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Abstract

A pseudo-Riemannian manifold (M, g) is homogeneous provided that, for any
points p, q ∈ M , there is an isometry φ such that φ(p) = q. Using the notion
of homogeneous pseudo-Riemannian structure introduced in [8], we proved that
a three-dimensional connected, simply connected and complete homogeneous
Riemannian manifold is either symmetric or a Lie group endowed of a left-
invariant Lorentzian metric [1]. Together with the results on three-dimensional
Lorentzian Lie groups obtained by Cordero and Parker [6] and Rahmani [10],
this leads to the classification of three-dimensional homogeneous Lorentzian
manifolds.

The result above is also the starting point to characterize and classify some
classes of three-dimensional homogeneous Lorentzian manifolds, having a special
geometric meaning. It is interesting to compare such results in the Lorentzian
case with their Riemannian analogues.

Naturally reductive and g.o. Lorentzian spaces are both related to the no-
tion of homogeneous geodesic. A (connected) homogeneous pseudo-Riemannian
manifold (M, g) can be identified with (K/H, g), where H is the isotropy group
at a fixed point o of M . A geodesic Γ through the origin o ∈ M = K/H is
called homogeneous if it is the orbit of a 1-parameter subgroup.

Homogeneous geodesics have been investigated by many authors. In the
framework of Lorentzian geometry, they aquire a new interest. In fact, homo-
geneous Lorentzian spaces for which all null (that is, lightlike) geodesics are
homogeneous, are candidates for constructing solutions to the 11-dimensional
supergravity, which preserve more than 24 of the available 32 supersymme-
tries[7]. Together with R.A. Marinosci, we studied the set of homogeneous
geodesics of three-dimensional Lorentzian Lie groups ([3],[4]). This permits to
determine all three-dimensional g.o. and naturally reductive Lorentzian spaces.

Einstein-like metrics, introduced by A. Gray in [9], are defined through con-
ditions on the Ricci tensor. Several papers have been devoted to Einstein-like
metrics of Riemannian manifolds. In Lorentzian geometry, Einstein-like met-
rics have been studied in three-dimensional Lorentzian manifolds admitting a
parallel null vector field [5].



We completely classified Einstein-like metrics on three-dimensional homo-
geneous Lorentzian manifolds [2]. As in the Riemannian case, the Ricci tensor
being cyclic-parallel (respectively, a Codazzi tensor) is related to natural reduc-
tivity (respectively, symmetry). However, differently from the Riemannian case,
some exceptional examples arise.
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