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Abstract

Developing ideas about the simplification of algebraic expressions (e.g., 5x
+ 2x; 4 x 2p; 8x + 5y + 2x - 3y) requires the development of abstract schema
(Ohlsson, 1993) for multiplication and addition, as well as the algebraic notion
of variable. For example, simplifying by adding like things (e.g., 5 tens + 2
tens = 7 tens, 5/9 + 2/9 = 7/9, 5x + 2x = 7x) is an abstract schema because
its meaning lies in the relationships between the numbers and variables, rather
than in the numbers and variables. A teaching experiment that aimed to teach
simplification procedures through developing arithmetic principles as abstract
schema, was conducted with Grade 8 pupils. A variety of activities, including
patterns and concrete materials, was employed to highlight the similarities be-
tween arithmetic and algebra in the simplification of expressions. This paper
describes the activities and their rationale, and discusses the results in terms of
the students’ responses to the teaching episodes.

Algebra is an abstract system in which components interact to reflect the
structure of arithmetic. Understanding algebraic expressions requires abstract
schema (Ohlsson, 1993) of the arithmetic operational laws and equals, combined
with the algebraic notion of variable. For example, simplifying by adding like
things applies in arithmetic for whole numbers (e.g., 5 tens + 2 tens = 7 tens,
50 + 20 = 70), fractions (e.g., 5 ninths + 2 ninths = 7 ninths, 5/9 + 2/9 =
7/9), decimals (0.5 + 0.2 = 0.7) and measures (e.g., 5cm + 2cm = 7cm) as
well as in algebra (e.g., 5x + 2x = 7x, where x is any number, a variable).
Thus, simplification by adding like things is an isomorphic structure underlying
both arithmetic and algebra. It is an abstract schema because its meaning
lies in terms of the addition process, rather than the particular content (e.g.,
fractions).

Difficulties in learning algebra have long been documented (e.g., Thorndike
et al., 1923), and more recent research (e.g., Boulton-Lewis, Cooper, Atweh, Pil-
lay, Wilss, and Mutch, 1998; Linchevski and Herscovics, 1996) continues to show
that achievement rates in algebra are poor. Research indicates that instruction
does not seem to be bridging the gap between arithmetic and algebra, particu-
larly in: (a) developing meaning for variables (Booth, 1988; Cooper, Boulton-
Lewis, Atweh, Pillay,Wilss, and Mutch, 1997; Linchevski and Herscovics, 1996)
and for the equals sign (Behr, Erlwanger, and Nichols, 1980; Herscovics and
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Linchevski, 1994); (b) connecting the knowledge required to solve arithmetical
equations by inverting or undoing (backtracking), and the knowledge required
to solve algebraic equations by operating on or with the unknown (Booth, 1988;
Herscovics and Linchevski, 1994); (c) overcoming the syntactic similarity be-
tween the algebraic notation for 3x and the arithmetic notation for 2-digit place
value (Stacey and MacGregor, 1997); and (d) abstracting the properties and
conventions of operations (Herscovics and Linchevski, 1994). A particular mis-
conception is perceiving variables as letters which begin or are shorthand for
an object, such as a for apples or l for length. Such a misperception has been
referred to as ”fruit salad algebra” (MacGregor, 1986).

In response to the poor achievement rates, instructional practices which fo-
cus on patterns and physical materials to introduce algebra have been developed
(e.g., Quinlan, Low, Sawyer, and White, 1993). However, patterns may not be
effective as they do not easily lead to the generalisations required for alge-
braic understanding (Boulton-Lewis et al., 1997; MacGregor and Stacey, 1995);
whilst the use of physical materials (e.g., cups to represent variables, counters
to represent numbers, balance beam for equals) may impose additional cogni-
tive demands (Halford and Boulton-Lewis, 1992), contain intrinsic restrictions
(Behr, Lesh, Post, and Silver, 1983), and have limited connections to symbols
(Boulton-Lewis et al, 1998; Hart, 1989).

To improve student learning of algebra, Boulton-Lewis et al. (1997) pro-
posed a two-path instructional model (see Figure 1). The model was based on
the belief that understanding of complex algebra is the end product of a learning
sequence of mathematical concepts that includes: binary arithmetic; complex
arithmetic (a series of operations on numbers); and binary algebra. It means
that 2 x 5 and 5 + 3 (binary operations) are a prerequisite for 2x and x + 3
(binary algebra) while, in turn, 2 x 5 - 4 and 5 + 3 - 4 (complex arithmetic)
forms an important prerequisite to understanding 2x - 4 and x + 3 - 4 (complex
algebra). It also means that understanding operational laws should be applied
to series of operations as well as individual operations, and that learning com-
plex algebra is facilitated by understanding similar (isomorphic) structures in
complex arithmetic.

Figure 1. Two-path model (Boulton-Lewis et al., 1997) for algebra instruc-
tion.

Sometimes it is difficult to classify activities into the four areas of Figure 1.
In this case, instruction to develop algebraic knowledge should be seen as encom-
passing three stages, namely, arithmetic through pre-algebra (where arithmetic
techniques are used with letters, e.g., 3x = x + x + x) to algebra (where op-
erations act on variables, e.g., 3x + 4x = 7x) (Boulton-Lewis, Cooper, Atweh,
Pillay, and Wilss, submitted).

THE STUDY
The study was a teaching experiment (Romberg, 1992) and an intervention

design (Hiebert and Wearne, 1991) undertaken with 51 Year 8 students (two
classes) at a middle-class suburban state secondary school. Twenty 40-minute
episodes (separated into two 2-week units, two months apart) to introduce early
algebra were taught to one class and repeated with the second. Simplification of
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algebraic expressions was part of the second unit. One of the researchers did the
teaching whilst the class teacher and another researcher observed. Each teaching
episode was videotaped, worksheets used by the students were collected, and a
representative sample of 14 students (7 from each class) was interviewed after
each unit. The monitoring of student responses and reactions facilitated the
modification of successive teaching episodes, and permitted the study of the
relationship between teacher actions and student learning.

The major purpose of the teaching episodes was to have students reflect
on their experience of arithmetic in order to draw out generalities that can be
applied to algebra (e.g., those that differentiate between addition, subtraction,
multiplication and division and those that underlie the procedures used in sim-
plifications and equation solving in algebra). The focus of the reflections was
informal understandings of mathematical notions that can be used to underpin
formal mathematical knowledge (in line with Kaplan, Yammamoto and Gins-
burg, 1989, and Linchevski and Herscovics, 1996).

The initial episodes of the first teaching unit focused on the four operations
and equals sign with the aim of reinforcing their meanings (e.g., equals means
the same value as). After this, the episodes introduced expressions (e.g., 34 +
58) and equations (e.g., 4 + 5 = 9, 34 + 28 = 31 x 2), emphasising the changes
that leave expressions and equations invariant (i.e., doing and undoing for ex-
pressions, and doing the same to both sides for equations). The next episodes
developed the notion of variable through Usiskin’s (1988) three approaches of
unknowns (e.g., 3x = 6), patterns (e.g., 3, 7, 11, 15, ...) and relationships (e.g.,
2Õ 5, 8Õ 23, 5Õ 14), and through materials (e.g., cups and counters). Usiskin’s
(1988) approaches were introduced within complex arithmetic (see Figure 1)
and then revisited in turn with concrete materials to introduce variable. The
teaching of unknowns was based on the transformational approach to arithmetic
where, for example, 3 x 2 is viewed as a transformation from 3 to 6 through
multiplying by 2 (see Cooper and Baturo, 1992). The final episodes of the first
unit extended the meaning of variable to more complex expressions [e.g., 3x +
2; 3(x + 2)] and equations (e.g., 3x + 2 = 11). This extension was also done us-
ing Usiskin’s approaches and cups and counters. The teaching sequence moved
from binary algebra (e.g., 3x and x +3) to complex algebra [e.g., 3x + 2 and
3(x + 2)].

Teaching episodes in the second unit revised many of the mathematical ideas
from the first unit. In particular, further attention was given to reintroducing
variable with Usiskin’s three approaches (unknowns and transformations, pat-
terns, and relationships), and to modelling simple algebraic expressions and
equations with cups and counters. After this, the episodes focused on simplify-
ing algebraic expressions using all four operations. Within these simplification
episodes, modelling was used to link informal generalisations expressed in com-
mon language to algebra symbols. For example, ”the sum of 5 and any other
number” was linked to 5 + n, and ”twice a number subtract 7” was linked to
2m - 7). Some modifications were incorporated into the second teaching unit
after examination of the first teaching unit (see Cooper, Baturo, and Williams,
1999; Cooper, Williams, and Baturo, 1999). Two findings were particularly rel-
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evant to the episodes on simplification of algebraic expressions. The first was to
continue to link algebraic expressions to Usiskin’s three approaches even after
the notion of variable had been revised. The second was to not separate con-
sideration of arithmetic and algebra into different lessons, but to weld together
consideration of arithmetic and algebra notions within single lessons.

RESULTS AND DISCUSSION
The episodes on simplification of algebraic expressions were the final teaching

in the study and followed teaching episodes on the four operations, the equals
sign, arithmetic expressions and equations, the introduction of variable, and
the meaning of complex algebraic expressions and equations. In these earlier
episodes, the students had difficulty understanding the work on expressions and
equations and in understanding the meaning of more complex algebraic expres-
sions and equations [e.g., 3(x + 2)], but appeared to understand episodes on
equals, unknowns and transformations and simpler algebraic expressions and
equations. Patterning and relationships, plus the modelling with cups and
counters, appeared to be successful after episodes were simplified and revised.
Cooper, Baturo and Williams (1999) and Cooper, Williams and Baturo (1999)
contain the results for these earlier episodes.

Teaching episodes for simplification
The teaching episodes and worksheets relating to the simplification of expres-

sions followed the sequence of steps described below. Emphasis was on enabling
the students to translate the patterns in arithmetic into abstract schema in al-
gebra. Where appropriate, cups and counters and envelopes and counters were
used to model the algebraic schema.

1. Multiplication can be represented as repeated addition. As can be seen
in Figure 2, this meaning for multiplication can be translated to algebra. This
result paves the way for harder expressions such as 5r + 6s to be perceived as
r + r + r + r + r + s + s + s + s + s + s.

Figure 2. Multiplication as repeated addition
2. Expressions of one variable can be simplified by adding/subtracting ”like

things”. This step (see Figure 3) was assisted by the ideas in the previous step
(e.g., 3 tens + 4 tens = (ten + ten+ ten) + (ten + ten + ten + ten) = 7
tens) and reinforced by modelling with cups and counters (see diagram below).
Adding was also extended to subtracting, through inverse notions (e.g., 3x +
4x = 7x means that 7x - 4x = 3x). (Note: It is at this point that difficulties can
emerge with ”fruit salad” mathematics - the emphasis must be on the variable
as ”any number”.)

Figure 3. Adding ”like things”
3. Expressions can be simplified by multiplying/dividing coefficients. This

step of multiplying coefficients, or the numbers that multiply variables, was
developed from transformations as well as by relating arithmetic to algebra (see
Figure 4).

Figure 4. Multiplying coefficients
4. Expressions can be simplified by representing multiplication in terms of

area. As demonstrated in Figure 5, the array or area model for multiplication
can be extended to algebra, and then to algebra division by inverse notions (e.g.,
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3 x 5a = 15a means that 15a / 5a = 3; 2p x 3q = 6pq means that 6pq /3q =
2p).

Figure 5. Multiplication as area
5. Expressions of two variables can be simplified by adding/subtracting ”like

things”. This was initially achieved vertically with problems (”real situations”),
modelled by cups and envelopes (representing different unknowns), then prac-
tised for both addition and subtraction examples. Later, these were related to
other structures within arithmetic, and eventually horizontal arrangements re-
placed the vertical ones. This sequence is summarised in Figure 6. (Note: The
difference between the algebra and the arithmetic procedures in Figure 6 not
only lies in abstractness but also in lack of renaming from one column to the
one beside it.)

Figure 5. Multiplication as area
In the algebraic simplification teaching, the episodes from Step 1 (multipli-

cation as repeated addition) had to be repeated due to an incorrect assumption
that students understood this multiplication meaning for simple arithmetic. Ini-
tially students represented 3x as three counters and a cup, not as three cups
(containing any number). Only after much revision was it evident that students
no longer had this misconception (see Cooper, Baturo and Williams, 1999). The
episodes from Step 2 appeared to be successful. The understanding of multi-
plication as repeated addition was strong enough to allow this generalisation.
Much effort was expended in later episodes in this Step to ensure that students
saw variables such as a as ”any number” (not as apples), but it was hard to
assess whether this was successful.

The introduction of unknown through arithmetic transformations in the first
unit was very successful (Cooper, Baturo and Williams, 1999). Thus, the use of
transformations appeared to be successful here, and along with the continued
use of multiplication as repeated addition (Figure 3) seemed to provide a strong
understanding of simplification through multiplication of coefficients. Because
of the difficulties in Step 1, the area meaning of multiplication was revised for
simple arithmetic at the beginning of Step 4. In the episodes that followed, sim-
plification through multiplication of two variables was introduced. This process
of simplification appeared to be understood. However, relating 3x x 2x = 6x2
to 3cm x 2cm = 6cm2 may not provide appropriate understanding for algebraic
simplification. In later exercises, this was extended to division with less success
than for multiplication.

With the final Step, addition and subtraction of two variables was intro-
duced by relating it to arithmetic and by using two different materials (cups
and envelopes) for the two different variables. Problems emerged when differ-
ent operations were used for different variables. In the arithmetic examples,
operations had not been mixed.

Overall, observations indicated that the students received the early lessons
(Steps 1 and 2) here exceptionally well, and appeared to understand the gen-
eralisations from arithmetic to algebra. However, in subsequent lessons, the
problems with subtraction and division became evident. Instruction for sim-
plifying addition and multiplication examples had depended on modelling, but
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this modelling was difficult to extend to subtraction and division. Instead, in-
struction relied on extending addition and multiplication work by appealing to
the patterns that had already been set up, and on asking students to make
common sense transfers (e.g., 3 x 4a = 12a. Therefore 12a / 3 = 4a). However,
due to lack of time, some of the extensions were rushed and appeared not to be
grasped by the students. A greater amount of time was needed to be spent on
the revision of arithmetic addition and subtraction (e.g., 6 - 13 + 9; -6 +- 8)
prior to the use of negatives in two variable simplification. In addition, more
time was needed on two variable multiplication and division operations.

Worksheet and interview responses on simplification
Table 1 summarises the correct responses on the worksheet examples (worked

during class time) and the interview examples (administered after the comple-
tion of the teaching episodes) for the 14 students selected for post-interview.
For the worksheets, the figures represent the percentage of correct responses
with respect to the total number of completed examples for each type. For
the interview tasks, the figures represent the percentage of correct responses
with respect to the total number of tasks for each type given to and worked by
the students. The number of interview tasks was considerably fewer than the
number of worksheet examples for each type.

Table 1
Percentage of Correct Responses on Class Worksheets and Interview Tasks
Step in teaching sequence
Class Worksheets
Interview Tasks
1. Multiplication can be represented as repeated addition
98
43
2. Simplification for one variable by adding/subtracting like things.
99
70
3. Simplification by multiplying/dividing coefficients
80
100
4. Simplification by representing multiplication in terms of area
83
40
5. Simplification for two variables by adding/subtracting like things
83
69
The worksheets for Step 1, were successfully completed by the students (98
The worksheets for Step 3 were completed reasonably well, but showed a

drop in the percentage of correct responses (80
The worksheets for Step 4 were also completed reasonably well (83
CONCLUSIONS
For the central notions being developed with respect to addition and multi-

plication, the teaching episodes described here appeared to be successful in what
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they were attempting, particularly after earlier ideas were revised. The weak-
nesses in understanding appeared to lie with the later extensions to subtraction
and to division.

Overall, several main conclusions could be made following the results of the
study.

1. Arithmetic as a basis for algebra. Previous research by the authors
(Cooper, Baturo, and Williams, 1999; Cooper, Williams, and Baturo, 1999)
had demonstrated that teaching episodes which reflected on arithmetic to build
algebra generally worked, but the arithmetic needed to lead straight to the al-
gebra generalisations for each activity. This finding was incorporated in the
teaching episodes and worksheets associated with the simplification of algebraic
expressions. For algebraic simplification, the link between arithmetic and al-
gebra seemed generally successful. However, generalisations from arithmetic
to algebra may be thwarted when understanding of the arithmetic components
(e.g, subtraction and division ideas) is missing or defective.

2. Two-path model: The two-path model (see Figure 1) appeared to provide
a framework for effective teaching. However, rather than consisting of four
separate steps to be performed across time, it represents a framework that
should be followed for each separate notion and principle and within a single
lesson.

3. Physical materials: The use of materials (cups, envelopes and counters)
acted as a conduit between arithmetic and algebraic notions. In algebraic sim-
plifications, they appeared to work successfully for addition and multiplication,
particularly during the classroom work.

4. Abstract schemas: In reflecting on this research, it appears useful to
consider algebraic principles as abstract schemas. Therefore, the attempt to
teach algebra should be seen as an attempt to teach abstract schemas, such
as multiplication as repeated addition and adding like things. The process of
simplification has to be extracted away from the particular instances in which
they appear. However, the process is arduous for the learner, and, as stated
earlier, is easily complicated by missing or defective arithmetic components.
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