+ R̃1(m)r+ R̃2(m)r2+ R̃3(m)r3+ R̃4(m)r4+O(r5)

where

R̃−2 = δikδjl − δilδjk

R̃0 = Rijkl +
1
3 (δilRjuku − δikRjulu + δjkRiulu − δjlRiuku)

R̃1 = ∇uRijkl +
1
4 (δil∇uRjuku − δik∇uRjulu + δjk∇uRiulu − δjl∇uRiuku)

R̃2 = 1
2∇

2
uuRijkl +

1
10

(
δil∇2

uuRjuku − δik∇2
uuRjulu + δjk∇2

uuRiulu

−δjl∇2
uuRiuku

)
+ 1

45

∑
c (δilRcujuRcuku − δikRcujuRculu

+δjkRcuiuRculu − δjlRcuiuRcuku) +
1
9 (RiukuRjulu −RiuluRjuku)

R̃3 = 1
6∇

3
uuuRijkl +

1
36

(
δil∇3

uuuRjuku − δik∇3
uuuRjulu + δjk∇3

uuuRiulu

−δjl∇3
uuuRiuku

)
+ 1

72

∑
c (δilRcuku∇uRcuju − δikRculu∇uRcuju

+ δilRcuju∇uRcuku − δikRcuju∇uRculu + δjkRcuiu∇uRculu

+δjkRculu∇uRcuiu − δjlRcuiu∇uRcuku − δjlRcuku∇uRcuiu)

+ 1
12 (Riuku∇uRjulu −Riulu∇uRjuku −Rjuku∇uRiulu +Rjulu∇uRiuku)

R̃4 = 1
24 ∇

4
uuuuRijkl − 1

168

(
δik∇4

uuuuRjulu − δil∇4
uuuuRjuku

−δjk∇4
uuuuRiulu + 1

168δjl∇
4
uuuuRiuku

)
+ 1

30

(
Riuku∇2

uuRjulu

−Riulu∇2
uuRjuku −Rjuku∇2

uuRiulu +Rjulu∇2
uuRiuku

)
− 1

210

∑
c

(
δikRcuju∇2

uuRculu + δikRculu∇2
uuRcuju − δilRcuju∇2

uuRcuku

−δilRcuku∇2
uuRcuju − δjkRcuiu∇2

uuRculu − δjkRculu∇2
uuRcuiu

+δjlRcuiu∇2
uuRcuku + δjlRcuku∇2

uuRcuiu

)
− 1

16 (∇uRiulu∇uRjuku

−∇uRiuku∇uRjulu)− 1
112

∑
c (δik∇uRcuju∇uRculu

−δil∇uRcuju∇uRcuku − δjk∇uRcuiu∇uRculu + δjl∇uRcuiu∇uRcuku)

+ 1
135

∑
c (RjuluRcuiuRcuku −RiuluRcujuRcuku −RjukuRcuiuRculu

+RiukuRcujuRculu)− 2
945

∑
c,d (δikRcuduRculuRduju

−δilRcuduRcukuRduju − δjkRcuduRculuRduiu + δjlRcuduRcukuRduiu)

Next lemmas show the first six terms in the power series expansions of the
quadratic norms of the curvature and Ricci tensors and the quadratic scalar
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curvature of geodesic spheres. Although the first four terms were previously ob-
tained in the work of B.Y. Chen and L. Vanhecke [8], we need those correspond-
ing to degree one and two in order to write down the power series expansions of
the corresponding total curvatures in the next section (Theorems 8, 10 and 11).
All of them are obtained from Lemma 3 after some tedious but straightforward
calculations.

Lemma 4 For any sufficiently small geodesic sphere Gm(r) of a Riemannian
manifold Mn, the quadratic norm of the curvature tensor of Gm(r) at p =
expm(ru) satisfies

∥R̃∥2(p) = β̃−4r
−4+β̃−2(m)r−2+β̃−1(m)r−1+β̃0(m)+β̃1(m)r+β̃2(m)r2+O(r3)

where

β̃−4 =2(n− 1)(n− 2)

β̃−2 =4
(
τ − 2(n+1)

3 ρuu

)
β̃−1 =4

(
∇uτ − n+2

2 ∇uρuu
)

β̃0 =2∇2
uuτ − 4(n+3)

5 ∇2
uuρuu + 8

9ρ
2
uu − 8

3

∑
c,d ρcdRcudu

+∥R∥2 − 4
∑

c,d,e R
2
cdeu + 4(3n+59)

45

∑
c,d R

2
cudu

β̃1 =
2
3∇

3
uuuτ − 2(n+4)

9 ∇3
uuuρuu + 2

∑
c,d,e,f Rcdef∇uRcdef

−2
∑

c,d ρcd∇uRcudu − 8
3

∑
c,d Rcudu∇uρcd +

4
3ρuu∇uρuu

−8
∑

c,d,e Rcdeu∇uRcdeu + 2(2n+47)
9

∑
c,d Rcudu∇uRcudu

β̃2 =
1
6∇

4
uuuuτ − n+5

21 ∇4
uuuuρuu + 8

15ρuu∇
2
uuρuu

− 4
5

∑
c,d ρcd∇2

uuRcudu − 4
3

∑
c,d Rcudu∇2

uuρcd − 8
45ρuu

∑
c,d R

2
cudu

−4
∑

c,d,e Rcdeu∇2
uuRcdeu + 4(5n+137)

105

∑
c,d Rcudu∇2

uuRcudu

−2
∑

c,d ∇uρcd∇uRcudu +
∑

c,d,e,f (∇uRcdef )
2 − 4

∑
c,d,e(∇uRcdeu)

2

+ 5n+144
28

∑n
c,d (∇uRcudu)

2
+
∑

c,d,e,f Rcdef∇2
uuRcdef

− 8
45

∑
c,d,e ρcdRcueuRdueu + 4

9

∑
c,d,e,f RcdefRcueuRdufu

+ 8(5n+32)
945

∑
c,d,e RcuduRcueuRdueu + 1

2 (∇uρuu)
2

Lemma 5 For any sufficiently small geodesic sphere Gm(r) of a Riemannian
manifold Mn, the quadratic norm of the Ricci tensor of Gm(r) at p = expm(ru)
satisfies

∥ρ̃∥2(p) = ϱ̃−4r
−4+ϱ̃−2(m)r−2+ϱ̃−1(m)r−1+ϱ̃0(m)+ϱ̃1(m)r+ϱ̃2(m)r2+O(r3)
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where

ϱ̃−4 = (n− 1)(n− 2)2

ϱ̃−2 = 2(n− 2)
(
τ − 2(n+1)

3 ρuu

)
ϱ̃−1 = 2(n− 2)

(
∇uτ − n+2

2 ∇uρuu
)

ϱ̃0 = (n− 2)∇2
uuτ − 2(n−2)(n+3)

5 ∇2
uuρuu − 2

3τρuu + ∥ρ∥2 − 2
∑

c ρ
2
cu

+5(n+2)
9 ρ2uu − 2n

3

∑
c,d ρcdRcudu + n2+6n+4

45

∑
c,d R

2
cudu

ϱ̃1 = n−2
3 ∇3

uuuτ − (n−2)(n+4)
9 ∇3

uuuρuu − 2
3ρuu∇uτ

−1
2τ∇uρuu + 2

∑
c,d ρcd∇uρcd − 4

∑n
c=1 ρcu∇uρcu

−n+1
2

∑
c,d ρcd∇uRcudu − 2n

3

∑
c,d Rcudu∇uρcd

+ (n+1)(n+4)
18

∑
c,d Rcudu∇uRcudu + 5(n+3)

6 ρuu∇uρuu

ϱ̃2 = n−2
12 ∇4

uuuuτ − (n−2)(n+5)
42 ∇4

uuuuρuu − 1
5τ∇

2
uuρuu

+
∑

c,d ρcd∇2
uuρcd − 2

∑
c ρcu∇2

uuρcu + n+4
3 ρuu∇2

uuρuu

−n+2
5

∑
c,d ρcd∇2

uuRcudu − n
3

∑
c,d Rcudu∇2

uuρcd − 1
3ρuu∇

2
uuτ

+3n2+16n+12
105

∑
c,d Rcudu∇2

uuRcudu − 1
2∇uτ∇uρuu

+5n+21
16 (∇uρuu)

2
+ 3n2+16n+19

112

∑
c,d (∇uRcudu)

2

−2
∑

c (∇uρcu)
2
+
∑

c,d (∇uρcd)
2 − n+1

2

∑
c,d ∇uρcd∇uRcudu

− 2
45τ

∑
c,d R

2
cudu + 2(3n2+16n+12)

945

∑
c,d,e RcuduRcueuRdueu

−2(n+2)
45

∑
c,d,e ρcdRcueuRdueu − 2

27ρ
3
uu + 2

9

∑
c,d ρuuρcdRcudu

Lemma 6 For any sufficiently small geodesic sphere Gm(r) of a Riemannian
manifold Mn, the quadratic scalar curvature τ̃2 of Gm(r) at p = expm(ru)
satisfies

τ̃2(p) = t̃−4r
−4 + t̃−2(m)r−2 + t̃−1(m)r−1 + t̃0(m) + t̃1(m)r + t̃2(m)r2 +O(r3)

where

t̃−4 = (n− 1)2(n− 2)2

t̃−2 = 2(n− 2)(n− 1)
(
τ − 2(n+1)

3 ρuu

)
t̃−1 = 2(n− 2)(n− 1)

(
∇uτ − n+2

2 ∇uρuu
)

t̃0 = (n− 1)(n− 2)∇2
uuτ − 2(n−1)(n−2)(n+3)

5 ∇2
uuρuu + τ2

−4(n+1)
3 τρuu + 2(3n2+n+4)

9 ρ2uu − 2(n−2)(n−1)(2n+1)
45

∑
c,d R

2
cudu
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t̃1 = (n−1)(n−2)
3 ∇3

uuuτ − (n−2)(n−1)(n+4)
9 ∇3

uuuρuu

+2τ∇uτ + (n2 + n+ 2)ρuu∇uρuu − 4(n+1)
3 ρuu∇uτ

−(n+ 2)τ∇uρuu − (n−1)(n−2)(n+1)
9

∑
c,d Rcudu∇uRcudu

t̃2 = (n−1)(n−2)
12 ∇4

uuuuτ − (n−1)(n−2)(n+5)
42 ∇4

uuuuρuu + τ∇2
uuτ

− 2(n+3)
5 τ ∇2

uuρuu − 2(n+1)
3 ρuu∇2

uuτ − 4(n+1)
27 ρ3uu

+ 2(3n2+5n+8)
15 ρuu∇2

uuρuu − 2(n−1)(n−2)(3n+2)
105

∑
c,d Rcudu∇2

uuRcudu

+(∇uτ)
2 − (n+ 2)∇uτ∇uρuu + 3n2+5n+10

8 (∇uρuu)
2

− (n−1)(n−2)(2n+3)
56

∑
c,d (∇uRcudu)

2
+ 2

9τρ
2
uu

+ 4(n2+1)
45

∑
c,d ρuuR

2
cudu − 2(2n+1)

45 τ
∑n

c,d R
2
cudu

− 4(n−1)(n−2)(2n+3)
945

∑
c,d,e RcuduRcueuRdueu

3 Power series expansions of the total quadratic
curvature invariants

Our purpose here is to obtain the first terms in the power series expansions of
the integrals of the curvature invariants of order two, which will be called total
quadratic curvature invariants.

First, note that we will not consider the Laplacian of the scalar curvature
since, by the Divergence Theorem,

∫
Gm(r)

∆̃τ̃ du= 0. Therefore, we proceed with

the other curvature invariants τ̃2, ∥ρ̃∥2 and ∥R̃∥2. In what follows cn−1 = nπn/2

(n
2 )!

,(
n
2

)
! = Γ(n2 + 1) stands for the volume of the unit sphere in the Euclidean n-

space, cn−1 = V ol(Sn−1) (cf. [9]).

Definition 7 Define the L2-norm of the curvature tensor of a geodesic sphere
Gm(r) by ∫

Gm(r)

∥R̃∥2(5)

Theorem 8 Let (M, g) be a Riemannian manifold and m ∈ M . Then∫
Gm(r)

∥R̃∥2 = cn−1 r
n−1

{
A−4r

−4 +A−2r
−2 +A0 +A2r

2 +O
(
r3
)}

where

A−4 = 2 (n− 2) (n− 1)

A−2 = − (n−5)(n−2)
3n τ(m)

A0 = 1
n (n+2)

{
59n2−93n−10

60 ∥R∥2 +
2(n2−37n+60)

45 ∥ρ∥2

+ n2−11n+2
36 τ2 − (n−5)(n−2)

10 ∆τ
}
(m)
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A2 = 1
n (n+2) (n+4)

{
−n2−15n−22

648 τ3 − n2−41n+4
135 τ∥ρ∥2

−59n2+151n+126
360 τ∥R∥2 + 8(n2+357n−1705)

2835 ρ̆

−4(2n2+49n−960)
945 ⟨ρ⊗ ρ,R⟩+ 4(n2+427n−95)

315 ⟨ρ, Ṙ⟩

−11n2+4851n−1682
2268 R̆− 5n2+4473n−2414

567
˘̄R

+ (n−2)(n−5)
56 ∥∇τ∥2 + n2−1239n+626

112 ∥∇ρ∥2

+n2+553n−270
56 α(ρ) +

3(37n2+21n−22)
112 ∥∇R∥2

+n2−11n−6
60 τ∆τ +

2(n2−133n+220)
105 ⟨∆ρ, ρ⟩ − (n−5) (n−2)

56 ∆2τ

+ 9n2+273n−470
420 ⟨∇2τ, ρ⟩+ 83n2−133n−10

84 ⟨∆R,R⟩
}
(m)

Proof. The L2-norm norm of the curvature tensor of Gm(r) is given by∫
Gm(r)

∥R̃∥2 = rn−1

∫
Sn−1

(
∥R̃∥2 θm

)
(expm(ru))du.

Using the formal expansion of ∥R̃∥2 obtained in Lemma 4, and the power series
expansion for the volume density function in Lemma 2, one obtains the formal
expansion of ∥R̃∥2 θm. Then the result follows by integration. We skip the
calculations, which are similar to those in [9], [10]. �

The total curvatures associated to the other quadratic curvature invariants
are defined, as in the previous case, as follows.

Definition 9 Define the L2-norm of the Ricci tensor of a geodesic sphereGm(r)
by ∫

Gm(r)

∥ρ̃∥2 = rn−1

∫
Sn−1

(
∥ρ̃∥2 θm

)
(expm(ru))du.(6)

Also, the L2-norm of the scalar curvature is defined by∫
Gm(r)

τ̃2 = rn−1

∫
Sn−1

(
τ̃2 θm

)
(expm(ru))du.(7)

Proceeding in an analogous way as before, one gets the first terms in the
power series expansion for the L2-norm of the Ricci tensor. Once again, we
delete all the calculations.

Theorem 10 Let (M, g) be a Riemannian manifold and m ∈ M . Then∫
Gm(r)

∥ρ̃∥2 = cn−1 r
n−1

{
B−4r

−4 +B−2r
−2 +B0 +B2r

2 +O
(
r3
)}

8



where

B−4 = (n− 2)
2
(n− 1)

B−2 = − (n−5)(n−2)2

6n τ(m)

B0 = 1
n (n+2)

{
−n3−9n2−16n−20

120 ∥R∥2 + n3+31n2−16n−120
45 ∥ρ∥2

+ n3−13n2−16n+44
72 τ2 − (n−5)(n−2)2

20 ∆τ
}
(m)

B2 = 1
n (n+2) (n+4)

{
−n3−17n2−112n−4

1296 τ3

− (n+2)(n2+25n+14)
270 τ∥ρ∥2 + (n+2)(n2−15n−66)

720 τ∥R∥2

+ 4(n3+187n2+395n+1310)
2835 ρ̆+ 2(n+2)(n2+10n−10)

315 ⟨ρ, Ṙ⟩

− 2(2n3+94n2−225n−180)
945 ⟨ρ⊗ ρ,R⟩+ 9n3+143n2−680n+940

840 ⟨∇2τ, ρ⟩

− (n+2)(11n2+103n+338)
4536 R̆− (n+2)(5n2+253n+566)

1134
˘̄R

+ n3−9n2−116n+120
112 ∥∇τ∥2 + n3+61n2−60n−1238

224 ∥∇ρ∥2

+ n3+61n2+164n+330
112 α(ρ)− n3−23n2−88n−118

224 ∥∇R∥2

+ n3−13n2−56n+108
120 τ∆τ + n3+47n2+80n−440

105 ⟨∆ρ, ρ⟩

− (n+2)(n2−11n−10)
168 ⟨∆R,R⟩ − (n−5)(n−2)2

112 ∆2τ
}
(m)

The scalar curvature of sufficiently small geodesic spheres is also settled here
for the sake of completeness, and it will also be used in the characterization of
the model spaces among the class of Einstein manifolds.

Theorem 11 Let (M, g) be a Riemannian manifold and m ∈ M . Then∫
Gm(r)

τ̃2 = cn−1 r
n−1

{
D−4r

−4 +D−2r
−2 +D0 +D2r

2 +O
(
r3
)}

where

D−4=(n− 2)2 (n− 1)2

D−2=− (n−5) (n−2)2 (n−1)
6n τ(m)

D0=
1

n (n+2)

{
− (n−2) (n−1) (n2+13n+10)

120 ∥R∥2 + n4+10n3+43n2−14n+120
45 ∥ρ∥2

+n4−14n3+29n2−60n−188
72 τ2 − (n−5) (n−2)2 (n−1)

20 ∆τ
}
(m)

9



D2 = 1
n (n+2) (n+4)

{
−n4−18n3+n2+132n−428

1296 τ3

− (n+2) (n3+4n2+7n−248)
270 τ∥ρ∥2 + n4+6n3−55n2−324n−156

720 τ∥R∥2

+ 4 (n4+18n3+61n2+2028n+580)
2835 ρ̆− 4 (n4+18n3+131n2+978n+720)

945 ⟨ρ⊗ ρ,R⟩

+
2 (n4+18n3−9n2+138n+20)

315 ⟨ρ, Ṙ⟩+ n4−10n3−23n2−100n−540
112 ∥∇τ∥2

− (n−2) (n−1) (11n2+231n−338)
4536 R̆− (n−2) (n−1) (5n2+105n−566)

1134
˘̄R

+ n4+18n3+425n2−632n+1196
224 ∥∇ρ∥2 + n4+18n3−23n2+712n+300

112 α(ρ)

− (n−2) (n−1) (n+2) (n+19)
224 ∥∇R∥2 + n4−14n3+5n2−4n−396

120 τ∆τ

+ n4+18n3+131n2−142n+440
105 ⟨∆ρ, ρ⟩ − (n−2) (n−1) (n2+21n+10)

168 ⟨∆R,R⟩

+
(n−2) (9n3+40n2−71n+470)

840 ⟨∇2τ, ρ⟩ − (n−5)(n−2)2 (n−1)
112 ∆2τ

}
(m)

4 Characterizations of model spaces

In this section we will present some applications of the expansions derived in
the previous section. We focus on the characterization of the model spaces by
the total quadratic curvature invariants. Recall that by model space we mean
one of the two-point homogeneous spaces, that is: the Euclidean n-space, the
n-dimensional sphere and the hyperbolic space, the projective and hyperbolic n-
spaces over complex numbers or over quaternions, and the Cayley projective or
hyperbolic plane. Furthermore, we will say that the holonomy of a Riemannian
manifold (M, g) is adapted to one of these models if the holonomy group of
(M, g) is a subgroup of the holonomy group of the given model space, that is,
the holonomy of (M, g) is contained in O(n), U(n), Sp(1) · Sp(n) or Spin(9),
respectively.

Recall that the volume conjecture of A. Gray and L. Vanhecke [10] states
that two-point homogeneous spaces should be characterized by the volumes
of their small geodesic spheres among Riemannian manifolds with holonomy
group adapted to the model space. Analogous conjectures were formulated
by B.Y. Chen and L. Vanhecke for the total scalar curvature and L2-norm of
the second fundamental form of geodesic spheres in [8], where they solved the
characterization problem completely by combining any two of the three functions
above.

Note that if (M, g) is a model space, then the total quadratic curvatures
of geodesic spheres can be computed explicitly. The results in the table below
follow after some calculations by using the Gauss equation (3) and the fact that
the shape operators of sufficiently small geodesic spheres satisfy

Tm(expm(ru)) =

( √
λ cot r

√
λ Iν 0

0
√
λ
2 cot r

√
λ
2 Iµ

)
(8)
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and the volume-density function is

θm(expm(ru)) =

(
sin r

√
λ

r
√
λ

)ν (
2

r
√
λ
sin r

√
λ

2

)µ

(9)

where 1+ν+µ = dimM and ν = dimM−1, 1, 3, 7 whenever (M, g) is of constant
curvature λ > 0, a Kähler manifold of constant holomorphic sectional curvature
λ > 0, a quaternionic Kähler manifold of constant Q–sectional curvature λ > 0
and the Cayley projective plane, respectively (cf. [13]).

Note that we have only considered the cases of positive curvature and omit
the Cayley plane since its holonomy group completely characterizes its local
geometry. Nonpositive curvature cases are obtained by replacing the trigono-
metric functions by the corresponding hyperbolic ones. Also, the L2-norm of
the scalar curvatures are omitted in the table below, since those can be obtained
from [8, Theorem 6.13].

∫
Gm(r)

∥R̃∥2
∫
Gm(r)

∥ρ̃∥2

Rn 2cn−1(n − 1)(n − 2)rn−5 cn−1(n − 1)(n − 2)2rn−5

Sn(λ) 2 cn−1 (n − 1) (n − 2)
(

sin r
√

λ√
λ

)n−5
cn−1 (n − 1) (n − 2)2

(
sin r

√
λ√

λ

)n−5

CPn(λ)

4(n−1)c2n−1

[
2n−1+ (6n−1) sin4 r

√
λ

2

+2 sin2 r
√

λ
2

]
cos r

√
λ

2

(
2 sin r

√
λ

2√
λ

)2n−5

4(n−1)c2n−1

[
(n−1)(2n−1)+(n+1) sin4 r

√
λ

2

+2(n−1) sin2 r
√

λ
2

]
cos r

√
λ

2

(
2 sin r

√
λ

2√
λ

)2n−5

HPn(λ)

4c4n−1

[
(2n−1)(4n−1)

+6(2n−1) sin2r
√

λ
2

+ 3 sin4r
√

λ
2

(
(6n−5)(4n−1)

+ 4 tan2r
√

λ
2 + tan4r

√
λ
2

)]
·

· cos3r
√

λ
2

(
2 sinr

√
λ
2√

λ

)4n−5

4c4n−1

[
(2n−1)2(4n−1)

+ 6(2n−1)2 sin2 r
√

λ
2

+ 3 sin4 r
√

λ
2

(
(4n2+4n−5)

+ 4 tan2 r
√

λ
2 + tan4 r

√
λ

2

)]
·

· cos3 r
√

λ
2

(
2 sin r

√
λ

2√
λ

)4n−5

Now, as a consequence of Theorem 8, we get the following characterization
of the model spaces.

Theorem 12 Let M be a Riemannian manifold with dim M = n ≥ 3, n ̸= 5
and holonomy group adapted to a model space and suppose that for all m ∈ M
and all sufficiently small r, the L2-norm of the curvature tensor of geodesic
spheres is the same as that in the model space. Then M is locally isometric to
that model space.

Proof. First of all, note that if a manifold has holonomy group contained in
Spin(9), then it is flat or locally isometric to the Cayley plane or its noncompact

11



dual [1], [5]. Therefore, we only need to deal with real, complex and quaternionic
space forms. Next, suppose the L2–norm of the curvature tensor of sufficiently
small geodesic spheres is the same as in a space of constant sectional curvature
λ, that is∫

Gm(r)
∥R̃∥2 = cn−1r

n−1
{

2 (n−1)(n−2)
r4 − (n−1)(n−2)(n−5)λ

3 r2

+ (n−1)(n−2)(n−5)(5n−27)λ2

180 +O (r2)
}
(m).

(10)

Then, if dimM ̸= 5, it follows from A−2 in Theorem 8 and the expansion
above that the scalar curvature is constant τ = n(n−1)λ. Hence, the coefficient

A0 in the power series expansion of
∫
Gm(r)

∥R̃∥2 given by Theorem 8 becomes

A0 = 1
n(n+2)

{
59n2−93n−10

60 ∥R∥2 +
2 (n2−37n+60)

45 ∥ρ∥2

+ n2(n−1)2(n2−11n+2)
36 λ2

}
(m)

= 59n2−93n−10
60n(n+2)

(
∥R∥2 − 2

n−1∥ρ∥
2
)
(m)

+ 4n3+25n2+109n−270
90n(n−1)(n+2)

(
∥ρ∥2 − 1

n τ2
)
(m)

+ (n−1)(n−2)(n−5)(5n−27)
180 λ2.

Now, comparing again the coefficient of A0 above with the corresponding in
(10), one obtains

0 = 59n2−93n−10
60n(n+2)

(
∥R∥2 − 2

n−1∥ρ∥
2
)

+ 4n3+25n2+109n−270
90n(n−1)(n+2)

(
∥ρ∥2 − 1

n τ2
)
.

(11)

Now, since ∥ρ∥2 ≥ 1
nτ

2 for any Riemannian manifold (with equality if and
only if the manifold is Einstein) and ∥R∥2 ≥ 2

n−1∥ρ∥
2 (with equality if and

only if the manifold has constant sectional curvature) and 59n2−93n−10
60n(n+2) and

4n3+25n2+109n−270
90n(n−1)(n+2) are both positive (n > 2), it follows that M has constant

sectional curvature, which must be exactly λ due to the value of the scalar
curvature.

The other cases are derived in a similar way, using that ∥R∥2 ≥ 4
n+1∥ρ∥

2 for
manifolds with holonomy adapted to the complex space forms (with the equality
holding if and only ifM has constant holomorphic sectional curvature), and that
∥R∥2 ≥ 5n+1

(n+2)2 ∥ρ∥
2 for manifolds with holonomy adapted to quaternionic space

forms (with the equality holding precisely for Pn(H) and Hn(H)) [4], [6], [12].�

Next, we will explain the reason to exclude dimM = 5 in the previous
theorem. It is well-known ([2, pag. 82]) that the Euler characteristic χ(M) of a
compact four-dimensional manifold satisfies

χ(M) =
1

32π2

∫
M

{∥R∥2 − 4∥ρ∥2 + τ2}dV.(12)
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Now, if (M, g) is a 5-dimensional space of constant sectional curvature, its
geodesic spheres are Einstein [8, Theorem 7.3], and thus the L2-norm of the
curvature tensor of geodesic spheres becomes a topological invariant of geodesic
spheres, therefore meaningless for our purpose of characterizing the curvature
of the ambient manifold. However, a characterization of real space forms can
be given, although the sign and precise value of the sectional curvature cannot
be detected.

Theorem 13 Let M be a Riemannian manifold of dimM = 5. If the L2-norm
of the curvature tensor of each small geodesic sphere is the same as for a 5-
dimensional real space form, then M has constant sectional curvature.

Proof. First of all, note that if M5 is a space of constant sectional curvature,
then the L2-norm of the curvature tensor of sufficiently small geodesic spheres
satisfies

∫
Gm(r)

∥R̃∥2 = 24 c4, and thus it follows from Theorem 8 that

24c4 = 24c4 +
c4 r4

35

(
50
3 ∥R∥2 − 40

9 ∥ρ∥2 − 7
9 τ

2
)
+O(r6)

= 24c4 +
c4r

4

35

{
50
3

(
∥R∥2 − 1

2 ∥ρ∥
2
)
+ 35

9

(
∥ρ∥2 − 1

5 τ
2
)}

+O(r6).

Hence
50

3

(
∥R∥2 − 1

2
∥ρ∥2

)
+

35

9

(
∥ρ∥2 − 1

5
τ2
)

= 0(13)

from where it follows that the sectional curvature is constant. �
For the L2-norm of the Ricci tensor we have similar results, but only for low

dimensions.

Theorem 14 Let M be a Riemannian manifold with dim M = n, 3 ≤ n ≤ 10,
n ̸= 5 and holonomy group adapted to a model space and suppose that for all
m ∈ M and all sufficiently small r the L2-norm of the Ricci tensor of geodesic
spheres is the same as those in the model space. Then M is locally isometric to
that model space.

Proof. The proof goes as in Theorem 12. Suppose the L2–norm of the Ricci
tensor of a sufficiently small geodesic sphere is the same as that in a space of
constant curvature λ, that is,∫

Gm(r)
∥ρ̃∥2 = cn−1r

n−1
{

(n−1)(n−2)2

r4 − (n−1)(n−2)2(n−5)λ
6 r2

+ (n−1)(n−2)2(n−5)(5n−27)λ2

360 +O (r2)
}
(m).

(14)

Then, it follows from B−2 in Theorem 10 that τ = n(n − 1)λ, provided that
n ̸= 5, and thus the coefficient B0 in Theorem 10 becomes

B0 = −n3−9n2−16n−20
120n(n+2)

(
∥R∥2 − 2

n−1∥ρ∥
2
)
(m)

+4n4+117n3−161n2−368n+540
180n(n−1)(n+2)

(
∥ρ∥2 − 1

n τ2
)
(m)

+ (n−1)(n−2)2(n−5)(5n−27)
360 λ2.
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Comparing again with (14) we have

0 = −n3−9n2−16n−20
120n(n+2)

(
∥R∥2 − 2

n−1∥ρ∥
2
)

+ 4n4+117n3−161n2−368n+540
180n(n−1)(n+2)

(
∥ρ∥2 − 1

n τ2
)(15)

Now the result follows from (15) proceeding in the same way as in Theorem

12 and using that −n3−9n2−16n−20
120n(n+2) and 4n4+117n3−161n2−368n+540

180n(n−1)(n+2) are both

positive for 3 ≤ n ≤ 10. The complex and quaternionic cases are derived in a
similar way. �

Remark 15 By Theorem 10 one also deduces that, if dim M = 5 and the L2-
norm of the Ricci tensor of each small geodesic sphere is the same as for those
in a 5-dimensional real space form, then M has constant sectional curvature.

We recall here that the volume conjecture has a positive answer in the class
of Einstein manifolds [10]. Analogously, if M is assumed to be an Einstein
manifold, the L2-norm of the Ricci tensor or the L2-norm of the scalar curvature
of sufficiently small geodesic spheres suffice to characterize the model spaces.

Theorem 16 Let M be an Einstein manifold with dim M = n, n ̸= 5 and
holonomy group adapted to a model space. If for all m ∈ M and all sufficiently
small r the L2-norm of the Ricci tensor or the L2-norm of the scalar curvature
of geodesic spheres is the same as those in the model space, then M is locally
isometric to that model space.

The proof can be sketched as follows. If (M, g) is assumed to be Einstein,
the coefficient B0 in the power series expansion of the L2-norm of the Ricci
tensor of geodesic spheres (Theorem 10) becomes

B0 = 1
n(n+2)

(
−n3−9n2−16n−20

120 ∥R∥2 + 5n4−57n3+168n2+92n−960
360n τ2

)
(16)

and the result follows proceeding as in previous theorems. Also, if (M, g) is
Einstein, then the coefficient D0 of the L2-norm of the scalar curvature of suf-
ficiently small geodesic spheres in Theorem 11 satisfies

D0 = 1
n(n+2)

(
− (n−2)(n−1)(n2+13n+10)

120 ∥R∥2

+ (n−2)(5n4−52n3+121n2+286n−480)
360n τ2

)(17)

and the desired characterization is obtained as in previous theorems.

Remark 17 It follows from Theorem 16 that the assumption on the dimension
in Theorem 14 can be dropped if the holonomy group is contained in Sp(1) ·
Sp(n), since any 4n-dimensional quaternionic Kähler manifold is Einstein for
n > 1.
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