Spheres with prescribed *m***-curvature in warped product manifolds**

Jorge Herbert Lira & J. Lucas Barbosa

jlucas@secrel.com.br

UFC

Spheres with prescribed m-curvature in warped product manifolds – p.1/16

 Σ^n represents the standard *n*-sphere

 Σ^n represents the standard *n*-sphere Consider $\overline{M} = (0, a) \times \Sigma^n$ with the metric

$$ds^2 = dt^2 + f^2(t)d\sigma^2$$

where $d\sigma^2$ is the metric of Σ , and $f: (0, a) \to R$ is a smooth positive function.

 Σ^n represents the standard *n*-sphere Consider $\overline{M} = (0, a) \times \Sigma^n$ with the metric

$$ds^2 = dt^2 + f^2(t)d\sigma^2$$

where $d\sigma^2$ is the metric of Σ , and $f: (0, a) \to R$ is a smooth positive function.

OBS: sections $\Sigma(t_0) = \{(t_0, p); p \in \Sigma^n\}$ are hypersurfaces with principal curvatures $\kappa(t_0) = f'(t_0)/f(t_0)$ computed with respect to the downward normal vector.

 Σ^n represents the standard *n*-sphere Consider $\overline{M} = (0, a) \times \Sigma^n$ with the metric

$$ds^2 = dt^2 + f^2(t)d\sigma^2$$

where $d\sigma^2$ is the metric of Σ , and $f: (0, a) \to R$ is a smooth positive function.

OBS: sections $\Sigma(t_0) = \{(t_0, p); p \in \Sigma^n\}$ are hypersurfaces with principal curvatures $\kappa(t_0) = f'(t_0)/f(t_0)$ computed with respect to the downward normal vector.

HIPOTHESIS 1: $\kappa(t) > 0$ for all $t \in (0, a)$ and decreasing.

Graphics over Σ in \bar{M}

Given $z : \Sigma \to (0, a)$, one defines the graphic of z as the hypersurface $M := \{(z(u), u); u \in \Sigma\} \subset \overline{M}$

Graphics over Σ in \bar{M}

Given $z : \Sigma \to (0, a)$, one defines the graphic of z as the hypersurface $M := \{(z(u), u); u \in \Sigma\} \subset \overline{M}$

Let E_1, \ldots, E_n, N be an adapted orthonormal frame field, where N is a unit normal to M.

Graphics over Σ in \bar{M}

Given $z : \Sigma \to (0, a)$, one defines the graphic of z as the hypersurface $M := \{(z(u), u); u \in \Sigma\} \subset \overline{M}$ Let E_1, \ldots, E_n, N be an adapted orthonormal frame field, where N is a unit normal to M. The second fundamental form of M is given by $\overline{A} = (\overline{a}_{ij})$ where

$$-\bar{\nabla}_{E_i}N = \sum \bar{a}_{ij}E_j$$
.

The *m***-curvatures**

The basic invariants associated to \overline{A} are the *m*-curvatures S_m of M, $0 < m \leq n$, given by:

$$S_m = \sum_{1 \le i_1 < \dots < i_m \le n} \det \bar{A}(i_1, \dots, i_m)$$

The *m***-curvatures**

The basic invariants associated to \overline{A} are the *m*-curvatures S_m of M, $0 < m \leq n$, given by:

$$S_m = \sum_{1 \le i_1 < \dots < i_m \le n} \det \bar{A}(i_1, \dots, i_m)$$

where $\overline{A}(i_1, \ldots, i_m)$ is the $m \times m$ matrix formed by the entries \overline{a}_{ij} of \overline{A} with $i, j \in \{i_1, \ldots, i_m\}$

The *m***-curvatures**

The basic invariants associated to \overline{A} are the *m*-curvatures S_m of M, $0 < m \leq n$, given by:

$$S_m = \sum_{1 \le i_1 < \dots < i_m \le n} \det \bar{A}(i_1, \dots, i_m)$$

where $\bar{A}(i_1, \ldots, i_m)$ is the $m \times m$ matrix formed by the entries \bar{a}_{ij} of \bar{A} with $i, j \in \{i_1, \ldots, i_m\}$ When \bar{A} is diagonal, that is, $\bar{a}_{ij} = k_i \delta_{ij}$ then

$$S_m = \sum_{1 \le i_1 < \dots < i_m \le n} k_{i_1} \dots k_{i_m}$$

Given a function $\psi : \overline{M} \to \mathbb{R}$, does exist a function $z : \Sigma \to (0, a)$ such that it satisfies the equation

(*)
$$\bar{S}_m(z(u), u) = \psi(z(u), u)$$
 for all $u \in \Sigma$

Given a function $\psi : \overline{M} \to \mathbb{R}$, does exist a function $z : \Sigma \to (0, a)$ such that it satisfies the equation

(*)
$$\bar{S}_m(z(u), u) = \psi(z(u), u)$$
 for all $u \in \Sigma$

It is simple to show that $\bar{a}_{ij} = \bar{a}_{ij}(z, \operatorname{grad} z, \operatorname{Hess} z)$

Given a function $\psi : \overline{M} \to \mathbb{R}$, does exist a function $z : \Sigma \to (0, a)$ such that it satisfies the equation

(*)
$$\bar{S}_m(z(u), u) = \psi(z(u), u)$$
 for all $u \in \Sigma$

It is simple to show that $\bar{a}_{ij} = \bar{a}_{ij}(z, \operatorname{grad} z, \operatorname{Hess} z)$

So, the problem is fully nolinear except when m = 1. If m = n it is of Monge-Ampère type

Given a function $\psi : \overline{M} \to \mathbb{R}$, does exist a function $z : \Sigma \to (0, a)$ such that it satisfies the equation

(*)
$$\bar{S}_m(z(u), u) = \psi(z(u), u)$$
 for all $u \in \Sigma$

It is simple to show that $\bar{a}_{ij} = \bar{a}_{ij}(z, \operatorname{grad} z, \operatorname{Hess} z)$

So, the problem is fully nolinear except when m = 1. If m = n it is of Monge-Ampère type

When $\psi = \text{const.}$, the problem is trivial. The solution will be one of the $\Sigma(t)$.

We will assume that the function ψ satisfies:

We will assume that the function ψ satisfies: a) $\psi > 0$

We will assume that the function ψ satisfies: a) $\psi > 0$ b1) $\psi(t,p) > \binom{n}{m} \kappa(t)^m$ for $t \le r_1$

We will assume that the function ψ satisfies: a) $\psi > 0$ b1) $\psi(t,p) > \binom{n}{m} \kappa(t)^m$ for $t \le r_1$ b2) $\psi(t,p) < \binom{n}{m} \kappa(t)^m$ for $t \ge r_2$.

We will assume that the function ψ satisfies: a) $\psi > 0$ b1) $\psi(t,p) > \binom{n}{m} \kappa(t)^m$ for $t \le r_1$ b2) $\psi(t,p) < \binom{n}{m} \kappa(t)^m$ for $t \ge r_2$. c) $\partial \psi / \partial t + m \kappa \psi < 0$

The Main Result

Theorem: Under such hypothesis there are a priori C^0 and C^1 estimates for the solution of (*).

The Main Result

Theorem: Under such hypothesis there are a priori C^0 and C^1 estimates for the solution of (*).

If we further assume that the curvature of \overline{M} is nonnegative than we can also exhibit an a priori C^2 bound for the solution.

The Main Result

Theorem: Under such hypothesis there are a priori C^0 and C^1 estimates for the solution of (*).

If we further assume that the curvature of \overline{M} is nonnegative than we can also exhibit an a priori C^2 bound for the solution.

Hence, if the curvature of \overline{M} is nonnegative, and if we have the validity of the above hypothesis then there exists a solution of (*).

Consider a family of equations $S_m(z(u), u) = \Psi(s, z(u), u)$ such that

Consider a family of equations $S_m(z(u), u) = \Psi(s, z(u), u)$ such that a. $\Psi(1, z(u), u) = \psi(z(u), u)$

Consider a family of equations $S_m(z(u), u) = \Psi(s, z(u), u)$ such that

a. $\Psi(1, z(u), u) = \psi(z(u), u)$

b. For each $s \in [0, 1]$ the function Ψ satisfies the same set of hypothesis as the function ψ .

Consider a family of equations $S_m(z(u), u) = \Psi(s, z(u), u)$ such that

a. $\Psi(1, z(u), u) = \psi(z(u), u)$

b. For each $s \in [0, 1]$ the function Ψ satisfies the same set of hypothesis as the function ψ .

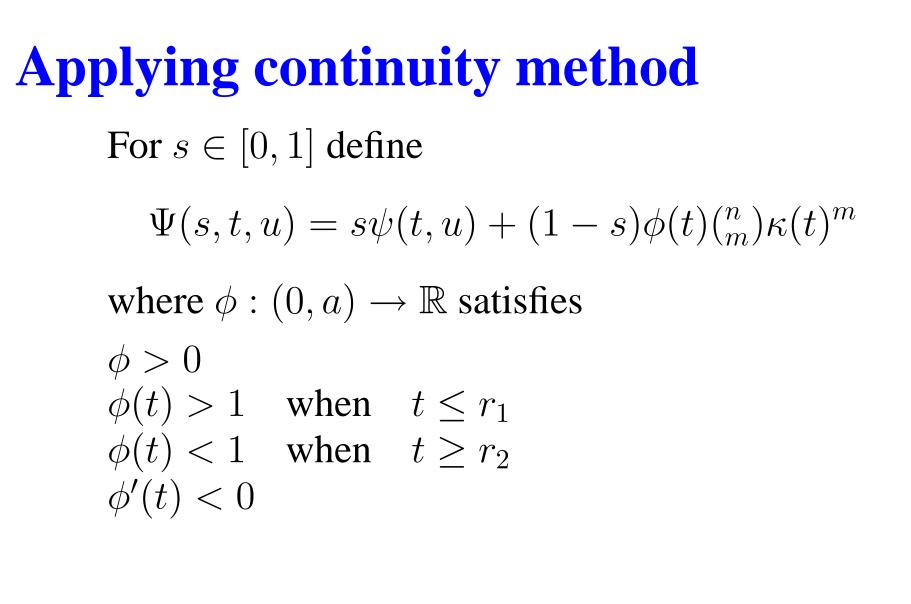
Consider the set $T = \{s \in [0,1]; S_m(z(u), u) = \Psi(s, z(u), u) \text{ has solution}\}$ and show it is nonempty, open and closed.

Applying continuity method

For $s \in [0, 1]$ define

 $\Psi(s,t,u) = s\psi(t,u) + (1-s)\phi(t)\binom{n}{m}\kappa(t)^m$

where $\phi: (0, a) \to \mathbb{R}$ satisfies



Applying continuity method For $s \in [0, 1]$ define $\Psi(s,t,u) = s\psi(t,u) + (1-s)\phi(t)\binom{n}{m}\kappa(t)^m$ where $\phi: (0, a) \to \mathbb{R}$ satisfies $\phi > 0$ $\phi(t) > 1$ when $t \leq r_1$ $\phi(t) < 1$ when $t \ge r_2$ $\phi'(t) < 0$ Let t_0 be the only point such that $\phi(t_0) = 1$

Applying continuity method For $s \in [0, 1]$ define $\Psi(s,t,u) = s\psi(t,u) + (1-s)\phi(t)\binom{n}{m}\kappa(t)^m$ where $\phi: (0, a) \to \mathbb{R}$ satisfies $\phi > 0$ $\phi(t) > 1$ when $t \leq r_1$ $\phi(t) < 1$ when $t \ge r_2$ $\phi'(t) < 0$ Let t_0 be the only point such that $\phi(t_0) = 1$

Lemma: the function Ψ satisfies the properties listed as hypothesis for ψ .

a) $\Psi > 0$

a)
$$\Psi > 0$$

b1) $\Psi(s,t,p) > \binom{n}{m} \kappa(t)^m$ for $t \le r_1$

a)
$$\Psi > 0$$

b1) $\Psi(s,t,p) > \binom{n}{m} \kappa(t)^m$ for $t \le r_1$
b2) $\Psi(s,t,p) < \binom{n}{m} \kappa(t)^m$ for $t \ge r_2$.

a)
$$\Psi > 0$$

b1) $\Psi(s,t,p) > \binom{n}{m} \kappa(t)^m$ for $t \le r_1$
b2) $\Psi(s,t,p) < \binom{n}{m} \kappa(t)^m$ for $t \ge r_2$.
c) $\partial \Psi / \partial t + m \kappa(t) \Psi < 0$

Since $\Psi(s, t, u) = s\psi(t, u) + (1 - s)\phi(t)\binom{n}{m}\kappa(t)^m$ it is clear that:

a) $\Psi(s, t, u) > 0.$

Since $\Psi(s, t, u) = s\psi(t, u) + (1 - s)\phi(t)\binom{n}{m}\kappa(t)^m$ it is clear that:

- a) $\Psi(s, t, u) > 0.$
- b) For $t \le r_1$ one has $\Psi > s\binom{n}{m}\kappa(t)^m + (1-s)\binom{n}{m}\kappa(t)^m = \binom{n}{m}\kappa(t)^m$

Since $\Psi(s, t, u) = s\psi(t, u) + (1 - s)\phi(t)\binom{n}{m}\kappa(t)^m$ it is clear that:

- a) $\Psi(s, t, u) > 0.$
- b) For $t \le r_1$ one has $\Psi > s\binom{n}{m}\kappa(t)^m + (1-s)\binom{n}{m}\kappa(t)^m = \binom{n}{m}\kappa(t)^m$

c) Similarly when $t \ge r_2$.

Since $\Psi(s, t, u) = s\psi(t, u) + (1 - s)\phi(t)\binom{n}{m}\kappa(t)^m$ it is clear that:

- a) $\Psi(s,t,u) > 0.$
- b) For $t \le r_1$ one has $\Psi > s\binom{n}{m}\kappa(t)^m + (1-s)\binom{n}{m}\kappa(t)^m = \binom{n}{m}\kappa(t)^m$
- c) Similarly when $t \ge r_2$.

d)
$$\frac{\partial \Psi}{\partial t} = s \frac{\partial \psi}{\partial t} + (1 - s) \phi'(t) \binom{n}{m} \kappa(t)^m + (1 - s) \phi(t) \binom{n}{m} m \kappa(t)^{m-1} \kappa'(t)$$

Since $\Psi(s, t, u) = s\psi(t, u) + (1 - s)\phi(t)\binom{n}{m}\kappa(t)^m$ it is clear that:

- a) $\Psi(s, t, u) > 0.$
- b) For $t \le r_1$ one has $\Psi > s\binom{n}{m}\kappa(t)^m + (1-s)\binom{n}{m}\kappa(t)^m = \binom{n}{m}\kappa(t)^m$
- c) Similarly when $t \ge r_2$.

d)
$$\frac{\partial \Psi}{\partial t} = s \frac{\partial \psi}{\partial t} + (1 - s) \phi'(t) \binom{n}{m} \kappa(t)^m + (1 - s) \phi(t) \binom{n}{m} m \kappa(t)^{m-1} \kappa'(t)$$

$$\frac{\partial \Psi}{\partial t} + m\kappa\Psi = s(\frac{\psi}{\partial t} + m\kappa\psi) + (1 - s)\phi'(t)\binom{n}{m}\kappa^m + m(1 - s)\phi(t)\binom{n}{m}\kappa^{m-1}(\kappa' + \kappa^2)$$

 $\frac{\partial \Psi}{\partial t} + m\kappa\Psi = s(\frac{\psi}{\partial t} + m\kappa\psi) + (1 - \psi) + (1$ $s)\phi'(t)\binom{n}{m}\kappa^{m} + m(1-s)\phi(t)\binom{n}{m}\kappa^{m-1}(\kappa'+\kappa^{2})$

8

 $\frac{\partial \Psi}{\partial t} + m\kappa\Psi = s(\frac{\psi}{\partial t} + m\kappa\psi) + (1 - s)\phi'(t)\binom{n}{m}\kappa^m + m(1 - s)\phi(t)\binom{n}{m}\kappa^{m-1}(\kappa' + \kappa^2)$ On the R.H.S., the first two terms are clearly negative. If the last one is not negative, it possible to choose the function ϕ in such way that the sum of the last two terms is also negative. $\frac{\partial \Psi}{\partial t} + m\kappa\Psi = s(\frac{\psi}{\partial t} + m\kappa\psi) + (1 - s)\phi'(t)\binom{n}{m}\kappa^m + m(1 - s)\phi(t)\binom{n}{m}\kappa^{m-1}(\kappa' + \kappa^2)$ On the R.H.S., the first two terms are clearly negative. If the last one is not negative, it possible to choose the function ϕ in such way that the sum of the last two terms is also negative.

Take $\phi(t) = e^{-b^2t+c}$ choosing: $b^2 = m \max_{r_1 \le r \le r_2} (\kappa' + \kappa^2)$ and $b^2r_1 < c < b^2r_2$. $\frac{\partial \Psi}{\partial t} + m\kappa\Psi = s(\frac{\psi}{\partial t} + m\kappa\psi) + (1 - s)\phi'(t)\binom{n}{m}\kappa^m + m(1 - s)\phi(t)\binom{n}{m}\kappa^{m-1}(\kappa' + \kappa^2)$ On the R.H.S., the first two terms are clearly negative. If the last one is not negative, it possible to choose the function ϕ in such way that the sum of the last two terms is also negative.

Take
$$\phi(t) = e^{-b^2t+c}$$
 choosing:
 $b^2 = m \max_{r_1 \le r \le r_2} (\kappa' + \kappa^2)$ and
 $b^2r_1 < c < b^2r_2$.

Hence, the result is proved, that is, for each s the function Ψ satisfies the same set of hypothesis as ψ .

Since $\Psi(s,t,u) = s\psi(t,u) + (1-s)\phi(t)\binom{n}{m}\kappa(t)^m$, for s = 0 and $t = t_0$, since $\phi(t_0) = 1$, we have $\Psi = \binom{n}{m}k(t_0)^m$. Hence $z = t_0$ is solution of the equation $S_m = \Psi$.

Since $\Psi(s,t,u) = s\psi(t,u) + (1-s)\phi(t)\binom{n}{m}\kappa(t)^m$, for s = 0 and $t = t_0$, since $\phi(t_0) = 1$, we have $\Psi = \binom{n}{m}k(t_0)^m$. Hence $z = t_0$ is solution of the equation $S_m = \Psi$.

Therefore $T = \{s \in [0,1]; \overline{S}_m(z(u),u) = \Psi(s, z(u), u) \text{ has solution}\}$ is nonempty.

Since $\Psi(s,t,u) = s\psi(t,u) + (1-s)\phi(t)\binom{n}{m}\kappa(t)^m$, for s = 0 and $t = t_0$, since $\phi(t_0) = 1$, we have $\Psi = \binom{n}{m}k(t_0)^m$. Hence $z = t_0$ is solution of the equation $S_m = \Psi$.

Therefore $T = \{s \in [0, 1]; \overline{S}_m(z(u), u) = \Psi(s, z(u), u) \text{ has solution}\}$ is nonempty.

The openness of T is a consequence of the implicit function theorem.

Since $\Psi(s, t, u) = s\psi(t, u) + (1 - s)\phi(t)\binom{n}{m}\kappa(t)^m$, for s = 0 and $t = t_0$, since $\phi(t_0) = 1$, we have $\Psi = \binom{n}{m}k(t_0)^m$. Hence $z = t_0$ is solution of the equation $S_m = \Psi$.

Therefore $T = \{s \in [0,1]; \overline{S}_m(z(u),u) = \Psi(s, z(u), u) \text{ has solution}\}$ is nonempty.

The openness of T is a consequence of the implicit function theorem.

The closeness of T depends on the existence of C^0 , C^1 and C^2 a priori estimates.

C^0 estimate

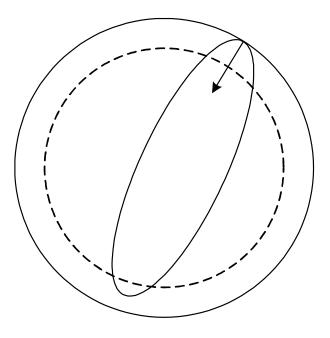
Assume there exists a solution z(u) of the equation (*). I claim that $r_1 \leq z(u) \leq r_2$ for each $u \in \Sigma$.

C^0 estimate

PROOF: Assume $\max(z(u)) = t_0 > r_2$. Let $z(u_0) = t_0$. Then M is above of $\Sigma(t_0)$ and has a point of contact (t_0, u_0) with M.

C^0 estimate

PROOF: Assume $\max(z(u)) = t_0 > r_2$. Let $z(u_0) = t_0$. Then M is above of $\Sigma(t_0)$ and has a point of contact (t_0, u_0) with M.



Since $\bar{S}_m = \psi <$ $\binom{n}{m}k(t_0)^m$ by maximum principle we get a contradiction.

FIM

FIM OBRIGADO.