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Setup

>)" represents the standatesphere
ConsiderM = (0,a) x X" with the metric

ds* = dt* + f*(t)do”

wheredo? is the metric of, andf : (0,a) — R
IS a smooth positive function.

Spheres with prescribedh -curvature in warped product manifolds — p.2/16



Setup

>)" represents the standatesphere
ConsiderM = (0,a) x X" with the metric

ds* = dt* + f*(t)do”

wheredo? is the metric of, andf : (0,a) — R
IS a smooth positive function.

OBS: sections(ty) = {(tg,p); p € X"} are
hypersurfaces with principal curvatures

k(to) = f'(to)/ f(ty) computed with respect to
the downward normal vector.
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Setup

>)" represents the standatesphere
ConsiderM = (0,a) x X" with the metric

ds* = dt* + f*(t)do”

wheredo? is the metric of, andf : (0,a) — R
IS a smooth positive function.

OBS: sections(ty) = {(tg,p); p € X"} are
hypersurfaces with principal curvatures

k(to) = f'(to)/ f(ty) computed with respect to
the downward normal vector.

HIPOTHESIS 1:x(t) > 0 forall ¢t € (0,a) and
decreasing.
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Graphicsover ¥ in M

Givenz : ¥ — (0,a), one defines the graphic of
z as the hypersurface

M= {(z(u),u); ue X} C M
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Graphicsover ¥ in M

Givenz : ¥ — (0,a), one defines the graphic of
z as the hypersurface

M= {(z(u),u); ue X} Cc M

Let £, ... ,E,,N be an adapted orthonormal
frame field, whereV is a unit normal tal/.
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Graphicsover ¥ in M

Givenz : ¥ — (0,a), one defines the graphic of
z as the hypersurface

M= {(z(u),u); ue X} Cc M

Let £, ... ,E,,N be an adapted orthonormal
frame field, whereV is a unit normal tal/.

The second fundamental form &f is given by
A= (C_Lij) where

—?EZN — ZaijEj :
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The m-curvatures

The basic invariants associated4are the
m-curvaturess,, of M, 0 < m < n, given by:

Sm — Z det A(il, c. ,im)

1< <. <t <n
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The m-curvatures

The basic invariants associated4are the
m-curvaturess,, of M, 0 < m < n, given by:

Sm — Z det A(il, c. ,im)

1< <. <t <n

whereA(iy, . .., 4,,) is them x m matrix formed
by the entriesi;; of Awithi,j € {iy,..., 0}
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The m-curvatures

The basic invariants associated4are the
m-curvaturess,, of M, 0 < m < n, given by:

Sm — Z det A(il, c. ,im)

1< <. <t <n

whereA(iy, . .., 4,,) is them x m matrix formed
by the entriesi;; of Awithi,j € {iy,..., 0}

When A is diagonal, that isg;; = k;d;; then

S = Z ki . ki

1<11 <. <1, <n
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The Problem

Given a function) : M — R, does exist a
functionz : ¥ — (0, a) such that it satisfies the
equation

(%) Sp(z(u),u) =v(z(u),u) forall ueX
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The Problem

Given a function) : M — R, does exist a
functionz : ¥ — (0, a) such that it satisfies the
equation

(%) Sp(z(u),u) =v(z(u),u) forall ueX

It Is simple to show that
a;; = a;;(z,gradz, Hessz)
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The Problem

Given a function) : M — R, does exist a
functionz : ¥ — (0, a) such that it satisfies the
equation

(%) Sp(z(u),u) =v(z(u),u) forall ueX

It Is simple to show that
a;; = a;;(z,gradz, Hessz)

So, the problem is fully nolinear except when
m = 1. If m = n itis of Monge-Ampere type
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The Problem

Given a function) : M — R, does exist a
functionz : ¥ — (0, a) such that it satisfies the

equation

(%) Sp(z(u),u) =v(z(u),u) forall ueX

It Is simple to show that
a;; = a;;(z,gradz, Hessz)

So, the problem is fully nolinear except when
m = 1. If m = n itis of Monge-Ampere type

Whenty = const., the problem is trivial. The
solution will be one of thé:().
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TheMain Hypothesis

We will assume that the functiahsatisfies:

Spheres with prescribedh -curvature in warped product manifolds — p.6/16



TheMain Hypothesis

We will assume that the functiahsatisfies:
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We will assume that the functiahsatisfies:
a) Y >0
bl) ¥(t,p) > () k()" for t<nr
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TheMain Hypothesis
We will assume that the functiahsatisfies:
a) Y >0
b1) »(t,p) > () Kl
b2) ¥(t,p) < (i) K(
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TheMain Hypothesis

We will assume that the functiahsatisfies:
a) Y >0
bl) ¥(t,p) > () k()" for t<nr
b2) Y(t,p) < () k()™ for t>ro.
C) OY/0t + mky < 0
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The Main Result

Theorem:Under such hypothesis there are a
priori CY andC' estimates for the solution ¢£).
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The Main Result

Theorem:Under such hypothesis there are a
priori CY andC' estimates for the solution ¢£).

If we further assume that the curvature/afis
nonnegative than we can also exhibit an a priori

C? bound for the solution.
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The Main Result

Theorem:Under such hypothesis there are a
priori CY andC' estimates for the solution ¢£).

If we further assume that the curvature/afis
nonnegative than we can also exhibit an a priori

C? bound for the solution.

Hence, if the curvature ot/ is nonnegative, and
If we have the validity of the above hypothesis
then there exists a solution 0f).
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Continuity method

Consider a family of equations
Sm(z(u),u) = ¥(s, z(u),u) such that
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Continuity method

Consider a family of equations
Sm(z(u),u) = ¥(s, z(u),u) such that

a. U(l, z(u),u) =(z(u),u)
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Continuity method

Consider a family of equations
Sm(z(u),u) = ¥(s, z(u),u) such that

a. W(l,z(u),u) = ¢(z(u), u)
b. For eachs € [0, 1] the function¥ satisfies the
same set of hypothesis as the functian
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Continuity method

Consider a family of equations
Sm(z(u),u) = ¥(s, z(u),u) such that
a. V(1 z(u),u) = P(z(uw), u)

b. For eachs € [0, 1] the function¥ satisfies the
same set of hypothesis as the functian

Consider the séf’ = {s € [0,1]; Siu(z(u),u) =
U(s, z(u),u) has solutiont and show it is
nonempty, open and closed.
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Applying continuity method
Fors € [0, 1] define

W(s,t,u) = s(t,u) + (1 = 5)o(t)(,)m ()™

whereg¢ : (0,a) — R satisfies
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Applying continuity method

Fors € [0, 1] define

W(s,t,u) = s(t,u) + (1 = 5)o(t)(,)m ()™

whereg¢ : (0,a) — R satisfies

» >0
¢(t) >1 when t<r
¢(t) <1 when t>r

¢'(t) <0
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Applying continuity method

Fors € [0, 1] define

W(s,t,u) = s(t,u) + (1 = 5)o(t)(,)m ()™

whereg¢ : (0,a) — R satisfies

» >0
¢(t) >1 when t<r
¢(t) <1 when t>r

p'(t) <0
Let ¢y, be the only point such that(zy) = 1
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Applying continuity method

Fors € [0, 1] define

W(s,t,u) = s(t,u) + (1 = 5)o(t)(,)m ()™

whereg¢ : (0,a) — R satisfies

» >0

o(t) >1 when t<r

¢(t) <1 when t>r

¢'(t) <0

_et ¢y be the only point such that(zy) = 1

_emma:the function¥ satisfies the properties
Isted as hypothesis fap.
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That is, for each fixed:
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a) V>0
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That is, for each fixed:

a) V>0
bl) W(s,t,p) > (1) k(t)” for t<mr
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That is, for each fixed:

a) V>0
b1) W(s,t,p) > (3,) k(
b2) W(s,t,p) < (i) &l
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That is, for each fixed:

a) V>0
bl) W(s,t,p) > (1) k(t)” for t<mr
b2) U(s,t,p) < () k(t)" for t>rs.
c) OV /ot + mk(t)¥ < 0
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Proof of thelemma

SinceW (s, t,u) = sy(t,u) + (1 — s)o(t)(5,)k(E)™
it Is clear that:

a) U(s,t,u) > 0.
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SinceW (s, t,u) = sy(t,u) + (1 — s)o(t)(5,)k(E)™
it Is clear that:
a) U(s,t,u) > 0.

b) Fort < r; one has
U > s(m)r(6)™ + (1 —s)()s@)™ = () &)™

Spheres with prescribegh -curvature in warped product manifolds — p.11/16



Proof of thelemma

SinceW (s, t,u) = sy(t,u) + (1 — s)o(t)(5,)k(E)™
it Is clear that:
a) U(s,t,u) > 0.

b) Fort < r; one has
U > s()w(6)™ + (1 = s)(5)w (@)™ = () k(€)™
c) Similarly whent > rs.
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Proof of thelemma
SinceW (s, t,u) = sy(t,u) + (1 — s)o(t)(5,)k(E)™
It Is clear that:
a) U(s,t,u) > 0.

b) Fort < r; one has
U > s(m)r(6)™ + (1 —s)()s@)™ = () &)™

c) Similarly whent > rs.
d) G = s + (1= 8)d/ () (7 )r(t)" + (1 -
$)(t) (h)me ()"K' (1)
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Proof of thelemma
SinceW (s, t,u) = sy(t,u) + (1 — s)o(t)(5,)k(E)™
It Is clear that:
a) U(s,t,u) > 0.

b) Fort < r; one has
U > s(m)r(6)™ + (1 —s)()s@)™ = () &)™

c) Similarly whent > rs.

d) G = s + (1= s)d/(t)(5)m(t)" + (1 -
$)(t) (7)) mes(t)™ K (t)
2+ mr¥ = s(%%—mmp)—l—(l —
$)¢' () ()K" +m(1 = s)o(t)(7,) k™ (K + £7)
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&+ mr¥U = s(%%—mmp)—l—(l —
$)¢' (1) ()E™ + m(1l = 8)o(t) ()™ (K + K)
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&+ mr¥U = 5(%+mmp)—|—(1 —

$)¢' (1) ()K" +m(L — s)o(t) (7)™ (K + K7)

On the R.H.S., the first two terms are clearly
negative. If the last one is not negative, it possible

to choose the function in such way that the sum
of the last two terms is also negative.
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&+ mr¥U = 5(%+mmp)—|—(1 —

$)¢' (1) ()K" +m(L — s)o(t) (7)™ (K + K7)

On the R.H.S., the first two terms are clearly
negative. If the last one is not negative, it possible

to choose the function in such way that the sum
of the last two terms is also negative.

Take(t) = e ¥"**¢ choosing:
b* = mmax. <<, (k' +x*) and
b°r1 < ¢ < b*ro.
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&+ mr¥U = 5(%+mmp)—|—(1 —

$)¢' (1) ()K" +m(L — s)o(t) (7)™ (K + K7)

On the R.H.S., the first two terms are clearly
negative. If the last one is not negative, it possible

to choose the function in such way that the sum
of the last two terms is also negative.

Take(t) = e ¥"**¢ choosing:
b* = mmax. <<, (k' +x*) and
b°r1 < ¢ < b*ro.

Hence, the result is proved, that is, for eadhe
function satisfies the same set of hypothesis as

b,
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The continuity method

Since

W(s,t,u) = stp(t, u) + (1 —s)o(t) (5, )s(t)™, for
s = 0 andt = t, since¢(ty) = 1, we have

U = (")k(ty)". Hencez = t; is solution of the

m

equations,, = .

Spheres with prescribedh -curvature in warped product manifolds — p.13/16



The continuity method

Since

U(s,t,u) =sy(t,u) + (1 —s)o(t)()k(t)™, for
s = 0 andt = t, since¢(ty) = 1, we have

U = (")k(ty)". Hencez = t; is solution of the
equations,, = .

Thereforel = {s € [0,1]; S,.(2(u),u) =

U(s, z(u), u) has solutior} is nonempty.
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The continuity method

Since

W(s,t,u) = sp(t,u) + (1 — s)o(t) () w(t)™, for
s = 0 andt = t, since¢(ty) = 1, we have

U = (")k(ty)". Hencez = t; is solution of the
equations,, = .

Thereforel = {s € [0,1]; S;.(2(u),u) =

U(s, z(u), u) has solutior} is nonempty.

The openness df is a consequence of the
iImplicit function theorem.
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The continuity method

Since

W(s,t,u) = sp(t,u) + (1 — s)o(t) () w(t)™, for
s = 0 andt = t, since¢(ty) = 1, we have

U = (")k(ty)". Hencez = t; is solution of the
equations,, = .

Thereforel = {s € [0,1]; S;.(2(u),u) =

U(s, z(u), u) has solutior} is nonempty.

The openness df is a consequence of the
iImplicit function theorem.

The closeness af depends on the existence of
C?, C! andC? a priori estimates.
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OV estimate

Assume there exists a solutiefw) of the
equation(x). I claim thatr; < z(u) < ry for each
u € 2.
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OV estimate

PROOF: Assume max(u))= ty > 7o.
_et z(ug) = to. ThenM is above ofx(ty) and
nas a point of contact, ug) with M.
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OV estimate

PROOF: Assume max(u))= ty > 7o.
_et z(ug) = to. ThenM is above ofx(ty) and
nas a point of contact, ug) with M.

Since S, = v <
(m)E(to)™ by maxi-

mum principle we get
a contradiction.
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FIM
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FIM
OBRIGADO.
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