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Introduction

Recent developments in physics inspired by string theory have
heightened interest in higher dimensional gravity.

In particular, there has been a lot of recent research devoted
to the study of black holes in higher dimensions.

One of the first questions to arise is:

Does black hole uniqueness (the “no hair
theorems”) hold in higher dimensions?

And the answer is:

No. In fact, one does not even have topological
uniqueness.



Introduction

Hawking’s black hole topology theorem: Suppose (M, g) is a
3 + 1-dimensional AF stationary black hole spacetime obeying the
dominant energy condition (DEC). Then cross sections of the
event horizon are topologically 2-spheres.
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But in 2002, Emparan and Reall published a remarkable example of
a 4 + 1 dimensional AF vacuum stationary black hole spacetime
with horizon topology S2 × S1 (a black ring; cf., hep-th/0608012).
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Introduction

Question naturally arises: What restrictions are there on the
topology of black holes in higher dimensions?

In this talk I’m going to present recent joint work with Rick
Schoen (CMP, 2006) in which we obtain a natural
generalization of Hawking’s black hole topology theorem to
higher dimensions.

Our conclusion in higher dimensions is that cross sections of
the event horizon (in the stationary case) and outer apparent
horizons (in the general case) must be of positive Yamabe
type.

This implies many well-known restrictions on the topology.

Will also discuss some recent refinements of work with
Schoen, and comment on other approaches.



Marginally trapped surfaces

Mn+1 = (n+1)-dimensional spacetime (n ≥ 3)

Σn−1 = co-dimension 2 spacelike submanifold of M

Under suitable orientation assumptions, Σ admits two smooth
nonvanishing future directed null normal vector fields K+ and K−:

{K +K

By convention,

K+ = outward pointing

K− = inward pointing

Let θ+, θ− be the associated null expansion scalars,

θ+ = trχ+ = divΣK+

θ− = trχ− = divΣK−



Marginally trapped surfaces

For round spheres in Euclidean slices in Minkowski space (and,
more generally, large “radial” spheres in AF spacelike
hypersurfaces),

§

 0> +µ 0< {µ

However, in a strong gravitational field one can have both,

θ+ < 0 and θ− < 0 ,

in which case Σ is called a trapped surface.

Under appropriate energy and causality conditions, the occurrence
of a trapped surface signals the onset of gravitational collapse and
the formation of a black hole (Penrose, Hawking).



Marginally trapped surfaces

Focusing attention on the outward null normal only,

If θ+ < 0 - we say Σ is an outer trapped surface

If θ+ = 0 - we say Σ is a marginally outer trapped surface
(MOTS).

MOTS arise in several natural situations.

In stationary black hole spacetimes - cross sections of the
event horizon are MOTS.

H
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In dynamical black hole spacetimes - MOTS typically occur
inside the event horizon:

 = 0
+
µ

H



Marginally trapped surfaces

There has been a lot of recent work concerned with properties
of MOTS - e.g., Andersson, Mars, Simon, ...

Current interest in MOTS is due to, e.g.: Renewed interest in
quasi-local notions of black holes (dynamical horizon program,
etc.) and connections between MOTS in spacetime and
minimal surfaces in Riemannian manifolds.

 V

totally geodesic

§

H = +µ

A MOTS Σ in a time-symmetric (i.e., totally geodesic)
spacelike hypersurface V is simply a minimal surface (H = 0)
in V .

MOTS have been shown to satisfy a number of properties
analogous to those of minimal surfaces.



Hawking’s Theorem

Theorem

Suppose (M, g) is a (3 + 1)-dimensional AF stationary black hole
spacetime obeying the DEC. Then cross sections of the event
horizon are topologically 2-spheres.

Idea of proof:

By stationarity, Σ is a MOTS, θ+ = 0.

If Σ 6≈ S2, i.e., if g ≥ 1 then using Gauss-Bonnet and DEC,
Hawking shows that Σ can be deformed to an outer trapped
surface, θ+ < 0, outside the black hole region.
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Hawking’s Theorem

Comments

Actually, the torus (g = 1) is borderline for Hawking’s
argument. But can occur only under special circumstances.

Hawking showed by a variation of his original argument, that
the conclusion of his theorem also holds for ‘outer apparent
horizons’ in black hole spacetimes that are not necessarily
stationary.

In higher dimensions, one cannot appeal to the Gauss-Bonnet
theorem. This is one of the complicating the issues.



Generalization of Hawking’s Theorem

Let

Mn+1 = (n + 1)-dimensional spacetime, n ≥ 3

V n = spacelike hypersurface in Mn+1

Σn−1 = closed (n − 1)-surface in V n

Suppose Σ separates V n into an “inside” and an “outside”:

N

U

U

nV{1n§

outside

+K

Then we say that Σn−1 is an outer apparent horizon provided:

Σ is a MOTS, θ+ = 0

There are no (strictly) outer trapped surfaces outside of Σ



Generalization of Hawking’s Theorem

Theorem (G. and Schoen)

Let (Mn+1, g), n ≥ 3, be a spacetime satisfying the DEC, and let
Σn−1 be an outer apparent horizon in V n. Then

Σn−1 is of positive Yamabe type, i.e., admits a metric of
positive scalar curvature

unless

Σ is Ricci flat (flat if n = 3, 4) in the induced metric, χ+ ≡ 0,
and T (U,K ) = TabU

aKb ≡ 0 on Σ

Thus, apart from certain exceptional circumstances, Σ is positive
Yamabe.



Topological restrictions

Σ being positive Yamabe implies many well-known restrictions on
the topology.

E.g., if dim Σ = 2 (dim M = 3 + 1), then Σ ≈ S2 by G-B, and one
recovers Hawking’s theorem.

Focusing on the case dim Σ = 3 (dim M = 4 + 1), we have:

Theorem (Schoen-Yau, Gromov-Lawson)

If Σ is a closed orientable 3-manifold of positive Yamabe type then
Σ must be diffeomorphic to:

a spherical space, or

S2 × S1, or

a connected sum of the above two types.

Thus, the basic horizon topologies in dim Σ = 3 case are S3 and
S2 × S1.



Topological restrictions

Proof: By the prime decomposition theorem, Σ must be a
connected sum of (1) spherical spaces, (2) S2 × S1’s, and (3)
K (π, 1) manifolds. But since Σ is positive Yamabe, it cannot
contain any K (π, 1)’s in its prime decomposition.

Here is a simple obstruction that holds in arbitrary dimensions:

Theorem (Gromov-Lawson)

A compact manifold that admits a metric of nonpositve sectional
curvatures, K ≤ 0, cannot carry a metric of positive scalar
curvature.

This rules out many obvious topologies.



Proof of the theorem

We consider normal variations of Σ in V , i.e., variations t → Σt of
Σ = Σ0 with variation vector field

V =
∂

∂t
|t=0 = φN, φ ∈ C∞(Σ) .

Let

θ(t) = the null expansion of Σt ,

where Kt = U + Nt and Nt is the unit normal field to Σt in V .

U
tN

tN +U = tK

nV

K
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Proof, cont.

A computation shows

∂θ

∂t

∣∣∣∣
t=0

= L(φ) ,

where,

L(φ) = −4φ + 2〈X ,∇φ〉+
(
Q + div X − |X |2

)
φ ,

Q =
1

2
S − T (U,K )− 1

2
|χ|2 and X = tan (∇NU) .

Remark: In analogy with minimal surface theory, L is the ‘stability
operator’ associated with variations in θ. Note, however, that L is
not in general self-adjoint.



Proof, cont.

λ1(L), the principal eigenvalue of L, is real (Krein-Rutman).

No outer trapped surfaces outside Σ =⇒ λ1(L) ≥ 0 (i.e., Σ
is stable).

Consider the “symmetrized operator”,

L0(φ) = −4φ + Q φ .

Key fact: λ1(L0) ≥ λ1(L). Thus, λ1(L0) ≥ 0.

Let φ > 0 be an eigenfunction corresponding to λ1(L0). The
scalar curvature S̃ of Σ in the conformally rescaled metric

h̃ = φ
2

n−2 h is given by,

S̃ = φ−
n

n−2 (−24φ + Sφ +
n − 1

n − 2

|∇φ|2

φ
)

= φ−
2

n−2 (2λ1(L0) + 2T (U,K ) +
1

2
|χ|2 +

n − 1

n − 2

|∇φ|2

φ2
)

≥ 0



The borderline case

Theorem (G. and Schoen)

Let (Mn+1, g), n ≥ 3, be a spacetime satisfying the DEC, and let
Σn−1 be an outer apparent horizon in V n. Then

Σn−1 is of positive Yamabe type, i.e., admits a metric of
positive scalar curvature

unless

Σ is Ricci flat (flat if n = 3, 4) in the induced metric, χ+ ≡ 0,
and T (U,K ) = TabU

aKb ≡ 0 on Σ

Note, for example, the theorem does not rule out the possibility of
a vacuum black hole spacetime with toroidal horizon topology.

The theorem can be read this way: if Σ is not positive Yamabe
then get infinitesimal rigidity. But I expect more rigidity to hold,
which could be used to rule out the exceptional case.



The borderline case

Theorem (Rigidity result, G.)

Let (Mn+1, g), n ≥ 3, be a spacetime satisfying the DEC, and let
Σn−1 be a compact co-dimension two spacelike submanifold of M
with null expansions θ±, such that the following conditions hold.

Σ is a MOTS, i.e, θ+ = 0.

There are no (strictly) outer trapped surfaces along N
θ− < 0 on Σ.

Then, if Σ does not admit a metric of positive scalar curvature, N
is foliated by MOTSs Σt , t ∈ [0, ε), near Σ.

+K{K

N

§
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The borderline case

It follows from this rigidity result that without exception (but
subject to the sign condition), cross sections of the event
horizon in stationary black hole spacetimes obeying the the
DEC are positive Yamabe.

§

H
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 = 0
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The proof of the rigidity result involves two main steps:

Show N is foliated near Σ by surfaces Σt of constant null
expansion, θt = const.
Show for each leaf Σt , const. = 0.



Spacelike versions of the rigidity result

One can prove in a completely analogous way a spacelike
version of the rigidity result, i.e., where N is spacelike and Σ
is an outer apparent horizon. But the natural sign condition in
this case is that N be maximal, i.e., have mean curvature = 0.

(In progress) It now appears that one can derive a spacelike
version of rigidity as a consequence of the null version. The
sign condition will be as in the latter: θ− < 0 along Σ.

(In progress) There is an approach to the eliminating the
‘exceptional case’ in our result with Schoen that does not
require maximality and does not require that Σ be inner
trapped, but instead assumes a very mild asymptotic
condition. This involves an application of Schoen’s recent
existence result for MOTS.



Other approaches to black hole topology

An entirely different approach to the study of black hole
topology was developed in the 90’s based on topological
censorship, see especially, G., Schleich, Witt and Woolgar,
Phys. Rev. D (1999).

In the AF case, topological censorship is simply the statement
that if the null energy condition holds, and the domain of
outer communications (DOC) is globally hyperbolic then the
DOC must be simply connected. This can be used to show in
the dim M = 3 + 1 case that cross sections of the event
horizon are spherical.

In the case dim M = 5 + 1, dim Σ = 4, Helfgott et al. have
recently argued (JHEP, 2006), using topological censorship,
that if Σ is simply connected then either it is homeomorphic
to S4 or is a connected sum of S2 × S2’s.


