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satisfying Jacobi identity
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Main example. Let V' be a vector space.
Put g = gl(V') = the set of linear maps S : V — V with

S, T| =80T —-ToS.

Definition. A representation of a Lie algebra g on a vec-
tor space V is a linear map p : g — gl(V), satisfying,

p(lz,y]) = lp(x), p(y)]
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skew-symmetric bilinear map
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satisfying Jacobi identity

(JO) 2, [y, 2] + |z, [z, ] + s [2, 2] = O

One is tempted to say that:A Lie superalgebra is a su-
pervector space g equipped with a skew-supersymmetric
bilinear map

[-.-]:axg—9
satisfying superJacobi identity.
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Roughly: To bring symmetric maps in,....
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Proposition. This is the case when p = ad.
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g = {Linear maps S:V -V } =go D g1
with
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S
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Within this context, one writes g = gl(Vp|V1) to distinguish
1t from g[(VQ $H Vl)

Moral. End(Vy @ V1) admits both structures.
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forms. Let QQ(M) be the algebra of differential forms on a

smooth real manifold M. It is well-known that (M) has a
direct sum decomposition,

QM) ="M Q' (M) (M) & -

linked by the exterior differential d to form the DeRham
complex:

QOM) —2— () —2 02(m) —2— ...

QO(M) = (M), Q'(M)=T(T"M),
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Clearly [A,A] =0, and dod =0 = o ¢ yield

[d,d] =dod—(=1)'*dod =2dod =0
[6,] =008 —(=1)''606=2606=0

Thus obtain a Lie superalgebra g = (RA)® (Rd ®R ) em-
bedded in gl (2(M)|2(M)1), where

Q(M)O — @k2092k(M), and Q(M)l — @k2092k+1(M)
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There is more! Each vector field X € Der C>°(M) defines
an operator ¢x (contraction of differential forms against X),
with the following behavior:

QO(M> X Ql(M) s Q2(M) X with dixoix =0

It is natural to set |ix| = 1, and easy to prove that

1-1

[[iX,iy]]:iXOiy—(—l) ly Otx —=1x 0oly +i1yotx =0

Furthermore,
Lx :=[d,ix] =doix — (=)' ix od: Q¥ (M) — QF (M)
so that |Lx| = 0, and one proves that
ILx, Ly =Lx oLy — Ly oLx = Lixy
[Lx,iv] =Lx oiy —iy oLx = 1[X,Y]

which together [d,Lx] = 0 and [d,d] = 0, yield more Lie
superalgebras embedded in gl (Q2(M)o|Q2(M)1).




A geometric difference between Lie algebras and Lie
superalgebras.




A geometric difference between Lie algebras and Lie
superalgebras.

Let V =V, & Vi be a complex supervector space, and let

BOZVOXVQ%C, and 312V1XV1—>(C,

be nondegenerate bilinear




A geometric difference between Lie algebras and Lie
superalgebras.

Let V =V, & Vi be a complex supervector space, and let

BOZVOXVQ%C, and 312V1XV1—>(C,

be nondegenerate bilinear; each one might be either sym-
metric or skewsymmetric.




A geometric difference between Lie algebras and Lie
superalgebras.

Let V =V, & Vi be a complex supervector space, and let
BOZVOXVQ%C, and B12V1><V1—>(C,

be nondegenerate bilinear; each one might be either sym-
metric or skewsymmetric.

To keep track of their type of symmetry, write

+1 if B, symmetric

Bo(v,w) = €4 Bo(w,v), Eaq = {

—1 if B, skew-symmetric
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Let V =V, & Vi be a complex supervector space, and let
BOZVOXVQ%C, and B12V1><V1—>(C,

be nondegenerate bilinear; each one might be either sym-
metric or skewsymmetric.

To keep track of their type of symmetry, write

+1 if B, symmetric

Bo(v,w) = €4 Bo(w,v), Eaq = {

—1 if B, skew-symmetric

Define a nondegenerate bilinear form B on V =V & Vi:

B(vg + v1,wo + wy) := By (vg,wqy) + B1(v1,wq)
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gp(VodV1) = {5 € gl(VodW1) | B(S(u),v)+B(u, S(v)) =0}

or the Lie superalgebra

a5(Vo|V1) = {S € gl(Vo[V1) | B(S(u),v)+(—=1)*11I B(u, S(v)) = 0}

Establish the identification,
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)5 (30) = (S 500




Proposition

S = (a 6) cgp(VodV1) <=

v 0
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Proposition

y

oS gBO (VO)a
S = (a g) cgp(Vod®V1) <= < 0 SN (V1),
Y
. Bi(w,y(u)) = —Bo(B(w), u).

Besides, By (w,vy(u)) = —Bo(8(w),u) is satisfied if and only
if, either v =0 = 3, or else €s,Cr, = 1.

y

Q € gBO (VO)7

S = (: ?) c gB(VO‘Vl) < \ 0 € gBl (Vl)a
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o
s=(2

> < gB(Vo@Vl) <

y

Q€ 95, (VO)a
q 0 € 95, (Vl)a
\ Bl(wav(u)) — _BO(ﬁ(w)vu)'

Besides, By (w,vy(u)) = —Bo(8(w),u) is satisfied if and only
if, either v =0 = 3, or else €s,Cr, = 1.

o
sz(7 :

)EgB(VO\Vl) =

y

Q€ gBO (VO)7
0 € 95, (Vl),

\ Bl(wvv(u)) — —I—Bo(ﬂ(w),u).




Proposition

y

oS gBO (VO)a

S = (a g) cgp(Vod®V1) <= < 0 SN (V1),
Y

. Bi(w,y(u)) = —Bo(B(w), u).

Besides, By (w,vy(u)) = —Bo(8(w),u) is satisfied if and only
if, either v =0 = 3, or else €s,Cr, = 1.

y

@ EgBO(VO)7
S = (Oé 6) c gB(VO‘Vl) < \ 0 € gBl (Vl)a

v 0

\ Bl(wvv(u)) — —I—Bo(ﬂ(w),u).

Besides, By (w,v(u)) = +Bo(8(w), u) is satisfied if and only
if, either v =0 = 3, or else €s s, = — 1.
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Put v = By(vg, - ) v1 € Hom(Vy, V7).
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Remark. Let vy € Vj, and v € V;.
Put v = By(vg, - ) v1 € Hom(Vy, V7).

Bi(w,y(u)) = FBo(f(w),u) <= B =Fey Bi(v1, -)wo

Suppose 7' = Bo(vg, -) vy and 5" = —&; By (vy, - ) vp.

<O ﬁ>’<0’ ﬂﬂ € g5, Vo)®g,, (V1) —

v 0 v 0

On the other hand, if 8 = +€BlBl(v1, - )vg and ' = ‘1‘53131 (v1, - ) Vo,




Remark. Let vy € Vj, and v € V;.
Put v = By(vg, - ) v1 € Hom(Vy, V7).

Bi(w,y(u)) = FBo(f(w),u) <= B =Fey Bi(v1, -)wo

Suppose 7' = Bo(vg, -) vy and 5" = —&; By (vy, - ) vp.

<O ﬁ>’<0’ ﬂﬂ € g5, Vo)®g,, (V1) —

v 0 v 0

On the other hand, if 3 = +¢e, Bi(v1, - )vo and 3" = +¢, Bi(vy, -)v

H(S g)’(VO’ %,>H € 05, (V0)®g5, (V1) =




Moral. The Lie algebra gp(Vo @ Vi) likes ¢, ¢, = 1 to
describe the linear transformations that preserve the nonde-

generate bilinear form

B(vg + v1,wo + w1) := Bo(vo, wo) + By (v, ws)

whereas the Lie superalgebra gp(Vo[V1) likes ¢, g, = —1.
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Classification problems.

Recall that a Lie superalgebra is a triple (g,,p,I") con-
sisting of:

(a) A Lie algebra |-, -] : go X go — go,
(b) A representation p : go — gl(g1),
(c) A symmetric bilinear map I' : g1 X g1 — go, s.t.,

(J1) 2, D(u,v)] = T'(p(z)u, v) + I'(u, p(z)v)

for any x € gg and any u, and v in g1, and

(J2) p(T(u,v)) (w)+p (T(w,u)) (v)+p (T(v,w)) (u) =0

for any u, v, and w in g;.

Recall. Under certain circumstances (J1) = (J2).

Proposition. This is the case when p = ad.




Observe that: A subgroup of the group GL(gg) x GL(g1)
acts on the set of such triples, producing isomorphic Lie
superalgebras on each orbit:
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Observe that: A subgroup of the group GL(gg) x GL(g1)
acts on the set of such triples, producing isomorphic Lie
superalgebras on each orbit:

(['7 ']7/)7F) = ([7 ']/7/)/7F,)
if and only if d(7,S5) € GL(go) x GL(g1) such that,

=TT, T

pl==580pT () o8
[ =TS~ (), 5 ()

When |-, -] is kept fixed in gg, and p = ad,
G={(T,S) ]| [ad(-), T oS '] =0} c Aut(go) x GL(go)
since ad(T 1 (z)) =Tt o ad(x) o T.




Write Sym,4(go) = {I'’s satisfying (J1)}.




Write Sym,4(go) = {I'’s satisfying (J1)}.
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Write Sym,4(go) = {I'’s satisfying (J1)}.

(J1) 1z, T'(u, v)] = Dp(z)u, v) + T'(u, p(z)v)

G={(T,S)|[ad(-),ToS™"] =0} C Aut(go) x GL(go)




Write Sym, 4(go) = {I'’s satisfying (J1)}.

(J1) 7, T'(u, v)] = D(p(z)u, v) + T'(u, p(z)v)

G={(T,S)|[ad(-),ToS™"] =0} C Aut(go) x GL(go)

To classify the different Lie superalgebras on gg with |-, -]
fixed and p = ad, amounts to parametrize the orbits in
Sym, 4(go) under the left G-action

[~ (1,8)-T=T(T($7(-),57'(+)))




Application. Spacetime is conveniently identified —locally,
at least— with the Lie algebra uy = Lie (U(2)). In fact,

To+ T3 T1— 179
r1+1re  To— T3

T € Uy @x:z<

) . det(z) = x{+r5+ri—]
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To+ T3 T1— 179
r1+1re  To— T3

T € Uy @x:z<

) . det(z) = x{+r5+ri—]

Project: Apply the classification to gg = uy to understand
what the natural possibilities for super-spacetimes might

be.




Application. Spacetime is conveniently identified —locally,
at least— with the Lie algebra uy = Lie (U(2)). In fact,

o xo+xT3 T1 —1T9
reclUuy << r =1 .
T1+1xr2 To— T3

) . det(z) = x{+r5+ri—]

Project: Apply the classification to gg = uy to understand
what the natural possibilities for super-spacetimes might

be.

Strategy: Note first that us is a real subalgebra of gl,(C).
Thus, apply the classification scheme first to gl,(C).




Consider the following basis of gl,(C):

1 O 1
CEQI:I:<O 1), ZClizH:(O

0 1 0 0
CEQZ:E:(O O), Zl?gIZF:(l 0




Consider the following basis of gl,(C):

1 0

580::]:(0 1), CElizH:(O
0 1

CEQ—E—(O O), £IZ‘3—F—(

and the following basis of usy:

. l
Wy =1l = (O

wQ::E—F:(

0



Proposition. The space Sym,, (gl,(C)) depends on three
complex parameters (X, u,v) in such a way that I : gl (C) x
gl5(C) — gl,(C) is given by,

A similar statement holds true for gl,(R).
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A similar statement holds true for gl,(R).

Note. Note that a different symmetric bilinear map I :
gly X gly, — gl, would yield a different set of parameters; say
A, u' and V', respectively.




Proposition. The space Sym,, (gl,(C)) depends on three
complex parameters (X, u,v) in such a way that I : gl (C) x
gl5(C) — gl,(C) is given by,

A similar statement holds true for gl,(R).

Note. Note that a different symmetric bilinear map I :
gly X gly, — gl, would yield a different set of parameters; say
A, u' and V', respectively.

Notation. Let us denote by gl (A, , ) the F-Lie superalge-
bra (with I either C or R) gl, ®gl, defined by the parameter
values (A, u, V).




Theorem. gl,(\, pu,v) >~ gly(N, 4/, v") are isomorphic if and
only there are nonzero constants a, b and c in the ground field
I, such that,

1 1 a
/ /I I __
)\—)\—ab2, 'u_'u_abc’ V—VCQ.

In particular, there are exactly eight different isomorphism
classes of such Lie superalgebras when the ground field is C,

whereas there are ten when the ground field is R, since the
sign of the product A\v must be preserved.




For the real Lie superalgebras us(\, i, v) whose underlying
supervector space is ug @ us, use the basis wg = 11, wyg = 1H,
we = F — F and wy, = i(F + F), to get:

['(ws, ws) = 2ivwg

= jpwe ['(ws,ws) =0 T'(we,ws) = 2ivwy

F(wg,wl) =0 F(wg,wl) =0 F(wl,wl) == ZinO.




For the real Lie superalgebras us(\, i, v) whose underlying
supervector space is ug @ us, use the basis wg = 11, wyg = 1H,
we = F — F and wy, = i(F + F), to get:

['(ws, ws) = 2ivwg

= jpwe ['(ws,ws) =0 T'(we,ws) = 2ivwy

F(wg,wl) =0 F(wg,wl) =0 F(wl,wl) == Qino.

Therefore, A\, 1 and v have to be restricted, from taking ar-
bitrary complex values in gl,(C; A\, u, v), to take only purely
imaginary values on us (A, u, v).




Classif. Thm. 3-dim’]l Lie Superalgs

Notation: Write, go = Span{ey, ez, e3}, and

e1,e2] = aes + ces,

:61,63: = bey +des, = ad(el)‘gé = A= <a Z)

C

€2,€3] = 07




Classif. Thm. 3-dim’]l Lie Superalgs

Notation: Write, go = Span{ey, ez, e3}, and

e1,e2] = aes + ces,

:61,63: :b62—|—d€3, = ad(el)\% — A= (CL Z)

C

€2,€3] = 07

Prop. Let gg = g1 be 3-dimensional, with p = ad. Set g, =
(g0, 8o]. Then,

dim gj,

dim Symad (90)




Constraints
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SKETCH OF THE PROOFS

Lemma. Let F be either R or C, and let F =TF — {0}. The
set of pairs (T, S) € Aut(gl, )xGL(gl,,) such that [T (x),S(y)| =
S(|x,y|), with the group structure inherited from the direct
product Aut(gl,,) x GL(gl,,), is isomorphic to the direct prod-
uct group F x F x F x Aut(sl,).




SKETCH OF THE PROOFS

Lemma. Let F be either R or C, and let F =TF — {0}. The
set of pairs (T, S) € Aut(gl, ) xGL(gl,,) such that [T'(x),S(y)| =
S(|x,y]), with the group structure inherited from the direct
product Aut(gl,) x GL(gl,,), is isomorphic to the direct prod-
uct group F x F x F x Aut(sl,).

Proof. Use the fact g = gl,, = (I,,) @ sl,, to see that:

(1) T € Aut(gl,) if and only if 3a € F and t € Aut(sl,)

(3 9




(2) For any x € gl ,

ad(x) = (8 ad(a?)!stn>

(3) T~! o S commutes with ad(z) if and only if

L. (b0
I OS_(O u)

for some b € F, and v € GL(sl,) such that u o
(ad(z)lst, ) = (ad(x)lst, ) © u.

Since u o (ad(x)l|sr, ) = (ad(x)|sr, ) © u is to hold true for
any x € sl,, u = c Idg, for some c € F. Whence,

a 0 b 0
s=(5 ) (6 o)




and we obtain the desired correspondence via (T, .5) < (a, b, c,1).
The statement about the group structure follows easily. [

Now, the structure of the vector space Hom.q(S*(g1), go) of
ad-equivariant maps when gg = g; = gl,, can be done with
the help of Schur’s Lemma once we know the ad-invariant
subspaces that appear in the decomposition of S?(g;). Since

gl, = (I,) ®sl,,

S*((In) @ sln) = (S°((1n)) ® S%(sln)) & (ST ((In)) ® S*(sln)) @ (S2((.
~ S%(sl,) ®sl, @ (I,)

It is well known, however, that (see [9], P. 300)

((I,) D Vs if n=2
<In>@5[3@‘/27 ifn=23
L (1n) sl DV, &V, iftn>4




where V; is an sl,-irreducible subspace of dimension j, n; =

254(2)(2), and no = 24 () ("), In other words, ve may

rewrite it symbolically as,

S2(sl,) = (I,) ® (1 — da,)sl, ®W

where 05, is the Kronecker symbol, and W does not contain
any ad-invariant subspace isomorphic neither to ( I,,), nor to
sl,,. Theretfore, using Schur’s Lemma we conclude that,

Homaq(S*(( 1) ® sl,), (I,) ®sl,) =
= Homaq((I,,) ® (1 — d2p)sl,, @ W @ sl,, @ (IL,), (I,,) @ sl,)
= Homad({ In), (In)) ® Homad ({ In), { I5))
@® (1 — d2,,) Hom,q(sl,,sl,) ® Hom,q(sl,,sl,)
= A1Id; 7,y ®p Idgr, ®v Id 1y B(1 — 02p) € Idsr, , A, p, v, € C




which, after relabeling the generators, can be rewritten as

Hom,q (S°(( I,)®sl,), ( I,)®sl,) = Ne, Bue, dre, d(1—ds,) e,
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