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1 Introduction

An almost Hermitian structure on a manifold M consists of a nondegenerate 2-form Ω, an almost
complex structure J and a metric g satisfying the compatibility condition Ω(X, Y ) = g(JX, Y ). If the
2-form Ω is closed (i.e., it is a symplectic form) the structure is said to be almost Kähler and (g, J)
is said to be Kähler if, in addition, the almost complex structure J is integrable (i.e., it is defined
by a complex coordinate atlas on M). It is worth emphasizing that each two of the objects (g, J,Ω)
determine the third one. However, whenever the starting point is a symplectic structure Ω, there are
many different pairs (g, J) of almost Hermitian structures sharing the same Kähler form Ω.

A long standing problem in almost Hermitian geometry is to relate the properties of the structure
(g, J, Ω) with the curvature of (M, g). For example the Goldberg conjecture [13], which claims that
compact almost Kähler Einstein manifolds are necessarily Kähler, is still an open problem. (See the
survey [1] for an update on the integrability of almost Kähler structures). Although the Goldberg
conjecture is of global nature it is already known that some additional conditions suffice to show
the integrability of the almost complex structure at the local level. For instance, Einstein almost
Kähler metrics which are also ∗-Einstein are necessarily Kähler [22]. (The ∗-Einstein condition can be
replaced by the second Gray curvature identity or the anti-self-duality condition and the integrability
still follows [1]). Attention should be paid to the fact that all the above results are true in the
Riemannian setting (i.e., the induced metric g( · , · ) = Ω( J · , · ) is positive definite). Proofs usually
make use of relations involving some curvature terms (e.g. τ − τ∗ = 1

2‖∇Ω‖2) from where one obtains
‖∇Ω‖2 = 0, which shows the desired integrability (see, for example [24]). Even though such identities
remain valid in the indefinite setting, one may expect that the condition ‖∇Ω‖2 = 0 defines a class
of indefinite almost Hermitian structures strictly containing the Kähler ones, and this is indeed the
case (see [3], [11]). Our purpose in this work is to show that the class of isotropic Kähler structures is
larger than expected and it provides examples showing that the results mentioned above are not true
for indefinite metrics. To do this we consider Walker metrics [25] on 4-manifolds together with the
so-called proper almost complex structures [20] and obtain a local description of those metrics which
are almost Kähler and self-dual, ∗-Einstein or Einstein. Note that an indefinite strictly almost Kähler
Einstein metric on an 8-dimensional torus has been recently reported in [21].

As a notational fact, since throughout this paper we only deal with metrics of signature (++−−),
the word indefinite will be omitted in what follows.
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2 Preliminaries

Throughout this paper we use the following convention for the curvature tensor R(X,Y ) = ∇[X,Y ] −
[∇X ,∇Y ], where ∇ denotes the Levi-Civita connection. ρ(X, Y ) = trace {U Ã R(X,U)Y } and
τ = trace ρ are the Ricci tensor and the scalar curvature, respectively. As usual, (M, g) is said to be
Einstein if ρ = τ

ng, n = dimM , in which case the scalar curvature is necessarily constant. A special
class of Einstein manifolds is that of Osserman ones, i.e., those pseudo-Riemannian manifolds whose
Jacobi operators RX = R(X, · )X have eigenvalues independent of the direction and the basepoint.
(See, for example [4], [9], [10], [12] and the references therein for more information). Osserman metrics
have a special significance in dimension four, since an algebraic curvature tensor on a four-dimensional
vector space is Osserman if and only if it is Einstein and self-dual (or anti-self-dual) [10], [12] (see also
[5]).

Associated to an almost Hermitian structure (g, J) we consider the ∗–Ricci tensor defined by
ρ∗(X, Y ) = trace {U Ã − 1

2JR(X, JY )U} and the ∗-scalar curvature τ∗ = trace ρ∗. Note that both ρ
and ρ∗ coincide in the Kähler setting but ρ∗ is not symmetric in general. An n-dimensional almost
Hermitian manifold (M, g, J) is called weakly ∗–Einstein if ρ∗ = τ∗

n g and is said to be ∗–Einstein if,
in addition, τ∗ is constant.

2.1 Four-dimensional Walker metrics

A Walker manifold is a triple (M, g, D) where M is an n-dimensional manifold, g an indefinite metric
and D an r-dimensional parallel null distribution. Of special interest are those manifolds admitting a
field of null planes of maximum dimension r = n

2 . Since the dimension of a null plane is r ≤ n
2 , the

lowest possible case is that of (+ +−−)-manifolds admitting a field of parallel null two-planes.
For our purposes it is convenient to use special coordinate systems associated to any Walker metric.

Recall that, by a result of Walker [25], for every Walker metric g on a 4-manifold M , there exist local
coordinates (x, y, z, t) around any point of M such that the matrix of g in these coordinates has the
following form

g(x,y,z,t) =




0 0 1 0
0 0 0 1
1 0 a c
0 1 c b


 (1)

for some functions a, b and c depending on the coordinates (x, y, z, t). As a matter of notation,
throughout this work we denote by ∂i the coordinate tangent vectors, i = x, . . . , t. Also, hi means
partial derivative ∂h

∂i , i = x, . . . , t, for any function h(x, y, z, t).
Observe that Walker metrics appear as the underlying structure of several specific pseudo-Riemann-

ian structures. Some of those, as in the examples below, clearly motivate the investigation of pseudo-
Riemannian manifolds carrying a parallel degenerate plane field. Moreover, indecomposable metrics
of neutral signature which are not irreducible play a distinguished role in investigating the holonomy
of indefinite metrics. Those metrics are naturally equipped with a Walker structure (see for example
[2] and the references therein).

2-step nilpotent Lie groups with degenerate center

Let N be a 2-step nilpotent Lie group with left-invariant pseudo-Riemannian metric tensor 〈 · , · 〉
and Lie algebra n. In the Riemannian case, one splits n = z ⊕ z⊥ where the superscript denotes the
orthogonal complement with respect to the inner product and z stands for the center of n. In the
pseudo-Riemannian case, however, z may contain a degenerate subspace U for which U ⊆ U⊥. Hence
the following decomposition is introduced in [6]

n = z⊕ b = U⊕ Z⊕D⊕ E

in which z = U⊕ Z and b = D⊕ E. Here U and D are complementary null subspaces and U⊥ ∩D⊥ =
Z⊕E. (Indeed, Z is the part of the center in U⊥∩D⊥ and E is its orthogonal complement in U⊥∩D⊥).
The geometry of a pseudo-Riemannian two-step nilpotent Lie group is essentially controlled by the
linear mapping j : U ⊕ Z → End(D ⊕ E) defined by 〈j(a)x, y〉 = 〈[x, y], ia〉, where i is an involution
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interchanging U and D. Now, since [n, n] ⊆ z, it immediately follows that U is a parallel degenerate
subspace and thus the metric 〈 · , · 〉 is necessarily a Walker one.

On the other hand, note that four-dimensional indefinite Kähler Lie algebras g naturally split into
two classes depending on whether a naturally defined Lagrangian ideal h satisfying h ∩ Jh is trivial
or h ∩ Jh coincides with g. If the second possibility occurs, then the induced metric is a Walker one.
Such Lie algebras correspond to the cases R× h3, aff(C), r4,−1,−1, δ4,1 and δ4,2. (See [23] for details).

Para-Kähler and hyper-symplectic structures

A para-Kähler manifold is a symplectic manifold admitting two transversal Lagrangian foliations (see
[7], [16]). Such a structure induces a decomposition of the tangent bundle TM into the Whitney sum
of Lagrangian subbundles L and L′, that is, TM = L⊕L′. By generalizing this definition, an almost
para-Hermitian manifold is defined to be an almost symplectic manifold (M, Ω) whose tangent bundle
splits into the Whitney sum of Lagrangian subbundles. This definition implies that the (1, 1)-tensor
field J defined by J = πL − πL′ is an almost paracomplex structure, that is J2 = id on M , such that
Ω(JX, JY ) = −Ω(X, Y ) for all X, Y ∈ ΓTM , where πL and π′L are the projections of TM onto L and
L′, respectively. The 2-form Ω induces a nondegenerate (0, 2)-tensor field g on M defined by g(X,Y )
= Ω(X, JY ), where X, Y ∈ ΓTM . Now the relation between the almost paracomplex and the almost
symplectic structures on M shows that g defines a pseudo-Riemannian metric of signature (n, n) on
M and moreover, g(JX, Y )+g(X,JY ) = 0, where X, Y ∈ ΓTM . The special significance of the para-
Kähler condition is equivalently stated in terms of the parallelizability of the paracomplex structure
with respect to the Levi-Civita connection of g, that is ∇J = 0. The paracomplex structure J has
eigenvalues ±1 with completely degenerated corresponding eigenspaces due to the skew-symmetry of
J . Moreover, since J is parallel in the para-Kähler setting, so are the ±1–eigenspaces, which shows
that any para-Kähler structure (g, J) has necessarily an underlying Walker metric.

An almost hyper-paracomplex structure on a 4n-dimensional manifold M is a triple Ja, a = 1, 2, 3,
where J1, J2 are almost paracomplex structures and J3 is an almost complex structure, satisfying the
paraquaternionic identities

J2
1 = J2

2 = −J2
3 = 1, J1J2 = −J2J1 = J3.

We note that on an almost hyper-paracomplex manifold there is actually a 2-sheeted hyperboloid
of almost complex structures: S2

1(−1) = {c1J1 + c2J2 + c3J3 : c2
1 + c2

2 − c2
3 = −1} and a 1-sheeted

hyperboloid of almost paracomplex structures: S2
1(1) = {b1J1 + b2J2 + b3J3 : b2

1 + b2
2 − b2

3 = 1}. A
hyper-paraHermitian metric is a pseudo-Riemannian metric which is compatible with the (almost)
hyper-paracomplex structure in the sense that the metric g is skew-symmetric with respect to each
Ja, a = 1, 2, 3, i.e.

g(J1., J1.) = g(J2., J2.) = −g(J3., J3.) = −g(., .).

Such a structure is called (almost) hyper-paraHermitian structure. If on a hyper-paraHermitian
manifold there exists an admissible basis such that each Ja, a = 1, 2, 3 is parallel with respect to the
Levi-Civita connection or, equivalently, the three Kähler forms are closed, then the manifold is called
hyper-symplectic [15]. In this case J1 and J2 are para-Kähler structures and it follows that g is a
Walker metric.

Hypersurfaces with nilpotent shape operators

Einstein hypersurfaces M in indefinite real space forms M(c) have been studied by Magid [17], who
showed that the shape operator S of any such hypersurface is diagonalizable, it defines, after rescaling,
a complex structure on M (i.e., S2 = −b2Id for some b 6= 0), or it is two-step nilpotent (i.e., S2 = 0,
S 6= 0). Since S is a self-adjoint operator, its kernel is a completely degenerated subspace. Moreover
the fact that S is parallel shows that the underlying metric on M is a Walker one [18].

Four-dimensional Osserman metrics

Finally note that Walker metrics also appear associated with some curvature problems. Let (M, g) be
a pseudo-Riemannian metric of signature (+ + −−). Then, for each non-null vector X, the induced
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metric on X⊥ is of Lorentzian signature and thus the Jacobi operator RX = R(X, · )X, viewed as an
endomorphism of X⊥, corresponds to one of the following possibilities [4]:




α
β

γ


 ,




α −β
β α

γ


 ,




α
β
1 β


 ,




α
1 α

1 α


 .

Type Ia Type Ib Type II Type III

Type Ia Osserman metrics correspond to real, complex and paracomplex space forms, Type Ib Osser-
man metrics do not exist [4] and Type II Osserman metrics with non-nilpotent Jacobi operators have
recently been classified [9]. Further, note that any Type II Osserman metric whose Jacobi operators
have nonzero eigenvalues is necessarily a Walker metric.

3 Proper almost complex structure

It is well-known that the existence of a metric of signature (+ +−−) with structure group SO0(2, 2)
is equivalent to the existence of a pair of commuting almost complex structures [19], and moreover,
any such pseudo-Riemannian metric may be viewed as an indefinite almost Hermitian metric for a
suitable almost complex structure. Such almost complex structures are not uniquely determined. One
such structure associated with any four-dimensional Walker metric has been locally given in [20] and
called the proper almost complex structure. Our purpose here is to investigate curvature properties
of Walker metrics by considering the associated proper structure. It turns out that this structure
exhibits a very rich behavior and provides examples of non-Kähler self-dual Einstein almost Kähler
and Hermitian structures. It is important to recognize that such exceptional behavior comes from the
fact that any proper almost Hermitian structure is isotropic Kähler but not necessarily Kähler.

Next, for a Walker metric (1) an orthonormal basis can be specialized by using the canonical
coordinates as follows:

e1 = 1
2 (1− a)∂x + ∂z, e2 = −c∂x + 1

2 (1− b)∂y + ∂t,

e3 = − 1
2 (1 + a)∂x + ∂z, e4 = −c∂x − 1

2 (1 + b)∂y + ∂t.
(2)

With respect to the local frame above, the metric is diagonal [1, 1,−1,−1], and hence a natural almost
complex structure J can be defined setting:

J = e2 ⊗ e1 − e1 ⊗ e2 + e4 ⊗ e3 − e3 ⊗ e4 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 .

This structure on a Walker 4-manifold, called proper in [20], induces a positive π
2 -rotation on the

degenerate parallel field D spanned by ∂x, ∂y. The proper almost complex structure is completely
determined by the metric as follows [20]

J∂x = ∂y, J∂z = −c∂x + 1
2 (a− b)∂y + ∂t,

J∂y = −∂x, J∂t = 1
2 (a− b)∂x + c∂y − ∂z.

(3)

The space of linear invariants of an almost Hermitian manifold (Mn, g, J) is given by In =
{‖∇Ω‖2, ‖dΩ‖2, ‖δΩ‖2, ‖NJ‖2, τ, τ∗}, where

‖∇Ω‖2 =
n∑

a,b,c=1

εaεbεc(∇eaΩ)(eb, ec)2, ‖dΩ‖2 =
n∑

a,b,c=1

εaεbεcdΩ(ea, eb, ec)2,

‖δΩ‖2 =
n∑

a=1

εaδΩ(ea)2, ‖NJ‖2 =
n∑

a,b,c=1

εaεb‖NJ(ea, eb)‖2,

τ =
n∑

a,b=1

εaεbR(ea, eb, ea, eb), τ∗ =
1
2

n∑

a,b=1

εaεbR(ea, Jea, eb, Jeb),
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and {e1, . . . , en} is a local orthonormal basis [14]. Further, note that if (M, g, J) is four-dimensional,
then I4 = {‖∇Ω‖2, ‖NJ‖2, τ, τ∗}.

Recall that an indefinite almost Hermitian structure (g, J) is said to be isotropic Kähler if ‖∇J‖2
= 0 but ∇J 6= 0. Examples of isotropic Kähler structures have been given first in [11] in dimension
four and subsequently in [3] in dimension six. Our purpose in this section is to show that the class
of isotropic Kähler structures is larger than expected. For instance, any proper almost Hermitian
structure is so as follows.

Theorem 1 Any proper almost Hermitian structure (g, J) on a Walker 4-manifold satisfies ‖∇Ω‖2 =
0, ‖dΩ‖2 = 0, ‖δΩ‖2 = 0 and ‖NJ‖2 = 0. Moreover, the scalar and ∗-scalar curvatures are given by
τ = axx + byy + 2cxy and τ∗ = −ayy − bxx + 2cxy, respectively.

Proof. For the Nijenhuis tensor NJ associated with J , put Nij = NJ (∂i, ∂j). Then, after some
calculations one has from (3) that

Nxz = −Nyt = 1
2 (ax − bx − 2cy)∂x + 1

2 (ay − by + 2cx)∂y,

Nxt = Nyz = 1
2 (ay − by + 2cx)∂x − 1

2 (ax − bx − 2cy)∂y,

Nzt = 1
4 ((a− b)(ay − by + 2cx)− 2c(ax − bx − 2cy))∂x

− 1
4 ((a− b)(ax − bx − 2cy) + 2c(ay − by + 2cx))∂y.

Now, a straightforward calculation using the fact that the inverse of the metric tensor, g−1 = (gαβ)
is given by

g−1 =




−a −c 1 0
−c −b 0 1
1 0 0 0
0 1 0 0


 ,

shows that ‖NJ‖2 =
∑

ijkl gijgklg(Nik, Njl) = 0.
The Levi-Civita connection of a Walker metric (1) is given by (see, for example, [9])

∇∂x∂z = 1
2ax∂x + 1

2cx∂y, ∇∂x∂t = 1
2cx∂x + 1

2bx∂y,

∇∂y∂z = 1
2ay∂x + 1

2cy∂y, ∇∂y∂t = 1
2cy∂x + 1

2by∂y,

∇∂z∂z = 1
2 (aax + cay + az)∂x + 1

2 (cax + bay − at + 2cz)∂y − ax

2 ∂z − ay

2 ∂t,

∇∂z∂t = 1
2 (at + acx + ccy)∂x + 1

2 (bz + ccx + bcy)∂y − cx

2 ∂z − cy

2 ∂t,

∇∂t∂t = 1
2 (abx + cby − bz + 2ct)∂x + 1

2 (cbx + bby + bt)∂y − bx

2 ∂z − by

2 ∂t.

For the covariant derivative ∇J of the almost complex structure put (∇J)ij = (∇∂iJ)∂j . Then, after
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some calculations we obtain

(∇J)zx = 1
2 (ay + cx)∂x − 1

2 (ax − cy)∂y,

(∇J)zy = 1
2 (cy − ax)∂x − 1

2 (ay + cx)∂y,

(∇J)zz = 1
2 (a(ay + cx)− c(ax − cy))∂x − 1

4 (a + b)(ax − cy)∂y − 1
2 (ay + cx)∂z

+ 1
2 (ax − cy)∂t,

(∇J)zt = 1
4 (a + b)(cy − ax)∂x − 1

2 (b(ay + cx) + c(ax − cy))∂y + 1
2 (ax − cy)∂z

+ 1
2 (ay + cx)∂t,

(∇J)tx = 1
2 (bx + cy)∂x + 1

2 (by − cx)∂y,

(∇J)ty = 1
2 (by − cx)∂x − 1

2 (bx + cy)∂y,

(∇J)tz = 1
2 (a(bx + cy) + c(by − cx))∂x + 1

4 (a + b)(by − cx)∂y − 1
2 (bx + cy)∂z

− 1
2 (by − cx)∂t,

(∇J)tt = 1
4 (a + b)(by − cx)∂x − 1

2 (b(bx + cy)− c(by − cx))∂y − 1
2 (by − cx)∂z

+ 1
2 (bx + cy)∂t.

Now a long but straightforward calculation shows that

‖∇J‖2 =
∑

i,j,k,l

gijgklg((∇J)ik, (∇J)jl) = 0.

Then, it follows that ‖∇Ω‖2 = ‖dΩ‖2 = ‖NJ‖2 = 0 since for an arbitrary almost Hermitian 4-manifold,
one has the identities

‖δΩ‖2 =
1
6
‖dΩ‖2, ‖∇Ω‖2 =

1
3
‖dΩ‖2 +

1
4
‖NJ‖2.

Finally, the expressions of the scalar and ∗-scalar curvatures can be obtained by means of the formulas
for the curvature tensor of a Walker metric given, for example, in [9], [20]. ¤

Remark 1 Examples of compact isotropic Kähler structures can be constructed on tori taking a, b
and c in (1) to be periodic functions on R4. Moreover note that in the general situation the isotropic
Kähler structures (1), (3) are neither complex nor symplectic. Indeed, according to [20], the proper
almost Hermitian structure (g, J) is :

• almost Kähler if and only if

ax + bx = 0, ay + by = 0, (4)

• Hermitian if and only if

ax − bx = 2cy, ay − by = −2cx, (5)

• Kähler if and only if
ax = −bx = cy, ay = −by = −cx. (6)

Hence, for special choices of functions (which may still be assumed to be periodic) satisfying (4) or
(5) examples of symplectic or integrable isotropic Kähler structures can be given.

4 Almost Kähler self-dual proper structures

Considering the Riemann curvature tensor as an endomorphism of Λ2(M), we have the following
O(2, 2)-decomposition

R ≡ τ

12
IdΛ2 + ρ0 + W : Λ2 → Λ2, (7)
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where W denotes the Weyl conformal curvature tensor and ρ0 the traceless Ricci tensor, ρ0(X, Y )
= ρ(X, Y ) − τ

4 g(X, Y ). The Hodge star operator ? : Λ2 → Λ2 associated to any (+ + −−)-metric
induces a further splitting Λ2 = Λ2

+ ⊕ Λ2
−, where Λ2

± denotes the ±1-eigenspaces of the Hodge star
operator, that is Λ2

± = {α ∈ Λ2(M)/ ? α = ±α}. Correspondingly, the curvature tensor decomposes
as R ≡ τ

12 IdΛ2 + ρ0 + W+ + W−, where W± = 1
2 (W ± ?W ). Recall that a pseudo-Riemannian

4-manifold is called self-dual (resp., anti-self-dual) if W− = 0 (resp., W+ = 0).
Let {e1, e2, e3, e4} be the orthonormal basis given by (2). Then Λ2

± = 〈{E±
1 , E±

2 , E±
3

}〉, where

E±
1 =

e1 ∧ e2 ± e3 ∧ e4

√
2

, E±
2 =

e1 ∧ e3 ± e2 ∧ e4

√
2

, E±
3 =

e1 ∧ e4 ∓ e2 ∧ e3

√
2

.

Here observe that ei ∧ ej ∧ ?(ek ∧ el) = (δi
kδj

l − δi
lδ

j
k) εiεj e1 ∧ e2 ∧ e3 ∧ e4, where εi = g(ei, ei).

Further, note that 〈E±
1 , E±

1 〉 = 1, 〈E±
2 , E±

2 〉 = −1, 〈E±
3 , E±

3 〉 = −1, and therefore the self-dual and
anti-self-dual Weyl curvature operators W± : Λ2

± −→ Λ2
± have the following matrix form with respect

to the bases above:

W± =




W±
11 W±

12 W±
13

−W±
12 −W±

22 −W±
23

−W±
13 −W±

23 −W±
33


 , (8)

where W±
ij = W (E±

i , E±
j ) and W (ei ∧ ej , ek ∧ el) = W (ei, ej , ek, el).

Self-dual Walker metrics have been previously investigated in [9] (see also [8]) showing that a
metric (1) is self-dual if and only if the functions a, b, c have the form

a(x, y, z, t) = x3A + x2B + x2yC + xyD + xP + yQ + ξ,

b(x, y, z, t) = y3C + y2E + xy2A + xyF + xS + yT + η,

c(x, y, z, t) = 1
2x2F + 1

2y2D + x2yA + xy2C + 1
2xy(B + E) + xU + yV + γ,

(9)

where all capital, calligraphic and Greek letters stand for arbitrary smooth functions depending only
on the coordinates (z, t).

Anti-self-dual Walker metrics are much more difficult to describe since the self-dual part of the
Weyl curvature operator is given by

W+ =




W+
11 W+

12 W+
11 + τ

12

−W+
12

τ
6 −W+

12

−W+
11 − τ

12 −W+
12 −W+

11 − τ
6


 ,

where the expressions of W+
11 and W+

12 are as follows

W+
11 = 1

12 (6caxby − 6axbz − 6baxcy + 12axct − 6caybx + 6aybt + 6baycx

+ 6azbx − 6atby − 12atcx + 6abxcy − 6abycx + 12bycz − 12bzcy

− axx − 12c2axx − 12bcaxy + 24caxt − 3b2ayy + 12bayt − 12att

− 3a2bxx + 12abxz − byy − 12bzz + 12accxx − 2cxy + 6abcxy

− 24ccxz − 12acxt − 12bcyz + 24czt),

W+
12 = 1

4 (acxx + abxy − baxy − bcyy + 2(axt − byz − cxz + cyt − caxx − ccxy)).

Hence W+ has eigenvalues
{

τ
6 ,− τ

12 ,− τ
12

}
and, moreover, it is diagonalizable if and only if τ2 +

12τW+
11 + 48

(
W+

12

)2
= 0 (cf. [9]).

Observe that the complex structure induces the opposite orientation to that defined by the Kähler
form. (Indeed, the Kähler form corresponding to the proper almost Hermitian structure is Ω =

√
2E−

1 ).
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Theorem 2 A proper almost Kähler structure (g, J) on a Walker 4-manifold is self-dual if and only
if

a = xyD + xP + yQ + ξ,

b = −xyD− xP − yQ + η,

c = − 1
2x2D + 1

2y2D + xU + yV + γ.

(10)

Proof. It is immediate from (4) and (9). ¤

5 Almost Kähler ∗-Einstein proper structures

The ∗-Einstein equation (ρ∗0 = ρ∗ − τ∗
4 g = 0) for a proper almost Hermitian structure can be written

as a system of PDEs’ as follows:

(ρ∗0)xz = −(ρ∗0)yt = −(ρ∗0)zx = (ρ∗0)ty =
1
4

(ayy − bxx) = 0,

(ρ∗0)xt = −(ρ∗0)zy = −1
2

(axy − cxx) = 0,

(ρ∗0)yz = −(ρ∗0)tx = −1
2

(bxy − cyy) = 0,

(ρ∗0)zz =
1
4
{
axbx + ay(by − cx) + bycx + cy(ax − bx)− c2

x − c2
y + 2c(axy − cxx)

+ bayy − 2ayt + abxx − 2bxz − (a + b)cxy + 2cxt + 2cyz

}
= 0, (11)

(ρ∗0)zt = −1
4
{(a− b)(axy − cxx) + c(ayy − bxx)} = 0,

(ρ∗0)tz =
1
4
{(a− b)(bxy − cyy) + c(ayy − bxx)} = 0,

(ρ∗0)tt =
1
4
{
axbx + ay(by − cx) + bycx + cy(ax − bx)− c2

x − c2
y + 2c(bxy − cyy)

+ bayy − 2ayt + abxx − 2bxz − (a + b)cxy + 2cxt + 2cyz

}
= 0.

Note that the ∗-scalar curvature is given by

τ∗ = −ayy − bxx + 2 cxy. (12)

Theorem 3 The proper almost Hermitian structure (g, J) is almost Kähler and ∗-Einstein if and
only if the functions a, b and c have the form

a = (x2 − y2)κ + xP (z, t) + yQ(z, t) + ξ(z, t),

b = (y2 − x2)κ− xP (z, t)− yQ(z, t) + η(z, t), (13)

c = 2xyκ + xU(z, t) + yV (z, t) + γ(z, t),

where κ is a constant and

2(Pz + Vz −Qt + Ut) = (P − V )2 + (Q + U)2 + 4κ(ξ + η). (14)

In this case the scalar and ∗-scalar curvatures are constant τ = τ∗ = 8κ.

Proof. It follows from (4) and (11) that (g, J) is almost Kähler and ∗ - Einstein if and only if

ax + bx = ay + by = 0,
axy = cxx, bxy = cyy, ayy = bxx,

(15)

and

axbx + ayby − aycx + bycx + axcy − bxcy − c2
x − c2

y + 2caxy + bayy

− 2ayt + abxx − 2bxz − 2ccxx − (a + b)cxy + 2cxt + 2cyz = 0. (16)
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Using (15) we easily get that

a + b = T (z, t), cxx = axy = −cyy, axx + ayy = 0,

where T is a smooth function depending only on z and t. Hence cx = ay + A(y, z, t), cy = −ax +
B(x, z, t) for some smooth functions A, B, and the equation axx + ayy = 0 implies that Ay = Bx.
Thus

A(y, z, t) = yα(z, t) + β(z, t), B(x, z, t) = xα(z, t) + δ(z, t),

where α, β, δ are smooth functions. Therefore the system (15) is equivalent to

cx = ay + yα(z, t) + β(z, t), cy = −ax + xα(z, t) + δ(z, t),
axx + ayy = 0, b = T (z, t)− a.

(17)

Now a straightforward computation making use of (17) shows that the condition (16) can be written
as

(2ay + yα + β)2 + (2ax − xα− δ)2 = 2xαz + 2yαt + 2δz + 2βt − αT. (18)

Set
H(x, y, z, t) = 2a(x, y, z, t)− 1

2
(x2 − y2)α(z, t)− xδ(z, t) + yβ(z, t). (19)

Then (18) takes the form

H2
x + H2

y = 2xαz + 2yαt + 2δz + 2βt − αT. (20)

The latter identity shows that, for any fixed z and t, the right-hand side of (20) is a non-negative
linear function of x and y. This implies that the coefficients αz and αt vanish, i.e. the function α(z, t)
is constant. Moreover, using the fact that axx + ayy = 0 (cf. (17)) we get from (19) that

Hxx + Hyy = 0. (21)

Now we shall show that
Hxx = Hxy = Hyy = 0.

Indeed, differentiating (20) in x and y gives, in view of (21), that

HxHxx + HyHxy = 0 −HyHxx + HxHxy = 0.

Therefore
(H2

x + H2
y )Hxx = (H2

x + H2
y )Hxy = 0. (22)

Suppose Hxx(x0, y0, z0, t0) 6= 0 at some point (x0, y0, z0, t0). Then Hxx 6= 0 on a neighborhood U of
this point and (22) implies that Hx = 0 on U, hence Hxx(x0, y0, z0, t0) = 0, a contradiction. Thus
Hxx = Hxy = Hyy = 0, therefore H is a linear function in x and y, say

H = xp(z, t) + yq(z, t) + 2ξ(z, t).

Then it follows from (21) that

a =
1
4
(x2 − y2)α +

1
2
x(p + δ) +

1
2
y(q − β) + ξ (23)

and (20) gives
p2 + q2 = 2δz + 2βt − αT. (24)

Now, integrating the system (17) for c, we obtain that

c =
1
2
xyα +

1
2
x(q + β)− 1

2
y(p− δ) + γ, (25)

where γ is a smooth function depending only on z and t. Setting

4κ = α, 2P = p + δ, 2Q = q − β, 2U = q + β, 2V = −p + δ, η = T − ξ

we see from (23), (24) and (25) that the functions a, b and c have the form (13).
Let τ and τ∗ be the scalar and ∗-scalar curvature. Then, it follows from (21) and Theorem 1 that

τ = τ∗ = 8κ = const. ¤
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Corollary 4 The proper almost Hermitian structure (g, J) is almost Kähler, self-dual and ∗-Einstein
if and only if the functions a, b and c have the form (13)–(14) with κ = 0.

Corollary 5 If the function a (resp. b) depends only on (z, t), then the structure (g, J) is almost
Kähler and ∗-Einstein if and only if the function b (resp. a) depends only on (z, t) and the function
c has the form

c = xU(z, t) + yV (z, t) + γ(z, t),

where
2(Vz + Ut) = V 2 + U2.

Corollary 6 If the function c depends only on (z, t), then the structure (g, J) is almost Kähler and
∗-Einstein if and only if the functions a and b have the form

a = xP (z, t) + yQ(z, t) + ξ(z, t),

b = −xP (z, t)− yQ(z, t) + η(z, t), (26)

where

2(Pz −Qt) = P 2 + Q2. (27)

6 Almost Kähler Einstein proper structures

The Einstein equation for a Walker metric (1) is a system of PDEs’ as follows (cf. [20]):

(ρ0)xz = −(ρ0)yt = (ρ0)zx = −(ρ0)ty =
1
4

(axx − byy) = 0,

(ρ0)xt = (ρ0)tx =
1
2

(bxy + cxx) = 0,

(ρ0)yz = (ρ0)zy =
1
2

(axy + cyy) = 0,

(ρ0)zz =
1
4

a axx + c axy +
1
2

b ayy − ayt + cyz − 1
2

ay cx

+
1
2

ax cy +
1
2

ay by − 1
2
c2
y −

1
2

a cxy − 1
4

a byy = 0, (28)

(ρ0)zt = (ρ0)tz =
1
2

a cxx +
1
2

c cxy +
1
2

axt − 1
2

cxz − 1
2

ay bx +
1
2

cx cy

+
1
2

b cyy − 1
2

cyt +
1
2

byz − 1
4

c axx − 1
4

c byy = 0,

(ρ0)tt =
1
2

a bxx + c bxy + cxt − bxz − 1
2

c2
x +

1
2

ax bx

− 1
2

bx cy +
1
2

by cx +
1
4

b byy − 1
4

b axx − 1
2

b cxy = 0.

Note that the scalar curvature is given by

τ = axx + byy + 2 cxy. (29)

Theorem 7 The structure (g, J) is strictly almost Kähler Einstein if and only if the functions a, b
and c have the form

a = xP (z, t) + yQ(z, t) + ξ(z, t),

b = −xP (z, t)− yQ(z, t) + η(z, t), (30)

c = xU(z, t) + yV (z, t) + γ(z, t),
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where
2(Vz −Qt) = V 2 − V P + Q2 + UQ,

2(Pz + Ut) = P 2 − V P + U2 + UQ,

Qz + Uz − Pt + Vt = PQ + UV,

(31)

and (V − P )2 + (U + Q)2 6≡ 0.

Proof. It follows from (4) that the structure (g, J) is almost Kähler Einstein if and only if

ax + bx = ay + by = 0, axy + cyy = bxy + cxx = 0, axx = byy (32)

and
bayy + 2caxy − acxy − 2ayt + 2cyz + ayby + axcy − aycx − c2

y = 0,

abxy + baxy + caxx − ccxy − axt − byz + cyt + cxz + aybx − cxcy = 0,

abxx + 2cbxy − bcxy − 2bxz + 2cxt + axbx − bxcy + cxby − c2
x = 0.

(33)

It is easy to see that equation (32) implies (15). Moreover adding up the first and the third
equations of (33) we get (16). Hence the structure (g, J) is ∗-Einstein and the functions a, b, c have
the form (13). Plugging the expressions (13) for a, b, c into the first equation of (33) and comparing
the coefficients of the variables x and y, we get κ(Q + U) = κ(P − V ) = 0. It follows that κ = 0 since
otherwise Q + U = P − V = 0 which implies, by (6), that the structure (g, J) is Kähler. Thus the
functions a, b, c have the form (30). Now it is easy to check that the system (33) takes the form (31).
¤

Corollary 8 Any proper strictly almost Kähler Einstein structure is self-dual, Ricci flat and ∗-Ricci
flat.

Corollary 9 If the function c depends only on (z, t), the structure (g, J) is strictly almost Kähler
Einstein if and only if the functions a and b have the form

a = xP (z, t) + yQ(z, t) + ξ(z, t)

b = −xP (z, t)− yQ(z, t) + η(z, t), (34)

where
2Pz = P 2, 2Qt = −Q2, Qz − Pt = PQ, (35)

and P 2 + Q2 6≡ 0.

Remark 2 i) In a neighborhood of a point where P 6= 0 and Q 6= 0 the solution of the system (35)
is given by

P =
2p

t− pz + q
, Q =

2
t− pz + q

, (36)

where p, q are non-zero constants.
ii) In a neighborhood of a point where P 6= 0 and Q = 0 the solution of the system (35) is given

by

P = − 2
z + q

, (36)

where q is a non-zero constant. It should be noted that this family of solutions contains the first
counterexample, due to Haze (see [20]), to the Goldberg conjecture of indefinite and noncompact
type.

Corollary 10 If the function a (resp. b) depends only on (z, t), then the structure (g, J) is strictly
almost Kähler Einstein if and only if the function b (resp. a) depends only on (z, t) and the function
c has the form

c = xU(z, t) + yV (z, t) + γ(z, t), (37)

where
2Ut = U2, 2Vz = V 2, Uz + Vt = UV, (38)

and U2 + V 2 6≡ 0.
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Remark 3 In a neighbourhood of a point where U 6= 0 and V 6= 0 the solution of the system (38) is
given by

U = − 2
t + pz + q

, V = − 2p

t + pz + q
, (39)

where p, q are non-zero constants.
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