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Standard stationary spacetime: (L, {(-,-);) Lorentzian manifold, L =
M x R and

<'7 '>L — <'7 > + 2<5(33)7 >dt - 6(33)dt2 9

(M, {-,-)) finite dimensional, connected Riem. manifold, § smooth

vector field on M and B : M — R, smooth strictly positive function.
If 6 =0, then L is called standard static.

Hypothesis:

e (M, (-, -)) complete, at least C3 Riemannian manifold.



Conservation laws: if a curve z = (a,t) : I — L, I C R interval, is a
geodesic, then EF € R and K € R exist such that

B=_(48,  K=—(0t3; =@} (52),%)

Variational approach for Lorentzian geodesics:

every geodesic z : [a,b] — L is a critical point of the (strongly indefi-

nite) functional

)= | (2,2 ds

a

defined on a manifold of curves.

e V. Benci, D. Fortunato, F. Giannoni (Ann. Inst. H. Poincaré
Anal. Non Linéaire, 1991) and others: reduction to the study of

a Riemannian functional.



e M. Sanchez, (Nonlinear Anal., 1999) in the standard static case:

relation between geodesics and Lagrangian systems.

Theorem. Let (L,({-,-);) be a st. static sp. A curve z = (x,t) : I —
L, I C R interval, is a geodesic such that 8(x)t = K, if and only if x

solves

1 1
D + 5KQVV(:JC) =0 V=—g

(Ds covariant derivative and V gradient with respect to (-,-)). More-

over

11, 1
§<Z(S)7Z(S)>L = 5@(8),%‘(8» + EK V(z(s)) Vsel.



Results in A.V.G. (J. Differential Equations, 2007):

e a correspondence between geodesics and Lagrangian systems holds
also in the standard stationary case if

1. M is endowed by a new Riemannian metric (depending on the
coefficients § and 3);

2. a term representing the action of a magnetic field is added in
the previous differential equation.



New (complete) metric on M: set (-,-)1 by

1
(u,v)1 = (u,v) + @(5(56),@(5(:1;),@) x e M,u,v € Ty M.

For any v e T M, it is

1
%@(37)7@5(33)7

I identity, P(x) : Tp,M — T,M linear, self—adjoint, positive operator.

(v,v)1 = (I + P(z))[v],v) Pz)lv] =

For any x € M, set

1 L 5(z)
V@O ="350 AT 5w+ 66,0

Let F1 be the curl of A:

F1(X,Y) = (D%A,Y)] — (X, D}A)q
(X,Y vector fields on M, D! Levi—Civita connection of (M, (-,-)1)).
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New equation:
1 _
Dli + §K2V1V(x) = KFY(2)[z] (1)

V1 gradient with resp. to (-,-)1, F' : TM — TM linear map (-,-)1—
associated to F1 (Fl(2)[u,v] = (FY(2)[u],v)1, x € M, u,v € TxM).

Theorem. Let (L,(-,-);) be a st. stationary sp., I C R an interval.

If 2= (x,t) : I — L is a geodesic such that g(x)t — (6(z),z) = K for
some K € R, then x: I — R solves (1).

Every geodesic z = (xz,t) : I — L for {-,-); can be obtained by a sol.
x:I— M of (1) forsome K€ R, t by t = (K + (6(z),z)) /6(x).

Moreover

1 1 1
5(2, 2y = §<x',:t>1 + EKQV(a?) on I.



The proof follows from the computation of the geodesic equations

on L.

A geodesic z = (x,t) : [a,b] — L is a critical point of

f) = [tz 2)ds

= [ (&)1 - B~ (AG),#)1)2) ds.
Differentiating f gives
L (B@)E~ (AG), #)1) =0
| DLi+ 2 (F — (A), 512V () = B (E — (A@), $)1) F @)l
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Applications: geodesics with fixed E (in a suitable real interval) and

K = 2 (as in the static case, normalization of the coefficient of

viv).

Boundary conditions: geod. from a point to a line or periodic traje-
tories.
e sol. x:[0,a] — M of

Dli 4+ ViV(z) = V2Fi(2)[7]

joining two fixed points zg,x7 € M correspond to geod. z = (x,t) :

[0,a] — L joining a point zg = (azo,to) to a line (x1,s) C L, where

) dr.

Case studied by R. Bartolo, D. Fortunato, F. Giannoni, A. Masiello,

P. Piccione, M. Sanchez and others.



Theorem. Let (L,(-,-);) be a st. stationary sp. If
e A c R exists such that

) _
sup |A(x)|1 = sup 9()] = A.

€M zeM \/ﬁ(w)(ﬁ(w) + (6(x),d(x)))

Then, for any E € R with

E > B+ A% where Bz;g]\% <_ﬁ(1x)>

and for any zg,xz1 € M, zg # x1, to € R, a geodesic z = (y,t) : [0,a] —
L exists joining the point (zg,tg) € L to the line (z1,s) C L, such that

%@@L =E and By)i—(6(y),y) = V2.
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Multiplicity:

e if M is not contractible in itself, a sequence (zm), 2zm = (Ym,tm) :

[0, am] — M of geodesics exists. Their arrival times t;,(am) verify

im tm(am) = +o0

m——+oo
when 3 is bounded from above and, denoted by
_ o)
A1 = sup o(x) N = sup G(x),
€M \/B(x) + (5(x), 6(x)) zeM

when
e A{ < v/EN + 1 for any possible E < 0;

e A1 <1//EN +1 for any E > 0.
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The boundedness condition is satisfied when @ > v, for some v > 0
or |§|/B is bounded.

E > B+ A2: If 8 is bounded from above then 5 < 0 (thus in some
cases negative E are allowed). If 3 > 0, unbounded interval of strictly

positive E.

The theorem contains, as particular cases, some of the th. in

- D. Fortunato, F. Giannoni, A. Masiello, J. Geom. Phys., 1995

(case £ = 0 on st. stationary sp.);

- R. Bartolo, A.V.G., M. Sanchez, Differential Geom. Appl., 2002,
(st. static sp., E > 3).
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Periodic trajectories:

Periodic trajectory of universal period T and proper period a > 0: a

geodesic z = (x,t) : [0,a] — L such that

z(a) = z(0)  i(a) = &(0) t(a) = t(0) + T i(a) = £(0).

e periodic sol. (i.e. z : [0,a] — M such that z(0) = z(a), £(0) = z(a))
of
Dli 4+ ViV(z) = V2Fi(2)[z]
give rise to periodic trajectories z = (x,t) : [0,a] — L.
Set t(0) = 0, thus

@ V2 + (3(x), )

0 () ds.

T =1t(a) =
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Geometrically distinct periodic trajectories: if they have different
ranges. Taking t(0) = O avoids obtaining trajectories having the
same spatial components and with temporal components differing by

a constant.

Theorem. Let (L,{-,-);) be a st. stationary sp. with compact M.
If

e M is not contractible in itself and its fundamental group w1 (M) is

finite or it has infinitely many coniugacy classes.

Then, for any E > B—I—Z% one non-trivial t—periodic trajectory z =
(y,t) : [0,a] — L exists, such that

%@’é)L =FE and Bt—{6(y),y) = V2.
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Fixing E and the value K = +/2 gives a multiplicity result: periodic

traj. for different values of E are geometrically distinct.

M non-compact: further hyp. at infinity (existence of a convex at
infinity function as in V. Benci, D. Fortunato, Proc. of “Variational
Methods”, 1988).

The theorem extends some results in

- A. Candela, Ann. Mat. Pura Appl., 1996, (E = 0, st. stationary
sp.).

In the non—compact case, weaker assumptions than

- A. Masiello, Nonlinear Anal., 1992 (st. stationary sp., traj. with
fixed T).
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Proof: find fixed energy solutions of

Dli 4+ ViV(z) = V2Fi(2)[4].

Let (M, {-,-)) be a complete Riem. manifold, V : M — R a smooth

function, B smooth vector field on M, F curl of B.
Dsi 4+ VV (x) = F(x)[] (2)

where F': TM — TM is the linear map (-,-)—associated to F.

Fixed E; € R, find solutions z : I — M, I C R interval, of (2) s.t.

E= %(m’(s),:t(s» FV(x(s)) Vsel
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If = 0, classical principle: solutions of (2) with fixed energy F, are,

up to reparametrizations, geodesics with respect to a Jacobi metric
(Riemannian in a neighbourhood of x € M, if E > V(x)).

If FF#£ 0,

e Ve Cl(M,R) is bounded from above;

e B is bounded.

V = sup V(x) B = sup |B(z)|
xeM xeM
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Proposition. Let E > V. If z € C?([0,1], M) is a non—constant

solution of

(B -V (@))DFi = \/ (&, 8)p F@)li] (3)

(DSE covariant derivative with respect to (-,-}g), then a > 0 and a

reparametrization y € C2([0,a], M) of z exist, solving
Dsz + VV(z) = F(x)[z]

and having energy E.
Eqg. (3) is invariant by affine rep. a1s + a» if a3 > 0.

Eq. (3) has a variational structure: its associated functional is

G(x) = \/2 /01<:b,5c>Eds + /Ol(B(a:),:i:>ds

x varying in a suitable manifold of curves.
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For some fixed xzqg,x1 in M, xg #+= x1, consider
QN (o, 21, M) = {z € H'([0,1], M) | 2(0) = zo, (1) = 21}

AL(M) = {x e H1([0,1], M) | z(0) = :v(l)}.

Critical points of G(z), = € QY (xo,z1, M) exist, under the inequality
_ B2
E>V 4+ —.
2
(G has minumum. If M is not contractible, multiplicity of critical

points.)

If z € AL(M), the minumum of G is 0: reinforce topological assump-
tions about M (thus AL(M) has subsets of arbitrarily large Ljusternik—

Schnirelman category).
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Work in progress:

if M is not complete and has boundary oM,

e extend these results (under a suitable notion of convexity for oM,
with respect to the field A);

e study the convexity of 0L = dM x R using metric (-,-)1.
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