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Wave Operators

Throughout let M denote a timeoriented Lorentzian manifold.
Let E → M be a vector bundle.
Denote the smooth sections in E by C∞(M,E).

Definition
A wave operator or normally hyperbolic operator is a linear
differential operator P : C∞(M,E) → C∞(M,E) of second
order which looks locally like

P = −
n∑

i ,j=1

g ij(x)
∂2

∂x i∂x j +

n∑

j=1

Aj(x)
∂

∂x j + B(x)
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Wave Operators; Examples

d‘Alembert operator (functions)

P = �

Klein-Gordon operator (functions)

P = � + m2or P = � + m2 + κ · scal

Wave operator in electro-dynamics (1-forms)

P = dδ + δd

Square of Dirac operator (spinors)

P = D2
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Cauchy Problem

Let M be globally hyperbolic and let S ⊂ M be a smooth
spacelike Cauchy hypersurface. Let ν be the future directed
timelike unit normal field along S.

Theorem

For each u0,u1 ∈ C∞

c (S,E) and for each f ∈ C∞

c (M,E) there
exists a unique u ∈ C∞(M,E) satisfying







Pu = f , on M
u|S = u0, along S
∇νu = u1, along S

Christian Bär Wave Equations and Quantization
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Cauchy Problem

Well-posedness

The solution u depends continuously on the data f , u0, and u1.

Finite propagation speed

Moreover,
supp(u) ⊂ JM

+ (K ) ∪ JM
−

(K )
where K =
supp(u0) ∪ supp(u1) ∪ supp(f ).
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Cauchy Problem; What Can Go Wrong
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Green’s Operators

Definition

A linear operator G : C∞

c (M,E) → C∞(M,E) is called a
Green’s operator for P if

P ◦ G = G ◦ P = idC∞
c (M,E)

Definition

A Green’s operator G is called advanced or retarded resp. if

supp(G(u)) ⊂ J+(supp(u)) or J−(supp(u))

resp. for any u ∈ C∞

c (M,E).
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Green’s Operators

Theorem

Let P be a wave operator over a globally hyperbolic manifold M.

Then there exist unique advanced and retarded Green’s
operators for P.
These Green’s operators are continuous.
The sequence of linear maps

0 → C∞

c (M,E)
P−→ C∞

c (M,E)
G+−G−−→ C∞

sc (M,E)
P−→ C∞

sc (M,E)

is exact.
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Fock Space

H complex Hilbert space,
⊙n H completion of

⊙n
alg H

(Bosonic or symmetric) Fock space F(H) is the completion of

Falg(H) :=

∞⊕

n=0

⊙n
H.

Fix v ∈ H. Define the creation operator

a∗(v)v1 ⊙ . . .⊙ vn := v ⊙ v1 ⊙ . . .⊙ vn

and the annihilation operator

a(v)(w0 ⊙ · · · ⊙ wn) :=

n∑

k=0

(v ,wk )w0 ⊙ · · · ⊙ ŵk ⊙ · · · ⊙ wn

Christian Bär Wave Equations and Quantization
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Canonical Commutator Relations

Canonical commutator relations:

[a(v),a(w)] = [a∗(v),a∗(w)] = 0,

[a(v),a∗(w)] = (v ,w) · id.

Definition

Segal operator:

θ(v) :=
1√
2

(a(v) + a∗(v))

The Segal operator on Falg(H) is essentially self-adjoint in F(H).

[θ(v), θ(w)] = i · Im(v ,w)
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Geometric Setup

Globally hyperbolic Lorentzian manifold M

Real vector bundle E → M with non-degenerate metric

Formally selfadjoint wave operator P on E

Definition

A twist structure of spin k/2 on E is a smooth section
Q ∈ C∞(M,Hom(

⊙k TM,End(E))) such that:

〈Q(X1 ⊙ · · · ⊙ Xk )e, f 〉 = 〈e,Q(X1 ⊙ · · · ⊙ Xk )f 〉
If X is future directed timelike, then the bilinear form 〈·, ·〉X

defined by
〈f ,g〉X := 〈QX f ,g〉

is positive definite where QX = Q(X ⊙ · · · ⊙ X ).
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Examples

Example

If the metric on E is positive definite, one can choose k = 0 and
Q = id

Example

For spinor bundle E let k = 1 and Q(X ) be Clifford
multiplication by X

Example

For E = ΛqT ∗M let k = 2 and

Q(X ⊙ Y )α := X ♭ ∧ ιYα+ Y ♭ ∧ ιXα− 〈X ,Y 〉 · α
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Geometric Setup

Globally hyperbolic Lorentzian manifold M

Real vector bundle E → M with non-degenerate metric

Formally selfadjoint wave operator P on E

Twist structure Q

Cauchy hypersurface S ⊂ M

We get real Hilbert space L2(S,E∗) where

(u, v)S :=

∫

S
〈u, v〉ν dA =

∫

S
〈Q∗

νu, v〉dA
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Quantum Field

Apply Fock space construction to HS := L2(S,E∗) ⊗R C

Get Segal field θ

Definition

Quantum field: For f ∈ C∞

c (S,E∗) put

ΦS(f ) := θ(i(G∗

+ − G∗

−
)f |S − (Q∗

ν)
−1∇ν((G∗

+ − G∗

−
)f )

︸ ︷︷ ︸

∈HS

).
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Haag-Kastler Axioms

Theorem

C∞

c (M,E∗) → F(HS), f 7→ ΦS(f )ω, is continuous for any
ω ∈ Falg(HS)

PΦS = 0 in the distributional sense

[ΦS(f ),ΦS(g)] = 0 if the supports of f and g are causally
independent.

The linear span of the vectors ΦS(f1) · · ·ΦS(fn)Ω is dense
in F(HS) where Ω = 1 ∈ ⊙0 HS = C is the vacuum vector.
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Problems

Problems:

Construction depends on choice of Cauchy hypersurface

Microlocal spectrum condition is violated

Algebraic quantum field theory:

Forget Fock space (and particles)

Regard observables (operators) as primary objects

To each (reasonable) spacetime region associate an
algebra of observables

Christian Bär Wave Equations and Quantization
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CCR-algebras

Let (V , ω) be a symplectic vector space.

Definition

A CCR-algebra of (V , ω) consists of a C∗-algebra A with unit
and a map W : V → A such that for all φ,ψ ∈ V we have

W (0) = 1

W (−φ) = W (φ)∗

W (φ) · W (ψ) = e−iω(φ,ψ)/2 W (φ+ ψ)

A is generated by the W (φ)

Theorem

To each symplectic vector space there exists a CCR-algebra,
unique up to ∗-isomorphism.
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Construction of the Symplectic Vector Space

Let M be globally hyperbolic, let P a formally self-adjoint wave
operator acting on sections in E .
Let G+ and G− be the Green’s operators of P.

ω̃(φ,ψ) :=

∫

M
〈(G+ − G−)φ,ψ〉dVol

defines a degenerate symplectic form on C∞

c (M,E).
It induces a (nondegenerate) symplectic form ω on

V (M,E ,P) := C∞

c (M,E)/P(C∞

c (M,E))

= C∞

c (M,E)/ker(G+ − G−)
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Quantization Functor

AM := CCR(M,E ,P) := CCR(V (M,E ,P), ω) defines a functor

globally hyperbolic
manifolds equipped

with a formally
self-adjoint wave operator

=⇒ C∗-algebras
with unit
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Haag-Kastler Axioms, II

Theorem

If O1 ⊂ O2, then AO1
⊂ AO2

for all O1,O2 ∈ I.

AM = ∪
O∈I

O 6=∅, O 6=M

AO.

AM is simple.

The AO ’s have a common unit 1.

For all O1,O2 ∈ I with J(O1) ∩ O2 = ∅ the subalgebras AO1

and AO2
of AM commute: [AO1

,AO2
] = {0}.

Time-slice axiom. Let O1 ⊂ O2 be nonempty elements of I
admitting a common Cauchy hypersurface. Then
AO1

= AO2
.

Let O1,O2 ∈ I and let the Cauchy development D(O2) be
relatively compact in M. If O1 ⊂ D(O2), then AO1

⊂ AO2
.
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Comparison of the Two Approaches

Given a Cauchy hypersurface S ⊂ M, a twist structure, and the
corresponding quantum field ΦS

WS(f ) := exp(iΦS(f ))

defines a CCR-representation for V (M,E ,P).
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Problems

Construct physically satisfactory representations
(Hadamard states)

Construct n-point functions (Singularities, renormalization)

Construct nonlinear fields (Energy-momentum tensor)
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Applications in Physics

Hawking radiation of black holes

Unruh effect

Brunetti, Dimock, Fewster, Fredenhagen, Hollands,
Radzikowski, Verch, Wald, ...
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