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Standard stationary spacetime: (L, 〈·, ·〉L) Lorentzian manifold, L =

M × R and

〈·, ·〉L = 〈·, ·〉+ 2〈δ(x), ·〉dt− β(x)dt2 ,

(M, 〈·, ·〉) finite dimensional, connected Riem. manifold, δ smooth

vector field on M and β : M → R, smooth strictly positive function.

If δ ≡ 0, then L is called standard static.

Hypothesis:

• (M, 〈·, ·〉) complete, at least C3 Riemannian manifold.
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Conservation laws: if a curve z = (x, t) : I → L, I ⊂ R interval, is a

geodesic, then E ∈ R and K ∈ R exist such that

E =
1

2
〈ż, ż〉L K = −〈∂t, ż〉L = β(x)ṫ− 〈δ(x), ẋ〉.

Variational approach for Lorentzian geodesics:

every geodesic z : [a, b] → L is a critical point of the (strongly indefi-

nite) functional

f(z) =
∫ b

a
〈ż, ż〉Lds

defined on a manifold of curves.

• V. Benci, D. Fortunato, F. Giannoni (Ann. Inst. H. Poincaré

Anal. Non Linéaire, 1991) and others: reduction to the study of

a Riemannian functional.
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• M. Sánchez, (Nonlinear Anal., 1999) in the standard static case:

relation between geodesics and Lagrangian systems.

Theorem. Let (L, 〈·, ·〉L) be a st. static sp. A curve z = (x, t) : I →
L, I ⊂ R interval, is a geodesic such that β(x)ṫ = K, if and only if x

solves

Dsẋ +
1

2
K2∇V (x) = 0 V = −

1

β

(Ds covariant derivative and ∇ gradient with respect to 〈·, ·〉). More-

over

1

2
〈ż(s), ż(s)〉L =

1

2
〈ẋ(s), ẋ(s)〉+

1

2
K2V (x(s)) ∀s ∈ I.
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Results in A.V.G. (J. Differential Equations, 2007):

• a correspondence between geodesics and Lagrangian systems holds

also in the standard stationary case if

1. M is endowed by a new Riemannian metric (depending on the

coefficients δ and β);

2. a term representing the action of a magnetic field is added in

the previous differential equation.
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New (complete) metric on M : set 〈·, ·〉1 by

〈u, v〉1 = 〈u, v〉+
1

β(x)
〈δ(x), u〉〈δ(x), v〉 x ∈ M, u, v ∈ TxM.

For any v ∈ TxM , it is

〈v, v〉1 = 〈(I + P (x))[v], v〉 P (x)[v] =
1

β(x)
〈δ(x), v〉δ(x),

I identity, P (x) : TxM → TxM linear, self–adjoint, positive operator.

For any x ∈ M , set

V (x) = −
1

β(x)
A(x) =

δ(x)

β(x) + 〈δ(x), δ(x)〉
.

Let F1 be the curl of A:

F1(X, Y ) = 〈D1
XA, Y 〉1 − 〈X, D1

Y A〉1

(X, Y vector fields on M , D1 Levi–Civita connection of (M, 〈·, ·〉1)).
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New equation:

D1
s ẋ +

1

2
K2∇1V (x) = KF̂1(x)[ẋ] (1)

∇1 gradient with resp. to 〈·, ·〉1, F̂1 : TM → TM linear map 〈·, ·〉1–
associated to F1 (F1(x)[u, v] = 〈F̂1(x)[u], v〉1, x ∈ M , u, v ∈ TxM).

Theorem. Let (L, 〈·, ·〉L) be a st. stationary sp., I ⊂ R an interval.

If z = (x, t) : I → L is a geodesic such that β(x)ṫ − 〈δ(x), ẋ〉 = K for

some K ∈ R, then x : I → R solves (1).

Every geodesic z = (x, t) : I → L for 〈·, ·〉L can be obtained by a sol.

x : I → M of (1) for some K ∈ R, t by ṫ = (K + 〈δ(x), ẋ〉) /β(x).

Moreover

1

2
〈ż, ż〉L =

1

2
〈ẋ, ẋ〉1 +

1

2
K2V (x) on I.
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The proof follows from the computation of the geodesic equations

on L.

A geodesic z = (x, t) : [a, b] → L is a critical point of

f(z) =
∫ b

a
〈ż, ż〉Lds

=
∫ b

a

(
〈ẋ, ẋ〉1 − β(x)(ṫ− 〈A(x), ẋ〉1)2

)
ds.

Differentiating f gives
d

ds
(β(x)(ṫ− 〈A(x), ẋ〉1)) = 0

D1
s ẋ +

1

2
(ṫ− 〈A(x), ẋ〉1)2∇1β(x) = β(x)(ṫ− 〈A(x), ẋ〉1)F̂1(x)[ẋ].
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Applications: geodesics with fixed E (in a suitable real interval) and

K =
√

2 (as in the static case, normalization of the coefficient of

∇1V ).

Boundary conditions: geod. from a point to a line or periodic traje-

tories.

• sol. x : [0, a] → M of

D1
s ẋ +∇1V (x) =

√
2F̂1(x)[ẋ]

joining two fixed points x0, x1 ∈ M correspond to geod. z = (x, t) :

[0, a] → L joining a point z0 = (x0, t0) to a line (x1, s) ⊂ L, where

t(s) = t0 +
∫ s

0

√
2 + 〈δ(x), ẋ〉

β(x)
dτ.

Case studied by R. Bartolo, D. Fortunato, F. Giannoni, A. Masiello,

P. Piccione, M. Sánchez and others.
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Theorem. Let (L, 〈·, ·〉L) be a st. stationary sp. If

• A ∈ R exists such that

sup
x∈M

|A(x)|1 = sup
x∈M

|δ(x)|√
β(x)(β(x) + 〈δ(x), δ(x)〉)

= A.

Then, for any E ∈ R with

E > β + A2 where β = sup
x∈M

(
−

1

β(x)

)
and for any x0, x1 ∈ M , x0 6= x1, t0 ∈ R, a geodesic z = (y, t) : [0, a] →
L exists joining the point (x0, t0) ∈ L to the line (x1, s) ⊂ L, such that

1

2
〈ż, ż〉L = E and β(y)ṫ− 〈δ(y), ẏ〉 =

√
2.
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Multiplicity:

• if M is not contractible in itself, a sequence (zm), zm = (ym, tm) :

[0, am] → M of geodesics exists. Their arrival times tm(am) verify

lim
m→+∞

tm(am) = +∞

when β is bounded from above and, denoted by

A1 = sup
x∈M

|δ(x)|√
β(x) + 〈δ(x), δ(x)〉

N = sup
x∈M

β(x),

when

• A1 <
√

EN + 1 for any possible E ≤ 0;

• A1 < 1/
√

EN + 1 for any E > 0.
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The boundedness condition is satisfied when β ≥ ν, for some ν > 0

or |δ|/β is bounded.

E > β + A2: If β is bounded from above then β < 0 (thus in some

cases negative E are allowed). If β ≥ 0, unbounded interval of strictly

positive E.

The theorem contains, as particular cases, some of the th. in

- D. Fortunato, F. Giannoni, A. Masiello, J. Geom. Phys., 1995

(case E = 0 on st. stationary sp.);

- R. Bartolo, A.V.G., M. Sánchez, Differential Geom. Appl., 2002,

(st. static sp., E > β).
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Periodic trajectories:

Periodic trajectory of universal period T and proper period a > 0: a

geodesic z = (x, t) : [0, a] → L such that

x(a) = x(0) ẋ(a) = ẋ(0) t(a) = t(0) + T ṫ(a) = ṫ(0).

• periodic sol. (i.e. x : [0, a] → M such that x(0) = x(a), ẋ(0) = ẋ(a))

of

D1
s ẋ +∇1V (x) =

√
2F̂1(x)[ẋ]

give rise to periodic trajectories z = (x, t) : [0, a] → L.

Set t(0) = 0, thus

T = t(a) =
∫ a

0

√
2 + 〈δ(x), ẋ〉

β(x)
ds.
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Geometrically distinct periodic trajectories: if they have different

ranges. Taking t(0) = 0 avoids obtaining trajectories having the

same spatial components and with temporal components differing by

a constant.

Theorem. Let (L, 〈·, ·〉L) be a st. stationary sp. with compact M .

If

• M is not contractible in itself and its fundamental group π1(M) is

finite or it has infinitely many coniugacy classes.

Then, for any E > β + A2, one non-trivial t–periodic trajectory z =

(y, t) : [0, a] → L exists, such that

1

2
〈ż, ż〉L = E and β(y)ṫ− 〈δ(y), ẏ〉 =

√
2.
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Fixing E and the value K =
√

2 gives a multiplicity result: periodic

traj. for different values of E are geometrically distinct.

M non-compact: further hyp. at infinity (existence of a convex at

infinity function as in V. Benci, D. Fortunato, Proc. of “Variational

Methods”, 1988).

The theorem extends some results in

- A. Candela, Ann. Mat. Pura Appl., 1996, (E = 0, st. stationary

sp.).

In the non–compact case, weaker assumptions than

- A. Masiello, Nonlinear Anal., 1992 (st. stationary sp., traj. with

fixed T ).
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Proof: find fixed energy solutions of

D1
s ẋ +∇1V (x) =

√
2F̂1(x)[ẋ].

Let (M, 〈·, ·〉) be a complete Riem. manifold, V : M → R a smooth

function, B smooth vector field on M , F curl of B.

Dsẋ +∇V (x) = F̂ (x)[ẋ] (2)

where F̂ : TM → TM is the linear map 〈·, ·〉–associated to F .

Fixed Ex ∈ R, find solutions x : I → M , I ⊂ R interval, of (2) s.t.

E =
1

2
〈ẋ(s), ẋ(s)〉+ V (x(s)) ∀s ∈ I.
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If F ≡ 0, classical principle: solutions of (2) with fixed energy E, are,

up to reparametrizations, geodesics with respect to a Jacobi metric

〈·, ·〉E = (E − V (x))〈·, ·〉

(Riemannian in a neighbourhood of x ∈ M , if E > V (x)).

If F 6≡ 0,

• V ∈ C1(M, R) is bounded from above;

• B is bounded.

V = sup
x∈M

V (x) B = sup
x∈M

|B(x)|
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Proposition. Let E > V . If x ∈ C2([0,1], M) is a non–constant

solution of

(E − V (x))DE
s ẋ =

√
1

2
〈ẋ, ẋ〉E F̂ (x)[ẋ] (3)

(DE
s covariant derivative with respect to 〈·, ·〉E), then a > 0 and a

reparametrization y ∈ C2([0, a], M) of x exist, solving

Dsẋ +∇V (x) = F̂ (x)[ẋ]

and having energy E.

Eq. (3) is invariant by affine rep. a1s + a2 if a1 ≥ 0.

Eq. (3) has a variational structure: its associated functional is

G(x) =

√
2
∫ 1

0
〈ẋ, ẋ〉Eds +

∫ 1

0
〈B(x), ẋ〉ds

x varying in a suitable manifold of curves.
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For some fixed x0, x1 in M , x0 6= x1, consider

Ω1(x0, x1, M) =
{
x ∈ H1([0,1], M) | x(0) = x0, x(1) = x1

}
Λ1(M) =

{
x ∈ H1([0,1], M) | x(0) = x(1)

}
.

Critical points of G(x), x ∈ Ω1(x0, x1, M) exist, under the inequality

E > V +
B2

2
.

(G has minumum. If M is not contractible, multiplicity of critical

points.)

If x ∈ Λ1(M), the minumum of G is 0: reinforce topological assump-

tions about M (thus Λ1(M) has subsets of arbitrarily large Ljusternik–

Schnirelman category).
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Work in progress:

if M is not complete and has boundary ∂M ,

• extend these results (under a suitable notion of convexity for ∂M ,

with respect to the field A);

• study the convexity of ∂L = ∂M × R using metric 〈·, ·〉1.
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