Topological censorship for spacetimes with timelike boundary

Didier A. Solis

UADY

Santiago de Compostela Frebruary, 2007 **Theorem.** (Gannon'75, Lee'76) Let (M,g) be a globally hyperbolic and asymptotically flat spacetime that satisfies the null energy condition. If M admits a Cauchy surface S with $\pi(S) \neq 0$ then M is null geodesically incomplete.

Principle of Topological Censorship (PTC) (Friedman, Schleich, Witt '93):

Let (\tilde{M}, \tilde{g}) be a spacetime admitting a conformal completion (M, g) with null \mathcal{J} . Then every causal curve on M whose initial and final endpoints lie on \mathcal{J} is fixed endpoint homotopic to a curve on \mathcal{J} .

In (Galloway, '96) a quasi-local version of PTC was established. In this formulation, we have a globally hyperbolic spacetime with timelike boundary $\mathcal{I} := \partial M$ such that $\mathcal{I}_{\alpha} \approx \mathbb{R} \times S_{\alpha}$ where

(a) $S_{\alpha} \approx S^{n-2}$ (b) S_{α} is null convex

Examples:

Our goal: To prove PTC in the timelike setting under weaker assumptions.

- S_{α} is compact.
- S_{α} is <u>weakly</u> null convex.

Let $S \subset \partial M$ be spacelike hypersurface of ∂M .

For i = 1, 2 define the *null Weingarten map of* S relative to K_i by

 $b_i \colon T_p S \to T_p S, \qquad b_i(X) \coloneqq \operatorname{tan} \nabla_X K_i,$ the corresponding *null second fundamental forms* $B_i \colon T_p S \times T_p S \to \mathbb{R}, \qquad B_i(X,Y) = g(b_i(X),Y)$

and the *null expansions of* S

$$\theta_i = \operatorname{Tr}(b_i).$$

• S is **null convex** if B_1 is negative definite and B_2 is positive definite.

• S is weakly null convex if $\theta_1 < 0$ and $\theta_2 \ge 0$.

Let (M, g) be a spacetime with timelike boundary, then the following holds:

1.- The relation I^+ is open in M.

2.- If $p \ll q$ and $q \leq r$ then $p \ll r$.

Further, if (M,g) is globally hyperbolic then

1.- $J^+(A)$ is closed for all compact $A \subset M$.

2.- Limit curve theory carries on without significant changes. **Proposition.** (Fastest null geodesics).

Let M be a globally hyperbolic spacetime with timelike boundary and assume

• $\partial M = \partial_1 \cup \partial_2$

• The Cauchy surfaces of ∂_i are compact and acausal in M.

• $J^+(S_1) \cap \partial_2 \neq \emptyset$.

Then there exists a geodesic $\eta \subset \partial I^+(S)$ from S to ∂_2 .

A Smooth null hypersurface is an embedded submanifold $S \subset M$ such that the pullback metric i^*g is degenerate.

 $\overline{X} = \overline{Y} \quad \Leftrightarrow \quad X_p - Y_p = \lambda K_p$ $h(\overline{X}, \overline{Y}) = g(X, Y)$ $b_K \colon T_p S/K \to T_p S/K, \qquad b_K(\overline{X}) = \overline{\nabla_X K}.$ $\theta_K = \mathsf{Tr}(b_K)$

Theorem. (*Maximum Principle for Smooth Null Hypersurfaces*).

Let S_1 and S_2 be smooth null hypersurfaces in a spacetime (M,g). Suppose that S_1 and S_2 meet at p and

1. S_2 lies to the future of S_1 near p.

2. The null mean curvature scalars θ_i satisfy $\theta_2 \leq 0 \leq \theta_1$.

Then S_1 and S_2 coincide near p and this common null hypersurface has null mean curvature $\theta = 0$.

Lemma. Let M be a globally hyperbolic spacetime with timelike boundary satisfying the null energy condition and ∂_{α} , ∂_{β} two different connected components of ∂M . Further, let $S_{\alpha} \subset$ ∂_{α} , $S_{\beta} \subset \partial_{\beta}$ be weakly null convex Cauchy surfaces with $J^+(S_{\alpha}) \cap S_{\beta} \neq \emptyset$. If $I^+(S_{\alpha}) \cap S_{\beta} = \emptyset$ then every future causal curve joining S_{α} and S_{β} must meet ∂M at a point other than its endpoints.

Proof:

Corollary. (Wormhole non-tranversability).

Let M be a globally hyperbolic spacetime with timelike boundary and assume

• $\partial M = \partial_1 \cup \partial_2$

• The Cauchy surfaces of ∂_i are compact, weakly null convex and acausal in M.

Then $J^+(\partial_1) \cap J^-(\partial_2) = \emptyset$.

Theorem. Let M be a spacetime with timelike boundary with $\mathcal{I} = \partial M$ connected and assume $\mathcal{D} := I^+(\mathcal{I}) \cap I^-(\mathcal{I})$ is globally hyperbolic. Further assume the Cauchy surfaces of \mathcal{I} are compact, weakly null convex and acausal in \mathcal{D} . Then the PTC holds on \mathcal{D} .

Proof:

