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ABSTRACT. We will study expressions that relate
the Ricci (respectively, scalar) curvature of a multiply
warped product with the Ricci (respectively, scalar) cur-
vatures of its base and fibers as well as warping functions.
Then we will introduce and consider a kind of general-
ization of Kasner space-times called as the generalized
Kasner space-time which has the metric of the form

k
ds® = —dt* + Z Pida?.
i=1
Moreover, we state necessary and sufficient conditions
for a multiply generalized Robertson-Walker space-time

to be Einstein (respectively, with constant scalar curva-
ture) generalized Kasner space-times of dimension 4.
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1. PRELIMINARIES
1.1. Basic Definitions

Definition 1.1 Let (B, gp) and (F, gr,) be pseudo-Riemannian
manifolds and also let b;: B — (0, 00) be smooth functions for any
i € {1,2,--- ,m}. The multiply warped product is the product
manifold M = B x Fy X Fy X --- x F}, furnished with the metric

tensor g = gp @ bigr, B bigr, ® - & b2, gF,, defined by

g="1"(g) @ (b1 )07 (gr) &+ & (b o 7)°07,(9F,)

Definition 1.2 The multiply warped product (M, g) is a Lorentzian
multiply warped product if (F;, gr.) are all Riemannian for any
i€ {1,2,---,m} and either (B, gp) is Lorentzian or else (B, gp)

is a one-dimensional manifold with a negative definite metric —dt?.

Definition 1.3 If B is an open connected interval I of the form
I = (t1,12) equipped with the negative definite metric gp = —dt*,
where —oo <t} <ty < oo and (F}, gr) is Riemannian for any ¢ €
{1,2,--+ ,m} then the Lorentzian multiply warped product (M, g)

is called a multiply generalized Robertson-Walker space-time.
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Definition 1.4 A generalized Kasner space-time (M, g) is a Lorentzian
multiply warped product of the form M = I X o F7 X -+ X oo [,
with the metric g = —dt* @ p*Plgp, & - - D @*Pmgp  where ¢: [ —
(0,00) is smooth and p; € R, for any i € {1,--- ,m} and also

I = (tl,tQ) with —oo < t; < ty < 0.

1.2. Examples

e Schwarzschild Space-time: If r < 2m, then

2 2m - 2 2m 2 2192
ds* = — | — —1 dre+ | — — 1) dt* + r=d2

r r

where dQ? = df? + sin® fdp? on S%.

ds? = —dt* + bi(t)dr? 4 b3 (t)dQ?

bl(t)_\/;%—1 and  by(t) = F~L(t) also

2m —r

~

= F(r) = 2m arccos (
2m

) — /r(2m —r) such that

1iI2Il F(r)=mm and lim F(r)=0.



e Kasner Space-time: If ¢ > 0, then
g = —dt* @ t*"'dz? @ t72dy? & t23d2?
where p1 4+ pa 4+ p3 = (p1)* + (p2)* + (p3)* = L.

(a) =1/3 < p1 <0< ps < p3 < 1 by excluding the case of two p;’s

zero and one p; equal to 1.
(b) the Kasner space-time is globally hyperbolic

(¢) By [5], the Kasner space-time is future-directed time-like and
future-directed null geodesic complete but it is past-directed
time-like and past-directed null geodesic incomplete. Moreover,

it is also space-like geodesic incomplete.
(d) The Kasner space-time is Einstein with A = 0 (i.e., Ricci-flat).

e Static Banados-Teitelboim-Zanelli (BTZ) Space-time: If r < rg,
then

ds? = —N2dr? + N2dt? + r2d0?

where dQ? = d#? + sin® dy? on S? and

7“2

N2zm—l—2 with rg = [v/m.



2. MULTIPLY GENERALIZED ROBERTSON-WALKER
SPACE-TIMES

Let M = I xy Fy x -+ Xy, Fy, be a multiply GRW space-time with

the metric g = —dt* ® bigp, @ -+ @ b, gr,. Then

Theorem 2.1 If 9/0t € X(I) and v; € X(F;), for any i €
{1, m}. Ifo=>"" v, € X(F), then

m

RlC(S +v %+ v) = Z (RiCFi(Uianz') + (bib;'/ + (i — 1)(b))°
i=1

/ m b/ b//
+ b;b; Z Sk—)gpi(vi,vz) S;—~ )
by b;

k=1,k#i

Theorem 2.2 If 7 denotes the scalar curvature, then

7__22”13826//+zm:b2_|_z:SZ ._1 b2 +Z zm: SkSZb/b/
1=1 k=1k#i

Remark 2.3 Let (M, g) be an arbitrary n-dimensional pseudo-
Riemannian manifold.

o If (M, g) is Einstein and n > 3, then A is constant and A = 7/n

where 7 is the constant scalar curvature of (M, g).
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e If (M, g) is Einstein and n = 2 then A is not necessarily constant.

e If (M, g) has constant sectional curvature k, then (M, g) is Ein-
stein with A = k(n — 1) and has constant scalar curvature

T=n(n—1)k

e (M, g) is Einstein with Ricci curvature A and n = 3 then (M, g)

is a space of constant (sectional) curvature K = \/2.

e If (M, g) is a Lorentzian manifold then (M, g) is Einstein if and

only if Ric(v, v) = 0 for any null vector field v on M.

Theorem 2.4 The space-time (M, g) is Einstein with Ricci cur-
vature A if and only if the following conditions are satisfied for any
ied{l,---,m}

e cach fiber (F}, gr) is Einstein with Ricci curvature Ap, for any

ie{l,---,m}

m b//
o Z Sib_l- = )\ and
i=1 !

m /
b+ (s, — D)D)+ b kb2
o \p +bb! + (5 — 1)(b) +bbzklzk#skbk A’



Proposition 2.5 If the space-time (M, g) has constant scalar cur-
vature 7, then each fiber (F}, gr,) has constant scalar curvature 7z,

for any ¢ € {1,--- ,m}.

Let (M, g) be an n-dimensional pseudo-Riemannian manifold.
Lemma 2.6 For any ¢t € R and v € C24(B). Then

(i) grad, v’ = tof ! grad, v

t
Agv

ERIY
vt

v? v

(i)

—t|(t—1)

Lemma 2.7 Let L, be a differential operator on C(M) defined
by

k
A v%
Lyv = E ri—2
(IR
i=1
k k

where 7;,a; € R and ¢ := Z r;a; also n = Z fria?. Then,

1=1 =1

Agv

U

| grad, vl

() Lyv = (n = QP ot ¢

2

(i1) IfC;éOandn#O,forozzgandﬁzg—thenwehave
Ui Ui
Ava
Ly=p 911} :

Va




3. GENERALIZED KASNER SPACE-TIMES

Let (M, g) be a generalized Kasner space-time of the form M =
I X o1 X oo X o By, with the metric g = —dt* @ pPigp G- D

Notation 3.1 For a generalized Kasner space-time,

(¢:m) C=> sp and n:=) sp.
=1 =1

Theorem 3.2 The space-time (M, g) is Einstein with Ricci curva-

ture A if and only if

(i) each fiber (Fj, gr,) is Einstein with Ricci curvature Ap, for any

ied{l,--- ,m},

m P! 12 "
<n>A—lzlsz<fpp} = - O+ ¢S and
Y 12 %

(iii) 90;;% +pi [(C - 1)(9:)2) +:00 = A



Remark 3.3 If we assume that ¢ # 0, then n # 0. Hence, (iii) is

equivalent to
7

A p(f
Fz_l_p(gp) :>\,

PP (et
and (ii) is equivalent to

2(90%1)"
P
Ui gp?

Theorem 3.4 The space-time (M, g) has constant scalar curvature

7 if and only if

(i) each fiber (Fj, gr,) has constant scalar curvature 75, for any i €

{1,---,m} and

2

BN B ()
(i) 7 = 26 + (¢ = 29¢ + 115 +;

T F;
@2]%'

Remark 3.5 If { # 0, then (ii) is equivalent to

ﬂ m
A (v % )”+Z =
T 2a PP
%, 2 i=1

Remark 3.6 In order for a classical Kasner space-time to be Ein-
stein or to have a constant scalar curvature is p; = po = p3 = 0.
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4. APPLICATIONS
4.1. 4-Dimensional Generalized Kasner Space-Times

Definition 4.1 Let (M, g) be a generalized Kasner space-time of
the form M = I X o Fy X -+ = X zpm Fyy, with the metric g = —dt* @
¢2p1gFl D P SﬁzmeFm-
e (M, g) is said to be of Type (I) if m =1 and dim(F') = 3.
e (M, g) is said to be of Type (1I) if m = 2 and dim(F}) = 1 and
dim(Fy) = 2.

e (M, g) is said to be of Type (III) if m = 3 and dim(F};) = 1,
dim(Fy) = 1 and dim(F3) = 1.

Classification of Einstein Type (I) generalized Kasner

space-times:

Alias L. J., Romero A. and Sanchez M., Spacelike hypersurfaces
of constant mean curvature and Calabi-Bernstein type problems,

Tohoku Math. J. 49, (1997), 337-345.



Classification of Type (I) generalized Kasner space-times

with constant scalar curvature:

Ehrlich P. E., Jung Y.-T. and Kim S.-B., Constant scalar curva-
tures on warped product manifolds, Tsukuba J. Math., 20 (1),
(1996), 239-256.

Classification of Einstein Type (II) generalized Kasner

space-times:

Here, ¢ = p1 + 2ps and n = p{ + 2p3.

- 0¥+ Z o

2 +(—
gp( /)2 9090//
<p1[(§_1)i2+¢])\

2

N2
L, [(C—l)wg oz ] = A
¥ ¥ ¥
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- DLIOUL O 0F | M |0#A|0#F|T#] 0# |0#
(xxgisP) | ¥y, + YMbd+ gp— | 0F W | 0 0<|T#| 0# |0#
(0:59) “Abeg, + Y6 + 3p— 0 | 0 |0>] 0 |1#] 0# |0#
0<op =00 4b 0+ ¥b I+ gp—| 0# || 0| 0 |[T#] 0F |0#
(Y ') “b + Y0+ gp— 0 |0# Y [ 0#] 1T | 5 |[0#
(0 Jq& @@JSN& + EP&N& + = [ dz—0|0#| 0 0 I ) 0#

- OLIJOW OU de— [0#A 04 — | - [0£MWe] 0

0 <op =0 UG Ob+ Y6 b4 gp—| 1di— |oFA| 0 | 0 | - [0FMg| 0

- “b+ M6+ p— 0 010/ 0| - 0 0

% OLINOUI od Id | Yy | y % L 9
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Classification of Type (II) generalized Kasner space-

times with constant scalar curvature:

Here, ( = p1 + 2ps and n = p% + Qp%.
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sgh=mn  HLgnie = ne— S5 0A] g 5 (070
& () = 0F# | d |o# 0# 9
o () =n 0#£ | d | 0| T# 0£UL0#)

sh=ntg n¥Lfni— = ng— | ldg—|0#|0#| T | O [0#D
d=n  (dr—s)—=,nz—| 0 [0A|0A] T | 2 |0#D

—ile
-
“h
(-
“h

Ny

Wb =n ni—= ng— | Mdg—|0#| 0 I 2 |0FD
b =mn Mi—= ,ng—| 0 |0#]| 0 I 2 |0FD
& &
Tt gl =1 Wé— g #£|0#| - | ME | o

b=+ Wt —0#| 0 | - | Mg

‘ho dd | g || &
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Classification of Einstein Type (III) generalized Kasner

space-times:

Here, ¢ = p1 + p2 + p3 and 1) = pt + ps + p3.

( () ¢
(n=C 5+ =A
i SOQ(SO/)Q SOSO//'
P1 (C—l) 8024—%0 =\
< . :<< - 1) (90/)2 . 90//: :)\
2
PN
\pg _(C—l) 902 + o | =\
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(x:x€ i) | b, + 46y 4 b4 ap— | W | Td | < |T#|0#|0#
0 < 270 = 0 mmm&m& T Nmm&m& € Em:&m& +p— || | 0 | T#£ 0F£|0#
(0:59) hgp + Ubgqyd + b 1qh + gp— | 6d | ed | 1| 0 | T | ;9 |0#

0 < 270 = 0 mmm&mg + thgm& + Emﬁmqw +p— |t d) o | - 0#] 0

- Wb+ G + G + gp— 00/ 0] 0| -]0]0

% OLIjOW td|ed | d| y NIN b | 5
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Classification of Type (III) generalized Kasner space-

times with constant scalar curvature:

Here, ¢ = p1 + p2 + p3 and 1) = pt + ps + p3.

2

¢
Ifg“;é()andu:gp%then

4C2 "n__
— U= —Tu
¢+
( 1 —T<2Ent —1 —7‘C2—+277t

Ae V. %0 4+ Be V. % if 7 <0,
u(t) =< At + B if 7 =0,

7'42——'—27725 - T<2—+277t
4+ Be 4 if 7> 0,

\
with constants A and B such that u > 0.

G
If (=0and u=¢ % then

© > 0.
\

Since 17 > 0, the latter is equivalent to
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7\

where C' is a positive constant.

4.2. BTZ Black Holes

All the cases considered in [Hong S.-T., Choi J. and Park Y.-J.,
(2+1) BTZ Black hole and multiply warped product spacetimes,
Gen. Relativity Gravitation, 35, (2003), 2105-2116] i.e.,

ds? = N2dt? — N7 2dr? + r2d¢?

can be expressed as a (2+ 1) multiply generalized Robertson-Walker

space-time, 1.e.,
ds® = —dt* + bi(t)dz? + b3(t)d¢?

by considering the corresponding square lapse function N? where
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with

0 s

e The space-time is Einstein with Ricci curvature A if and only

if the square lapse function N? satisfies

A
NQ(T) = §T2 + C,

with a suitable constant c.

e The space-time has constant scalar curvature 7 = X if and only

if the square lapse function N? has the form
I A
N?(r) = —c 67“2 + ¢,

with suitable constants ¢; and cs.
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