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HOMOGENEOUS SPACES

A pseudo-Riemannian (p.R.) manifold (M, g)

is homogeneous if for any points p, q ∈ M

there is an isometry φ such that φ(p) = q.

Pseudo-Riemannian homogeneous spaces

are known as one of the most interesting

research fields in p.R. geometry.

Recently, many authors investigated the

problem of extending several results con-

cerning homogeneous Riemannian manifolds,

to p.R. geometry (in particular, to Lorentzian

geometry).



HOMOGENEOUS STRUCTURES

Gadea and Oubiña introduced the notion

of homogeneous pseudo-Riemannian struc-

ture, in order to obtain a characterization

of reductive homogeneous p.R. manifolds,

similar to the one given in the Riemannian

case by Ambrose and Singer.

Definition: A homogeneous p.R. structure

on (M, g) is a tensor field T of type (1,2)

on M , such that the connection ∇̃ = ∇− T

satisfies

∇̃g = 0, ∇̃R = 0, ∇̃T = 0.

Theorem [Gadea-Oubiña] Let (M, g)

be a connected, simply connected and com-

plete p.R. manifold. (Mg) admits a p.R.

structure if and only if it is a reductive

homogeneous space.



Proof. Let (M = G/H, g) be a homogeneous re-
ductive p.R. manifold, G and H being a group of
isometries acting on (M, g) and the isotropy group
at an arbitrary point p ∈ M , respectively.
Let α belong to the Lie algebra g of G and α∗ be the
vector field on M generated by the one-parameter
group of isometries {exp(tα) : t ∈ IR}.
The Lie algebra of H is h = {α ∈ g : α∗p = 0}.

The canonical connection ∇̃ associated to the reduc-
tive decomposition g = h⊕m, is determined by

(∇̃α∗β∗)p = [α∗, β∗]p = −[α, β]∗p ∀α, β ∈ g.

Then, T = ∇− ∇̃ is a homogeneous p.R. structure.

Conversely: ∃ a p.R. homogeneous structure T on
(M, g)
⇒ ∃ a connection ∇̃ = ∇−T on M , which is complete
and ensures the existence, given two points p, q ∈ M ,
of a global isometry mapping p to q.
Then, a group G of isometries acts transitively on
M , M = G/H is reductive, and ∇̃ is the canonical
connection associated to this reductive decomposi-
tion.

REMARKS: a) a Riemannian homogeneous space is
necessarily reductive, a p.R. one needs not to be
reductive.
b) two homogeneous structures T1 and T2 on a p.R.
homogeneous manifold (M, g) can give rise either to
the same Lie algebra g with different decompositions,
or to non-isomorphic Lie algebras.



Theorem [Sekigawa] A connected, simply

connected and complete homogeneous Rie-

mannian 3-manifold is either symmetric or it

is a Lie group equipped with a left-invariant

Riemannian metric.

KEY POINT: to show that (unless M =

G/H is symmetric), in all cases determined

by the different possibilities for the Ricci

eigenvalues, there exists a homogeneous

structure T such that Tα∗β∗ = ∇α∗β∗ for all

α, β ∈ g.

⇒ h = 0

⇒ M = G is a Lie group.

Together with the classification of three-

dimensional Riemannian Lie groups [Milnor],

this result permits to determine all three-

dimensional homogeneous Riemannian man-

ifolds.



LORENTZIAN VERSION

Theorem [C] A connected, simply connected,

complete homogeneous Lorentzian 3-manifold

(M, g) is either symmetric, or isometric to a

three-dimensional Lie group equipped with

a left-invariant Lorentzian metric.

KEY POINT: to prove the existence (unless

M = G/H is symmetric) of a p.R. homoge-

neous structure T such that Tα∗β∗ = ∇α∗β∗
for all α, β ∈ g.

⇒ h = 0

⇒ M = G is a Lie group.

ESSENTIAL DIFFERENCE:

(M, g) Riemannian ⇒ the Ricci operator Q

is diagonal.

(M, g) Lorentz ⇒ Q can take four different

standard forms, called Segre types.



Segre type {11,1} : Q =




a 0 0
0 b 0
0 0 c




Segre type {1zz̄} : Q =




a 0 0
0 b c
0 −c b




Segre type {21} : Q =




a 0 0
0 b ε
0 −ε b− 2ε




Segre type {3} : Q =




b a −a
a b 0
a 0 b


 ,

with respect to a suitable pseudo-orthonormal

frame {e1, e2, e3}, with e3 timelike.



CLASSIFICATION RESULT:

Theorem [C] If (M, g) is a nonsymmet-

ric connected, simply connected, complete

homogeneous Lorentzian 3-manifold, then

M = G is a Lie group and g is left-invariant.

Precisely:

a) If G is unimodular, then its Lie algebra is

one of the following:

[e1, e2] = αe1 − βe3,

(g1) : [e1, e3] = −αe1 − βe2,

[e2, e3] = βe1 + αe2 + αe3, α 6= 0.

G = O(1,2) or SL(2, IR) if β 6= 0,

G = E(1,1) if β = 0.

[e1, e2] = γe2 − βe3,

(g2) : [e1, e3] = −βe2 + γe3, γ 6= 0,

[e2, e3] = αe1.

G = O(1,2) or SL(2, IR) if α 6= 0,

G = E(1,1) if α = 0.



[e1, e2] = −γe3,

(g3) : [e1, e3] = −βe2,

[e2, e3] = αe1.

Lie groups admitting a Lie algebra g3:

G α β γ
O(1,2) or SL(2, IR) + + +
O(1,2) or SL(2, IR) + − −

SO(3) or SU(2) + + −
E(2) + + 0
E(2) + 0 −

E(1,1) + − 0
E(1,1) + 0 +

H3 + 0 0
H3 0 0 −

IR⊕ IR⊕ IR 0 0 0

[e1, e2] = −e2 + (2ε− β)e3, η = ±1,

(g4) : [e1, e3] = −βe2 + e3,

[e2, e3] = αe1.

Lie groups admitting a Lie algebra g4:

G α β
O(1,2) or SL(2, IR) 6= 0 6= η

E(1,1) 0 6= η
E(1,1) < 0 η
E(2) > 0 η
H3 0 η



b) If G is non-unimodular, then its Lie alge-

bra is one of the following:

[e1, e2] = 0,

(g5) : [e1, e3] = αe1 + βe2,

[e2, e3] = γe1 + δe2,

with α + δ 6= 0, αγ + βδ = 0.

[e1, e2] = αe2 + βe3,

(g6) : [e1, e3] = γe2 + δe3,

[e2, e3] = 0.

with α + δ 6= 0, αγ − βδ = 0.

[e1, e2] = −αe1 − βe2 − βe3,

(g7) : [e1, e3] = αe1 + βe2 + βe3,

[e2, e3] = γe1 + δe2 + δe3,

with α + δ 6= 0, αγ = 0.

REMARK: Classification above uses the pre-

vious works by Cordero-Parker and Rahmani

on three-dimensional Lorentz Lie groups.



HOMOGENEOUS GEODESICS:

(M = K/H, g) p.R. reductive homogeneous

space, k= m⊕ h a reductive split.

A geodesic γ through o ∈ M = K/H is called

homogeneous (h.g.) if it is the orbit of a

one-parameter subgroup.

In the Riemannian case, this is equivalent

to writing γ in the form

γ(t) = exp(tZ)(o), t ∈ IR,

where Z is a nonzero vector of k. In the

pseudo-Riemannian case, if γ̇(t) is a null

vector, one needs to change its parametriza-

tion in order to write γ in the form exp(sZ)(o).

Z is called a geodesic vector (g.v.).



Geometric problem: ←→ algebraic problem:

to find ALL h.g. to find ALL g.v.

Proposition ([Philip],[Dusek-Kowalski]): X ∈ k is
a g.v. if and only if

< [X, Y ]m, Xm >= k < Xm, Y >,

for all Y ∈ m and some k ∈ IR.

Xm either spacelike or timelike ⇒ k = 0

Xm null vector ⇒ k may be any real constant.

PHYSICAL RELEVANCE: homogeneous Lorentzian
spaces for which all null geodesics are homogeneous,
are candidates for constructing solutions to the 11-
dimensional supergravity, which preserve more than
24 of the available 32 supersymmetries.
In fact, all Penrose limits, preserving the amount
of supersymmetry of such a solution, must preserve
homogeneity, which is the case for the Penrose limit
of a reductive homogeneous spacetime along a null
homogeneous geodesic [Meessen].



H.g. of ALL three-dimensional Lie groups (G, g),
equipped with a left-invariant Lorentzian metric.
[C-Marinosci]

({e1, e2, e3} pseudo-orthonormal frame field with e3

timelike.)

(g1) : x2(e2 ± e3)

(g2) :
x1e1,

x1

(
e1 ±

(√
(α−β)2+γ2

2|γ| − 1
2

)
e2 ±

(√
(α−β)2+γ2

2|γ| + 1
2

)
e3

)

(g3):

α 6= β 6= γ 6= α:
x1e1,
x2e2,
x3e3,

x1

(
e1 ±

√
γ−α
β−γ

e2 ±
√

β−α
β−γ

e3

)

(if α < γ < β or β < γ < α)
α = β 6= γ:
x3e3 + a3A3,
x1e1 + x2e2 + x3e3 + (γ − α)A3

α = γ 6= β:
x2e2 + a2A2,
x1e1 + x2e2 + x3e3 + (β − α)A2

β = γ 6= α:
x1e1 + a1A1,
x1e1 + x2e2 + x3e3 + (α− β)A1

α = β = γ:
all vectors



(g4):

α 6= β − ε:
x1e1,
x3(−εe2 + e3),
x3e3,

x3

(
±

√
(ε+1)(2β−2α−ε−1)

(β−α)2 e1 + (β−α−ε−1)
β−α

e2 + e3

)

(if 2(β − α) ≥ ε + 1),

x3

(
±

√
(ε−1)(2β−2α−ε+1)

(β−α)2 e1 + (α−β+ε−1)
β−α

e2 + e3

)

(if 2(β − α) ≥ ε + 1)
α = β − ε:
x3(−εe2 + e3),
x1e1 + x2e2 + x3e3 − (x2 + εx3)A

(g5) :

x1e1 + x2e2 with αx2
1 + (β + γ)x1x2 + δx2

2 = 0,

x3e3,

x1(δe1 − γe2) + x3e3 but α = β = 0,

x2(−βe1 + αe2) + x3e3 but γ = δ = 0,

x1e1 + x2e2 ±
√

x2
1 + x2

2 e3

with γx2
1 + (δ − α)x1x2 − βx2

2 = 0.

Some interesting behaviours:

For some particular cases of unimodular Lie algebra
(g3) and non-unimodular Lie algebras (g5) and (g6),
there are no null h.g.

In many cases, there are not three linearly indepen-
dent h.g. through a point.



NATURALLY REDUCTIVE
AND G.O. SPACES:

A reductive p.R. hom. space (M = K/H, g)
is a g.o. space if all its geodesics are ho-
mogeneous, it is naturally reductive if there
exists at least one reductive split k = m⊕ h

such that

< [X, Y ]m, Z > + < [X, Z]m, Y >= 0,

for all X, Y, Z ∈ m.

To decide whether (M, g) is or is not nat.
reductive, condition above must be checked
for all groups of isometries acting transi-
tively on M .

(M, g) nat. reductive
⇔ the Levi-Civita connection of (M, g) and
the canonical connection (of the reductive
split k = m⊕ h) have the same geodesics.

(M, g) nat. reductive ⇒ (M, g) is g.o.

:, but a 3-dim. Riemannian homogeneous
g.o. space is nat. reductive.



RESULTS FOR LORENTZ 3-SPACES

Theorem [C-Marinosci] Given a connected,
simply connected Lorentz 3-space (M, g):

(a) (M, g) is a g.o. space.
⇔ (b) (M, g) is naturally reductive.
⇔ (c) Either (M, g) is symmetric, or it is
a unimodular Lie group G, equipped with a
left-invariant Lorentz metric, having one of
the following Lie algebras:

• g = g3, with either α = β 6= γ, α = γ 6= β

or β = γ 6= α.

• g = g4, with α = β − ε.

Theorem [C-Marinosci] A connected, sim-
ply connected Lorentz 3-space (M, g) is a
non-symmetric nat. reductive space if and
only if it is isometric to either SL(2, IR),
SU(2) or H3, equipped with a suitable left-
invariant Lorentz metric.



LORENTZ SYMMETRIC 3-SPACES:

Symmetric Lorentz 3-spaces only can occur for some
of possible Segre types of the Ricci operator:

i): The Ricci operator of (M, g) is of Segre type
{11,1} with eigenvalues q1 = q2 = q3.

⇒ (M, g) has constant sectional curvature. If M is
connected and simply connected, then (M, g) is one
of the Lorentzian space forms S3

1, IR3
1 or IH3

1.

ii): The Ricci operator of (M, g) is of Segre type
{11,1} with eigenvalues q1 = q2 6= q3, and e3 is a
timelike parallel vector field

⇒ M is reducible as a direct product M2× IR, where
M2 is a Riemannian surface of constant curvature. If
M is connected and simply connected, (M, g) is then
isometric to either S2 × IR or IH2 × IR.

iii) The Ricci operator of (M, g) is of Segre type
{11,1} with eigenvalues q1 6= q2 = q3, and e1 is a
spacelike parallel vector field

⇒ M is reducible as a direct product IR×M2
1 , where

M2
1 is a Lorentzian surface of constant curvature.

When M is connected and simply connected, (M, g)
is isometric to either IR× S2

1 or IR× IH2
1.



iv): The Ricci operator of (M, g) is of Segre type
{21} with a − b = ε, and u = e2 − e3 is a parallel
null vector field. Three-dimensional Lorentz spaces
admitting a parallel null vector field were studied by
Chaichi,Garcia-Rio and Vazquez-Abal:

a locally symmetric Lorentz 3-space (M, g), having a
parallel null vector field u, admits local coordinates
(t, x, y) such that, with respect to {( ∂

∂t
), ( ∂

∂x
), ( ∂

∂y
)},

the Lorentz metric g and the Ricci operator are given
by

g =




0 0 1
0 ε 0
1 0 f


 , Q =




0 0 −1
ε
α

0 0 0

0 0 0


 , (1)

where ε = ±1, u = ∂
∂t

and

f(x, y) = x2α + xβ(y) + ξ(y), (2)

for any constant α ∈ IR and any functions β, ξ. It
is easy to build a (local) pseudo-orthonormal frame
field from {( ∂

∂t
), ( ∂

∂x
), ( ∂

∂y
)}, and to check that, when-

ever αf 6= 0 (that is, g is not flat), the Ricci operator
described by (2) is of Segre type {21}.
Theorem 1 [C] A connected, simply connected
Lorentz symmetric 3-space (M, g) is either

i) a Lorentzian space form S3
1, IR3

1 or IH3
1, or

ii) a direct product IR×S2
1, IR× IH2

1, S2× IR or IH2× IR,
or

iii) a space with a Lorentzian metric g described by
(1)-(2).



EINSTEIN-LIKE LORENTZ METRICS:

Class A: a p.R. manifold (M, g) belongs to

A if and only if its Ricci tensor % is cyclic-

parallel, that is,

(∇X%)(Y, Z)+(∇Y %)(Z, X)+(∇Z%)(X, Y ) = 0,

equivalently, if % is a Killing tensor, that is,

(∇X%)(X, X) = 0.

Class B: (M, g) belongs to B if and only if

% is a Codazzi tensor, that is,

(∇X%)(Y, Z) = (∇Y %)(X, Z).

% is parallel ⇔ (M, g) belongs to A ∩ B.



Theorem [Abbena-Garbiero-Vanhecke]:

a connected, simply connnected homoge-

neous Riemannian 3-space belongs to class

A if and only if it is naturally reductive.

Theorem [C]: Let (M, g) be a connected,

simply connected Lorentz 3-space. (M, g)

belongs to class A if and only if one of the

following cases occurs:

a) (M, g) is naturally reductive;

b) M = G, g = g5 and either α = β = 0 6= δ,

with γ 6= 0, or γ = δ = 0 6= α, with β 6= 0;

c) M = G, g = g6 and either α = β = 0 6= δ,

with γ 6= 0 and γ 6= εδ, or γ = δ = 0 6= α,

with β 6= 0 and β 6= εα;

d) M = G, g = g7 and α = β = 0 6= δ, with

γ 6= 0.



Theorem [Abbena-Garbiero-Vanhecke]:

a connected, simply connnected homoge-

neous Riemannian 3-space belongs to class

B if and only if it is symmetric.

Theorem [C] Let (M, g) be a connected,

simply connected Lorentz 3-space. (M, g)

belongs to class B if and only if one of the

following cases occurs:

a) (G, g) is symmetric;

b) M = G, g = g1 with β = 0. In this case,

G = E(1,1);

c) M = G, g = g2 with α = −2β, γ = ±√3β

and β 6= 0. In this case, G = O(1,2) or

SL(2, IR);

d) M = G, g = g7 and γ = 0 6= αδ(α± δ).



CONFORMALLY FLAT LORENTZ
METRICS:

A homogeneous p.R. manifold (M, g) has
constant scalar curvature.
If dimM = 3, then (M, g) is conformally flat
if and only if it belongs to class B. In par-
ticular:

Theorem [C] A homogeneous Lorentz 3-
space (M, g) is conformally flat if and only
if one of the following cases occurs:

a) (M, g) is symmetric;

b) M = G and either
g = g1 with β = 0, or
g = g2 with α = −2β, γ = ±√3β, β 6= 0, or
g = g7 and γ = 0 6= αδ(α± δ).

(M, g) Riemannian conf. flat hom. space
⇒ (M, g) is symmetric.
So, conformal flatness is a weaker assump-
tion in Lorentzian than in Riemannian
geometry.
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