Unicity of Constant Higher Order Mean Curvature Spacelike Hypersurfaces in General Robertson-Walker Spacetimes

Colares, Antonio Gervasio

Universidade Federal do Ceará, Fortaleza-CE, Brasil

agcolares@yahoo.com.br

Abstract

Consider the following question: Under what conditions must a compact spacelike hypersurface of constant higher order mean curvature in a Lorentzian warped product be a spacelike slice? In collaboration with L. J. Alías we obtained the following result:

Let $-I \times_f M^n$ be a spatially closed Lorentzian warped product obeying the strong null convergence condition, with $n \ge 3$, that is, $K_M \ge sup(ff'' - f'^2)$, where K_M stands for the sectional curvature of M^n . Assume that \sum^n is a compact spacelike hypersurface immersed into $-I \times_f M^n$ which is contained in a slab $\Omega(t_1, t_2) = (t_1, t_2) \times M^n$ on which f' does not vanish. If H_k is constant, with $2 \le k \le n$ then \sum^n is totally umbilical. Moreover, \sum^n must be a slice $t_0 \times M^n$ (necessarily with $f'(t_0) \ne 0$), unless in the case where $-I \times_f M^n$ has positive constant sectional curvature and \sum^n is a round umbilical hypersphere.

The proof is based strongly on the ellipticity of second order differential operators L_k associated to higher order mean curvatures of \sum^n . (The work will appear in Math. Proceed. Cambridge Philos. Soc.)