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1 Introduction

The main purpose of this paper is to contribute to the study of the following
problem:

To what extent do the properties of sufficiently small geodesic spheres
determine the Riemannian geometry of the ambient space?

This program, originated mainly from the study of harmonic manifolds has been
intensively studied over the last years, with special attention to the relation be-
tween the curvature of a Riemannian manifold and the volume of sufficiently
small geodesic spheres. Indeed, it was conjectured by A. Gray and L. Vanhecke
that the two-point homogeneous spaces should be locally detected by the vol-
umes of their geodesic spheres [10]. Here, it is worth mentioning that although
the answer is known to be true for many important cases, it is still an open
problem. Other kinds of geometric objects, related to the extrinsic geometry of
geodesic spheres (the shape operator, the mean curvature, the quadratic norm of
the second fundamental form, etc.) have also been studied [8]. Moreover, many
intrinsic analytic and algebraic objects of geodesic spheres have been used to
understand the geometry of the ambient space. It was shown in [8] that two-
point homogeneous spaces can be characterized by comparing the spectrum of
the geodesic spheres with that of the geodesic spheres in these model spaces.
Also, Ricci and Weyl tensors, as well as scalar curvature and quadratic curvature
invariants were investigated by B. Y. Chen and L. Vanhecke in [8].

Motivated by the volume conjecture of A. Gray and L. Vanhecke above, many
attempts have been done in searching for geometric quantities which would al-
low to characterize the two-point homogeneous spaces (which will be called
model spaces) among Riemannian manifolds with holonomy group adapted to
the model space. However, in all such characterizations two quantities are re-
quired. In fact, any combination of the volume, the total scalar curvature and
the L2-norm of the second fundamental form lead to the desired result.

Our purpose in this paper is to complete the previous studies by considering
quadratic curvature invariants and investigating the corresponding L?-norms on
geodesic spheres. In doing that, we compute the first terms in their power series
expansions. Several conclusions are obtained from those coefficients, specially
we remark that the L2-norm of the curvature tensor of geodesic spheres suffices
to characterize the model spaces.

The paper is organized as follows. In Section 2 we recall some notation and
use the Gauss equation of the geodesic spheres to write down the first terms in
the power series expansions of their curvature tensor (Lemma 3). This allows us
to obtain the power series expansions of 72, ||5]|2 and || R||2. The first terms in
the power series expansions of the corresponding total invariants are derived in
83 and Section 4 is devoted to point out some applications of those expressions.
Here we would like to emphasize that we tried to keep calculations at minimum,
deleting almost all of them in order to make the paper more readable.



2 Preliminaries

Let (M™,g) be an n-dimensional smooth Riemannian manifold of class C'*°.
We will denote by V the Levi-Civita connection and put Rxy = Vxy] —
[Vx, Vy] for the curvature tensor, where X, Y are vector fields on M. Also,
Rxyzw = g(Rxy Z,W) and the Ricci tensor and the scalar curvature are given
by pxy = Yoiy Rxeive, and 7 = D1 | pe,e;, with respect to an orthonormal
basis {ey, ..., e, }. For simplicity, here and in what follows, we use the notation
Pij = Pesejs Rijkl = Reiejeke” Vz’jk.‘. = veiejek... and so on. AlSO7 by Zc,d,“ U
we mean ZZ,d,---:l e

A scalar curvature invariant is a polinomial in the components of the curva-
ture tensor that does not depend on the choice of the orthonormal basis used to
build it. The order of a scalar curvature invariant is, by definition, the number
of derivatives of the metric tensor involved in it. Let I(k,n) the vector space of
curvature invariants of order 2k, m € M and {ey,...,e,} an orthonormal basis
of the tangent space at m, T, M.

For n > 2, I(1,n) has dimension 1 and is generated by 7. For n > 4, I(2,n)
has dimension 4 and a basis is given by

@ WelP=X"e IRIP=)_RG. Ar=) Vi

For n > 6, I(3,n) is generated by the following basis [10]:

™ 7l 7| R|]?
P =D PijPikPik (p®p,R) = pijpriRinji
(p, R) =3 pij Rikir Rjir R =3 RijiRijrs Rirs

@) R =Y RijpaRirks Rjris IVr|? =22 (ViT)?
IVoll? = X (Vipjn)? a(p) =3 VipirVjpik
IVR|? = 3 (ViRjkir)? (Ap, p) = 32 pijViypij
(V27,p) = X2(V57) pij (AR, R) = 3" Riju V7, Rijnl
TAT A?T

2.1 Intrinsic geometry of geodesic spheres

In what follows, we denote by G,,(r) the geodesic sphere with center m and
radius 7, that is G, (r) = {p € M/d(m,p) = r}. Tt is always supposed that
r < i(m), the injectivity radius at the point m € M. Due to this, G, (r) is
a hypersurface of M and moreover Gy, (r) = exp,, (S™~1(r)), where S~ 1(r) =
{z € T,,M/ ||z|| = r} is the sphere of radius r in the tangent space to M at m.

JFrom now on we are interested in studying the intrinsic geometry of geodesic
spheres and its relation to the geometry of the ambient manifold. The Gauss
equation provides us an explicit relation between the curvature tensor R of the



submanifold and the curvature tensor R of the ambient manifold by means of
the second fundamental form o:

(3) Rxyzw = Rxyzw + o(X, 2)o(Y,W) — o(X,W)a(Y, Z)

where X,Y, Z W are vector fields on G,,(r). Further, let (z1, ..., 2,) be a
system of normal coordinates on M in a neighborhood around m. For our
purposes, the following expansion of the components of the second fundamental
form will be needed

Lemma 1 [8] We have the following series expansion for the second fundamen-
tal form of a geodesic sphere at p = exp,,(ru):

r r2
O-ij(p):{%(sij - gRiuju - IvuRiuju - TB (Tl()viuRluju +% Zc RcuiuRcuju)
!
24 (% V’I?)L’U,URZU]U + % ZC RcujuvuRcuiu + % ZC RcuiuvuRcuju)

5

T 30 w4 45
720 (7vuuuuRlu]u + 7 Zc Vu]%cuiuvu}%cuju

+ % Zc RcujuvauRcuiu + 2*74 Zc RcuiuviuRcuju
+ % Zc’d RcuduRcuiuRduju) } (m) + O(TG)
Next, recall that the relation, at every point p = exp,,(ru), between the

mean curvature h,, of the geodesic sphere centered at m and the the volume
density function 6,, (with respect to normal coordinates at m) is ([7, p. 193])

n-l + 9 log 0, (expm (ru)).

@ hn(p) = "=+ -

Now, one has

Lemma 2 [8] We have the following series expansion for the volume density
function at p = exp,, (ru):

r 32 1.2 2 2
24 (_gvuupuu + §puu 15 Zc,d Rcudu)

5
+ %0 (7%Viuupuu + %puuvupuu - % ZC@ RcuduvuRcudu>

+

o 2
+ % (_gviuuupuu + 3puuv12““0““ + g (Vupuu) +%puu Zc,d Rzudu
B gpiu - % Zc,d RcuduviuRcudu - % e,d (Vu}%cudu)2

- % c,d,e RCUduRCueuRdueu> }(m) + 0(7”7)



Thus, proceeding as in [8, Theorem 4.2] one obtains the first terms in the
power series expansion of the curvature tensor of a small geodesic sphere as
follows

Lemma 3 Let R be the curvature tensor of a small geodesic sphere Gy, (r) and
p = expy(ru). Then:

Rijri(p) = R or 24 ﬁo(m) +Ry (m)r+ Ry (m)r® + ﬁg(m)r?’ + §4(m)r4 +0(r9)
where

R_y =605 — 0udjn

Ry = Rijii + 5 (0 Rjuku — Sire Rjutu + 8k Riutw — 051 Riuku)

El = vuRijkl + i ((SilvuRjuku - 5ikvuRjulu + 5jkvuRiulu - 5jlvuRiuku)

Ry = $V2 Riju + 15 (04V2 Rjuku — 6k V2 Rjutu + 0V 2, Riuu
- jlviuRiuku) + 4%5 Zc (5ichujuRcuku - 5ichujuRculu
+6ijcuiuRculu - (SlecuiuRcuku) + % (RiukuRjulu - RiuluRjuku)

R3 = :V3 W Rijit + 35 (00V3 yuRjuku — 6V yu Rjutu + 61V o Riutu
=61V Riuku) + 75 Yoo (BitReuku VuRewju — Oik Reutu Vi Rewju
+ duReujuVuReuku — ik RewjuVuReun + 0k Rewin VuReulu
0k Reuin VuReuwin — 01 Reuin VuReuku — 051 Reuku VuReuin)
+ 15 (Riwku VaRjutw — Riut VuRjuku — Rjuka VuRiutu + RjutaVuRiuka)

Ry = 35 Vi Rijit — 165 (0 ViwuuRiutu — 0 Vi Rjuku
~0tVwu Rintu + 165931V s Riew) + 55 (Riwka Vi Rjutu
~Riuta V20 Riues — Rjuia Vi Riut + Rjuta V2 Riuia)
— 315 2oe (Oik Rewju Vg Reutu + 0ik Reutn Vi Reuju — Sit RewjuV o Reuku
8t Reuku Vi Reuju — O Rewiu Vi Reut = 1 Reat Vi Reui
+8j1Rewin Vi Reuku + 81 Reara Vi Reuin) = 15 (Vi Riuta Vi Rjuk
~VauRiukaVauRjut) = 113 20 (6t Vi Rewju Ve Reutu
=01V uReujuVuReuku — 0k VuRewiuVuReuin + 61V uRewiuVuReuku)
+ 135 e (RjutuRevin Reuku — Rivtu RewjuReuku — Rjuku Rewiv Reutu
+RiukuRewjuReutn) = g35 2 0.q (Oik Reudu Reutu Rauju
=i ReyduReukuRauju — 0k ReuduReutu Raviu + 3j1 Reudu Reuku Ruiu)

Next lemmas show the first six terms in the power series expansions of the
quadratic norms of the curvature and Ricci tensors and the quadratic scalar



curvature of geodesic spheres. Although the first four terms were previously ob-
tained in the work of B.Y. Chen and L. Vanhecke [8], we need those correspond-
ing to degree one and two in order to write down the power series expansions of
the corresponding total curvatures in the next section (Theorems 8, 10 and 11).
All of them are obtained from Lemma 3 after some tedious but straightforward
calculations.

Lemma 4 For any sufficiently small geodesic sphere G, (r) of a Riemannian
manifold M™, the quadratic norm of the curvature tensor of G, (r) at p =
expm (ru) satisfies

IR (p) = B—ar™*+B—a(m)r=2+B_1(m)r =" +Bo(m)+B1 (m)r+PBa(m)r*+0(r®)

where

B_a=2(n—1)(n—2)
E—Q =4 (T - @puu>
571:4( uT — L—Mvupuu)

60 = QV?LUT - wviupuu + %p%,u -2 Zc dedRCUdu
4(3 +09
+||RH2 4cheRcdeu 2 )ZCCIR

cudu

E 2 viuu - wviuupuu +2 Zc,d,e,f RcdefvuRcdef
-2 Zc,d pcdvuRcudu - % Zc,d Rcuduvupcd + %puuvupuu
-8 Zc,d,e RcdeuvuRcdeu + w Zc,d RcuduvuRcudu

P2 = Imeuu — BV P+ 15 PV Puu
5 Zc,d pCdvuuRcudu — % qu Rcuduviupcd 45 Pun Zc J cudu
43 e Regeu V2 Redew + w Y ed Rewdu V2, Rewdu
—23 4 VupeaVuRewdu + Yo ger (VuReder)’ =43 g.o(VuRedeu)
+ o ed (VuReuan)® + > die.s Reder Vi Redey
— 15 Yoede PedReveuRauen + § 2 g o Redef Rewen Raufu
+8(5g4t>32) Zc,d,e Revdu RevewRaueu + % (Vupuu)2

Lemma 5 For any sufficiently small geodesic sphere G, (r) of a Riemannian
manifold M™, the quadratic norm of the Ricci tensor of Gy, (1) at p = expy, (ru)
satisfies

1712 (p) = 0-ar™* 402 (m)r™2+ -1 (m)r™" +2o(m) + 01 (m)r+2a2(m)r? +O(r?)



02 = (n=1)(n—-2)°
G = 2(n—2) (T - @puu)
01 = 2n—2)(Vur — %2V, pu)
Bo = (n-2)V2,r— 22 o 2rp, + IIPII2 — 23 Pt
2D 2 S peaRewan + TR R2
B = Vi~ IV o~ 3pun VT

_QTvupuu + 2 Zc,d pcdvupcd -4 Z?Zl pcuvupcu
_LH Zc d pcdV Rcudu - 2?71 Zc d Rcuduvupcd
+M Zc d -RcuduV Rcudu (n+3) puuvupuu

oy = 2 n=2y74 (n—2ién+5) \%

- wauuPun — 5TV Pun
+ qu PeaV2uPed — 23 PeuVouPeu + "E2 puu Vo Puu
—BE2 Y peaViReudn = 3 D g BewduViupea — 1pun V3,7
+W Zc d RewduViay Redu — %VuTvupuu
+OE2 (Vopua)” + 20 T (VuRewau)’
—2% (Vupeu) + 2eaV Vuped)” = 25 > e VuPedVuReudu

2(3n2+16n+12)
457—ch cudu 945 Zc,d’e CuduRcueuRdueu

2 n+2 2 3 2
( ) Zc d,e pcdRcueuRdueu - ﬁpuu + 9 Zc)d puupcdRcudu

Lemma 6 For any sufficiently small geodesic sphere G, (r) of a Riemannian
manifold M™, the quadratic scalar curvature 72 of G, (1) at p = expm,(ru)
satisfies

T2p) = t_ar -t o (m)r 2+t (m)r +to(m) + tr(m)r + ta(m)r® + O(r3)

where
iy = (n—1)2n-2)?
f2 = 20-2)n-1) (r-252p,,)
1 = 2(n—2)(n—1)(Vur — “2Vupuu)
fo = (n—1)(n-2)V2,r— 220G |\, o 72
4(n+1 2(3n24+n+4 2(n—2)(n—1)(2n+1
_ (;)Tpuu"" ( 9+ +)piu_ ( )(45)( +)ch 2



o= oLeedgs o (2D g

uuuPuu

127V, + (0% + 10+ 2) P Vi — LD

—(TL + 2)7'Vupuu - %;2)(71-’_1) Zc,d RcuduvuRcudu

PuuVuT

ty = (o= 1)(n 2) vfbuuu (n_l)(n4_22)(n+5) viuuupuu + TviuT
2(n+3 2(n 4(n+1
_ + ) V2upuu _ 2(n+4l) +1 puuv2 _ (2¢ )pi’)m
Mpuuviupuu _ 2(n— 1)(7;052)(37“*‘2) Zc,d RcuduviuRcudu

2
+ (vuT)2 - (n + 2)vuTvufouu + w (vupuu)2
DD 5 (Vo Rewan) + 3702

4(n*+1 2(2n+1
+ ( 45Jr ) chpuuRcudu ( 45Jr )TchRcudu

4(n—1)(n—2)(2n+3
o . 945 ’ ) Zc,d,e RevauRevenRaveu

3 Power series expansions of the total quadratic
curvature invariants

Our purpose here is to obtain the first terms in the power series expansions of
the integrals of the curvature invariants of order two, which will be called total
quadratic curvature invariants.

First, note that we will not consider the Laplacian of the scalar curvature
since, by the Divergence Theorem, [, G (1) ATdu = 0. Therefore, we proceed with
nr"/?

(5
(2)! = T'(% + 1) stands for the volume of the unit sphere in the Euclidean n-

2
space, ¢,_1 = Vol(S™ 1) (cf. [9]).

the other curvature invariants 72, ||]|2 and ||R||2. In what follows ¢,_1 =

Definition 7 Define the L2-norm of the curvature tensor of a geodesic sphere

G (r) by
(5) /’ 1B
Gm(r)

Theorem 8 Let (M, g) be a Riemannian manifold and m € M. Then

/ ||]§H2 = cpg 1! {A_41"74 + A or 24+ Ag+ Asr® + 0 (T3)}
G (7

where
Ay = 2(n—-2)(n—-1)
A72 — _ (TL—5§£L7”L—2) T(m)
A, = (1+2) {59n —93n-10 || pI12 4. 2(n —37"+60) llplI2
e Aﬁ()



_ 1 _n?-15m—22 3 _ n%:—4in+4 2
Ay 7 (n12) (n+4) { 648 | 55 Tl

— 59+ 151n+126 1 |2 4 W%js#m@ y
4(2n*4+49n—960 —.  4(n2+427n—95 .
_% <p®p,R) + % <p,R>

_ 11n244851n—1682 R 5n24+4473n—2414 }“?
2268 567

— _ 2_
+(n 2%" 5) ||VTH2+ n 1213192n+626 ||Vp||2

2 _ 3(37n%24+21n—22
_|_n +55536n 270 Oé(p) + ( 3 ) ||VRH2

2 aa 2(n%—133n4220 —5) (n—2
4= AneD é(l)” 6 rAT + 2(n?~133n+220) 05 ) (Ap, p) — (n=5)(n=2) %é" ) A27

_|_9n2+247230n7470 (V27, p) + sgn%éiano (AR, R)} (m)

Proof. The L2-norm norm of the curvature tensor of G,,(r) is given by

Jo

m (T

||1?%||2 = r”fl/ (||}§||29m> (exp, (ru))du.
) Sn—l

Using the formal expansion of || R||? obtained in Lemma 4, and the power series
expansion for the volume density function in Lemma 2, one obtains the formal
expansion of |R||?6,,. Then the result follows by integration. We skip the
calculations, which are similar to those in [9], [10]. O

The total curvatures associated to the other quadratic curvature invariants
are defined, as in the previous case, as follows.

Definition 9 Define the L2-norm of the Ricci tensor of a geodesic sphere G, (1)
by

(6) /|

Also, the L?-norm of the scalar curvature is defined by

A= [ 1B 0) o

m

(7) /G " 72 =t /S » (72 0,0 (expm (ru))du.

Proceeding in an analogous way as before, one gets the first terms in the
power series expansion for the L?-norm of the Ricci tensor. Once again, we
delete all the calculations.

Theorem 10 Let (M, g) be a Riemannian manifold and m € M. Then

/ 121 = ey Pt {B_4T_4 +B_or 24+ By+ B’ 4+ 0 (7“3)}
'rn(r)



where
B_y=nm—-2)7°n-1)

By =002 ()

120 45

n3—13n2—16n n—>5)(n—2)>2
f nlolin16ntdd o2 ( )2(0 ) AT} (m)

By = n(n1+2) {_n379n2716n720 |R||? + ni431n—16n-120 ) 12

3 2
By = n(n+21) (n+4) {*n —Hogg 2=t 78
_ (1) ey (08160 1)
+ 4(n3+187n;;)§95n+1310) 5+ 2(n+2)(n321qg10n710) <p, R>
_ 2(2n3+94n924—5225n—180) <p® p7ﬁ> + 9n3+143n824—0680n+940 <V27’ p>
_ (n+2)(112°+103n+338) j (n+2)(5n*+253n+566) R
4536 1134
SOOI G2 4 n L et |2
N n3+61n21_§§64n+330 alp) — % VR
+ WTATJF w (Ap, p)
2 2
- LD lnoi0) (A ) - 80D A2 (i)

The scalar curvature of sufficiently small geodesic spheres is also settled here
for the sake of completeness, and it will also be used in the characterization of
the model spaces among the class of Einstein manifolds.

Theorem 11 Let (M, g) be a Riemannian manifold and m € M. Then
/ 72 =cp {D_4T_4 +D_9r 24+ Do+ Dyr?> 4+ 0 (T3)}
G ()

where

D_4=(n—-2)?(n—-1)32

n— n—2)2 (n—
D_,=— (=5 (=2 (n=1) 6712) (n—1) 7(m)
n—2) (n—1) (n2+13n+10 4 3 2_ 141
Do_n(an) { (n=2) )150 +13n+10) |R||? + nitlon +4i§ 14n+120 || 5|2
n*—14n? n2—60n— n—>5) (n—2)% (n—1
14042017 —60n =188 ;2 _ (n=5) (n-2)° ( )AT}(m)



_ 1 _ n*—18n®+n%+132n—428 _3
Dy = s { 1296 T
(n+2) (n®+4n>+7n—248) 2 | n*46n3-55n2-324n—156 2
- 270 THp” + 720 THR”
4 (n*4+18n°461 1242028 n+580) « 4 (n*+18n>+131n24+978 n4+720) -
+ 2835 P— 945 (p®p, R)
2(n'+18n°—9n2+138n420) 5 | pt 1013 230?100 n—540 2
315 <p3 R> + 112 ||VTH
n—2) (n—1) (11 n24231n—338) « n—2) (n—1) (5n2+105n—566) %
(n—2) (n—1) R (n—2) (n—1) R
- 4536 - 1134
4 3 2 < 4 3 < 2
n-+18n°+425n“—632n+1196 2 n-+18n°—23n“+712n+300
+ 224 [Vpll* + 15 a(p)
—2) (n—1 2 1 41498 2_gp—
_ (n=2) (n—1) (n+2) (n+19) ||VR||2 4 n'=14n°+5n®-4n—396 LA

224 120

n—2) (n—1) (n?421n+10
+ n4+18n3+131107;2—142n+440 (Ap, p) — (n—2)( )1558 +217+10) (AR, R)

(n—2) (9n°+40 1> =71 n+470)
840

n—>5)(n—2)2 (n—
<V2T,p> _ (n=5)( 1122) (n—=1) A2T} (m)

4 Characterizations of model spaces

In this section we will present some applications of the expansions derived in
the previous section. We focus on the characterization of the model spaces by
the total quadratic curvature invariants. Recall that by model space we mean
one of the two-point homogeneous spaces, that is: the Euclidean n-space, the
n-dimensional sphere and the hyperbolic space, the projective and hyperbolic n-
spaces over complex numbers or over quaternions, and the Cayley projective or
hyperbolic plane. Furthermore, we will say that the holonomy of a Riemannian
manifold (M,g) is adapted to one of these models if the holonomy group of
(M, g) is a subgroup of the holonomy group of the given model space, that is,
the holonomy of (M, g) is contained in O(n), U(n), Sp(1) - Sp(n) or Spin(9),
respectively.

Recall that the volume conjecture of A. Gray and L. Vanhecke [10] states
that two-point homogeneous spaces should be characterized by the volumes
of their small geodesic spheres among Riemannian manifolds with holonomy
group adapted to the model space. Analogous conjectures were formulated
by B.Y. Chen and L. Vanhecke for the total scalar curvature and L?-norm of
the second fundamental form of geodesic spheres in [8], where they solved the
characterization problem completely by combining any two of the three functions
above.

Note that if (M, g) is a model space, then the total quadratic curvatures
of geodesic spheres can be computed explicitly. The results in the table below
follow after some calculations by using the Gauss equation (3) and the fact that
the shape operators of sufficiently small geodesic spheres satisfy

VAcotrvA T, 0 )

(8) T (expm(ru)) = (
0 @ cot r@ 1,

10



and the volume-density function is

(9) O (€xpp (T1)) = <sinrﬁ> ( 2 sinr\/x>

A A 2

where 1+v+p = dimM and v = dimM —1, 1,3, 7 whenever (M, g) is of constant
curvature A > 0, a Kéhler manifold of constant holomorphic sectional curvature
A > 0, a quaternionic Kéhler manifold of constant (Q—sectional curvature A > 0
and the Cayley projective plane, respectively (cf. [13]).

Note that we have only considered the cases of positive curvature and omit
the Cayley plane since its holonomy group completely characterizes its local
geometry. Nonpositive curvature cases are obtained by replacing the trigono-
metric functions by the corresponding hyperbolic ones. Also, the L?-norm of
the scalar curvatures are omitted in the table below, since those can be obtained
from [8, Theorem 6.13].

Jor o IRI2 Jor o 18112
R™ 2¢n_1(n —1)(n — 2)r" > cn_1(n —1)(n —2)%rm=5
. n—>5 . n—>5
5"\ | 2en_1(n—1)(n—2) (%Aﬁ) a1 (n—1) (n—2)2 (%Aﬁ)

4(n—1)cana {2n71+ (6n—1)sin* ”25 4(n—1)cana [(nf 1)(2n—1)+(n+1) sin* T‘zﬁ

CP™(N) g i /X \ 270 5 i 2/ \ 270
+2sin2#} cos% ( - ﬁQ ) +2(n—1)sin2#] cos% ( - ﬁQ )
dcan {(2n—1)(4n— 1) dcana [(Qn— 1)2(dn—1)
+6(2n—1) sin?r 2 +6(2n—1)%sin? 2
+ 3sin*r 2 ((6n—>5)(4n—1 + 3sin r22 ((4n?+4n—>5
2P () 2 ((6n—5)(4n—1) 2 (¢ )
+4tan2ré +tan4ré)]~ +4tan2% +tan4%)]'
X \/X 4n—5 . T'\/X 4n—5
3 VX 2sinr 3 v/ 2 sin —5=
wog (225) wrep (2275

Now, as a consequence of Theorem 8, we get the following characterization
of the model spaces.

Theorem 12 Let M be a Riemannian manifold with dim M =n >3, n # 5
and holonomy group adapted to a model space and suppose that for all m € M
and all sufficiently small v, the L?-norm of the curvature tensor of geodesic
spheres is the same as that in the model space. Then M is locally isometric to
that model space.

Proof. First of all, note that if a manifold has holonomy group contained in
Spin(9), then it is flat or locally isometric to the Cayley plane or its noncompact

11



dual [1], [5]. Therefore, we only need to deal with real, complex and quaternionic
space forms. Next, suppose the L2-norm of the curvature tensor of sufficiently
small geodesic spheres is the same as in a space of constant sectional curvature
A, that is

fG (r ”EHQ = Cn—lrnil{Q(niﬂ(nfm - ("*1)("*22)(7175»\

3r

(O RGREREN 10 (1) | (m).

Then, if dimM # 5, it follows from A_5 in Theorem 8 and the expansion
above that the scalar curvature is constant 7 = n(n—1)A. Hence, the coefficient
Ay in the power series expansion of [, ) | R||? given by Theorem 8 becomes

2 n 737n+60
Ay = n(n1+2) {sgn 93n—10 || R||2 + 2 (n? )H 2

+ n?(n—1) (n2711n+2 )\2}
2_ —
= Bpsmaso (IR|2 — 22|lp|?) (m)

3 2 _
AR (I? £ 72) (m)

+ (nfl)(n72)1(g075)(5 n—27) A2,

Now, comparing again the coefficient of Ay above with the corresponding in
(10), one obtains

0 = 00300 (|R|2 — 224l

(11)

+4n3+25n +109 n—270 (HP||2 1 2).

90 n(n—1)(n+2) nT

Now, since [|p||*> > 172 for any Riemannian manifold (with equality if and
only if the manifold is Einstein) and ||R|?> > —25||p/|? (with equality if and

59n2—93n—10
and =GRS

4”'3946315(227?)1((’3?5270 are both positive (n > 2), it follows that M has constant
sectional curvature, which must be exactly A due to the value of the scalar
curvature.

The other cases are derived in a similar way, using that || R|* > niﬂ llpl? for
manifolds with holonomy adapted to the complex space forms (with the equality
holding if and only if M has constant holomorphic sectional curvature), and that
|R|* > (‘Z ’jr;r)lg l|pl|? for manifolds with holonomy adapted to quaternionic space
forms (with the equality holding precisely for P™(H) and H™(H)) [4], [6], [12].00

only if the manifold has constant sectional curvature) and

Next, we will explain the reason to exclude dimM = 5 in the previous
theorem. It is well-known (]2, pag. 82]) that the Euler characteristic x (M) of a
compact four-dimensional manifold satisfies

(12) XOD) = 35z [ {IRIE = 4ol + )av
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Now, if (M,g) is a 5-dimensional space of constant sectional curvature, its
geodesic spheres are Einstein [8, Theorem 7.3], and thus the L?-norm of the
curvature tensor of geodesic spheres becomes a topological invariant of geodesic
spheres, therefore meaningless for our purpose of characterizing the curvature
of the ambient manifold. However, a characterization of real space forms can
be given, although the sign and precise value of the sectional curvature cannot
be detected.

Theorem 13 Let M be a Riemannian manifold of dimM = 5. If the L?>-norm
of the curvature tensor of each small geodesic sphere is the same as for a 5-
dimensional real space form, then M has constant sectional curvature.

Proof. First of all, note that if M?® is a space of constant sectional curvature,
then the L2—norrri of the curvature tensor of sufficiently small geodesic spheres
satisfies [, ) | R||? = 24 ¢4, and thus it follows from Theorem 8 that

4
e = est+ 4L (LRI - 2 p|2 — I72) + 0
c 7‘4 <
= 2des+ 4= {2 (IRIZ= S 1p1%) + 22 (ol = £72) } + O(9).
Hence 50 1 35 1
13 RII? == 2 2_ 2.2} 9
(13) e (117 = S 02) + 5 (ol = 3 7
from where it follows that the sectional curvature is constant. O

For the L?-norm of the Ricci tensor we have similar results, but only for low
dimensions.

Theorem 14 Let M be a Riemannian manifold with dim M =n, 3 <n < 10,
n # 5 and holonomy group adapted to a model space and suppose that for all
m € M and all sufficiently small r the L?-norm of the Ricci tensor of geodesic
spheres is the same as those in the model space. Then M is locally isometric to
that model space.

Proof. The proof goes as in Theorem 12. Suppose the L?norm of the Ricci
tensor of a sufficiently small geodesic sphere is the same as that in a space of
constant curvature A, that is,

~ n— —2)2 — —2)2(n—
me(r) 1p1? = Cnflrn_l{(l 1)r(4n 2 _ 1)(n62‘ (=312

(14)

n— n— 2 n— n— 2
+( 1)(n—2) (3605)(5 27)A +O(T2)} (m)

Then, it follows from B_5 in Theorem 10 that 7 = n(n — 1)\, provided that
n # 5, and thus the coefficient By in Theorem 10 becomes

3_ 2 _
By = —mSElens (|R2 - 2|l (m)

4n*+117n%—161n2—368 n+540 2 1.2
+= ISSn(nflr)L(nJrQ) = (HPH a7 >(m)

(n—1)(n—2)%(n—>5)(5 n—27)
+ 360 A2,
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Comparing again with (14) we have

3_ 2 _
0=~ (IRI — 251l

(15)

4n*+117n%—-161n>—368 n+540 2 1.2
+ = 181(’)Ln(n717)1(n+2) = (||P|| T )

Now the result follows from (15) proceeding in the same way as in Theorem

3 2 4 3 2
: _n"—9n“—-16n—20 4n"+117n"—161n"—368 n+540
12 and using that T50m(n+2) and 80 (n—1)(n12) are both

positive for 3 < n < 10. The complex and quaternionic cases are derived in a
similar way. O

Remark 15 By Theorem 10 one also deduces that, if dim M = 5 and the L?-
norm of the Ricci tensor of each small geodesic sphere is the same as for those
in a 5-dimensional real space form, then M has constant sectional curvature.

We recall here that the volume conjecture has a positive answer in the class
of Einstein manifolds [10]. Analogously, if M is assumed to be an Einstein
manifold, the L2-norm of the Ricci tensor or the L?-norm of the scalar curvature
of sufficiently small geodesic spheres suffice to characterize the model spaces.

Theorem 16 Let M be an Finstein manifold with dim M = n, n # 5 and
holonomy group adapted to a model space. If for all m € M and all sufficiently
small v the L?-norm of the Ricci tensor or the L?-norm of the scalar curvature
of geodesic spheres is the same as those in the model space, then M is locally
isometric to that model space.

The proof can be sketched as follows. If (M, g) is assumed to be Einstein,
the coefficient By in the power series expansion of the L2-norm of the Ricci
tensor of geodesic spheres (Theorem 10) becomes

3 0,2 _ 4 3 2 _
(16) By = n(n1+2) (77; On’—16n=20|| p||2 4 Sn’=57n’+168n +0om 9607_2)

and the result follows proceeding as in previous theorems. Also, if (M,g) is
Einstein, then the coefficient Dy of the L2-norm of the scalar curvature of suf-
ficiently small geodesic spheres in Theorem 11 satisfies

D — 1
(17) 0 n(n+2) (

n— n— TL2 n
7( 2)( 1;(20 +13 +10) HR||2

+(n—2)(5714—52n3+121n2+286n—480) 2
360n T

and the desired characterization is obtained as in previous theorems.

Remark 17 It follows from Theorem 16 that the assumption on the dimension
in Theorem 14 can be dropped if the holonomy group is contained in Sp(1) -
Sp(n), since any 4n-dimensional quaternionic Kéhler manifold is Einstein for
n > 1.

14
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