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The main aim:

To show how totally umbilical spacelike surfaces in
3-dimensional spacetimes can be characterized among the
family of compact spacelike surfaces with positive
(or negative) definite second fundamental form.

The tools:

(1) A formula relating the Gauss and mean curvature of
the spacelike surface to the Gauss curvature of the second
fundamental form.

(2) The classical Gauss-Bonnet theorem.



Geometrically, if a spacelike surface has positive definite second fun-
damental form, then the future-directed timelike geodesics orthogo-
nal to the surface M are really spreading out near M . Thus, in partic-
ular, the volume of M does increase when it is compact. Therefore,
the existence of a compact spacelike (hyper)surface with positive
definite second fundamental form means that the spacetime is really
expanding.

The second fundamental form with respect to a unit normal vector
field of a (non-totally geodesic) totally umbilical surface is obviously
definite and thus, it provides the surface with a new Riemannian
metric (pointwise conformally related to the induced metric).

We will give an answer to the following natural question:

When a spacelike surface with positive definite second
fundamental form must be totally umbilical?



And we would like to point out that:

Totally umbilical spacelike surfaces in 3-dimensional spacetimes
have a rich geometry. Moreover, the study of this family of surfaces
lies into the conformal geometry of the spacetime, because a point-
wise conformal change of the ambient metric preserves the character
of being totally umbilical of a spacelike surface.

From a purely geometric point of view, 3-dimensional spacetimes
have been deeply studied and clearly present a great mathematical
interest. Although they are too unrealistic to give much insight into
usual 4-dimensional relativistic models, 3-dimensional spacetimes are
useful to explore the foundations of classical and quantum gravity1

1C. Carlip, Quantum Gravity in 2 + 1 dimensions: the case of the Closed Universe, Living
Rev. Relativity 8 (2005), 1–63, and references therein.



Preliminaries

Let (M̄, ḡ) be a 3-dimensional spacetime. A smooth immersion
x : M → M̄ of a (connected) 2-dimensional manifold M is said
to be a spacelike surface if the induced metric on M via x, x?(ḡ), is
Riemannian, which as usual we will denote by g.

If M is a spacelike surface in M̄ , the time-orientation of M̄ allows
us to define N ∈ X⊥(M) as the only unit timelike vector field normal
to M in the same time-orientation of M̄ .

If A stands for the shape operator of M in M̄ associated to N ,
we will denote the mean curvature of M by

H = −1

2
trace(A). 2

2The choice of the minus-sign is motivated by the fact that, in this case, the mean curvature
vector field is ~H = HN .



Of course, A satisfies the classical Gauss and Codazzi equations.
But A is not a Codazzi tensor, in general. In fact, in the literature,
a Codazzi tensor is a symmetric (1,1)-tensor field B which satisfies
(∇XB)Y = (∇Y B)X. 3

From the Gauss equation it follows that

2 K = 2 K̄ + trace(A2)− (trace A)2,

where K is the Gauss curvature of M and K̄(p) is the sectional
curvature of each tangent plane dxp(TpM) in M̄ .

We have that K̄ satisfies

K̄ =
1

2
S̄ + Ric(N, N),

where S̄ is the scalar curvature and Ric the Ricci tensor of M̄ .

3Which is the Codazzi equation when R̄(X, Y )N = 0.



Therefore, using the characteristic equation for the shape operator,
we obtain the following expression for the Gauss-Kronecker curvature
of the surface M ,

det(A) = K̄ −K.

When det(A) > 0, the second fundamental form II, given by

II(X,Y ) = −g(AX, Y ),

where X, Y ∈ X(M), determines a definite metric on M . In fact,
we can suppose (up to a change of orientation) that II is positive
definite, i.e., II is a Riemannian metric on M . We have

Proposition 1. On a spacelike surface M in a 3-dimensional
spacetime M̄ the following two conditions are equivalent:

(i) II is a positive definite metric on M ,

(ii) The Gauss curvature K of M satisfies K < K̄.



Remark 2. This result gives an obstruction to the existence of certain
spacelike surfaces with positive definite second fundamental form in
terms of the curvature of the ambient space. In fact, if M̄ admits
such a compact spacelike surface with the topology of S2, it follows
from the Gauss-Bonnet theorem that the sectional curvature of M̄

must be positive on some spacelike plane.

Taking into account that a compact spacelike surface M of the De
Sitter spacetime S3

1, with sectional curvature 1, must be topologically
a sphere S2 (and hence a non-degenerate metric on M must be
definite) we get

Corollary 3. On a compact spacelike surface M in the
De Sitter spacetime S3

1 the following two conditions are
equivalent:

(i) II is a non-degenerate metric on M ,

(ii) The Gauss curvature K of M satisfies K < 1.



Now observe that if M is assumed to be complete, then the con-
dition K > 1 implies that M must be compact by classical Bonnet-
Myers’ theorem. Therefore the following result is obtained 4

Corollary 4. There exists no complete spacelike surface M

in the De Sitter spacetime S3
1 whose Gauss curvature K

satisfies K > 1.

Remark 5. Next, let M be a 2-dimensional compact manifold, M̄ a
3-dimendional spacetime and consider E(M, M̄) the set of spacelike
immersions

x : M → M̄

with positive definite second fundamental form.

4Extending Proposition 4.2 in H. Li, Global rigidity theorems of hypersurfaces, Ark. Mat. 35
(1997), 327–351.



Suppose that E(M, M̄) is non-empty, and note that since the
condition det(Ax) > 0 implies that the usual area functional

x 7→ area(M, gx)

has no critical point in E(M, M̄). Thus, it would be interesting to
know if the area functional with respect to II,

F
II
(x) = area (M, IIx) =

∫
M

dΩIIx =

∫
M

√
det(Ax)dΩx,

where IIx is the second fundamental form corresponding to x, has a
critical point in E(M, M̄). It turns out that this, in general, is not
the case. In fact, consider M̄ = S3

1 and let x : M → S3
1 ⊂ L4 be a

compact spacelike surface in the 3-dimensional De Sitter spacetime.
Then M is topologically S2. Consider for t ∈ R the parallel surface
xt : S2 → S3

1 ⊂ L4, which is given by



xt(p) = expx(p)(tN(p)) = cosh(t)x(p) + sinh(t)N(p),

where p ∈ S2, exp denotes the exponential map in S3
1 and N the

unit normal timelike vector field along x. It is not difficult to obtain,
using5, that

d

dt

∣∣∣∣
t=0
F

II
(xt) =

∫
S2

H [1 + det(A)]

det(A)
dΩ

II
.

Since det(A) and H are strictly positive, it follows that the functional
F

II
has no critical point in E(S2, S3

1).

5J.A. Aledo, L.J. Aĺıas and A. Romero, Integral formulas for compact space-like hypersurfaces
in de Sitter space: Applications to the case of constant higher order mean curvature, J. Geom.
Phys. 31 (1999), 195–208.



Now, let ∇II denote the Levi-Civita connection with respect to
II. The difference tensor T between the Levi-Civita connections ∇II

and ∇ is given by

T (X,Y ) = ∇II
XY −∇XY,

for all X,Y ∈ X(M). From the Koszul formula for ∇II, and using
the Codazzi equation, we find that

T (X, Y ) =
1

2
A−1

{
(∇XA)Y −

[
R̄(X,N)Y

]T
}

,

where [ ]T denotes the tangent component to the surface M .

Besides the obvious symmetry T (X, Y ) = T (Y,X), there also
holds the relation

II(T (X, Y ), Z)− II(T (X, Z), Y ) = ḡ(R̄(X, N)Y, Z).



In the special case in which M is totally umbilical in M̄ , with
det(A) > 0. We have A = ρI and II(X, Y ) = −ρ g(X, Y ),
ρ ∈ C∞(M), for all X, Y ∈ X(M). Hence

∇II
XY −∇XY =

1

2ρ
{X(ρ)Y + Y (ρ)X − g(X, Y )∇ρ} ,

i.e. the well known formula relating the Levi-Civita connections of
the pointwise conformally related metrics; and thus

T (X, Y ) =
1

2ρ

{
II(X,∇IIρ)Y + II(Y,∇IIρ)X − II(X, Y )∇IIρ

}
,

where we have used the fact that ∇IIρ = −1
ρ∇ρ. In particular, we

have
trace

II
(T ) = 0.



A formula for the Gauss curvature of the metric II

On a spacelike surface M such that II is a Riemannian metric, the
Riemann curvature tensor RII of II satisfies

RII(X, Y )Z = R(X, Y )Z + Q1(X, Y )Z + Q2(X, Y )Z,

with
Q1(X, Y )Z = (∇II

Y T )(X,Z)− (∇II
XT )(Y, Z),

Q2(X, Y )Z = T
(
X, T (Y, Z)

)
− T

(
Y, T (X,Z)

)
,

and X, Y, Z ∈ X(M). Therefore, we get

RicII(X, Y ) = Ric(X, Y ) + Q̂1(X, Y ) + Q̂2(X, Y ),

where

Q̂i(X, Y ) = trace{V 7→ Qi(X, V )Y }, i = 1, 2.



Contracting now with respect to II we obtain a first approach to
our main formula:

2KII = trace
II
(Ric) + trace

II
(Q̂1) + trace

II
(Q̂2),

6

where KII is the Gauss curvature of the surface M with respect to
the metric II.

Lemma 6. (Explaining the first right term) The trace with
respect to II of the Ricci tensor Ric of M is given by

trace
II
(Ric) = −trace(A)

det(A)
K.

6An alternative proof of this formula can be achieved using local computations as in
L.P. Eisenhart, Riemannian Geometry, 6th edition, Princeton Univ. Press, 1966 (p. 33).



In order to express more clearly the second term, we define now
the tangent vector field S(N) on M through the formula

II
(
S(N), X

)
= Ric(N, X),

for all X ∈ X(M).

An explicit expression for this vector field can be obtained by
taking the trace of the Codazzi equation, to get

Ric(N, X) = II
(
X,∇IItrace(A)

)
+ II

(
X, A−1div(A)

)
,

and therefore

S(N) = ∇IItrace(A) + A−1div(A).



If we use now A∇IIf = −∇f , which holds true for every smooth
function f , we can write

AS(N) = div
(
A− trace(A) I

)
.

This equation is known as the momentum constraint in the initial-
value problem of General Relativity. 7

Observe that, in the particular case of a totally umbilical spacelike
surface with A = ρI, there holds that

S(N) = ∇IIρ.

7For a discussion of this equation in the 3-dimensional case see L. Andersson, V. Moncrief
and A.J. Tromba, On the global evolution problem in 2+1 gravity, J. Geom. Phys. 23 (1997),
191–205.



Lemma 7. (Explaining the second right term) The trace of
the tensor Q̂1 with respect to II is given by

trace
II
(Q̂1) = −div

II

(
AS(N)

det(A)

)
.

In order to deal properly with the third term, we consider, for each
X ∈ X(M), the operator

TX = ∇II
X −∇X

which satisfies

trace
II
(TX) = II

(
trace

II
T +

AS(N)

det(A)
, X

)
.



Lemma 8. (Explaining the third right term) The trace of
the tensor Q̂2 with respect to II is given by

trace
II
(Q̂2) = ‖T‖2

II
− ‖trace

II
T‖2

II
− trace

II

(
TAS(N)

det(A)

)
,

whereby ‖T‖2
II is the squared II-length of the difference

tensor T .

We can then express trace
II
T in terms of det(A) and S(N) as

follows

trace
II
T =

1

2 det(A)
∇IIdet(A)− AS(N)

det(A)
.

Now we come back to the previous formula

2KII = trace
II
(Ric) + trace

II
(Q̂1) + trace

II
(Q̂2),

and bearing in mind Lemmas 6, 7 and 8 above we get the following
result



Theorem 9. (Main formula) Let M be a spacelike sur-
face with Gauss-Kronecker curvature det(A) > 0 in a 3-
dimensional spacetime M̄ . Then, the Gauss curvature KII

of the metric II satisfies

2KII = −trace(A)

det(A)
K − div

II

(
AS(N)

det(A)

)

+ ‖T‖2
II
− ‖trace

II
T‖2

II
− trace

II

(
TAS(N)

det(A)

)
,

where ‖T‖2
II

is the squared II-length of T .



Remark 10. In the special case that A is a Codazzi tensor, in particular
for any spacelike surface in a 3-dimensional spacetime of constant
sectional curvature, we have

S(N) = 0

and

trace
II
(T ) =

1

2 det(A)
∇IIdet(A)

and the previous formula reduces to

2KII = −trace(A)

det(A)
K + ‖T‖2

II
− 1

4 det(A)2 ‖ ∇
IIdet(A)‖2

II
.



Remark 11. We can compute the last three terms in previous general
formula explicitly, and thus we obtain the following expression for KII

in terms of the principal curvatures {λ1, λ2} and principal directions
{e1, e2} of the spacelike surface, 8

2KII = −trace(A)

det(A)
K − div

II

(
AS(N)

det(A)

)
− 1

2 det(A)

{
e1

(
log

(
λ2

λ1

)) [
e1(λ2)− Ric(N, e1)

]
+e2

(
log

(
λ1

λ2

)) [
e2(λ1)− Ric(N, e2)

]}
.

8This is an extension of the formula for KII in E. Cartan, Les surfaces qui admettent une
seconde forme fondamentale donnée, Bull. Sci. Math. 67, 8–32 (1943), 8–32, p. 18, in the
case of a surface in Euclidean space and of formula (12) in T. Klotz-Milnor The curvature of
αI + βII + γIII on a surface in a 3-manifold of constant curvature, Mich. Math. J. 22 (1975),
247–255 in the case of surfaces in Riemannian spaces of constant sectional curvature.



Remark 12. In the case of M being totally umbilical, with A = ρI,
we have for the third term

‖T‖2
II
− ‖trace

II
T‖2

II
− trace

II

(
TAS(N)

det(A)

)
= 0,

and the formula in Theorem 9 reduces to

KII = −1

ρ
K +

1

2ρ
∆ log(−ρ)

where ∆ is the Laplacian of the induced metric g. That is, we have

K − (−ρ)KII =
1

2
∆ log(−ρ),

which is the well-known relation between the Gauss curvatures of the
pointwise conformally related metrics g and II = −ρ g.



Remark 13. As a final remark, we would like to point out that the
formula obtained in Theorem 9 may be generalized to the case of a
spacelike hypersurface M with positive definite second fundamental
form in an (n + 1)-dimensional spacetime M̄ . For instance, when M̄
is the De Sitter spacetime Sn+1

1 we get

SII = −(n− 1)trace(A−1) + (n− 1)trace(A)

+‖T‖2
II
− 1

4H2
n

‖∇IIHn‖2
II
,

where SII is the scalar curvature of (M, II) and

Hn = (−1)ndet(A)

the Gauss-Kronecker curvature of the spacelike hypersurface M .



Main classification results
We will apply now the previous formulas to give several characteri-
zations of compact totally umbilical spacelike surfaces, with signed
Gauss curvature, based on assumptions on the second fundamental
form II.

Theorem 14. Let M be a compact spacelike surface in a
3-dimensional spacetime M̄ , with non-zero Euler-Poincaré
characteristic χ(M), det(A) > 0 and K signed (i.e. K > 0
or < 0). Then, M is totally umbilical if and only if

χ(M)

∫
M

{
‖T‖2

II
− ‖trace

II
T‖2

II
− trace

II
TAS(N)

det(A)

}
dΩ

II
≥ 0.



Sketch of Proof. If M is totally umbilical, then the integrand in the
statement is identically zero. Conversely, assume first that K > 0.
From the Gauss-Bonnet theorem it follows that χ(M) > 0. Then,
we obtain ∫

M

KII dΩ
II
≥ −

∫
M

trace(A)

2 det(A)
K dΩ

II
.

The Euler inequality states that−trace(A) ≥ 2
√

det(A), with equal-
ity holding at every point if and only if the surface is totally umbilical.
Hence, since K > 0, we have∫

M

KII dΩ
II
≥

∫
M

K√
det(A)

dΩ
II
.

Using the relation dΩ
II

=
√

det(A)dΩ between the area elements
of M with respect to II and g respectively, and the Gauss-Bonnet
theorem again, we have



2πχ(M) =

∫
M

KII dΩ
II
≥

∫
M

K√
det(A)

dΩ
II

=

=

∫
M

K dΩ = 2πχ(M),

and thus, equality holds in the Euler inequality. The case K < 0
follows analogously. �

In the case that the 3-dimensional spacetime is the De Sitter
spacetime S3

1 with constant sectional curvature 1, we have of course
K̄ = 1. Moreover, the inequality det(A) > 0 is here equivalent to
K < 1. On the other hand, if we assume that K is constant, then
det(A) is also constant and the formula in Remark 10 reduces to



KII = −trace(A)

2 det(A)
K +

1

2
‖T‖2

II
.

Since every compact spacelike surface in the 3-dimensional de
Sitter spacetime is topologically a sphere, it follows from the Gauss-
Bonnet theorem that, if K is constant, then K > 0. Thus the previ-
ous theorem gives in particular

Corollary 15. Every compact spacelike surface of the De
Sitter spacetime S3

1, with constant Gauss curvature K < 1,
is a totally umbilical round sphere.

It is clear that a totally umbilical (and not totally geodesic) space-
like surface of S3

1 has constant KII. The following result can be seen
as a (non trivial) converse of this fact.



Theorem 16. Let M be a compact spacelike surface in the
De Sitter space S3

1 with Gauss curvature K < 1. If the
Gauss curvature KII of II is constant, then M is a totally
umbilical round sphere.

Sketch of Proof. Note that the constant KII is determined from the
Gauss-Bonnet theorem; in fact, we have

4π =

∫
M

KII dΩII = KII area(M, II).

Since M is compact there exists p0 ∈ M where K attains its
maximum value K(p0) < 1. Now, we evaluate at p0 the formula in
Remark 10 to get

KII ≥ H(p0)
K(p0)

1−K(p0)
.



Observe that the Gauss-Bonnet theorem also guarantees that this
maximum value K(p0) > 0, which jointly the Euler inequality yields

4π

area(M, II)
= KII ≥ 1√

1−K(p0)
K(p0) ≥

1√
1−K

K

on M , because the function f(t) = t/
√

1− t is strictly increasing
for t < 1.

Then, from previous inequality we have

4π =

∫
M

K dΩ ≤ 4π

area(M, II)

∫
M

dΩ
II

= 4π,



and therefore the equality

KII =
K√

1−K

holds, that is, K is constant on M .

These results can be summarized as follows:

For a compact spacelike surface M in S3
1 with Gauss

curvature K < 1, the following assertions are equivalent:

(i) K is constant.

(ii) KII is constant.

(iii) M is a totally umbilical round sphere.



Remark 17. The method to obtain the formula in Theorem 9 also
works for surfaces in Riemannian spaces; in particular, for a surface
with positive Gauss-Kronecker curvature in the Euclidean space E3,
the hyperbolic space H3 or the sphere S3 we have

2KII =
2HK

K − c
+ ‖T‖2

II
− 1

4(K − c)2 ‖∇
IIK‖2

II
.9

and, consequently, we have the following version of Liebmann classi-
cal rigidity result10

The only compact surfaces in E3, in H3 or in an open
hemisphere S3

+ which have constant Gauss curvature are
the totally umbilical round spheres.

9For the case c = 0, this formula was proved using local computations in R. Schneider, Closed
convex hypersurfaces with second fundamental form of constant curvature, Proc. Amer. Math.
Soc. 35 (1972), 230–233.

10J.A. Aledo, L.J. Aĺıas and A. Romero, A new proof of Liebmann classical theorem for surfaces
in space forms, Rocky Mt. J. Math. 35 (2005), 1811–1824.



Now, let us look into the assumption on T in Theorem 14.

Lemma 18. Let M be a spacelike surface with Gauss-
Kronecker curvature det(A) > 0 in a 3-dimensional space-
time M̄ . Then for the difference tensor T we always have
the inequality

‖T‖2
II
≥ 1

2
‖trace

II
T‖2

II
,

and equality holds if and only if

T (X, Y ) = −II(X,Y )
AS(N)

det(A)
.

We are now in position to get another consequence of Theorem
14. In fact, if the equality

‖T‖2
II

=
1

2
‖trace

II
T‖2

II



holds, it follows from previous Lemma that

trace
II
T = −2

AS(N)

det(A)
,

and moreover

trace
II
TAS(N)

det(A)
= −

∥∥∥∥AS(N)

det(A)

∥∥∥∥2

II
.

holds. Therefore, we have

‖T‖2
II
− ‖trace

II
T‖2

II
− trace

II
TAS(N)

det(A)
= −3

∥∥∥∥AS(N)

det(A)

∥∥∥∥2

II

≤ 0.

and equality holds if and only if S(N) = 0.



Corollary 19. Let M be a compact spacelike surface in a
3-dimensional spacetime M̄ . If det(A) > 0,

‖T‖2
II

=
1

2
‖trace

II
T‖2

II

and K < 0, then M is totally umbilical with A = ρI, and
ρ constant.

Sketch of Proof. Since K < 0 it follows from the Gauss-Bonnet
theorem that χ(M) < 0, and then, from Theorem 14, we have that
M must be totally umbilical.

On the other hand, we know that every totally umbilical spacelike
surface in a 3-dimensional spacetime has S(N) = 0. But ∇IIρ =
S(N). Therefore, we have that ρ must be constant. �



Finally, as we have seen before, a totally umbilical spacelike surface
satisfies

trace
II
T = 0.

Conversely, if this holds then

‖T‖2
II
− ‖trace

II
T‖2

II
− trace

II
TAS(N)

det(A)

is shown to be non-negative. Therefore, we have yet another conse-
quence of Theorem 14,

Corollary 20. Let M be a compact spacelike surface in a
3-dimensional spacetime M̄ , with K̄ > K > 0. If

trace
II
T = 0,

then M is totally umbilical.
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