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HOMOGENEOUS SPACES

A pseudo-Riemannian (p.R.) manifold (M, g)
is homogeneous if for any points p,q € M
there is an isometry ¢ such that ¢(p) = g.
Pseudo-Riemannian homogeneous spaces
are known as one of the most interesting
research fields in p.R. geometry.

Recently, many authors investigated the
problem of extending several results con-
cerning homogeneous Riemannian manifolds,
to p.R. geometry (in particular, to Lorentzian
geometry).



HOMOGENEOUS STRUCTURES

Gadea and Oubifa introduced the notion
of homogeneous pseudo-Riemannian struc-
ture, in order to obtain a characterization
of reductive homogeneous p.R. manifolds,
similar to the one given in the Riemannian
case by Ambrose and Singer.

Definition: A homogeneous p.R. structure
on (M,qg) is a tensor field T of type (1,2)
on M, such that the connection V =V — T
satisfies

Theorem [Gadea-Oubina]l Let (M,g)
be a connected, simply connected and com-
plete p.R. manifold. (Mg) admits a p.R.
structure if and only if it is a reductive
homogeneous space.



Proof. Let (M = G/H,g) be a homogeneous re-
ductive p.R. manifold, G and H being a group of
isometries acting on (M, g) and the isotropy group
at an arbitrary point p € M, respectively.

Let o belong to the Lie algebra g of G and a* be the
vector field on M generated by the one-parameter
group of isometries {exp(ta) : t € R}.

The Lie algebra of H is h = {a € g: aj = 0}.

The canonical connection V associated to the reduc-
tive decomposition g = h @ m, is determined by

(ﬁa*ﬁ*)p = [a", B%], = —[a,IB]; Va,B € g.

Then, T =V — V is a homogeneous p.R. structure.

Conversely: 4 a p.R. homogeneous structure T on
(M, g) _

= 4 a connection V =V -T on M, which is complete
and ensures the existence, given two points p,q € M,
of a global isometry mapping p to q.

Then, a group G of isometries acts transitively on
M, M = G/H is reductive, and V is the canonical
connection associated to this reductive decomposi-
tion.

REMARKS: a) a Riemannian homogeneous space is
necessarily reductive, a p.R. one needs not to be
reductive.

b) two homogeneous structures 77 and 7> on a p.R.
homogeneous manifold (M, g) can give rise either to
the same Lie algebra g with different decompositions,
or to non-isomorphic Lie algebras.



Theorem [Sekigawa] A connected, simply
connected and complete homogeneous Rie-
mannian 3-manifold is either symmetric or it
is a Lie group equipped with a left-invariant
Riemannian metric.

KEY POINT: to show that (unless M =
G/H is symmetric), in all cases determined
by the different possibilities for the Ricci
eigenvalues, there exists a homogeneous
structure T such that T, 8" = V p* for all
a, B E€g.

= h=20

= M = (G is a Lie group.

Together with the classification of three-
dimensional Riemannian Lie groups [Milnor],
this result permits to determine all three-
dimensional homogeneous Riemannian man-
ifolds.



LORENTZIAN VERSION

Theorem [C] A connected, simply connected,
complete homogeneous L.orentzian 3-manifold
(M, g) is either symmetric, or isometric to a
three-dimensional Lie group equipped with
a left-invariant Lorentzian metric.

KEY POINT: to prove the existence (unless
M = G/H is symmetric) of a p.R. homoge-
neous structure T such that T,.+08" = V 0"
for all a, 8 € g.

= h=20

= M = (G is a Lie group.

ESSENTIAL DIFFERENCE:

(M, g) Riemannian = the Ricci operator @
is diagonal.

(M, g) Lorentz = @ can take four different
standard forms, called Segre types.



a 0 O

Segretype{11,1}: Q= 0 b O

O 0 ¢

a 0 O

Segretype{lzz}:Q=| 0 b c

O —c b

a O O

Segretype{21}:Q=| 0O b £
O —e b—2¢

b a
Segretype{3}:Q@Q=|a b 0 |,
a O b

with respect to a suitable pseudo-orthonormal
frame {e1,ep,e3}, with e3 timelike.



CLASSIFICATION RESULT:

Theorem [C] If (M,g) is a nonsymmet-
ric connected, simply connected, complete
homogeneous Lorentzian 3-manifold, then
M = G is a Lie group and g is left-invariant.
Precisely:

a) If G is unimodular, then its Lie algebra is
one of the following:

e1,en] = aey — Bes,

(g1) :  [e1,e3] = —aey — Bey,

0, e3] = Be1 + aes + aez, a# 0.
G=0(1,2) or SL(2,R) if 3 # 0,
G=E(1,1) if8=0.

e1,e0] = yen — Bea,
(g2) :  [e1,e3] = —Bex + ves, v # 0,
€0, e3] = aej.

G =0(1,2) or SL(2,R) if a # 0,
G=E(1,1) ifa=0.



e1,e0] = —ves,

(g3) :  [e1,e3] = —Beo,

0, €3] = aey.

Lie groups admitting a Lie algebra g3:

G
O(1,2) or SL(2,R)
O(1,2) or SL(2,R)
SO(3) or SU(2)
E(2)
E(2)
E(1,1)
E(1,1)

Y
+
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e1,e0] = —ep + (26 — Bes, n = %1,
(94) :©  [e1,e3] = —Bex + e3,
€2, e3] = aey.
Lie groups admitting a Lie algebra g4:
G « 5}
O(1,2) or SL(2,R) | #0 | #n
E(1,1) O | #n
E(1,1) <0
E(2) > 0
Hs 0

S |S|S




b) If G is non-unimodular, then its Lie alge-
bra is one of the following:

e1,en] = 0,
(g5) :  [e1,e3] = aey + Beo,
en, e3] = vey + dep,

with a4+ 6 #0, ay+ 86 =0.

e1,en] = aes + Bes,
(g6) :  le1,e3] = vyex + des,
en,e3] = 0.

with a4+6 #0, ay— (8 = 0.

e1,e0] = —ae; — Ben — [es,
(g7) :  [e1,e3] = aey + Bex + Begz,
en,e3] = ye1 + dep + deaz,

with a4+ 6 = 0, ay = 0.

REMARK: Classification above uses the pre-
vious works by Cordero-Parker and Rahmani
on three-dimensional Lorentz Lie groups.



HOMOGENEOUS GEODESICS:

(M = K/H,g) p.R. reductive homogeneous
space, = m P h a reductive split.

A geodesic v through o € M = K/H is called
homogeneous (h.g.) if it is the orbit of a
one-parameter subgroup.

In the Riemannian case, this is equivalent
to writing ~ in the form

v(t) = exp(tZ)(o), te€ R,

where Z is a nonzero vector of ¢&. In the
pseudo-Riemannian case, if 4(t) is a null
vector, one needs to change its parametriza-
tion in order to write v in the form exp(sZ) (o).

Z is called a geodesic vector (g.v.).



Geometric problem: «—— algebraic problem:

to find ALL h.qg. to find ALL g.v.

Proposition ([Philip],[Dusek-Kowalski]): X €t is
a g.v. if and only if

< [X7 Y]maXm >= k < Xm7Y >7
for all Y € m and some k£ € R.

X either spacelike or timelike = k=0

Xm null vector = k£ may be any real constant.

PHYSICAL RELEVANCE: homogeneous Lorentzian
spaces for which all null geodesics are homogeneous,
are candidates for constructing solutions to the 11-
dimensional supergravity, which preserve more than
24 of the available 32 supersymmetries.

In fact, all Penrose limits, preserving the amount
of supersymmetry of such a solution, must preserve
homogeneity, which is the case for the Penrose limit
of a reductive homogeneous spacetime along a null
homogeneous geodesic [Meessen)].



H.g. of ALL three-dimensional Lie groups (G,g),
equipped with a left-invariant Lorentzian metric.
[C-Marinosci]

({e1,e2,e3} pseudo-orthonormal frame field with e3
timelike.)

(g1) : zo(e2 £ e3)
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Some interesting behaviours:

For some particular cases of unimodular Lie algebra
(g3) and non-unimodular Lie algebras (gs) and (gs),
there are no null h.g.

In many cases, there are not three linearly indepen-
dent h.g. through a point.



NATURALLY REDUCTIVE
AND G.O. SPACES:

A reductive p.R. hom. space (M = K/H, g)
IS a g.o. space if all its geodesics are ho-
mogeneous, it is naturally reductive if there
exists at least one reductive split t = m b
such that

< [X,Y]m,Z > _I_ < [Xa Z]m,Y >= 07
forall X,Y,Z € m.

To decide whether (M, g) is or is not nat.
reductive, condition above must be checked
for all groups of isometries acting transi-
tively on M.

(M, g) nat. reductive

& the Levi-Civita connection of (M, g) and
the canonical connection (of the reductive
split £ = m @ h) have the same geodesics.

(M, g) nat. reductive = (M, g) is g.o0.

<, but a 3-dim. Riemannian homogeneous
g.0. sSpace is nat. reductive.



RESULTS FOR LORENTZ 3-SPACES

Theorem [C-Marinosci] Given a connected,
simply connected Lorentz 3-space (M, g):

(a) (M,g) is a g.o. space.
< (b) (M, g) is naturally reductive.
& (c) Either (M,q) is symmetric, or it is
a unimodular Lie group G, equipped with a
left-invariant Lorentz metric, having one of
the following Lie algebras:

o g=g3, Witheithera =%y, a=~v# 3
or =~ # a.

e g=g4, Witha=p3—c¢.

Theorem [C-Marinosci] A connected, sim-
ply connected Lorentz 3-space (M,qg) is a
non-symmetric nat. reductive space if and
only if it is isometric to either SL(2,R),
SU(2) or Hs, equipped with a suitable left-
invariant Lorentz metric.



LORENTZ SYMMETRIC 3-SPACES.:

Symmetric Lorentz 3-spaces only can occur for some
of possible Segre types of the Ricci operator:

i): The Ricci operator of (M,g) is of Segre type
{11,1} with eigenvalues ¢q1 = ¢» = gs.

= (M, g) has constant sectional curvature. If M is
connected and simply connected, then (M, g) is one
of the Lorentzian space forms S}, IRy or H;.

ii): The Ricci operator of (M,g) is of Segre type
{11,1} with eigenvalues g1 = ¢q2 # ¢3, and e3 is a
timelike parallel vector field

= M is reducible as a direct product M? x R, where
M? is a Riemannian surface of constant curvature. If
M is connected and simply connected, (M, g) is then
isometric to either S2 x R or H? x R.

iii) The Ricci operator of (M,g) is of Segre type
{11,1} with eigenvalues ¢q1 # ¢> = g3, and e is a
spacelike parallel vector field

= M is reducible as a direct product R x M2, where
M? is a Lorentzian surface of constant curvature.
When M is connected and simply connected, (M, g)
is isometric to either R x S? or R x H5.



iv): The Ricci operator of (M,gqg) is of Segre type
{21} with a — b = ¢, and u = ex — e3 is a parallel
null vector field. Three-dimensional Lorentz spaces
admitting a parallel null vector field were studied by
Chaichi,Garcia-Rio and Vazquez-Abal:

a locally symmetric Lorentz 3-space (M, g), having a
parallel null vector field u, admits local coordinates
(t,z,y) such that, with respect to {(%),(6%),(%)},
the Lorentz metric g and the Ricci operator are given
by

0 0 1 0 0 —za
=10 ¢ 0 |, Q=00 o |, (1)
1 0 f
O O 0
where e = +1, u = % and
f(z,y) = z°a + z2B(y) + £(y), (2)

for any constant a € R and any functions 3,£. It
is easy to build a (local) pseudo-orthonormal frame
field from {(2), (2), (8%)}, and to check that, when-

ever af # 0 (that is, g is not flat), the Ricci operator
described by (2) is of Segre type {21}.

Theorem 1 [C] A connected, simply connected
Lorentz symmetric 3-space (M, g) is either

i) a Lorentzian space form S3, RS or H3, or

i) a direct product Rx S?, RxH?, S°x R or H* x R,
or

iii) a space with a Lorentzian metric g described by

(1)-(2).



EINSTEIN-LIKE LORENTZ METRICS:

Class A: a p.R. manifold (M, g) belongs to
A if and only if its Ricci tensor p is cyclic-
parallel, that is,

(Vxo) (Y, Z2)+(Vyo)(Z, X)+(Vzo)(X,Y) =0,
equivalently, if o is a Killing tensor, that is,
(Vxo)(X,X)=0.

Class B: (M, g) belongs to B if and only if
o is a Codazzi tensor, that is,

(Vxo)(Y,Z) = (Vyo)(X, 2).
o is parallel & (M, g) belongs to AN B.



Theorem [Abbena-Garbiero-Vanhecke]:
a connected, simply connnected homoge-
neous Riemannian 3-space belongs to class
A if and only if it is naturally reductive.

Theorem [C]: Let (M,qg) be a connected,
simply connected Lorentz 3-space. (M, q)
belongs to class A if and only if one of the
following cases occurs:

a) (M,qg) is naturally reductive;

b) M =G, g=gs and either o« = 3 =0 # 6,
with v # 0, ory =6 = 0 # a, with 8 # 0;

c) M =G, g=gg and either a« = 3 =0 # 6,
with v = 0 and v #= b, or v = 9 = 0 # q,
with 8 %= 0 and B # e«;

d M =G, g=g7 and a= =0 # 9, with
v # 0.



Theorem [Abbena-Garbiero-Vanhecke]:
a connected, simply connnected homoge-
neous Riemannian 3-space belongs to class
B if and only if it is symmetric.

Theorem [C] Let (M,g) be a connected,
simply connected Lorentz 3-space. (M,gq)
belongs to class B if and only if one of the
following cases occurs:

a) (G,g) is symmetric;

b) M =G, g = g1 with 8 = 0. In this case,
G = FE(1,1);

) M=G@G, g=go With a = —28, v = +£/30
and 8 #= 0. In this case, G = O(1,2) or
SL(2,R),

d) M=G, g=g7 andy=0# ad(a=£9).



CONFORMALLY FLAT LORENTZ
METRICS:

A homogeneous p.R. manifold (M, g) has
constant scalar curvature.

If dimM = 3, then (M, g) is conformally flat
if and only if it belongs to class B. In par-
ticular:

Theorem [C] A homogeneous Lorentz 3-
space (M, qg) is conformally flat if and only
if one of the following cases occurs:

a) (M,q) is symmetric;

b) M = G and either

g=g1 with 8 =0, or

g=go With a = =28, v = +v38, B3# 0, or
g=g7 andvy=0# ad(a=x9).

(M, g) Riemannian conf. flat hom. space
= (M, g) is symmetric.

So, conformal flatness is a weaker assump-
tion in Lorentzian than in Riemannian
geometry.
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