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■ Quick overview of Finsler metrics
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■ Quick overview of Finsler metrics

■ The Fermat metric associated to a standard stationary space-
time (which is a Finsler metric of Randers type)
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■ Quick overview of Finsler metrics

■ The Fermat metric associated to a standard stationary space-
time (which is a Finsler metric of Randers type)

■ Relations between causal properties of standard stationary
spacetimes and the Fermat metric
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■ Quick overview of Finsler metrics

■ The Fermat metric associated to a standard stationary space-
time (which is a Finsler metric of Randers type)

■ Relations between causal properties of standard stationary
spacetimes and the Fermat metric

■ Existence and multiplicities results for geodesics on standard
stationary spacetimes



Finsler metrics

Overview

Finsler metrics

Definition
Finsler geometry as
Riemannian
geometry

Finsler geometry vs
Riemannian
geometry

Randers metric

The Fermat metric

Global hyperbolicity
and completeness of
the Fermat metric

Completeness of the
Fermat metric and
Lorentzian geodesics

References

IV International Meeting on Lorentzian Geometry, Santiago de Compostela, 5 – 8 February ’07 slide 3 / 31



Definition

Overview

Finsler metrics

Definition
Finsler geometry as
Riemannian
geometry

Finsler geometry vs
Riemannian
geometry

Randers metric

The Fermat metric

Global hyperbolicity
and completeness of
the Fermat metric

Completeness of the
Fermat metric and
Lorentzian geodesics

References

IV International Meeting on Lorentzian Geometry, Santiago de Compostela, 5 – 8 February ’07 slide 4 / 31

Let M be a manifold. A Finsler metric on M is a function
F : TM → R such that:

■ F is C0 on TM and Ck, k ≥ 2, on TM \ 0

■ F (x, y) ≥ 0, and F vanishes only on the zero section

■ F (x, λy) = λF (x, y), for any λ ≥ 0.

■ with fiberwise strictly convex square, i. e. the tensor

gij(x, y) =
1

2

∂2(F 2)

∂yi∂yj
(x, y)

is positively defined for any (x, y) ∈ TM \ 0
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By homogeneity, F 2 is C1 on TM and it reduces to the square
of the norm of a Riemannian metric if and only if its second order
fibrative derivative is continuous up to the zero section, Warner
1965.
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By homogeneity, F 2 is C1 on TM and it reduces to the square
of the norm of a Riemannian metric if and only if its second order
fibrative derivative is continuous up to the zero section, Warner
1965.

Since F is only positive homogeneous of degree 1, we have that,
in general, F (x, v) 6= F (x,−v). If for all (x, v) ∈ TM F (x, v) =
F (x,−v), the Finsler metric F is said reversible otherwise it will
be called non-reversible.
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The length of a piecewise smooth curve γ : [a, b] ⊂ R → M with
respect to the Finsler structure F is defined by

L(γ) =

∫ b

a

F (γ(s), γ̇(s))ds.
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The length of a piecewise smooth curve γ : [a, b] ⊂ R → M with
respect to the Finsler structure F is defined by

L(γ) =

∫ b

a

F (γ(s), γ̇(s))ds.

The distance between two arbitrary points p, q ∈ M is given by

dist(p, q) = inf
γ∈C(p,q)

L(γ),

where C(p, q) is the set of all piecewise smooth curves γ : [a, b] →
R with γ(a) = p and γ(b) = q.
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exponential map
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Variational properties of geodesics:

■ they are the critical points of the energy functional

J(x) =
1

2

∫

F 2(x, ẋ)ds
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■ they are the critical points of the energy functional
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■ J(x) satisfies the Palais-Smale condition, under analogous as-
sumptions to those guaranteeing that the Riemannian energy
functional does:
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J(x) =
1

2

∫

F 2(x, ẋ)ds

■ J(x) satisfies the Palais-Smale condition, under analogous as-
sumptions to those guaranteeing that the Riemannian energy
functional does: some technical difficulties related to the lack
of regularity of F 2 on the zero section, but everything works
fine
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“Finsler geometry is just Riemannian geometry without the
quadratic restriction F 2(x, v) = g(x)[v, v]” , Chern 1996
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“Finsler geometry is just Riemannian geometry without the
quadratic restriction F 2(x, v) = g(x)[v, v]” , Chern 1996

That is fully true whenever F is reversible
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“Finsler geometry is just Riemannian geometry without the
quadratic restriction F 2(x, v) = g(x)[v, v]” , Chern 1996

That is fully true whenever F is reversible

On the other hand, if F is non-reversible . . .
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the distance is not symmetric
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■ there are Finsler metrics
on S2 which have only
two prime distinct closed
geodesics (actually they
are two closed geodesics
with different Finslerian
length, the same images
but different orientations,
Katok 1973)

the distance is not symmetric
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■ there are Finsler metrics
on S2 which have only
two prime distinct closed
geodesics (actually they
are two closed geodesics
with different Finslerian
length, the same images
but different orientations,
Katok 1973)

■ every Riemannian met-
ric on S2 has infinitely
many prime distinct closed
geodesics, Bangert 1993
and Franks 1992

the distance is not symmetric
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■ there are Finsler metrics
on S2 which have only
two prime distinct closed
geodesics (actually they
are two closed geodesics
with different Finslerian
length, the same images
but different orientations,
Katok 1973)

■ every Riemannian met-
ric on S2 has infinitely
many prime distinct closed
geodesics, Bangert 1993
and Franks 1992

For non-reversible Finsler manifold one has to distinguish between
two notions of completeness since

the distance is not symmetric
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forward

backward
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forward

B+(x0, r) = {x ∈ M | dist(x0, x) < r}

backward

B−(x0, r) = {x ∈ M | dist(x, x0) < r}
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forward

B+(x0, r) = {x ∈ M | dist(x0, x) < r}
The topologies in-
duced by the for-
ward and the back-
ward balls coincide
with the underlay-
ing manifold topol-
ogybackward

B−(x0, r) = {x ∈ M | dist(x, x0) < r}
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forward

{xn} is a forward Cauchy sequence iff for every ε > 0 there exist
i ∈ N such that for any i ≤ m ≤ n : dist(xm, xn) < ε

backward

{xn} is a backward Cauchy sequence iff for every ε > 0 there exist
i ∈ N such that for any i ≤ m ≤ n : dist(xn, xm) < ε
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forward

A geodesic γ : [a, b) → M is forward complete if it can be ex-
tended, as a geodesic, to the interval [a, +∞)

backward

A geodesic γ : (b, a] → M is backward complete if it can be ex-
tended, as a geodesic, to the interval (−∞, a]
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The two notions of completeness are not equivalent
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The two notions of completeness are not equivalent

An example is provided by a Randers metric.
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A Randers metric is a Finsler metric of the type

F (x, v) =
√

h(x)[v, v] + ω(x)[v]

where h is a Riemannian metric on M and ω is a 1-form on M
such that

‖ω‖x = sup
v∈TxM\0

|ω(x)[v]|
√

h(x)[v, v]
< 1.
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■ L = M × R, M is endowed with a Riemannian metric g0

■ δ is a vector field on M

■ β is a positive function on M

■ the Lorentzian metric l on L is given by

l(x, t)[(y, τ), (y, τ)] = g0(x)[y, y]+2g0(x)[δ(x), y]τ−β(x)τ2,

for any (x, t) ∈ M × R and (y, τ) ∈ TxM × R

■ it is an oriented space-time with the timelike Killing vector
field ∂t
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Among all lightlike curves connecting some event p with some timelike curve γ,
lightlike geodesics are, up to reparameterizations, critical points of the arrival
time, that is, the parameter of the timelike curve in the point where the lightlike
curve meets it, Kovner 1990

.
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For a standard stationary lorentzian manifold, Perlick 1990:
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Among all lightlike curves connecting some event p with some timelike curve γ,
lightlike geodesics are, up to reparameterizations, critical points of the arrival
time, that is, the parameter of the timelike curve in the point where the lightlike
curve meets it, Kovner 1990

.
For a standard stationary lorentzian manifold, Perlick 1990: lightlike curves
(x(s), t(s)) has to satisfy:

g0(x)[ẋ, ẋ] + 2g0(x)[δ(x), ẋ]ṫ − β(x)ṫ2 = 0,
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Among all lightlike curves connecting some event p with some timelike curve γ,
lightlike geodesics are, up to reparameterizations, critical points of the arrival
time, that is, the parameter of the timelike curve in the point where the lightlike
curve meets it, Kovner 1990

.
For a standard stationary lorentzian manifold, Perlick 1990: lightlike curves
(x(s), t(s)) has to satisfy:

g0(x)[ẋ, ẋ] + 2g0(x)[δ(x), ẋ]ṫ − β(x)ṫ2 = 0,

solving with respect to ṫ and integrating, we get:

t(s) = ̺0+

∫ s

0

(

1

β(x)
g0(x)[δ(x), ẋ] +

1

β(x)

√

g0(x)[δ(x), ẋ]2 + β(x)g0(x)[ẋ, ẋ]

)

dv

(1)
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Thus lightlike geodesics (x̃(s), t̃(s)) connecting the event (x0, ̺0) ∈ L with
the timelike curve ̺ ∈ R 7→ (x1, ̺) ∈ L are reparameterizations of the curves
(x(s), t(s)) such that x(s) is a critical point of the functional

I(x) = ̺0 + L(x), (2)

where
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Thus lightlike geodesics (x̃(s), t̃(s)) connecting the event (x0, ̺0) ∈ L with
the timelike curve ̺ ∈ R 7→ (x1, ̺) ∈ L are reparameterizations of the curves
(x(s), t(s)) such that x(s) is a critical point of the functional

I(x) = ̺0 + L(x), (2)

where

L(x) =

∫ 1

0

(

1

β(x)
g0(x)[δ(x), ẋ] +

1

β(x)

√

g0(x)[δ(x), ẋ]2 + β(x)g0(x)[ẋ, ẋ]

)

dv,

and t(s) is given by (1).
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■ Let p0 = (x0, t0) ∈ L
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■ Let p0 = (x0, t0) ∈ L

■ C+(p0, µ) =
⋃

s∈[0,µ) B̄+
s (x0) × {t0 + s}
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■ Let p0 = (x0, t0) ∈ L

■ C+(p0, µ) =
⋃

s∈[0,µ) B̄+
s (x0) × {t0 + s}

■ C−(p0, µ) =
⋃

s∈[0,µ) B̄−
s (x0) × {t0 − s},
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■ Let p0 = (x0, t0) ∈ L

■ C+(p0, µ) =
⋃

s∈[0,µ) B̄+
s (x0) × {t0 + s}

■ C−(p0, µ) =
⋃

s∈[0,µ) B̄−
s (x0) × {t0 − s},

Theorem 1 Let (L, l) be a standard stationary Lorentzian man-
ifold and let t̄ ∈ R. Then the following properties are equivalent:
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■ Let p0 = (x0, t0) ∈ L

■ C+(p0, µ) =
⋃

s∈[0,µ) B̄+
s (x0) × {t0 + s}

■ C−(p0, µ) =
⋃

s∈[0,µ) B̄−
s (x0) × {t0 − s},

Theorem 1 Let (L, l) be a standard stationary Lorentzian man-
ifold and let t̄ ∈ R. Then the following properties are equivalent:

(a) (L, l) is globally hyperbolic with Cauchy surface S = M×{t̄},
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■ Let p0 = (x0, t0) ∈ L

■ C+(p0, µ) =
⋃

s∈[0,µ) B̄+
s (x0) × {t0 + s}

■ C−(p0, µ) =
⋃

s∈[0,µ) B̄−
s (x0) × {t0 − s},

Theorem 1 Let (L, l) be a standard stationary Lorentzian man-
ifold and let t̄ ∈ R. Then the following properties are equivalent:

(a) (L, l) is globally hyperbolic with Cauchy surface S = M×{t̄},
(b) the Fermat metric on M is forward complete,
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■ Let p0 = (x0, t0) ∈ L

■ C+(p0, µ) =
⋃

s∈[0,µ) B̄+
s (x0) × {t0 + s}

■ C−(p0, µ) =
⋃

s∈[0,µ) B̄−
s (x0) × {t0 − s},

Theorem 1 Let (L, l) be a standard stationary Lorentzian man-
ifold and let t̄ ∈ R. Then the following properties are equivalent:

(a) (L, l) is globally hyperbolic with Cauchy surface S = M×{t̄},
(b) the Fermat metric on M is forward complete,

(c) J+(p0) = C+(p0, +∞) and J−(p0) = C−(p0, +∞) for every
p0 = (x0, t0) ∈ L, and the balls B̄+

s (x0) are compact.
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In the statement of Theorem 1 forward can be replaced by back-
ward and the compactness of the forward balls by that of the
backward ones.
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In the statement of Theorem 1 forward can be replaced by back-
ward and the compactness of the forward balls by that of the
backward ones.

Therefore for the Fermat metric any of the two completeness con-
ditions implies the other.
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We observe that any Randers metric is forward and backward if
the Riemannian metric (M, h) is complete and

‖ω‖ : = sup
x∈M

‖ω‖x < 1,
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We observe that any Randers metric is forward and backward if
the Riemannian metric (M, h) is complete and

‖ω‖ : = sup
x∈M

‖ω‖x < 1,

For the Fermat metric, using the Cauchy-Schwarz inequality,
g0(y, y) ≥ g0(δ, y)2/|δ|20, we obtain that ‖ω‖ < 1 if

sup
x∈M

|δ(x)|0
√

|δ(x)|20 + β(x)
< 1.
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We observe that any Randers metric is forward and backward if
the Riemannian metric (M, h) is complete and

‖ω‖ : = sup
x∈M

‖ω‖x < 1,

For the Fermat metric, using the Cauchy-Schwarz inequality,
g0(y, y) ≥ g0(δ, y)2/|δ|20, we obtain that ‖ω‖ < 1 if

sup
x∈M

|δ(x)|0
√

|δ(x)|20 + β(x)
< 1.

Therefore the Fermat metric is complete and by Theorem 1 the
spacetime is globally hyperbolic if

β(x)−1g0 is complete and inf
x∈M

β(x)

|δ(x)|20
> 0
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A result by Candela, Flores, and Sánchez 2006 can be restated as follows:
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A result by Candela, Flores, and Sánchez 2006 can be restated as follows:

a standard stationary Lorentzian manifold, such that the Riemannian metric
(M, g0) is complete and the Fermat metric (M, F ) is forward or backward
complete, is geodesically connected.
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A result by Candela, Flores, and Sánchez 2006 can be restated as follows:

a standard stationary Lorentzian manifold, such that the Riemannian metric
(M, g0) is complete and the Fermat metric (M, F ) is forward or backward
complete, is geodesically connected.

In a recent paper Bartolo, Candela, and Flores 2006 show that the assumptions

|δ(x)|20 ≤ c1dist20(x, x0) + c2 β(x) ≤ c3dist20(x, x0) + c4

are optimal for the applications of variational methods on the problem of
geodesic connectedness of a standard stationary Lorentzian manifold. They
provide a fine counterexample where |δ|2 has superquadratic growth. The Fer-
mat metric in their example is not forward complete.
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In a conformal standard stationary Lorentzian manifold, such that (M, F ) is
forward or backward complete, and M is non-contractible, there exist infinitely
many lightlike geodesics γn = (xn, tn) joining the point (x̄, ̺0) with the curve
υ(̺) = (x̃, ̺) and having arrival time (see (2)) I(xn) → +∞, as n → ∞.
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In a conformal standard stationary Lorentzian manifold, such that (M, F ) is
forward or backward complete, and M is non-contractible, there exist infinitely
many lightlike geodesics γn = (xn, tn) joining the point (x̄, ̺0) with the curve
υ(̺) = (x̃, ̺) and having arrival time (see (2)) I(xn) → +∞, as n → ∞.

Piccione 1997 introduced the following notion of compactness on the set of
lightlike curves between a point and an integral line of the field ∂t:
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In a conformal standard stationary Lorentzian manifold, such that (M, F ) is
forward or backward complete, and M is non-contractible, there exist infinitely
many lightlike geodesics γn = (xn, tn) joining the point (x̄, ̺0) with the curve
υ(̺) = (x̃, ̺) and having arrival time (see (2)) I(xn) → +∞, as n → ∞.

Piccione 1997 introduced the following notion of compactness on the set of
lightlike curves between a point and an integral line of the field ∂t:

let C ∈ R be a positive constant and let Lp,υ ⊂ H1([0, 1], M) × H1([0, 1], R)
be the manifold of curves such that l[ż, ż] = 0 a. e., z is future pointing
a. e. on [0, 1], z(0) = p and z(1) ∈ υ(R). Lp,υ is said C-precompact if
every sequence {zk = (xk, tk)}k∈N ⊂ Lp,υ such that I(xk) ≤ C admits a
subsequence converging uniformly, up to reparameterization, in L.
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Assuming C-precompactness, for every C, of the space of lightlike
curves connecting an event p to the world-line υ and assuming that
M is non-contractible, Piccione proved existence of infinitely many
lightlike geodesics connecting p to υ.
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Assuming C-precompactness, for every C, of the space of lightlike
curves connecting an event p to the world-line υ and assuming that
M is non-contractible, Piccione proved existence of infinitely many
lightlike geodesics connecting p to υ.

Theorem 2 Let (L, l) be a standard stationary Lorentzian man-
ifold, p ∈ L and υ = υ(̺) an integral line of the vector field ∂t.
The condition

■ Lp,υ is C-precompact for every C > 0 and for every p and υ
in M

is equivalent to forward or backward completeness of the Fermat
metric.
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The Fermat metric on a one dimensional higher Riemannian manifold can be
used to prove existence, multiplicity and finitness results for timelike geodesics
with fixed energy in a Lorentzian standard stationary manifold.
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The Fermat metric on a one dimensional higher Riemannian manifold can be
used to prove existence, multiplicity and finitness results for timelike geodesics
with fixed energy in a Lorentzian standard stationary manifold.

We seek for timelike geodesics γ parameterized on a given interval [a, b], con-
necting a point (x0, ̺0) ∈ L with a timelike curve ̺ ∈ R 7→ (x1, ̺) ⊂ L and
having a priori fixed energy l(γ(s))[γ̇(s), γ̇(s)] = −E < 0, for all s ∈ [a, b].
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The Fermat metric on a one dimensional higher Riemannian manifold can be
used to prove existence, multiplicity and finitness results for timelike geodesics
with fixed energy in a Lorentzian standard stationary manifold.

We seek for timelike geodesics γ parameterized on a given interval [a, b], con-
necting a point (x0, ̺0) ∈ L with a timelike curve ̺ ∈ R 7→ (x1, ̺) ⊂ L and
having a priori fixed energy l(γ(s))[γ̇(s), γ̇(s)] = −E < 0, for all s ∈ [a, b].

We extend the Riemannian manifold M to the manifold N = M ×R endowed
with the metric n = g0 + du2 where u is the natural coordinate on R.
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The Fermat metric on a one dimensional higher Riemannian manifold can be
used to prove existence, multiplicity and finitness results for timelike geodesics
with fixed energy in a Lorentzian standard stationary manifold.

We seek for timelike geodesics γ parameterized on a given interval [a, b], con-
necting a point (x0, ̺0) ∈ L with a timelike curve ̺ ∈ R 7→ (x1, ̺) ⊂ L and
having a priori fixed energy l(γ(s))[γ̇(s), γ̇(s)] = −E < 0, for all s ∈ [a, b].

We extend the Riemannian manifold M to the manifold N = M ×R endowed
with the metric n = g0 + du2 where u is the natural coordinate on R.

We associate to the manifold N a one-dimensional higher Lorentzian manifold
(N̄ , n̄), with the metric n̄ defined as

n̄(x, u, t)[(y, v, τ), (y, v, τ)] = g0(x)[y, y] + v2 + 2g0(x)[δ(x), y]τ − β(x)τ2.
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Lightlike geodesics for the metric n̄ satisfy the following equation

g0[ẋ, ẋ] + 2g0[δ, ẋ]ṫ − βṫ2 = −u̇2 = const.
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Lightlike geodesics for the metric n̄ satisfy the following equation

g0[ẋ, ẋ] + 2g0[δ, ẋ]ṫ − βṫ2 = −u̇2 = const.

Thus in order to find timelike geodesics γ = (x, t) in (L, l) with fixed energy
−E < 0 it is enough to find lightlike geodesics in (N̄ , n̄) whose u component
has derivative equal to

√
E.
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Lightlike geodesics for the metric n̄ satisfy the following equation

g0[ẋ, ẋ] + 2g0[δ, ẋ]ṫ − βṫ2 = −u̇2 = const.

Thus in order to find timelike geodesics γ = (x, t) in (L, l) with fixed energy
−E < 0 it is enough to find lightlike geodesics in (N̄ , n̄) whose u component
has derivative equal to

√
E.

The Fermat metric associated to the manifold (N̄ , n̄) is given by

F ((x, u), (y, v)) =

√

1

β(x)
(g0[y, y] + v2) +

1

β(x)2
g0[δ(x), y]2+

1

β(x)
g0[δ(x), y],

for all ((x, u), (y, v)) ∈ TN .
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The following improves some results of
Bartolo, Germinario, and Sánchez 2002 and Germinario 2006

Theorem 3 Let (L, l) be a standard stationary Lorentzian man-
ifold, such that (M, F ) is forward or backward complete, and
M is non-contractible, then there exist infinitely many timelike
geodesics γn = (xn, tn) connecting the point (x0, ̺0) ∈ L with
the timelike curve υ(̺) = (x1, ̺), parameterized on the interval
[a, b], having fixed energy −E and diverging arrival time.
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