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Abstract. We will study expressions that relate

the Ricci (respectively, scalar) curvature of a multiply

warped product with the Ricci (respectively, scalar) cur-

vatures of its base and fibers as well as warping functions.

Then we will introduce and consider a kind of general-

ization of Kasner space-times called as the generalized

Kasner space-time which has the metric of the form

ds2 = −dt2 +

k∑
i=1

ϕ2pidx2
i .

Moreover, we state necessary and sufficient conditions

for a multiply generalized Robertson-Walker space-time

to be Einstein (respectively, with constant scalar curva-

ture) generalized Kasner space-times of dimension 4.
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1. PRELIMINARIES

1.1. Basic Definitions

Definition 1.1 Let (B, gB) and (Fi, gFi
) be pseudo-Riemannian

manifolds and also let bi : B → (0,∞) be smooth functions for any

i ∈ {1, 2, · · · ,m}. The multiply warped product is the product

manifold M = B × F1 × F2 × · · · × Fm furnished with the metric

tensor g = gB ⊕ b2
1gF1 ⊕ b2

2gF2 ⊕ · · · ⊕ b2
mgFm defined by

g = π∗(gB)⊕ (b1 ◦ π)2σ∗1(gF1)⊕ · · · ⊕ (bm ◦ π)2σ∗m(gFm)

Definition 1.2 The multiply warped product (M, g) is a Lorentzian

multiply warped product if (Fi, gFi
) are all Riemannian for any

i ∈ {1, 2, · · · ,m} and either (B, gB) is Lorentzian or else (B, gB)

is a one-dimensional manifold with a negative definite metric −dt2.

Definition 1.3 If B is an open connected interval I of the form

I = (t1, t2) equipped with the negative definite metric gB = −dt2,

where −∞ ≤ t1 < t2 ≤ ∞ and (Fi, gFi
) is Riemannian for any i ∈

{1, 2, · · · ,m} then the Lorentzian multiply warped product (M, g)

is called a multiply generalized Robertson-Walker space-time.
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Definition 1.4 A generalized Kasner space-time (M, g) is a Lorentzian

multiply warped product of the form M = I × ϕp1F1× · · · × ϕpmFm

with the metric g = −dt2⊕ϕ2p1gF1 ⊕ · · · ⊕ϕ2pmgFm where ϕ : I →
(0,∞) is smooth and pi ∈ R, for any i ∈ {1, · · · ,m} and also

I = (t1, t2) with −∞ ≤ t1 < t2 ≤ ∞.

1.2. Examples

• Schwarzschild Space-time: If r < 2m, then

ds2 = −
(

2m

r
− 1

)−1

dr2 +

(
2m

r
− 1

)
dt2 + r2dΩ2

where dΩ2 = dθ2 + sin2 θdϕ2 on S2.

ds2 = −dt2 + b2
1(t)dr2 + b2

2(t)dΩ2

where

b1(t) =

√
2m

F−1(t)
− 1 and b2(t) = F−1(t) also

t = F (r) = 2m arccos

(√
2m− r

2m

)
−

√
r(2m− r) such that

lim
r→2m

F (r) = mπ and lim
r→0

F (r) = 0.
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• Kasner Space-time: If t > 0, then

g = −dt2 ⊕ t2p1dx2 ⊕ t2p2dy2 ⊕ t2p3dz2

where p1 + p2 + p3 = (p1)
2 + (p2)

2 + (p3)
2 = 1.

(a) −1/3 ≤ p1 < 0 < p2 ≤ p3 < 1 by excluding the case of two pi’s

zero and one pi equal to 1.

(b) the Kasner space-time is globally hyperbolic

(c) By [5], the Kasner space-time is future-directed time-like and

future-directed null geodesic complete but it is past-directed

time-like and past-directed null geodesic incomplete. Moreover,

it is also space-like geodesic incomplete.

(d) The Kasner space-time is Einstein with λ = 0 (i.e., Ricci-flat).

• Static Bañados-Teitelboim-Zanelli (BTZ) Space-time: If r < rH ,

then

ds2 = −N−2dr2 + N 2dt2 + r2dΩ2

where dΩ2 = dθ2 + sin2 θdϕ2 on S2 and

N 2 = m− r2

l2
with rH = l

√
m.
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2. MULTIPLY GENERALIZED ROBERTSON-WALKER

SPACE-TIMES

Let M = I× b1F1×· · ·× bmFm be a multiply GRW space-time with

the metric g = −dt2 ⊕ b2
1gF1 ⊕ · · · ⊕ b2

mgFm. Then

Theorem 2.1 If ∂/∂t ∈ X(I) and vi ∈ X(Fi), for any i ∈
{1, · · · ,m}. If v =

∑m
i=1 vi ∈ X(F ), then

Ric
( ∂

∂t
+ v,

∂

∂t
+ v

)
=

m∑
i=1

(
RicFi

(vi, vi) +
(
bib

′′
i + (si − 1)(b′i)

2

+ bib
′
i

m∑

k=1,k 6=i

sk
b′k
bk

)
gFi

(vi, vi)− si
b′′i
bi

)

Theorem 2.2 If τ denotes the scalar curvature, then

τ = 2

m∑
i=1

si
b′′i
bi

+

m∑
i=1

τFi

b2
i

+

m∑
i=1

si(si − 1)
(b′i)

2

b2
i

+

m∑
i=1

m∑

k=1,k 6=i

sksi
b′ib

′
k

bibk

Remark 2.3 Let (M, g) be an arbitrary n-dimensional pseudo-

Riemannian manifold.

• If (M, g) is Einstein and n ≥ 3, then λ is constant and λ = τ/n

where τ is the constant scalar curvature of (M, g).
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• If (M, g) is Einstein and n = 2 then λ is not necessarily constant.

• If (M, g) has constant sectional curvature k, then (M, g) is Ein-

stein with λ = k(n − 1) and has constant scalar curvature

τ = n(n− 1)k

• (M, g) is Einstein with Ricci curvature λ and n = 3 then (M, g)

is a space of constant (sectional) curvature K = λ/2.

• If (M, g) is a Lorentzian manifold then (M, g) is Einstein if and

only if Ric(v, v) = 0 for any null vector field v on M .

Theorem 2.4 The space-time (M, g) is Einstein with Ricci cur-

vature λ if and only if the following conditions are satisfied for any

i ∈ {1, · · · ,m}

• each fiber (Fi, gFi
) is Einstein with Ricci curvature λFi

for any

i ∈ {1, · · · ,m}

•
m∑

i=1

si
b′′i
bi

= λ and

• λFi
+ bib

′′
i + (si − 1)(b′i)

2 + bib
′
i

m∑

k=1,k 6=i

sk
b′k
bk

= λb2
i
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Proposition 2.5 If the space-time (M, g) has constant scalar cur-

vature τ , then each fiber (Fi, gFi
) has constant scalar curvature τFi

,

for any i ∈ {1, · · · ,m}.

Let (M, g) be an n-dimensional pseudo-Riemannian manifold.

Lemma 2.6 For any t ∈ R and v ∈ C∞
>0(B). Then

(i) gradg vt = tvt−1 gradg v

(ii)
∆gv

t

vt
= t

[
(t− 1)

‖ gradg v‖2
g

v2
+

∆gv

v

]

Lemma 2.7 Let Lg be a differential operator on C∞
>0(M) defined

by

Lgv =

k∑
i=1

ri
∆gv

ai

vai

where ri, ai ∈ R and ζ :=

k∑
i=1

riai also η :=

k∑
i=1

ria
2
i . Then,

(i) Lgv = (η − ζ)
‖ gradg v‖2

g

v2
+ ζ

∆gv

v

(ii) If ζ 6= 0 and η 6= 0, for α =
ζ

η
and β =

ζ2

η
then we have

Lgv = β
∆gv

1
α

v
1
α

.

6



3. GENERALIZED KASNER SPACE-TIMES

Let (M, g) be a generalized Kasner space-time of the form M =

I× ϕp1F1×· · ·× ϕpmFm with the metric g = −dt2⊕ϕ2p1gF1⊕· · ·⊕
ϕ2pmgFm.

Notation 3.1 For a generalized Kasner space-time,

(ζ ; η) ζ :=

m∑

l=1

slpl and η :=

m∑

l=1

slp
2
l .

Theorem 3.2 The space-time (M, g) is Einstein with Ricci curva-

ture λ if and only if

(i) each fiber (Fi, gFi
) is Einstein with Ricci curvature λFi

for any

i ∈ {1, · · · ,m},

(ii) λ =

m∑

l=1

sl
(ϕpl)′′

ϕpl
= (η − ζ)

(ϕ′)2

ϕ2
+ ζ

ϕ′′

ϕ
and

(iii)
λFi

ϕ2pi
+ pi

[
(ζ − 1)

(ϕ′)2

ϕ2
+

ϕ′′

ϕ

]
= λ.
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Remark 3.3 If we assume that ζ 6= 0, then η 6= 0. Hence, (iii) is

equivalent to
λFi

ϕ2pi
+

pi

ζ

(ϕζ)′′

ϕζ
= λ,

and (ii) is equivalent to

λ =
ζ2

η

(ϕ
η
ζ )′′

ϕ
η
ζ

.

Theorem 3.4 The space-time (M, g) has constant scalar curvature

τ if and only if

(i) each fiber (Fi, gFi
) has constant scalar curvature τFi

for any i ∈
{1, · · · ,m} and

(ii) τ = 2ζ
ϕ′′

ϕ
+ [(ζ − 2)ζ + η]

(ϕ′)2

ϕ2
+

m∑
i=1

τFi

ϕ2pi

Remark 3.5 If ζ 6= 0, then (ii) is equivalent to

τ =
4ζ2

ζ2 + η

(ϕ
ζ2+η

2ζ )′′

ϕ
ζ2+η

2ζ

+

m∑
i=1

τFi

ϕ2pi

Remark 3.6 In order for a classical Kasner space-time to be Ein-

stein or to have a constant scalar curvature is p1 = p2 = p3 = 0.
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4. APPLICATIONS

4.1. 4-Dimensional Generalized Kasner Space-Times

Definition 4.1 Let (M, g) be a generalized Kasner space-time of

the form M = I × ϕp1F1× · · ·× ϕpmFm with the metric g = −dt2⊕
ϕ2p1gF1 ⊕ · · · ⊕ ϕ2pmgFm.

• (M, g) is said to be of Type (I) if m = 1 and dim(F ) = 3.

• (M, g) is said to be of Type (II) if m = 2 and dim(F1) = 1 and

dim(F2) = 2.

• (M, g) is said to be of Type (III) if m = 3 and dim(F1) = 1,

dim(F2) = 1 and dim(F3) = 1.

Classification of Einstein Type (I) generalized Kasner

space-times:

Aĺıas L. J., Romero A. and Sánchez M., Spacelike hypersurfaces

of constant mean curvature and Calabi-Bernstein type problems,

Tohôku Math. J. 49, (1997), 337-345.
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Classification of Type (I) generalized Kasner space-times

with constant scalar curvature:

Ehrlich P. E., Jung Y.-T. and Kim S.-B., Constant scalar curva-

tures on warped product manifolds, Tsukuba J. Math., 20 (1),

(1996), 239-256.

Classification of Einstein Type (II) generalized Kasner

space-times:

Here, ζ = p1 + 2p2 and η = p2
1 + 2p2

2.





(η − ζ)
(ϕ′)2

ϕ2
+ ζ

ϕ′′

ϕ
= λ

p1

[
(ζ − 1)

(ϕ′)2

ϕ2
+

ϕ′′

ϕ

]
= λ

λF2

ϕ2p2
+ p2

[
(ζ − 1)

(ϕ′)2

ϕ2
+

ϕ′′

ϕ

]
= λ.
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ζ
η

η ζ
2

λ
λ

F
2

p 1
p 2

m
et

ri
c

ϕ

0
0

-
0

0
0

0
−d

t2
+

g F
1
+

g F
2

-

0
3 2
p2 1
6=

0
-

0
0

6=
0

−1 2
p 1

−d
t2

+
ϕ

2p
1

0
g F

1
+

ϕ
−p

1
0

g F
2

ϕ
0

=
ct

e
>

0

0
3 2
p2 1
6=

0
-

−
6=

0
6=

0
−1 2

p 1
n
o

m
et

ri
c

-

6=
0

ζ
2

1
0

0
6=

0
0,
−2

p 1
−d

t2
+

ϕ
2p

1 g
F

1
+

ϕ
2p

2 g
F

2
(ϕ

ζ
;0

)

6=
0

ζ
2

1
6=

0
λ

6=
0

0
−d

t2
+

ϕ
2p

1 g
F

1
+

g F
2

(ϕ
ζ
;λ

)

6=
0

6=
0

6=
1

0
0

p 1
6=

0
−d

t2
+

ϕ
2p

1
0

g F
1
+

ϕ
2p

2
0

g F
2

ϕ
0

=
ct

e
>

0

6=
0

6=
0

6=
1

0
<

0
0

6=
0

−d
t2

+
g F

1
+

ϕ
2p

2 g
F

2
(ϕ

η ζ
;0

)

6=
0

6=
0

6=
1

>
0

0
p 2

6=
0

−d
t2

+
ϕ

2p
1 g

F
1
+

ϕ
2p

1 g
F

2
(ϕ

ζ
;3

λ
;∗

)

6=
0

6=
0

6=
1
6=

0
6=

0
p 1

6=
0

n
o

m
et

ri
c

-
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Classification of Type (II) generalized Kasner space-

times with constant scalar curvature:

Here, ζ = p1 + 2p2 and η = p2
1 + 2p2

2.

τ = 2ζ
ϕ′′

ϕ
+ [(ζ − 2)ζ + η]

(ϕ′)2

ϕ2
+

τF2

ϕ2p2
.
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ζ
η

η ζ
2

τ F
2

p 1
p 2

ϕ
eq

.

0
0

-
τ F

2
0

0
τ

=
τ F

2

0
3 2
p2 1

-
0

6=
0
−1 2

p 1
τ

=
η

(ϕ
′ )2

ϕ
2

0
3 2
p2 1

-
6=

0
6=

0
−1 2

p 1
τ

=
η

(ϕ
′ )2

ϕ
2

+
τ F

2
ϕ

2p
2

ζ
6=

0
ζ

2
1

0
6=

0
0

−2
u
′′

=
−τ

u
;

u
=

ϕ
ζ

ζ
6=

0
ζ

2
1

0
6=

0
−2

p 1
−2

u
′′

=
−τ

u
;

u
=

ϕ
ζ

ζ
6=

0
ζ

2
1

6=
0
6=

0
0

−2
u
′′

=
−(

τ
−

τ F
2)

;
u

=
ϕ

ζ

ζ
6=

0
ζ

2
1

6=
0
6=

0
−2

p 1
−2

u
′′

=
−τ

u
+

τ F
2u
−

1 3
;u

=
ϕ

ζ

ζ
6=

0
η
6=

0
6=

1
0

p 1
6=

0
u

=
(ϕ

ζ
)1+

η ζ
2

2

ζ
6=

0
η
6=

0
6=

1,
1 3
6=

0
p 1

6=
0

u
=

(ϕ
ζ
)1+

η ζ
2

2

ζ
6=

0
ζ
2 3

1 3
6=

0
ζ 3

ζ 3
−3

u
′′

=
−τ

u
+

τ F
2;

u
=

ϕ
2 3
ζ
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Classification of Einstein Type (III) generalized Kasner

space-times:

Here, ζ = p1 + p2 + p3 and η = p2
1 + p2

2 + p2
3.





(η − ζ)
(ϕ′)2

ϕ2
+ ζ

ϕ′′

ϕ
= λ

p1

[
(ζ − 1)

(ϕ′)2

ϕ2
+

ϕ′′

ϕ

]
= λ

p2

[
(ζ − 1)

(ϕ′)2

ϕ2
+

ϕ′′

ϕ

]
= λ

p3

[
(ζ − 1)

(ϕ′)2

ϕ2
+

ϕ′′

ϕ

]
= λ.
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ζ
η

η ζ
2

λ
p 1

p 2
p 3

m
et

ri
c

ϕ

0
0

-
0

0
0

0
−d

t2
+

g F
1
+

g F
2
+

g F
3

-

0
6=

0
-

0
p 1

p 2
p 3

−d
t2

+
ϕ

2p
1

0
g F

1
+

ϕ
2p

2
0

g F
2
+

ϕ
2p

3
0

g F
3

ϕ
0

=
ct

e
>

0

6=
0

ζ
2

1
0

p 1
p 2

p 3
−d

t2
+

ϕ
2p

1 g
F

1
+

ϕ
2p

2 g
F

2
+

ϕ
2p

3 g
F

3
(ϕ

ζ
;0

)

6=
0
6=

0
6=

1
0

p 1
p 2

p 3
−d

t2
+

ϕ
2p

1
0

g F
1
+

ϕ
2p

2
0

g F
2
+

ϕ
2p

3
0

g F
3

ϕ
0

=
ct

e
>

0

6=
0
6=

0
6=

1
>

0
p 1

p 1
p 1

−d
t2

+
ϕ

2p
1 g

F
1
+

ϕ
2p

1 g
F

2
+

ϕ
2p

1 g
F

3
(ϕ

ζ
;3

λ
;∗

)
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Classification of Type (III) generalized Kasner space-

times with constant scalar curvature:

Here, ζ = p1 + p2 + p3 and η = p2
1 + p2

2 + p2
3.

If ζ 6= 0 and u = ϕ
ζ2+η

2ζ then

− 4ζ2

ζ2 + η
u′′ = −τu

u(t) =





Ae
i

√
−τ ζ2+η

4ζ2 t
+ Be

−i

√
−τ ζ2+η

4ζ2 t
if τ < 0,

At + B if τ = 0,

Ae

√
τ ζ2+η

4ζ2 t
+ Be

−
√

τ ζ2+η

4ζ2 t
if τ > 0,

with constants A and B such that u > 0.

If ζ = 0 and u = ϕ
ζ2+η

2ζ then





τ = η
(ϕ′)2

ϕ2
,

ϕ > 0.

Since η > 0, the latter is equivalent to
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



(
ϕ

√
τ√
η

+ ϕ′
)(

ϕ

√
τ√
η
− ϕ′

)
= 0,

ϕ > 0.

Solutions of the equation above are given as,

ϕ(t) = Ce
±
√

τ√
η t
,

where C is a positive constant.

4.2. BTZ Black Holes

All the cases considered in [Hong S.-T., Choi J. and Park Y.-J.,

(2+1) BTZ Black hole and multiply warped product spacetimes,

Gen. Relativity Gravitation, 35, (2003), 2105-2116] i.e.,

ds2 = N 2dt2 −N−2dr2 + r2dφ2

can be expressed as a (2+1) multiply generalized Robertson-Walker

space-time, i.e.,

ds2 = −dt2 + b2
1(t)dx2 + b2

2(t)dφ2

by considering the corresponding square lapse function N 2 where
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



b1(t) = N(F−1(t))

b2(t) = F−1(t),

with

F (r) =

∫ r

a

1

N(µ)
dµ

• The space-time is Einstein with Ricci curvature λ if and only

if the square lapse function N 2 satisfies

N 2(r) =
λ

2
r2 + c,

with a suitable constant c.

• The space-time has constant scalar curvature τ = λ if and only

if the square lapse function N 2 has the form

N 2(r) = −c1
1

r
+

λ

6
r2 + c2,

with suitable constants c1 and c2.
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