
A new Laplacian acting on tensor
fields: potentials and Hodge

decompositions.
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The classical Helmholtz theorem

Any vector field ~V on Euclidean space R3 can be written

in terms of two potentials, scalar and vector respectively,

~V = ∇Φ−∇× ~Ψ

(of course, this is local or requires suitable boundary conditions).

(Physicist say: “any ~V is the sum of an irrotational part and
a solenoidal part”.)

The proof follows from the (local!, or with decaying assump-
tions at∞) existence of a solution to the vector version of Pois-
son’s equation

∇2
o

~V = ~V

for a “superpotential” vector field
o

~V . Then, the potentials follow
immediately from the vector operator identity

~V = ∇2
o

~V ≡ ∇(∇·
o

~V )−∇× (∇×
o

~V ).

=⇒ Given suitable boundary conditions, any vector
field can be fully reconstructed from its divergence and
curl



Potentials for curvature tensors?

There is a well-known and largely exploited correspondence
between electromagnetism and gravity:

Fµν ←→ Rα
βµν

Aµ ←→ ??

Aµ has a fundamental GAUGE freedom: A→ A + dφ.

Standard wisdom says that the connection Γα
βµ plays the

role of A, and the gauge freedom is related to the choice of
coordinates and/or bases. BUT the connection is not exactly
the same, in the sense that A is a tensorial object.

Is it possible to define something analogous to A for the
Riemann tensor?



The Lanczos potential

A (partial) answer was given by Lanczos in 1962. He proved
(*) that, in Ricci-flat manifolds (Rab = 0), the Riemann(=Weyl)
tensor can always be written as:

Cab
cd = 2Lab

[c;d] + 2Lcd
[a;b] − 2δ

[a
[c

(
Lb]e

d];e + Ld]e
b];e

)
for a tensor potential Labc with the properties

Labc = L[ab]c, L[abc] = 0, Lab
b = 0

Furthermore, the potential is affected by a gauge freedom so
that

Labc
;c

can be chosen at will (if this is set to zero, the gauge is called
Lanczos’ gauge).

However, and unfortunately, it is known that

the Lanczos potential

• exists exclusively in 4 dimensions

• there is no such potential for the Riemann tensor

when Rab 6= 0.



Interest?

• Inspiration from electromagnetism.

• Definition of energy and momentum.

• Possibility of “massive gravitons”, then the potential

becomes dynamic.

• Quantization.

• Dealing with (probably) a simpler object.

• Gravitational entropy (in analogy with the entropy

measure for quantum fields in flat space).

• Wave equation for the potential

• Finding a symmetric hyperbolic system for gravity

in terms of the potential.

• Potentials for arbitrary tensors?

• Generalization of Helmholtz/Hodge decompositions.

• ...



De Rham-Hodge standard results for p-forms.

Λ = exterior algebra; Λp = set of exterior p-forms.

η ∈ Λn = the canonical volume element n-form (ηa1...an
= η[a1...an].)

Hodge dual operator ∗ : Λp −→ Λn−p defined by

∗
Σap+1...an

≡ 1

p!
ηa1...an

Σa1...ap ∀Σ ∈ Λp.

∗∗ = ε(−1)p(n−p), ε = ±1 = sign(det(gab))

Scalar product < , > on each Λp:

∀Σ, Φ ∈ Λp : < Σ, Φ >≡
∫

Vn

(Σ, Φ) η = p!

∫
Vn

Σ∧
∗
Φ .

where (Σ, Φ) ≡ Σa1...ap
Φa1...ap. (Compact/compact support).

This scalar product is bi-linear, symmetric and non-degenerate.

Exterior differential d : Λp −→ Λp+1

(dΣ)a1...ap+1
≡ (p + 1)∇[a1

Σa2...ap+1] = (−1)p(p + 1)Σ[a1...ap;ap+1]

Co-differential or divergence δ : Λp −→ Λp−1

δ ≡ (−1)p ∗−1 d ∗ = ε (−1)(n−p)(p−1)+1 ∗ d ∗

(δΣ)a2...ap
≡ −∇a1 Σa1a2...ap

= (−1)pΣa2...apa1

;a1



• d2 ≡ 0

• δ2 ≡ 0

• d and δ are mutually adjoint with respect to < , >:

< dΣ, Γ > = < Σ, δΓ > ∀ Σ ∈ Λp, Γ ∈ Λp+1

• Σ is closed if dΣ = 0 and exact if Σ = dΨ.

• Σ is co-closed if δΣ = 0 and co-exact if Σ = δΓ.

• every statement on p-forms has a dual statement re-

placing d for δ and the form by its Hodge dual.

• The de Rham cohomology class of order p is defined

as the quotient of the set of closed p-forms by the set

of exact p-forms.

• The de Rham Laplacian operator ∆ : Λp −→ Λp:

∆ ≡ dδ + δd

With index notation:

(∆Σ)a1...ap
= −∇c∇cΣa1...ap

+pRc[a1
Σc

a2...ap]−
p(p− 1)

2
Rcd[a1a2

Σcd
a3...ap] .



• ∆ is linear,

• ∆ is self-adjoint with respect to < , >:

< ∆Σ, Φ > = < Σ, ∆Φ > ∀ Σ, Φ ∈ Λp

• ∆ commutes with ∗, d and δ:

∗∆ = ∆∗, d∆ = ∆d, δ∆ = ∆δ .

• < Σ, ∆Σ > = < dΣ, dΣ > + < δΣ, δΣ >

• In proper Riemannian manifolds ∆ is a positive op-

erator: < Σ, ∆Σ > ≥ 0 for all Σ ∈ Λp



Result 1 (Helmholtz-Hodge local decomposition)

Given any p-form Σ ∈ Λp there always exists a pair

of local potentials (Ψ, Γ) with Ψ ∈ Λp−1 and Γ ∈ Λp+1

such that

Σ = dΨ + δΓ

Proof. Assuming analiticity, according to the Cauchy-

Kovalewski theorem there always exists
o

Σ ∈ Λp such that

∆
o

Σ = Σ. The result then follows immediately from

∆ ≡ dδ + δd by setting Ψ = δ
o

Σ and Γ = d
o

Σ.

Observe that this result is independent of any field equations
for Σ, and is local. Obviously, the potentials have a very large
gauge freedom.

Actually, the previous Result can be strengthened in some
important cases:

Result 2 (Global Hodge decomposition theorem) In the
case of compact without boundary proper Riemannian manifolds,
any Σ ∈ Λp admits a unique global decomposition as

Σ = dΨ + δΓ + Υ

where Ψ ∈ Λp−1, Γ ∈ Λp+1 and Υ ∈ Λp is a harmonic p-form
(that is, Υ is closed and co-closed, i.e., ∆Υ = 0) in the same
co-homology class as Σ.



Generalization to arbitrary tensors?

The two crucial properties have been
i. the ability to identify a superpotential via a Laplace-like

equation for the de Rham operator,

ii. and then being able to link potentials to derivatives of the
superpotential, via the particular structure of the de Rham
operator.

Unfortunately, the de Rham operator is defined only for dif-
ferential forms.



The Lichnerowicz operator

In 1961 Lichnerowicz proposed a generalised Laplacian for arbi-
trary tensor fields:

(∆LT )a1...am
≡ −∇c∇cTa1...am

+
m∑

s=1

Rc
as

Ta1...as−1cas+1...am

−
m∑

s6=t

Rc
as

d
at
Ta1...as−1cas+1...at−1dat+1...am

.

This operator has the following important properties:
• ∆L respects the symmetry properties of Ta1...am

.

• ∆L commutes with traces.

• ∆L is self-adjoint with respect to the scalar product { , }
defined by

{T, S} ≡
∫

Vn

Ta1...am
Sa1...am η

for arbitrary T, S ∈ Tm(Vn). Therefore {∆LT, S} = {T, ∆LS}.

• If ∇aRbc = 0 the following two properties hold:

– when acting on rank-1 tensors, ∆L commutes with the
covariant derivative;

– when acting on rank-2 tensors, ∆L commutes with the
divergence operator.

• When acting on p-forms, ∆L coincides with the de Rham
Laplacian ∆:

∆LΣ = ∆Σ, ∀ Σ ∈ Λp .

∆L does NOT have any links to first-derivative operators.



The solution: tensors as r-fold forms!

Given any rank-m covariant tensor Ta1...am
,

• there exists a minimum r ∈ N, r ≤ m

• and a unique set of r natural numbers n1, . . . , nr ∈ N, with∑r
i=1 ni = m,

• such that Ta1...am
is a linear map on Λn1

× · · · × Λnr
.

In other words: there always exists a minimum r such that

T̃ ∈ Λn1 ⊗ · · · ⊗ Λnr

where T̃a1...am
is the appropriate permuted version of Ta1...am

which selects the natural order for the n1, . . . , nr entries.

Tensors seen in this way are called r-fold (n1, . . . , nr)-forms.

In semi-Riemannian manifolds (Vn, g) this extends to all ten-
sors by means of the metric isomorphism between TVn and T ∗Vn

(raising and lowering indices)

In short:
All tensors can be considered, in a precise way, as r-fold forms.

Definition 1 (Form-structure number and block ranks)
For any tensor T , the uniquely defined number r will be called its
form-structure number, and each of the ni, the i-th block rank.



Examples

• Any p-form Σ is trivially a single (that is, 1-fold) p-form

• ∇Σ is a double (1, p)-form, with r = 2 and n1 = 1, n2 = p

• Rabcd has r = 2, n1 = n2 = 2: it is a double (2,2)-form
which is symmetric (the pairs can be interchanged!)

• Rab is a double symmetric (1,1)-form (r = 2, n1 = n2 = 1)

• Ta1...ar
= T(a1...ar) is a symmetric r-fold (1,1,. . . ,1)-form.

• A 3-tensor Aabc with the property Aabc = −Acba is a dou-
ble (2,1)-form and the corresponding Ã is given by Ãabc =
Ã[ab]c ≡ Aacb.

(The standard index version of familiar tensors such as Rie-
mann tensors Rabcd = R[ab][cd], Weyl tensors Cabcd = C[ab][cd],
torsion tensors Tabc = T[ab]c, or Lanczos tensors Labc = L[ab]c,
already have the indices in the appropriate permuted version,
so that they coincide with their tilded versions. In these cases
we shall dispense with the ˜ label.)



The new scalar product

For arbitrary tensors of the same type (i.e., with the same

form-structure number r and block ranks):

< T, S >≡
∫

Vn

(T, S) η

where now

(T, S) ≡ T̃a1...amS̃a1...am

Observe:
This scalar product is adapted to the structure as r-

fold forms of the tensor fields T and S, and therefore it

is different from the product defined before:

< T, S > = {T̃ , S̃} 6= {T, S}

This scalar product is bi-linear, symmetric and non-

degenerate.
(And positive-definite in proper Riemannian manifolds.)



The new operators

Let r be the form-structure number of T . Let us focus

on the i-th block, with block rank ni:

T̃ a1...ah
b1...bni

ah+1...ak = T̃ a1...ah
[b1...bni ]

ah+1...ak

The i-Hodge dual: ∗(i)T

(∗(i)T )a1...ah
bni+1...bn

ah+1...ak ≡ 1

ni!
ηb1...bnT̃

a1...ahb1...bniah+1...ak .

(As before, ∗(i)∗(i) = ε(−1)ni(n−ni) when acting on T̃ .)

The i-differential: d(i)T

(d(i)T )a1...ah
b1...bni+1

ah+1...ak ≡ (−1)ni(ni+1)T̃ a1...ah
[b1...bni

ah+1...ak
;bni+1]

The i-codifferential: δ(i)T

δ(i) = (−1)ni ∗−1
(i) d(i)∗(i) ≡ ε (−1)(n−ni)(ni−1)+1 ∗(i) d(i)∗(i)

The i-Laplacian: ∆(i)T

∆(i) ≡ d(i)δ(i) + δ(i)d(i) .

The covariant derivatives act on all indices.



• (δ(i)T )a1...ah
b1...bni−1

ah+1...ak = − T̃ a1...ah
cb1...bni−1

ah+1...ak ;c

(∆(i)T )a1...ah
b1...bni

ah+1...ak = −∇c∇cT̃
a1...ah

b1...bni

ah+1...ak

+niRc[b1
T̃ a1...ahc

b2...bni
]
ah+1...ak − ni(ni − 1)

2
Rcd[b1b2

T̃ a1...ahcd
b3...bni

]
ah+1...ak

−ni

k∑
s=1

Rc
ai

d[b1
T̃ as...as−1 c as+1...ahd

b2...bni
]
ah+1...ak .

• The operators d(i) and δ(i) are adjoint to each other with
respect to < , >:

< d(i)T, U > = < T, δ(i)U >

[ni(T ) + 1 = ni(U)].

• For each i = 1, . . . , r, ∆(i)T respects the skew-symmetry
on the i-th antisymmetric block of T , and the symmetries
and trace properties on the extra indices not in that block;
this implies, in particular, that ∆(i)T has the same form-
structure number and block ranks as T .

• However, any mixed trace, or mixed index symmetry, involv-
ing indices from both the explicit i-th antisymmetric block
and the rest of the indices is not preserved in general.

• For each i = 1, . . . , r, ∆(i) is self-adjoint : < ∆(i)T, S > =
< T, ∆(i)S >.

Moreover, one can prove the identities

< T, ∆(i)T > = < d(i)T, d(i)T > + < δ(i)T, δ(i)T > ∀i ∈ {1, . . . , r}

• When r = 1: ∆(1)Σ = ∆Σ = ∆LΣ for all Σ ∈ Λp.



i-Co-Homology?

• d2
(i) 6= 0 in curved spaces

(d2
(i)T )a1...ah

b1...bni+2

ah+1...ak

=
1

2
(ni + 1)(ni + 2)

k∑
s=1

Ras
c[bni+1bni+2

T̃ a1...as−1cas+1...ah
b1...bni

]
ah+1...ak ,

• δ2
(i) 6= 0 in curved spaces

(δ2
(i)T )a1...ah

b1...bni−2

ah+1...ak = −1

2

k∑
s=1

Ras
c
de T̃ a1...as−1cas+1...ah

deb1...bni−2

ah+1...ak .

• d(i)∆(i) −∆(i)d(i) = d2
(i)δ(i) − δ(i)d

2
(i)

• δ(i)∆(i) −∆(i)δ(i) = δ2
(i)d(i) − d(i)δ

2
(i)

• ∗(j) ∆(i) = ∆(i) ∗(j) ∀i, j ∈ {1, . . . , r}

Definition 2 (i-harmonic and fully harmonic tensors) A ten-
sor field T with form-structure number r is said to be i-harmonic,
for i ∈ {1, . . . , r}, if and only if ∆(i)T = 0. Such a tensor will
be called fully harmonic if it is i-harmonic for all i = 1, . . . , r.

Note that the harmonic property in the sense of Lichnerowicz
(i.e., ∆LT = 0) is different from these new harmonic properties.



Nevertheless, in FLAT semi-Riemannian manifolds these
operators are nilpotent with d2

(i) = 0 and δ2
(i) = 0.

Furthermore, a generalised version of
Poincaré’s Lemma is valid in such flat
manifolds. Namely:
Result 3 (Poincaré for r-fold forms in absence of curvature)
Let (Vn, g) be an n-dimensional semi-Riemannian manifold of
any signature and zero curvature. Then, for any x ∈ Vn there is
a neighbourhood U(x) of x such that, for any tensor field T and
for any i,

d(i)T = 0 ⇒ T = d(i)A

on U(x), where A has the same form structure number than T

and ni(T ) = ni(A) + 1.

Corollary 1 Under the same hypothesis,

δ(i)T = 0 ⇒ T = δ(i)B

on U(x), where B has the same form structure number than T

and ni(T ) = ni(B)− 1.



• d(i) (δ(i)) produces another tensor with one more (one less)
index in general, but

• there are some special situations:

– if ni = n then d(i)T = 0

– for any tensor T with form structure number r, ∇T has
form-structure number r + 1 and can be considered as
a definition of ‘d(r+1)T ’

– if ni = 1 then δ(i)T has r−1 as form-structure number.

In this case, in order to compute ∆(i) one has to allow
the operator d(i) in the combination d(i)δ(i) to act on
the missing block

[as if δ(i)T were an r-fold (n1, . . . , ni−1, 0, ni+1 . . . nr)-
form, in the same way as in (ii).]

• thus, for ` 6= 1, . . . , r

– d(`)T = ∇̂T̃ , δ(`)T = 0, ` /∈ {1, . . . , r}
– (∆(`)T )a1...am

= −∇c∇cT̃a1...am

where in the first case the ̂ means that the extra index provided
by the covariant derivative must be placed in the appropriate
place within {1, . . . , r + 1}.



A weighted de Rham operator and associated

potentials.

Theorem 1 The operator ∆̄ given by

∆̄ ≡ 1
r(∆(1) + ∆(2) + · · · + ∆(r)) = 1

r

∑r
i=1 ∆(i)

i. is linear

ii. self-adjoint with respect to < , >

iii. respects all index symmetry properties

iv. commutes with all trace operations

v. It is related to the Lichnerowicz operator by

∆̄ =
1

r
∆L −

r − 1

r
∇c∇c .

Of course, for single p-forms we have

∆̄Σ = ∆Σ = ∆LΣ, ∀ Σ ∈ Λp .



Important:

An extremely important consequence of the new operator ∆̄
is that for any given tensor field T , there exists an associated

superpotential
o

T , by which we mean a superpotential, not just
with the same form-structure number and block ranks, but also
with the same index symmetries and trace properties as T .

Crucial:

∆̄ has the useful properties of ∆L and, in addition, has
direct links with d(i) and δ(i).

Thus, using

∆̄
o

T ≡ 1

r

r∑
i=1

[δ(i)(d(i)

o

T ) + d(i)(δ(i)

o

T )] .

we get

Theorem 2 Given any tensor field T with form-structure

number r, there always exists a set of 2r local poten-

tials (Y(i), Z(i)), i = 1, 2, . . . r, such that

T =
1

r

r∑
i=1

(δ(i)Y(i) + d(i)Z(i))

where Y(i) = d(i)

o

T and Z(i) = δ(i)

o

T are the potentials.



Harmonic tensors

Definition 3 A tensor field T will be called harmonic

if and only if

∆̄T = 0 .

Obviously, any fully harmonic tensor is trivially har-

monic. The converse, however, does not hold in general.

Nevertheless,

< T, ∆̄T > =
1

r

r∑
i=1

< T, ∆(i)T > =

1

r

r∑
i=1

(
< d(i)T, d(i)T > + < δ(i)T, δ(i)T >

)
for arbitrary tensor fields.

Therefore, it is straightforward to obtain the following

converse in proper Riemannian manifolds.

Theorem 3 Let (Vn, g) be a compact without bound-

ary proper Riemannian manifold. Then, a tensor T

is harmonic if and only if it is fully harmonic, and if

and only if

d(i)T = 0, δ(i)T = 0, ∀ i ∈ {1, . . . , r} .

(As usual, the compactness can be replaced by appropriate

decaying properties at infinity.)



Hodge decompositions (in flat manifolds)

Combining the previous results, it seems very plausible that
one can easily prove the following generalization of the global
Hodge decomposition theorem:

Conjecture 1 Let (Vn, g) be a compact without boundary flat
proper Riemannian manifold (of any topology). Any tensor field
T , whose form structure number is r, admits r orthogonal (unique)
global decompositions

T = d(i)A + δ(i)B + Hi

where A is i-closed, B is i-co-closed, and Hi is i-harmonic.

(One can also speak of i-cohomology classes.)

The complete proof of these conjectures requires some tech-

nical details, concerning the continuity of (∆(i) + Id)−1, and the

finite dimensionality of the set of i-harmonic tensors.

More ambitious: is it possible to combine all these

decompositions into a unique one?

In other words, is it possible to prove a unique decom-

position of type

T = H +
1

r

r∑
i=1

(δ(i)Y(i) + d(i)Z(i))

where H is harmonic ∆̄H = 0 (ergo fully harmonic)?



Back to the general case: local potentials

The case of double (q, p)-forms

T̃ a1...aq
b1...bp

= T̃ [a1...aq]
[b1...bp].

(∆(1)T )a1...aq
b1...bp

= −∇c∇cT̃
a1...aq

b1...bp
+ qRc[a1T̃c

a2...aq]
b1...bp

−q(q − 1)

2
Rcd[a1a2T̃cd

a3...aq]
b1...bp

+ (−1)q−1qp R[a1
cd[b1

T̃ a2...aq]cd
b2...bp]

(∆(2)T )a1...aq
b1...bp

= −∇c∇cT̃
a1...aq

b1...bp
+ pRc[b1

T̃ a1...aqc
b2...bp]

−p(p− 1)

2
Rcd[b1b2

T̃ a1...aqcd
b3...bp] + (−1)q−1pqR[a1

cd[b1
T̃ a2...aq]cd

b2...bp]

(∆̄T )a1...aq
b1...bp

= −∇c∇cT̃
a1...aq

b1...bp
+

q

2
Rc[a1T̃c

a2...aq]
b1...bp

+
p

2
Rc[b1

T̃ a1...aqc
b2...bp] −

q(q − 1)

4
Rcd[a1a2T̃cd

a3...aq]
b1...bp

−p(p− 1)

4
Rcd[b1b2

T̃ a1...aqcd
b3...bp] + (−1)q−1qpR[a1

cd[b1
T̃ a2...aq]cd

b2...bp]

∆̄ =
1

2
(∆L −∇c∇c).



Specialising the previous Theorem we obtain,

Corollary 2 Given any tensor field T with the struc-

ture of a double (q, p)-form there always exist local

potentials Y(1), Y(2), Z(1), Z(2) such that

T =
1

2

(
δ(1)Y(1) + δ(2)Y(2) + d(1)Z(1) + d(2)Z(2)

)
.



Traces and transposes for double forms

• The trace of a double (q, p)-form T is the double (q− 1, p−
1)-form tr(T ) given by

(t̃r(T ))a2...aq
b2...bp

≡ T̃ ca2...aq
cb2...bp

• We must remark that if q = 1 (or p = 1), then the first
(second) block disappears after taking the trace, so that
the resulting tensor has a form-structure number less than
2. In these situations sometimes it is necessary to consider
the resulting tensor tr(T ) as an equivalent double (0, p−1)-
form (or double (q − 1, 0)-form).

• tr(d(1)T ) = −d(1)tr(T )− δ(2)T

• tr(d(2)T ) = −d(2)tr(T )− δ(1)T

• tr(δ(1)T ) = −δ(1)tr(T ) (q ≥ 2)

• tr(δ(2)T ) = −δ(2)tr(T ) (p ≥ 2)

• The (generalised) transpose tT of a double (q, p)-form T is
the double (p, q)-form given by interchange of the blocks:

( ˜tT )a1...ap
b1...bq

≡ T̃b1...bq

a1...ap.

• ttT = T

• d(2)(
tT ) = t(d(1)T )

• δ(2)(
tT ) = t(δ(1)T )

• t(tr(T )) = tr(tT )



For the case of double (q, p)-forms, a straightforward compu-
tation provides the commutation properties of the operators d(i)

and δ(j) for i, j ∈ {1, 2}

(
[d(1), d(2)]T

)a1...aq+1

b1...bp+1
=

(−1)p+q

2
(p + 1)(q + 1)×(

qRc[bp+1

[aqaq+1T̃ a1...aq−1]c
b1...bp] − pRc[aq+1

[bpbp+1
T̃ a1...aq]

b1...bp−1]c

)
,

(
[d(1), δ(2)]T

)a1...aq+1

b1...bp−1
= (−1)q(q + 1)

(q

2
Rc

d
[aqaq+1T̃ a1...aq−1]d

cb1...bp−1

+
p− 1

2
Rcd

[b1

[aq+1T̃ a1...aq]
b2...bp−1]cd + Rd[aq+1T̃ a1...aq]

db1...bp−1

)
,

(
[δ(1), δ(2)]T

)a1...aq−1

b1...bp−1
=

p− 1

2
Rce

d[b1
T̃ da1...aq−1

b2...bp−1]ce

−q − 1

2
Rce

d[a1T̃ a2...aq−1]ce
db1...bp−1

(Observe again, that in flat space these operators commute.)



Double (p, p)-forms: Curvature tensors

The transpose tT of T is of special relevance for the special case
of the double (p, p)-forms

Definition 4 (Symmetric and antisymmetric double forms)
A double (p, p)-form is symmetric if T = tT , and antisymmetric
if T = −tT (in this case only for p > 1).

Of course, for p > 1 any double (p, p)-form can be decom-
posed uniquely into a symmetric and an antisymmetric one.
Hence, without loss of generality, in what follows we will only
consider these two cases,

T = ±tT or T̃ a1...ap
b1...bp

= ±T̃b1...bp

a1...ap .

Then it follows trivially

d(2)T = ± t(d(1)T ), δ(2)T = ± t(δ(1)T )

and therefore ∆(2)T = ± t(∆(1)T ) so that

∆̄T =
1

2

(
∆(2)T ± t(∆(2)T )

)
.



Since the associated superpotential
o

T will have the same sym-
metry properties as T , it follows that the four potentials Y(1),
Y(2), Z(1) and Z(2) defined before satisfy

Y(2) = ±tY(1) ≡ (−1)p+1Y,

Z(2) = ±tZ(1) ≡ (−1)p−1Z ,

Furthermore the completely antisymmetric partA[Y(2)] of Y(2)

(or Y ) vanishes identically in the next cases

Y[a1...apb1...bp+1] = 0 for

{
T = tT p odd,

T = −tT p even.
(1)

Theorem 4 Given any tensor T with the structure

of a double (anti)symmetric (p, p)-form there always

exist a PAIR of local potentials Y(2), Z(2) satisfying (1)

such that

T =
1

2

[
δ(2)Y(2) ± t(δ(2)Y(2)) + d(2)Z(2) ± t(d(2)Z(2))

]
.

In index notation

T̃ a1...ap
b1...bp =

1

2

(
Y a1...ap

b1...bpc
;c ± Yb1...bp

a1...apc
;c

+ pZa1...ap
[b1...bp−1;bp] ± pZb1...bp

[a1...ap−1;ap]
)



Traceless double (p, p)-forms

Suppose now that, in addition to the (anti)symmetry between
blocks, the double (p, p)-form T is traceless, i.e.,

tr(T ) = 0 .

Then the potentials Y(2) and Z(2) are not independent

Z(2) = ∓ tr(tY(2))

or with indices

Za1...ap
b1...bp−1

= ∓Ycb1...bp−1

ca1...ap .

Furthermore
tr(tr(Y(2))) = 0

which becomes in index notation

Ycdb1...bp−2

cda1...ap−1 = 0 . (2)

Theorem 5 Given any tensor T with the structure of a double
(anti)symmetric traceless (p, p)-form there always exists a double
(p, p+1)-form local potential Y(2) satisfying (1) and tr(tr(Y(2))) =
0 such that

T =
1

2

(
δ(2)Y(2) ± t(δ(2)Y(2))− d(1)tr(Y(2))∓ t(d(1)tr(Y(2)))

)
,

The index version is

T̃ a1...ap
b1...bp

=
1

2

(
Y a1...ap

b1...bpc
;c ± Yb1...bp

a1...apc
;c

−pY c[a1...ap−1
cb1...bp

;ap] ∓ pYc[b1...bp−1

ca1...ap
;bp]

)
where the potential Y satisfies (1) and (2).



Symmetric rank-2 tensors

Tab =
1

2
(Yabc

;c + Ybac
;c + Za;b + Zb;a) .

For a traceless symmetric 2-tensor (T a
a = 0)

Tab =
1

2
(Yabc

;c + Ybac
;c − Y c

ca;b − Y c
cb;a) .

In both cases the double (1, 2)-form Y a
bc = Y a

[bc] sat-

isfies Y[abc] = 0.

[There is a well known decomposition for symmetric rank-2
tensors in three dimensional spaces, but it is restricted to proper
Riemannian space with the further condition of being either
compact or asymptotically Euclidean. The decomposition coin-
cides with the previous one with the added desirable properties
that (i) it is unique and (ii) the part Y(ab)c

;c is divergence-free.
It seems plausible that, using the same kind of techniques, some
of our more general decompositions, which are valid in arbitrary
dimension and signature, can be enforced to be unique in the
case of positive-definite metric for either of the mentioned cases:
compact manifold or asymptotic flatness.]



Application to general curvature tensors

Let Rabcd be a Riemann candidate, that is to say

Rabcd = R[ab][cd], Ra[bcd] = 0 (=⇒ Rabcd = Rcdab),

so that Rabcd is in particular a symmetric double (2,2)-form.

Given the additional cyclic symmetry property, its potentials
satisfy the additional symmetries

Ya[bcde] = 0, Z[abc] = 0, (3)

the first of which implies the following useful properties

Y e
[bcd]e = 0, Y[abcd]e = 0, Yabcde = 3Y[cde]ab = 3Ya[cde]b, Ya[bc]de = −Ya[de]bc.

Theorem 6 Any Riemann candidate tensorRab
cd has

a pair of local potentials given by a double (2, 3)-form

Y ab
cde and a double (2,1)-form Zab

c with the proper-

ties (3) such that

Rabcd =
1

2

(
Yabcde

;e + Ycdabe
;e + 2Zab[c;d] + 2Zcd[a;b]

)
.



Let us consider now a Weyl candidate, that is, a double (2,2)-
form Cabcd = C[ab]cd = Cab[cd] with the algebraic properties of the
Weyl conformal curvature tensor:

Ca
bca = 0, Ca[bcd] = 0, (=⇒ Cabcd = Ccdab),

so that Cabcd is in particular a traceless and symmetric double
(2,2)-form.

Theorem 7 Any Weyl candidate tensor field Cabcd has

a double (2, 3)-form local potential Pabcde with the prop-

erties

Pa[bcde] = 0, P ab
abc = 0

such that

Cab
cd =

1

2

(
P ab

cde
;e + Pcd

abe
;e − 2Pe[c

abe
;d] − 2P e[a

cde
;b]

)
.

Immediate consequences are the following useful properties,

P e
[bcd]e = 0, P[abcd]e = 0, P ab

cde = 3P[cde]
ab = 3P [a

[cde]
b], Pa[bc]de = −Pa[de]bc .



Number of independent components of the potential:

(n + 2)n(n− 3)(n2 − n + 4)/24

(16 if n = 4, 70 if n = 5).

This is LARGER than the number of independent compo-
nents of a Weyl candidate:

(n + 2)(n + 1)n(n− 3)/12

(that is, 10 if n = 4, 35 if n = 5).

It is also larger (equal, in the case n = 4) than the num-
ber of independent Ricci rotation coefficients, or of independent
components of the connection in a given basis.

=⇒ GAUGE



What about the Lanczos potential in n = 4?

• Observe that a double (2,3)-form is equivalent, via dualiza-
tion with the Hodge * operator, to a double (2,1)-form in
n = 4.

• Also, for any traceless double (2,2)-form:

(∗W∗)abcd ≡
1

4
ηabefηcdghW

efgh =⇒ (∗W∗)abcd = ε Wabcd .

• Similarly, for any double(2,3)-form Pabcde:

(∗P∗)abc ≡
1

12
ηabefηdghcP

efdgh =⇒

P ab
cde = 6ε (∗P∗)[a

[cdδ
b]
e], P i

cabi = ε (∗P∗)abc.

• Observe that the symmetry and trace properties of P trans-
late for the double dual into

(∗P∗)[abc] = 0, (∗P∗)ab
b = 0

which are the Lanczos potential properties exactly!

Hence, by taking the double dual of in the basic for-
mula in four dimensions

ε Cab
cd = 2(∗P∗)ab

[c;d]+2(∗P∗)cd
[a;b]−2δ

[a
[c

(
(∗P∗)b]e

d];e + (∗P∗)d]e
b];e

)
so that

Labc = ε(∗P∗)abc ⇐⇒ Pabcde = ε (∗L∗)abcde.

L =t(trP ), that is, Labc = P e
cabe



Case of Lorentzian manifolds

* Symmetric hyperbolic systems.

Take the following set of equations

d(1)A = (s + 1)J, δ(1)A = −j

for a tensor field A (here the first block (1) is used for

the sake of simplicity, without loss of generality; and we

write s = n1). With index notation this reads

∇[µ0Aµ1...µs]µs+1...µm = Jµ0...µm, ∇ρA[ρµ2...µs]µs+1...µm = jµ2...µm

These can be “hyperbolized” as

Qα σ1...σs
γ1...γs

ρ1...ρn2
...τ1...τnr

ε1...εn2
...ζ1...ζnr

∇αAσ1...σsρ1...ρn2
...τ1...τnr

= Jγ1...γsε1...εn2
...ζ1...ζnr

where the vector-valued matrices Q (endomorphisms acting on
the set of r-fold (s, . . . , nr)-forms) are defined by

Qα σ1...σs...τ1...τnr
ρ1...ρs...ν1...νnr

≡ Eα
µ1λ2µ2...λrµr

[σ1...σs]...[τ1...τnr ]
[ρ1...ρs]...[ν1...νnr ]v

µ1uλ2
2 vµ2

2 . . . uλr
r vµr

r

for arbitrary timelike future-directed vectors {vµ1, uλ2
2 , vµ2

2 , . . . , uλr
r , vµr

r },
and with

Eλ1µ1...λrµr

σ1...σn1 ...τ1...τnr
ρ1...ρn1 ...ν1...νnr

≡ 1

(n1 − 1)!
δ

σ2...σn1
ρ2...ρn1

(
2δσ1

(λ1
gµ1)ρ1 −

1

n1

δσ1
ρ1

gλ1µ1

)
× · · ·

× 1

(nr − 1)!
δτ2...τnr
ν2...νnr

(
2δτ1

(λr
gµr)ν1 −

1

nr

δτ1
ν1

gλrµr

)
Indeed, for arbitrary r-fold (s, . . . , nr)-forms A and B one has

that
Qα(A, B) = Qα(B, A) ,

and furthermore, for any timelike future-directed 1-form uα,
uαQα(·, ·) is positive definite.



This positive-definite property follows from the iden-

tity

uαQ
α(A, A) = uαT

α
µ1...λrµr{A}v

µ1
1 . . . uλr

r vµr
r > 0

where T{A} is the so-called “superenergy tensor” of A,

which always satisfy the dominant property, that is, the

outcome when they are saturated with timelike future-

pointing vectors is always positive.

The hyperbolicity of the above general system is re-

lated, of course, to the existence of a “wave equation” for

A. This is immediate from the definition above of the op-

erator ∆(1) = d(1)δ(1) + δ(1)d(1). Thus, from the original

system one deduces

∆(1)A = −d(1)j + (s + 1)δ(1)J

which is manifestly hyperbolic in Lorentzian signature.



Observe also that

• The constraints (which do exist) are always complete,

and the system is causal.

• All characteristics of the original system are physi-

cal and they, together with the extra characteristics

of the hyperbolization, are directly related to spe-

cial principal null directions of the corresponding so-

lutions.

• General energy estimates and inequalities can always

be constructed by using the properties of the superen-

ergy tensors. Conservation laws also arise if there are

Killing vectors.

• Even if only the first relation d(1)A = (s + 1)J is

given, one can deal with the system by adding the

second relation as GAUGE equations for arbitrary

sources.



Conclusions/Perspectives

• ∆̄!!

• For any tensor field, 2r potentials

• If further symmetry/trace properties, then less than 2r

• Harmonic tensors (in the new sense).

• Global Hodge decomposition for tensors ?? (Flat!).

• Two potentials for Riemann-type tensors, or Ricci-type ten-
sors.

• A potential for the Weyl (and traceless Ricci) tensors.

• Implications of the Bianchi on the potentials? (=⇒ A).

• Energy

• Lowering differentiability

• First order symmetric hyperbolic system for P

• Wave/Laplace equation for P

• GAUGE !!!!


